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In this paper, we provide a possible methodology
for identifying the initiation of damage in a class
of polymeric solids. Unlike most approaches to
damage that introduce a damage parameter, which
might be a scalar, vector or tensor, that depends on
the stress or strain (that requires knowledge of an
appropriate reference configuration in which the body
was stress free and /or without any strain), we exploit
knowledge of the fact that damage is invariably a
consequence of the inhomogeneity of the body that
makes the body locally ‘weak’” and the fact that
the material properties of a body invariably depend
on the density, among other variables that can be
defined in the current configuration, of the body. This
allows us to use density, for a class of polymeric
materials, as a means to identify incipient damage in
the body. The calculations that are carried out for the
biaxial stretch of an inhomogeneous multi-network
polymeric solid bears out the appropriateness of
the thesis that the density of the body can be
used to forecast the occurrence of damage, with
the predictions of the theory agreeing well with
experimental results. The study also suggests a
meaningful damage criterion for the class of bodies
being considered.

1. Introduction

What constitutes damage of a body, and modelling
of the initiation and progression of damage in a
body, has been one of the most important questions
confronting a scientist interested in understanding
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the underlying mechanisms that lead to the deterioration of a body with respect to its desired
performance characteristics. A simple identification within the context of mechanical issues of
what constitutes damage would be the degradation and the deterioration in the performance
of the body during a process that it is subject to, that is, the inability of the body to continue
performing in a certain expected manner. However, it is possible that while one aspect of
the body’s behaviour is worsening, its response with regard to another aspect of its response
characteristics might be improving. For instance, while the load carrying capacity might decrease,
the body’s electrical or thermal conductivity could possibly increase. Thus, in talking about
a body undergoing damage, we ought to clearly delineate which aspect of its behaviour or
property is deteriorating. The kind of damage that one is interested in might also depend on
the class of materials under consideration and thus the criterion for defining damage might
change considerably from one class of materials to another. Polymers and metals need not suffer
the same type of damage as the physical mechanisms underlying their response characteristics
are different. For instance, while metals usually expand when heated large classes of polymers
contract. Thus, one cannot treat a very large class of materials under the same umbrella as
far as damage is concerned. This paper is concerned with a certain class of damage suffered
by polymers owing to degradation in their load carrying capacity that is a consequence of
network scission.

Even within the context of a specific body, damage/failure criteria can depend on the class
of processes that a body is subject to. Thus, for instance, while a decrease in density and the
attendant inability of a body to withstand loads might be appropriate when considering the
tension of certain bodies, such a criterion based on density might be inappropriate in the same
body undergoing compression wherein the density might increase but the body might yet fail
owing to a totally different mode to failure. Thus, a single damage criterion cannot be used even
in the case of a specific class of bodies. It is also important to bear in mind that a criterion based on
changes in density will not be appropriate if one is concerned with small deformations as density
changes during such deformations will be small. Here, we are primarily interested in problems
wherein damage occurs owing to a decrease in the density of the polymer which is undergoing
sufficiently large deformations that allows for sufficiently large changes in the density and volume
of the body under consideration.

Damage is often times modelled by assuming rather ad hoc internal variables, which could
be scalar, vector or tensor, which often times do not necessarily have meaningful physical
significance. The initiation and the progression of the damage are also invariably prescribed in an
ad hoc manner in terms of these damage variables. Parameters that qualify and quantify damage,
especially within the context of a mechanical perspective, depend on the stress, strain or other
kinematical variables through their invariants and herein lies a serious shortcoming. Given a
body in a particular configuration, we do not know if it is stress free or if it has undergone a
permanent set, that is whether it is strained with respect to some other unstrained or unstressed
state. That is, what is perceived by an experimentalist as the initial configuration of a body
could be in a stressed or strained state with respect to some previous configuration. Thus, if
a damage parameter depends on the stress or strain, the fact that a body in question might
already be in a stressed or strained state makes such a parameter an useless measure. On the other
hand, if damage were to depend on quantities (properties of the body) that are unambiguously
determined from information concerning its value purely in the current state, then such a measure
of damage would be a meaningful measure. In this study, we provide a possible methodology to
identify the onset of damage for a class of polymeric materials by assuming that damage depends
on the current density of the body. However, before discussing this methodology, we shall discuss
another aspect concerning damage that is often given the short shrift in practically all studies
devoted to damage.

A rather strange circumstance with regard to most of the models currently in vogue is that
they assume that the body is homogeneous and the causative agent for damage being the stress
or the strain. This not true to the physics of the situation. Damage invariably occurs owing to local
inhomogeneities in a body. The body is weaker at certain locations owing to some defect that exists
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at the microscopic level. Thus, the proper study of damage necessarily requires one to model the
body under consideration as an inhomogeneous body. This is the point of view adopted in this
paper. Once one adopts such a perspective, the study of damage in bodies, at least for a class
bodies, becomes quite simple.

It would be appropriate at this juncture to mention that there have been several studies of
multi-network polymers wherein one allows for scission and reformation of network junctions
(see [1-8]). One could view scission as damage and the formation of new networks as a possible
healing process. These studies, however, concern the mixture of two networks, each with different
material properties that can allow for a deterioration in load carrying capacity, but the damage
is not due to the density being lower in a small neighbourhood belonging to the body, namely
damage as a consequence of inhomogeneity. Of course, one could generalize those multi-
network approaches to include the possibility of local density variations. Using the multi-network
approach and scission and reformation as the basis for damage, Rajagopal et al. [9] and Puglisi &
Saccomandi [10] studied damage in rubber-like materials. Another way in which damage has
been modelled that is similar in spirit to multi-network theory is when one considers the body
undergoing damage as comprising two ‘phases”: a soft phase and a hard phase. Using such an
approach, Tommasi et al. [11] carried out an interesting study of the damage and self-healing
of spider silks. They took into account the breaking of the hydrogen bonds in the material that
leads to the softening of the material. However, such an approach yet requires one to specify
an activation threshold and a transition threshold. That is, one needs to specify the strain at
which the hydrogen bond breaks and this is an ad hoc specification as assuming that the breaking
occurs at a different strain will lead to different results. In fact, a similar approach of a mixture of
soft and hard phases was used much earlier by Kratochvil et al. [12] to study the elastic—plastic
response of materials where one could think of the onset of plasticity as damage but once again
one has to specify when the plastic response is to be activated by a specification of an activation
strain. The important aspect that one has to bear in mind is that the initiation of damage in all
the above-mentioned approaches depends on the specification of a strain that requires one to
know a configuration in which the body was strain free and from which an absolute measure
of strain can be based. Unfortunately, one is usually presented with a specific specimen in a
specific configuration and one does not know the history of the body and whether it has already
undergone a permanent set. Unlike these studies, the present one however does not depend on
the specification of knowing a stress free or strain free state from which thresholds for the strain
or stress can be given, the damage being merely a consequence of the inhomogeneity of the body
and properties of the body in the current state.

In this paper, we shall be concerned with damage that occurs in polymers owing to the scission
of the network junctions with attendant changes in the density of the material. Such a situation can
be observed in the stretching of polymeric bodies where locally the density falls to such an extent
that the body ultimately bursts. In fact, in many situations, such as the inflation of a balloon, one
can actually see a local region that undergoes a significant change in the density and ultimately
bursts. Yet another example of the precipitous fall in the local density followed by a significant
increase in the local volume that leads to a catastrophic burst that is observed in aneurysms.
Similarly, there are a variety of problems involving structures where there is a dramatic fall in the
density, triggering the onset of the collapse of the structure.

Phenomenon such as scission of the networks is entropy producing and dissipative.! However,
as long as the dissipation associated with the scission is insignificant, we can ignore it, and model
such bodies as elastic. However, when sufficient number of the network junctions break and
the body is ‘damaged’, the body invariably ceases to be ‘elastic” in its original sense. The body
might continue to respond from a new natural state, the damaged state, as an elastic body, in

!Most rubber-like materials and polymers are not elastic. While under certain circumstances they can be approximated as
elastic bodies, there is an erroneous opinion that filled rubber and rubber-like materials can be described, while they undergo
large deformation, as elastic bodies. This has led to numerous incorrect attempts to describe a phenomenon such as the
Mullins effect within the context of elasticity. Much of the experimental data on rubber-like materials is restricted to merely
loading and one ought not to construe that such bodies are elastic as it only by unloading the body one recognizes the extent
of inelasticity of the body.
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an approximate sense, until further significant damage occurs. It is necessary to recognize that a
body that is undergoing damage cannot be modelled as the same elastic body prior to the damage,
after it has been damaged.

In fact, most constitutive relations are valid only for a small range of processes that a body
is subject to. In a certain range, the body could respond in a manner that can be described by
a constitutive relation for elastic bodies that however on further deformation beyond the range
wherein it is elastic could behave inelastically. That is, there is a domain of process classes where
a particular model is valid. This point cannot be overemphasized.

The thesis of the paper is that damage in a large class of materials can be described in an
elegant and simple manner without resorting to unnecessary internal variables such as damage
parameters. If the material properties depend on the density and if they change in such a manner
that the load carrying capacity diminishes, so that it is unable to perform as intended, we can
consider it as being damaged. The damage criterion which this study suggests, and which seems
eminently reasonable from a physical standpoint is the assignment of the initiation of damage
when the derivative of the norm of the current value of the stress with respect to the density, at
the point of interest starts decreasing. Interestingly, this criterion is in keeping with experimental
results as explained in detail later. In this study, we find that a slight increase in the far-field
nominal stretch leads to a dramatic increase in the determinant of the deformation gradient at the
location where the density is initially lower to start with, which in virtue of the conservation
of mass implies a significant change in the density that we find leads to a steep drop in the
load carrying capacity. Once the body is damaged it will not respond along the same response
curve (elastically). But we do carry our simulation after damage as though the body yet responds
elastically as we do not carry any unloading of the body. We plan to develop a more complete
ala plasticiy. We specifically consider the density of the body in the reference configuration to
be a function of the particles in the reference configuration, and we allow it to vary so that in
a very small region within the body, say a circular domain whose radius is one-thousandth of
a characteristic length associated with the body, the density is approximately 50% or 30% of the
far-field density.

We consider two classes of models, first a generalization of a compressible neo-Hookean
model and second a generalization of a model owing to Gent [13]. We note in both classes of
models, the damage criterion makes good sense, and the values of stretch when damage occurs
agrees well with the experiments of Gent [13]. We then subject the body, in our case, a layer, to
biaxial stretch. We note that as the body is deformed, the current density of the body decreases,
disproportionately larger in the small region that was initially less dense, than the rest of the
body, with a tremendous increase in the local volume (that is the determinant of the deformation
gradient) incipient to the bursting at the location.

2. Preliminaries

Let x denote the current position of a particle in the deformed body which is at X in a reference
configuration, which is the configuration at which the body was given to the observer. Let x =
x (X, t) denote the motion? of a particle and let us denote the displacement by

u=x-X. (2.1)
The displacement gradients du/9X and du/dx are given by
Ju

ax = Vxu (2.2)
and 5
M Vau=1-F1, 2.3)
X

2The motion of particle depends on the choice of the reference configuration and we represent it as x = x ., (X, £). We shall
however dispense with the suffix «g as it is rather cumbersome. In the definition of a Cauchy elastic body given through
equation (2.8) that follows, the function as well as all the arguments should have suffix «r.
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where F is the deformation gradient defined through

a
F= a%(( (2.4)
The Cauchy-Green tensors® B and C are defined through
B:=FF' and C:=F'F. (2.5)
The unimodular tensors C and B are defined through
C:=detF23C and B:=detF 2B, (2.6)

and their corresponding first principal invariants of are I; = tr C = tr B. The Green-St. Venant
strain E and the Almansi-Hamel strain e are defined through

E:=1(C-1 and e:=11-B). (2.7)

A body is said to be Cauchy elastic ([15,16]) if the Cauchy stress T in the material can be
expressed as

T =T(p,F, X). (2.8)

We shall denote by the || T| the usual Frobenius trace norm for tensors. We shall later use the

variation of this norm with the density to introduce the notion of damage. The most general
compressible homogeneous isotropic Cauchy elastic body (see [15-17]) is defined through

T =681+ 5B + 5382, (2.9)

where §;,i=1,2,3 depend on X,,o,’ch,trB2 and trB3.
One of the bodies that we consider is a generalization of the compressible neo-Hookean body
that is a special subcase of (2.9) and takes the following form

(detF —1) 1 =

T =Ko(X I X B 2.1
0X) (detF)? + 10X g pdevB, (2.10)

where po(X)/det F and Ko(X)/det F? are the shear and bulk moduli,* which decrease with increase
in detF.

Before solving the equations, we proceed by choosing an appropriate length scale to non-
dimensionalize the constitutive equation. The main reason for non-dimensionalizing is to study
in a systematic fashion the effect of the various parameters that affect the response of the
body. The equations are non-dimensionalized using a characteristic length scale L (the length
of the layer under consideration) and modulus Ky: u =L, v=Lv, w=Lwand T = K4 T. The final
non-dimensionalized equation is given by

Ko(X) (detF 1), wo®) 1, o (2.11)

T = =
Ky (detF)3 Ky detF

The material parameters used to describe the above model are given in table 1.

The second model that we consider is a generalization of a model due to Gent, which is a Green
elastic body. Truesdell [14] introduces a Green-elastic material [18,19] in the following manner: the
response of a body is perfectly elastic if for coordinates X*, referred to a certain natural state, there

3Various measures of deformation have been introduced, the interested reader can find a discussion of the same in
Truesdell [14].

4By operating the trace operator on both sides of equation (2.10), it is easy to see that Meannormalstress/detF — 1=
K/(detF)>.
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Table 1. Material parameters.

parameters functions

0o smoothened Heaviside function (figure 4)

exists a stored energy X' of the form
X =X(XY, Gap, &ijs 0, X5), (2.12)

where Gqp and g;; are respectively the appropriate metric tensors and the stored energy X' is such
that
Py
PR J

D, (2.13)

where pR is the density in the reference configuration. The above, in direct notation, would read

= 5(p,F,X), (2.14)
with
L y_T1.D. (2.15)
PR

Accordingly, we shall assume that the stored energy associated with a compressible,
inhomogeneous isotropic Green elastic material to be

_ noX)  Ln(X)—3 3 L -3 Ko(X) v 1 -
T Gapy® 28 (1 (Im(x)—3>>+(detF)”(X) (13 " 2)' =

where 119(X) and Ky(X) are the shear and bulk moduli, I,;, is the stretch limit, v is the volumetric
exponent and 7 is exponent related to the extent of degradation of the material modulus.

It is a fairly common practice to partition the stored energy into a distortional and a volumetric
part [20,21]. Gent [13] introduced a stored energy function for rubber-like materials wherein a
finite stretch limit of cross-linked polymeric materials are taken into account. The rubber was
assumed to be a homogeneous, isotropic, incompressible Green elastic body. Our stored energy
cannot be split into a purely distortional and volumetric part as the detF appears in both
the terms, that is there is a nonlinear coupling between both the distortional and dilatational
deformations. The first term of equation (2.16) has the same structure as that introduced by
Gent except for the fact that it is inhomogeneous, and the modulus is made to decrease with
an increase in detF. Note that this term becomes infinitely large as I; approaches the stretch limit
Iy The second term becomes infinitely large as (det F) — 0. Further, the stored energy is 0 when
the deformation gradient is I.

The Cauchy stress of the body takes the form

_ m(X) 1
 (det Fy"®+1 (1 — (I — 3)/(Iu(X) — 3)))

n(X)o(X) L -3
T adetpy0 (nX) = 3)log (l - (Im(X) - 3)) !

[1:3 - %tr(ﬁ)l]

Ko(v(X) [Ivool_ 1 }1 n(X)Ko(X) [uoo 1 }I.

- I — -2
(det F)n) | 3 1;(X)+1 (detF)n)+1 | 3 + /%)

3

Note that the Cauchy stress vanishes when the deformation gradient is I. Similar to the earlier
model, we non-dimensionalize the above expression using the characteristic length scale L and
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Figure 1. Material parameters variation. (a) Variation of v and (b) Variation of /,,.

Table 2. Material parameters.

parameters functions

0o smoothened Heaviside function (figure 4)

modulus Ky: u=Lii,v=L3, w=Lwand T=K; T.

T=01[B — 3 trB)I] + [o2 + a3 — ea] ], (2.17)
where
o — 10(X) 1
' K (det By 00+ (1= (I — 3)/(In(X) — 3)))
n(X)uo(X) . ( ( L-3 ))
=P (1, (X)—3)log [1— [ ———
®2= S (det Byt () ~3leg In(X) -3
= Ko(X)v(X) po-1 1
Ky (detEyn® | 3 113)(5()+1
_ KoXn(X) vy, 1
e 7 Koot By 0+ [13 "5 2}

The material parameters used in this study are shown in table 2.
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Table 3. Material parameters for three-dimensional simulation.

parameters functions

0o smoothened Heaviside function (figure 4)

3. Biaxial stretch of an inhomogeneous elastic sheet of finite thickness:
three-dimensional solution

Let us consider a square plate of side L and thickness 0.0001L in a three-dimensional Cartesian
coordinate system. The reference density (pg) is constant over a large region and it is allowed
to vary in small circular region at the centre of the square plate (see figure 4 where pmin = 0.5),
i.e. the inhomogeneity is modelled by a smoothened Heaviside function. Because this region is
circular, we use the symmetry condition to consider only one quarter of the plate and the whole
thickness for the further analysis. The initial density profile variation along the y-axis can be seen
in figure 4.

The non-dimensionalized X, Y and Z component of displacements are assumed to be u(X, Y, Z),
v(X,Y,Z) and w(X,Y,Z). The neo-Hookean plate is subjected to a biaxial stretch of 2. The
boundary condition are as follows

u(l,Y,Z)=1 v0<Y=<1&0<Z<0.0001;
1(X,1,Z)=1 V0=<X=<1&0=<Z=<0.0001;
PN=0 V0<X<1&0<Y<1&Z=0,0.0001,
and the symmetry conditions are
(0,Y,Z)=0 V0<Y<1&0<Z<0.0001;
9(X,0,Z)=0, V0<X<1&0<Z<0.0001,

where P is the first Piola—Kirchoff stress. The three-dimensional equilibrium equations, in the
absence of body forces, are

dPxx dPxy 0Pxyz _

= 1
0X Y 07 0, 31
dPyx 9Pyy dPyz
= .2
X Y 07 0 (32)
ap aP ap
and ZX 2y ZZ _, (3.3)

0X Y 0z

The constitutive relation for the Cauchy stress given in equation (2.10) and the relation between
Cauchy stress and first Piola stress is given by

P = (detF)TF . (3.4)

We use equation (2.10) and equations (3.1)-(3.4) to solve for the displacements components.
The material parameters used for the three-dimensional analysis are shown in table 3. Figure 2
shows the displacement (‘w’) in the ‘Z’-direction along the thickness at the centre of the plate.
It can be observed that the ‘@’ varies almost linearly with ‘Z’. The above-mentioned numerical
solution suggests a very useful simplification of the problem that will make it much more
amenable to numerical analysis. We note that the displacement ‘@’ varies nearly linearly with
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Figure 2. Displacement in the Z-direction at the centre of the plate through the whole thickness. (Online version in colour.)

the Z-coordinate suggesting the assumption that w(X,Y,Z) =Z¢(X,Y) will reduce the three-
dimensional problem into a two-dimensional problem, thereby reducing the complexity of the
problem significantly. In virtue of the savings in memory and time, we now proceed to study in
detail a two-dimensional approximation of the problem.

4. Biaxial stretch of an inhomogeneous elastic sheet:
two-dimensional solution

Let us consider a thin square plate of side L. The density profile in the reference configuration is
assumed to have a structure similar to that in the three-dimensional study.

(a) Governing equations

In virtue of the result for the three-dimensional solution that suggests a linear relationship
between the displacement in the Z-direction and the Z-coordinate, for a specimen that is a
sufficiently thin sheet, the non-dimensionalized X, Y and Z component of displacements are
assumed to be u(X,Y), v(X,Y) and w(X, Y, Z) = Z¢(X, Y). It is also worth observing that Varley &
Cumberbatch [22] also appealed to the same assumption concerning the displacement ‘w’ to
study large deformations of harmonic materials (the study by Varley & Cumberbatch [22]) is
recondite as there are no bodies that can be described through the constitutive model for harmonic
materials, it seems that the choice of the form of the constitutive relation was chosen, so that the
problem could reduce to a well-known partial differential equation). The deformation gradient is
given by

au(X)
F=I 4.1
+ (1)
ie.
ou ou
1 -
+BX Y 0
v v
F= — 14+ — . 4.2
X +3y 0 4.2)
9 bl
ﬁ 7¢ 1+¢
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Using the linear dependence for the Z displacement, Cauchy stress components Txz and Tyz
for the generalized Gent body are as follows

- B1Z(3¢ /90X + 01 /90X (3¢ /0X) + 01/3dY(d¢/3Y))

X2 = (3 1) (0it/0X £ 1)95/0Y + 9i1/0X — dia/aY(95,9X) + 1) (43)
and
o BLZ(3¢ /Y + 35/8X(3¢/3X) + 35/dY (3 /dY)) »
YZZ 6+ 1)((80/0Y + 1)9i1/0X + 00/3Y — 9i1/0Y(85/3X) + 1)’ (44)
and for a neo-Hookean body, expression (4.4) for the shear stresses take the form
P W Z(0¢/0X + 3i1/3X (3¢ /3X) + 9i1/dY (3¢ /dY)) 5)
X2= ¢ + 1)((901/0X + 1)00/9Y + 9i1/9X — 9ii/dY(95/0X) + 1) '
and
_ @2 Z(3/dY + 35/9X(3¢p/3X) + 85/9Y (3¢ /3Y))
Tyz (4.6)

~ (¢ + 1)((35/0Y + 1)ai1/aX + 89/dY — 9i1/Y(05/3X) + 1)’

The other components of Cauchy stress, namely Txx, Tyy and Txy, do not show any dependence
on Z. Therefore, by selecting an appropriately small thickness for the plate, the components
Z(3¢/9X) , Z(d¢/dY), Txz and Tyz will be negligible, and from this perspective, we can drop
these terms. This results in the deformation gradient being only a function of ‘X" and Y’, i.e.

. dil dil
X Y
F=| v v . (4.7)
— 14— 0
X oy
0 0 1+¢

The plate is biaxially stretched and the boundary conditions are given by

(1, Y)=u; V0<Y<1
(X, 1)=u; Y0<X<1

and the symmetry conditions are

0,Y)=0 Y0<Y<1
5(X,00=0 Y0<X<1.

Because F is only a function of the coordinates X and Y, the traction-free condition on the top
and the bottom of the sheet reduces to Pzz =0. As large deformations of the polymeric solid
are involved and it is necessary to make a distinction between the Lagrangian and Eulerian
formulations. It would be numerically convenient to use a Lagrangian formulation because it
does not involve the evolving geometry and hence we use it in this study. The non-dimensional
governing equation is given by

DivP =0,

where P is the first Piola-Kirchhoff stress tensor. The relation between the Cauchy stress and first
Piola—Kirchhoff tensor is given by

P = (detF)TF .

LE209107 2L ¥ 905y 201 BioBuysiqndiraposieforredsy


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on November 11, 2016

Using the above the relation, the Piola Kirchhoff stress components for the generalized Gent
model are as follows

_ o [ 9v
Pxx=h1+ i om (W n 1) 6+ 165 — Br162), (438)
_ 90 [ ol
Pyy=p1+ /31%( + (% + 1) (¢ +1)(B3 — B1B2), 4.9)
- o v
Pxy =p1 ra ﬁ(fb +1)(B3 — B1B2), (4.10)
_ 35 ol
Pyx = p1 X 87Y(¢ +1)(B3 — B1B2) (4.11)
_ 30U i 9D 9l 9D
and Pz =~ 118 (5 + 5 + gy sy 1) HAOED, @)
where
= MO()_() _ (detl-:),z/?, _ 1 _ )
Ky (det F)n) (1 = ((tr(B) — 3)/(Im(X) — 3)))
_1t(B)
27 3detE’
~ npuoX)In(X) — 3) 1 (1 (tr(ﬁ) -3 )) KoX)v(X) | vk 1
3= — = (0] — —_— + —_— I3 — —
2K (det F)"X) Lu(X) =3 Ki(det Fyn®) 1;00

B Ko()_()ﬂ(x)_ Iuo’()+ 1_ ol
Ki(det Fyi®) | 3 1%

The material parameters for the generalized Gent model are shown in table 2.
Similarly, the Piola stress components for the generalized neo-Hookean model are as follows

Prs=atary ar (G 41) @) (13)
Pry=ar-+ang) +on (3 +1) @+1), (414)
ny=az% —011% —06145%, (4.15)
pyxzotz% fal% fa1¢% (4.16)
and Pzz=wm(p+1)+m <§—;+2—;+§—;§% - g—;s—;{ 1), (4.17)

where

Ko(detl_: -1 o detF
o] = — — tr B,
Kj detF 3Ky

0 =
= — detF.
o Kl e

The material parameters for the generalized neo-Hookean model are shown in table 1.
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Figure 3. Normalized current density at a stretch of 3.9 for different mesh sizes at the centre of the plate, where initial reference
density is the lowest.

The equilibrium equations, in the absence of body forces, are

dPxx  Pxy _
ax T ey = 0, (4.18)
dPyx  9Pyy _
X "oy (*.19)
and Pz7 =0, (4.20)
and the balance of mass is given by
p = ppdetF. (4.21)

(b) Numerical method

The equation-based modelling in COMSOL Multiphysics® was used to solve the above-
mentioned set of partial differential equations using the finite-element method. As the study
involves large deformations of the plate, the displacement boundary condition was applied in
step increments, and the solution of the previous step was fed as the initial guess for the next step.
The number of elements was fixed based on a grid independence study. The relative tolerance was
of the order of 107°. Very fine triangular elements were provided in the region where there were
initial density variations. Of the different quantities such as stresses, displacement and current
density, the current density (p) was the one, which showed sensitivity to the number of elements.
Hence, we show here the variation of p with the number of elements in figure 3. The mesh size of
2.5 x 107° in the inner region corresponds to 44 038 elements (figure 3), and this was chosen for
further analysis in this study.

5. Damage initiation criterion and results

The effect of inhomogeneity on the response of the polymeric sheet was studied using a
smoothened Heaviside function for two specific inhomogeneities, one wherein the normalized
densities in the central region and outside the central region were chosen to be 0.3 and 1,
respectively, with a sharp change in a narrow domain (figure 4), whereas in the other case the
density is 0.5 in the centre region, and 1 outside the circular region of inhomogeneity.

In both these cases, we find that the region that is less dense in the reference (undeformed)
configuration, deteriorates (in the sense that the density and hence the load carrying capacity
drops) very much more severely than the material in the rest of the body, indicating that failure
will occur first in this region of initially lower density. For example, the percentage reduction
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Figure 4. Initial variation of o with the Y-coordinate for the two cases considered in this study.
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Figure 5. Density variation with nominal stretch for the generalized Gent model. (a) o at the centre is 50% of farfield value
and (b) p at the centre is 30% of the farfield value.

in density is above 95% in the central region, whereas away from the central circular region of
initially lower density, it is less than 1% at a stretch of 3.9 for the generalization of the Gent model
(table 4). The drop in the density and drastic increase in the local volume which are observed are
clear indicators of the body’s impending failure. Let us first consider the case of the generalization
of the Gent model. Figure 5a displays the variation of the density with the stretch in the case of the
central inner region which is 50% of the far-field value. We note that at point B (figure 5a), which is
representative of the far-field, the density does not change significantly implying that the integrity
of the material is maintained. The manner in which the norm of the stress changes with the density
is portrayed in figure 6. We note as expected, as the density decreases (which corresponds to
the stretch increasing), initially the norm of the stress increases. However, we note that a critical
value of the density the norm of the stress starts to decrease with an increase in stretch. It is our
conjecture that it is at this point that the material gets damaged as the load carrying capacity
decreases with increasing stretch (decreasing density) at this point. Thus, we postulate the criterion
for initiation of damage to be the deformation corresponding to which the derivative of the norm of the stress
decreases with respect to density. The stretch at which damage is initiated according to this criterion
agrees quite well with the experiments of Gent wherein damage initiates at stretches around 3.5.
Although the body has been stretched beyond this value of stretch and calculations have been
carried out beyond this critical value for the density, as though the body is yet elastic, as damage
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Figure 6. Norm of stress tensor with stretch for generalized Gent model. (a) Centre point variation and (b) Farfield point
variation.

Table 4. Percentage reduction in density for the generalized Gent model at a stretch of 3.9.

percentage reduction percentage reduction
Y-coordinate in density Y-coordinate in density

has been initiated, one needs to use a different model when the derivative of the norm of the stress
with respect to density starts decreasing. That is, unloading a real body after the peak value in
both the curves depicted in figure 6a. On unloading a real body after the peak values depicted in
figure 6, the material will not go back along the same original loading curve as an elastic material
will but respond by traversing a different path to a new stress free state. That is, our calculations
have been carried out under the assumption that the material is elastic and hence on unloading
the material, it would follow the same loading curve. Our aim in this study is just to highlight
the use of the inhomogeneity of the body with the density as a possible indicator for damage
rather than develop a model for a body that is undergoing damage in that a constitutive relation
is also provided for the response of the body after damage has been initiated. This point needs
to be emphasized. We note that at point A after a stretch of approximately 3.5 the density starts
to decrease significantly. We note that our damage criterion, namely the derivative of the norm
of the stress with respect to the density, occurs when the density is 0.185, a nearly 65% drop in
the density, at a stretch of approximately 3.73 and the value of the determinant of F which is a
measure of the volume change being 2.7 (figure 6a). We also note that the density in the far-field
falls by less than 5%, and the material is undamaged. We reiterate that the value of the stretch

LS209107 2L ¥ 905 01 BioBuysyqndiraposiefor-edsy H


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on November 11, 2016

@100 e 100 e
090 T 090f T
0.75 0.75 |
0.60 | — point A 0.60 |

P 0.45 \Polm}?’ 045}
030} 0.30 \
0.15} 0.15¢

0 - - - 0 . . . - -
1 2 3 4 1.0 1.5 2.0 2.5 3.0 3.5
nominal stretch nominal stretch

Figure 7. Density variation with nominal stretch for generalized neo-Hookean model. (a) o at the centre is 50% of farfield
and (b) p at the centre is 30% of farfield.

at which damage occurs in the region of lower density, namely 3.73 is in keeping with what is
observed in experiments [23]. Also the volumetric strain in the far-field is of order 10~* similar
to what has been observed in experiments (see [20]). Moreover, the value of the stretch where
the norm of the stress starts to decrease and the density starts to undergo a precipitous drop
is approximately the same. In the case of an inhomogeneity that is merely 30% of the far-field
value, we see from figure 5b that the density once again decreases by less than 5% in the farfield
(point A) while the damage criterion implies that damage has occurred when a density of 0.135 is
reached, a decrease of around 52%, corresponding to a stretch of 3.385 and the determinant of the
deformation gradient of 2.06 (figure 6a,b). Once again, the value of the stretch and the volumetric
strain in the far-field when damage occurs are consistent with experimental observations. As
before, the value of the stretch where the norm of the stress starts to decrease, and the density
starts to undergo a precipitous drop is approximately the same.

Next, let us consider the biaxial stretching of a generalized compressible neo-Hookean body.
The results in this case for both types of inhomogeneity are similar to that in the previous case,
the only difference being in the values. In the case of the inhomogeneity wherein the density is
50% of the far-field value, the density reduces to a value of 0.335, a drop of 33%, at a stretch of
4.43, the determinant of the deformation gradient being 1.5, whereas in the far-field, the density
falls by less than 10% (figures 7 and 8). In the case of an initially inhomogeneity wherein the
density is 30% of the far-field value, the density decreases to 0.2, once again a drop of 33%, at a
stretch of 3.45, the determinant of the deformation being 1.5, while in the far-field the density falls
by around 10% (figures 7 and 8).

The state of normal, shear, radial and circumferential stress for a generalized Gent and a
generalized compressible neo-Hookean, body with inhomogeneity in the density that is 30% of
the far-field value, are shown in figures 9 and 10. The circular arc shown in figures is the region
above which the normalized density is 1. We note that the maximum value of the tensile stress as
well as the shear stress occur in the transitional region where the density falls from the far-field
value to that of the lower level at the centre. Furthermore, the circumferential stress depicted in
figure 94 indicates an annular circular region of maximum stress that coincides with the region in
the undeformed state wherein the density changes significantly from the value in the far-field to
the lower value in the central circular domain. The radial stresses shown in 9c are axisymmetric,
because the inhomogeneity is circular and stretch is equi-biaxial. Similar behaviour is observed
in the generalized neo-Hookean model. Because there is no stretch limit in the generalized neo-
Hookean body unlike that for the generalized Gent model, the magnitude of stress difference
between the centre and far-field is much less than that compared with the generalized Gent model
(figures 9 and 10).
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Figure 8. Norm of stress tensor with stretch for generalized neo-Hookean model. (a) Centre point variation and (b) Farfield

point variation.
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Figure 9. Generalized Gent model. (a) Normal stress component, T, (b) shear stress component, T,,, (c) radial stress and
(d) circumferential stress. (Online version in colour.)

6. Conclusion

It is usual to prescribe the initiation of damage in a body by resorting to ad hoc internal variables,
which could be scalar, vector or tensor in character, that most often do not have meaningful
physical significance. These parameters that qualify and quantify damage, within a mechanical
context, are assumed to depend on the stress, strain or other kinematical variables. Such a
procedure is fraught with difficulties in virtue of the fact that for given a body in a particular
configuration, one does not know if it is stress free or if it has undergone permanent set in that it
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Figure 10. Generalized compressible neo-Hookean model. (@) Normal stress component, Ty, (b) shear stress component, T,
(c) radial stress and (d) circumferential stress. (Online version in colour.)

is strained with respect to some other previous configuration. Thus, a damage parameter that
depends on measures such as the stress or strain, or for that matter any quantity that could
depend on knowledge of a previous configuration that the body might have taken would be
inappropriate. To be a meaningful criterion for defining the initiation of damage in a material, one
needs to use quantities whose values are completely determined by the current configuration of
the body. One such quantity is the density of the body that is completely determined in its current
configuration. It also seems a very meaningful quantity for defining the initiation of damage in
a class of materials as damage in such materials seems to be concomitant with the density in the
body decreasing precipitously at local inhomogeneities. In this paper, we have investigated the
possibility of using ‘damage’ as the parameter for defining the initiation of damage. We define
damage to be initiated when the derivative of the norm of the stress with respect to the density
becomes negative. Such a criterion implies that the load carrying capacity of the body starts to
decrease at that location. We find that in the biaxial stretching of polymeric sheets such a criterion
agrees well with the experiments of Gent.
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