Session 8: System Security and Authentication

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

MimosaFTL: Adding Secure and Practical Ransomware Defense
Strategy to Flash Translation Layer

Peiying Wang" " Shijie Jia™* Bo Chen
School of Cyber Security, University ~ Institute of Information Engineering, Department of Computer Science,
of Chinese Academy of Sciences CAS Michigan Technological University

Beijing, China
wangpeiying@iie.ac.cn

Luning Xia*"

Beijing, China
jiashijie@iie.ac.cn

School of Cyber Security, University

of Chinese Academy of Sciences
Beijing, China
xialuning@iie.ac.cn

ABSTRACT

Ransomware attacks have become prevalent nowadays due to sud-
den flourish of cryptocurrencies. Most existing defense strategies
for ransomware, however, are vulnerable to privileged ransomware
who can compromise the operating system and hence any backup
data stored locally. The out-of-place-update and the isolation na-
ture of flash memory storage, for the first time, makes it possible
to design a defense strategy which is secure against the privileged
ransomware.

In this work, we propose MimosaFTL, a secure and practical ran-
somware defense strategy for mobile computing devices equipped
with flash memory as external storage. MimosaFTL is secure against
the privileged malware by taking advantage of unique character-
istics of flash storage. In addition, it is more practical (compared
to prior work) for real-world deployments by: 1) incorporating a
fine-grained detection scheme which can detect presence of ran-
somware accurately; and 2) allowing the victim to efficiently restore
the infected external storage to the exact point when the malware
starts to perform corruption. Experimental evaluation shows that,
MimosaFTL can mitigate ransomware attacks effectively with a
small negative impact on both I/O performance and lifetime of flash
storage.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation;

*Also with Institute of Information Engineering, CAS, Beijing, China.

T Also with Data Assurance and Communication Security Research Center, CAS, Bei-
jing, China.

* Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6099-9/19/3....$15.00

https://doi.org/10.1145/3292006.3300041

327

Houghton, USA

bchen@mtu.edu
Peng Liu
Pennsylvania State University
University Park, PA
pliu@ist.psu.edu
KEYWORDS

Ransomware, Mobile devices, Flash translation layer, Access pat-
terns, Ransomware detection, Binary search

ACM Reference Format:

Peiying Wang, Shijie Jia, Bo Chen, Luning Xia, and Peng Liu. 2019. Mi-
mosaFTL: Adding Secure and Practical Ransomware Defense Strategy to
Flash Translation Layer. In Ninth ACM Conference on Data and Application
Security and Privacy (CODASPY ’19), March 25-27, 2019, Richardson, TX, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3292006.3300041

1 INTRODUCTION

In recent years, a special type of malware named ransomware has
become very popular among cybercriminals. According to a report
by Symantec [38], the number of ransomware attacks increased
over 36% in 2017, and more than 4,000 ransomware attacks occur
daily [41]. The latest notable ransomware instance, WannaCry [25,
39], has spread across 150 countries and infected more than 250,000
machines in a short period.

Different from regular malware, ransomware extorts ransom
money from victims by either locking the victim systems (i.e.,
locker ransomware) or encrypting the data (i.e., crypto-ransomware).
Locker ransomware can be easily defended since data are still there
and we can simply unplug storage medium from the infected system
and plug it to a clean system to copy out the data. On the contrary,
crypto-ransomware is more difficult to be defended since the data
have been encrypted by strong encryption with secret key only
known to the ransomware attacker. Therefore, the paper focuses
on defending against crypto-ransomware.

In the literature, many approaches have been proposed to defend
crypto-ransomware. They can be roughly categorized into two fam-
ilies: 1) ransomware detection; 2) data recovery from ransomware
attacks. The idea of ransomware detection is to detect ransomware
and block it as fast as possible before it can cause significant damage
to the valuable user data. The detection usually relies on monitoring
file system activities [10, 19, 20, 26, 33] or analyzing cryptographic
operations [10, 20, 22]. A pure detection-based solution is unfortu-
nately not sufficient due to the following reasons: First, regardless
how fast the detection can be, the ransomware still runs before

https://doi.org/10.1145/3292006.3300041
https://doi.org/10.1145/3292006.3300041

Session 8: System Security and Authentication

being blocked and encrypt some data. Second, if the ransomware can
compromise the operating system (OS) and obtain root privilege (i.e.,
privileged ransomware), it can simply disable the detection capability.
The other category of ransomware defense relies on backing up
valuable data, and restoring them after ransomware attacks. The
data can be backed up in either local storage [10, 37] or third-party
cloud [45]. However, those approaches are all problematic. Back-
ing up data in the third-party cloud results in extra storage and
communication cost which may not be acceptable by users [37].
Backing up data locally can eliminate the need of third-party cloud.
However, the backups are vulnerable to privileged ransomware which
can compromise the OS and obtain root privilege.

Mobile devices like smart phones and tablets have been used
extensively nowadays. According to statista [36], there are approx-
imately 4.92 billion mobile devices in 2018. Unlike desktop comput-
ers, mobile computing devices usually use flash memory as external
storage media (e.g., eMMC cards, MicroSD cards and SSD drives).

Compared to traditional mechanical drivers broadly used in
desktop computers, flash memory has significantly different char-
acteristics: First, flash memory cannot be over-written before an
erase operation is performed, which can only be performed on the
basis of a large block (usually a few hundred KBs). However, the
write operation is usually performed on the basis of a small page
(usually a few KBs). Therefore, directly over-writing a page requires
first erasing the entire encompassing block which further requires
backing up valid data stored in other pages of this block, causing
significant write amplification. Second, flash memory is vulnerable
to wear. In other words, frequently writing/erasing the same flash
block will eventually deteriorate the integrity of the storage. To
accommodate the special nature of flash memory, an out-of-place-
update strategy is usually used in flash storage, in which the newly
updated data will be written to a new empty page, rather than the
page being occupied by the old data.

Flash memory’s special nature makes it possible to design a
defense strategy secure against privileged ransomware. Mo-
bile computing devices, which are equipped with flash media as
external storage, suffer significantly from ransomware attacks re-
cently [3]. Due to the out-of-place-update feature of flash media,
the user data being over-written by ransomware! will be temporar-
ily preserved in flash memory, which can be utilized later for data
recovery. Additionally, the flash memory is usually used in the form
of an isolated device being attached to a host system, with inde-
pendent processor, memory, and software component (i.e., flash
translation layer). This prevents the ransomware from having direct
access to the raw flash using the limited read/write interface being
offered, even if the ransomware can compromise the entire host OS.
In other words, the ransomware will not be able to corrupt those
old data being preserved in flash memory. Taking advantage of
the aforementioned properties, it is possible to design more secure
strategies specifically for mobile devices to enable data recovery
from ransomware attacks.

Limitations of existing ransomware defense strategies uti-
lizing flash memory. FlashGuard [14] and SSD-Insider [4] were
designed to allow data recovery from ransomware by utilizing

Deletion of user data can be viewed as a special over-write operation, being achieved
by over-writing the target data with garbage information.

328

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

special nature of flash memory. They, however, both suffer from
significant limitations.

The basic idea of FlashGuard is: Having observed that any data
being encrypted by ransomware need to be read first and then
deleted, it modifies garbage collection strategy in flash translation
layer (FTL) such that the invalid data having been read will not be
reclaimed. In this way, it ensures that, for those data encrypted by
ransomware, their plaintexts are always preserved in flash memory
and used for data recovery. Their design, however, is not practical:
First, FlashGuard does not employ any detection algorithm or IDS,
and hence does not have any knowledge on when ransomware
comes. Therefore, it needs to preserve all the historical versions of
the “possibly” attacked data for a long period (e.g., 20 days [14])
to maximize probability of successful recovery. This unfortunately
may be overkill and impractical for mobile devices which usually
have limited storage space. Second, FlashGuard does not provide a
concrete recovery component which can take care of data recovery
transparently to end users. Therefore, the users need to manually
recover data encrypted by ransomware. Specifically, the user needs
to unplug the flash storage device, plug it into another clean and
isolated computing device [14], manually identify the corrupted
data and metadata, and recover them using data preserved by Flash-
Guard. This is very impractical considering that the users usually
do not have necessary computer skills.

SSD-Insider [4] tries to improve FlashGuard by introducing a
ransomware detection and a data recovery component. However, it
also suffers from a few significant issues. First, their ransomware
detection mechanism is not effective. This is because, they detect
ransomware by collecting “run-length” of overwritten blocks within
a small fixed time window (e.g., 10 seconds). This relies on their
observation that ransomware “conducts overwriting immediately
after reading and encrypting the victim’s files” [4]. This observation,
however, is not necessarily true according to our independent study
(Sec. 3). Specifically, we observed a special type of ransomware
(Sec. 3), which will not overwrite the original LBAs with random
data until attacking a large number of files. In other words, the over-
writing pattern of this type of ransomware is difficult to be observed
during this small fixed time window. In addition, CPU/IO-intensive
applications may slow down activities of ransomware, making it
difficult to observe the overwrite pattern of ransomware in this
small fixed time window as well. Second, their recovery component
is coarsely designed and can only recover data before 10 seconds.
In other words, they strongly rely on an implied assumption that
the ransomware starts to corrupt data and will be caught within
10 seconds. This assumption usually cannot hold in practice, since
real-world ransomware does not necessarily perform attacks within
10 seconds (Sec. 3). In addition, the ransomware may actively play
against the victim, after they know the design of SSD-Insider. A
key challenge they cannot resolve is to allow the victim to locate
and restore the exact point when the ransomware starts to corrupt
external storage. Our design can successfully tackle this challenge.
Third, they implemented their solution into an open-channel SSD
platform, which actually runs on the block device layer [5] and
is accessible to the ransomware. Such an implementation unfor-
tunately contradicts the overall design rationale, since security
of ransomware defense strategies for flash storage [14] strongly

Session 8: System Security and Authentication

relies on the close nature of flash memory (which prevents the
ransomware from corrupting data preserved in flash memory).

In this work, we aim to eliminate the aforementioned limita-
tions and design a secure yet more practical (compared to Flash-
Guard and SSD-Insider) ransomware defense strategy specifically
for mobile devices equipped with flash storage. The resulting design,
MimosaFTL, is secure against privileged ransomware by taking
advantage of the special nature of flash storage. In addition, it incor-
porates a detection component which monitors access behaviors
caused by the ransomware in the FTL and, once the ransomware
is detected, an efficient data recovery process will be invoked to
restore the infected external storage to a good previous state. Our
design relies on two key insights:

First, we introduce a fine-grained detection scheme which can
detect presence of ransomware accurately with low overhead. Un-
like SSD-Insider which simply relies on counting the number of
overwrites, we rely on a few different characteristics, including I/O
access type, I/O location and length of I/O. This can result in a more
accurate detection result. In addition, our detection is less expensive
than SSD-Insider, since we introduce a one-time preprocessing step
which uses K-means clustering to distill a few access patterns in
the beginning, and during detection, the observed behavior can
be compared to the known patterns efficiently. Second, we allow
efficiently restoring the infected external storage to the exact point
when the ransomware starts to perform corruption. Thanks to the
out-of-place-update and the isolation nature of flash storage, by sim-
ply manipulating garbage collection, old data can be preserved and
the only concern remaining is the metadata. To efficiently restore
the metadata to the exact point before ransomware corrupts user
data (we call this point “corruption point”), MimosaFTL does the
following (Sec. 4.4 and 4.5): 1) It backs up the latest metadata when
the detection does not detect ransomware (we call this point “latest
good point”); 2) Each change of the metadata from the latest good
point is kept in the flash memory OOB area; 3) The metadata in the
corruption point is efficiently reconstructed by applying a binary
search between the latest good point and the detection point (i.e.,
when the ransomware is detected), together with a small number
of user involvements.

Contributions. Our contributions are summarized as follows:

e We have collected more than five hundred real-world ran-
somware samples, and analyze their access behaviors in the FTL.
By applying K-mean clustering, we have successfully identified a
few unique access patterns of ransomware on the flash memory.

e We design a fine-grained detection scheme in the FTL, which
can effectively detect presence of ransomware by monitoring
access behaviors on the flash memory caused by ransomware.
In addition, we design a scheme which can efficiently recover
external storage to the exact point when ransomware starts to
corrupt data.

e We implement a prototype of MimosaFTL using real-world flash
firmware, which was ported to an electronic development board.
Experimental evaluation shows that MimosaFTL can effectively
mitigate ransomware attacks with a small negative impact on
both I/O performance and lifetime of flash devices.

329

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

2 BACKGROUND
2.1 Ransomware

Ransomware is a special form of malware that restricts access to a
victim computer in order to extort the victim for financial gain [23].
Traditional malware typically aims to collect sensitive information
stealthily without raising suspicion. On the contrary, ransomware
will notify the victim, after having infected his/her valuable files.

Ransomware can be classified into locker ransomware and
crypto-ransomware based on whether cryptographic algorithms
are used to restrict data from victims. Locker ransomware is de-
signed to restrict interaction with the system by weak techniques,
such as simply locking the screen [44] or modifying the master
boot record (MBR) and/or partition table [1], which can be eas-
ily restored without paying the ransom. Crypto-ransomware uses
cryptographic algorithms to encrypt the victim’s valuable files (e.g.,
documents and images) silently. Once the encryption is completed,
the victim will be asked for a ransom to obtain the decryption keys
needed for recovering plaintext files.

Crypto-ransomware can be divided into three categories based
on types of encryption schemes being used [28]: symmetric key
crypto-ransomware, asymmetric key crypto-ransomware, and hy-
brid key crypto-ransomware. Symmetric key crypto-ransomware
simply uses symmetric encryption to encrypt files. The symmetric
key may be reverse engineered or even brute forced [2]. Asymmetric
key crypto-ransomware uses asymmetric encryption for file encryp-
tion. A drawback is that, encrypting large files using asymmetric en-
cryption is usually time consuming. Hybrid key crypto-ransomware
mitigates the drawback of asymmetric key crypto-ransomware, by
using symmetric encryption to encrypt files, and using asymmetric
encryption to encrypt the corresponding encryption key. Hybrid
key crypto-ransomware is the mainstream of ransomware [22].

2.2 NAND Flash Memory

NAND Flash stores information in an array of memory cells, which
are grouped into blocks of a few hundred Kilobytes. Each block is
further divided into a certain number (e.g., 32, 64, or 128) of pages.
Typical page size is 512 bytes, 2KB, and 4KB [7]. A page usually
contains a small spare out-of-band (OOB) area which is used for
storing various metadata (e.g., error correction code) [21].

An invalid page

Overwrite logical Write logical

page M with a

Write logical
page M with a

Overwrite logical

page M with b page M with b

(a) In-place update in HDDs (b) Out-of-place update in NAND flash-based block device

Figure 1: Overwrite operation in HDDs and NAND flash-
based block devices.

Different from traditional mechanical hard drives, NAND flash
has a few unique characteristics, as described in the following. First,
NAND flash has an erase-before-write design, i.e., overwriting a

Session 8: System Security and Authentication

Application
File System
e JVOwthIBA
, Flash-based block device N
——————————————————— < \
i FIL v
: I Address Garbage o
'} [Translation Collection Lo
I
: : Wear Bad Block 1 :
! '\ Leveling Management |) |
! 1/O with PBA :
\ 1
‘. | NAND Flash Memory | __./

Figure 2: The architecture of a flash-based block device.

flash cell is not feasible before an erasure is performed over it. Sec-
ond, the unit for reading/programming flash is usually a page, but
the unit for erasing flash is usually a block (i.e., block erasure).
Therefore, overwriting a page requires first erasing the entire en-
compassing block. This may cause significant write amplification,
since data stored in the other pages of this block needs to be backed
up before block erasure and written back after block erasure. Third,
each block can be programmed/erased for a limited number of
times. Therefore, a block will be worn out if the number of pro-
grams/erasures performed over it exceeds a certain threshold. To
accommodate this special nature of flash memory, an out-of-place
update rather than an in-place update strategy, is used in flash
storage (Figure 1), in which when a page is overwritten, the new
data will be simply written to a new empty page, while the old
data will be temporarily preserved in the old page before garbage
collection is invoked.

To be compatible with traditional block-based file systems (e.g.,
NTEFS, EXT4, FAT32), a flash device is usually used as a block device
by exposing a block-based access interface (i.e., a flash-based block
device like SSD drive, USB stick, eMMC card, and SD card). The
architecture of a flash-based storage system is shown in Figure 2, in
which we can observe that to transparently handle the special na-
ture of flash memory, a piece of special firmware, Flash Translation
Layer (FTL), is introduced between the file system and the raw flash.
The FTL usually implements four key functions: address translation,
garbage collection, wear leveling, and bad block management.
Address translation. Flash-based block devices usually imple-
ment out-of-place-update strategy, and therefore location of valid
data may change over time. Thus, the FTL needs to keep track of
mappings between addresses from upper layer and actual physi-
cal addresses in flash memory. Utilizing these mappings, the FTL
can translate addresses from the upper layer (we call them Logical
Block Addresses, or LBAs) to physical flash memory addresses (we
call them Physical Block Addresses, or PBAs), providing a unique
block-based access interface.

Garbage collection. Garbage collection is necessary to periodi-
cally reclaim those pages which store invalid stale data (we call

330

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

these pages invalid pages). The garbage collection runs as follows:
1) It selects those blocks which satisfy a certain reclaim threshold
as victim blocks. For example, the victim blocks can be those with
the largest number of invalid pages. 2) It copies valid data stored
in the victim blocks to free blocks, and meanwhile, updates the
corresponding mappings; 3) It finally erases the victim blocks.
Wear leveling. Each flash block has a limited number of pro-
gram/erase (P/E) cycles. Therefore, to prolong lifetime of flash mem-
ory, programmings/erasures need to be distributed evenly across
the entire flash memory. This can be achieved by wear leveling.
Bad block management. Due to their limited P/E cycles, flash
blocks will eventually turn “bad” and cannot be used to reliably
store data any more. Bad block management is thus required to
carefully manage those bad blocks.

2.3 K-means Clustering

K-means clustering [18] is a widely used clustering algorithm which
is used for unlabeled data. It can be viewed as an optimization
problem: given a set of n data points (each is from a d-dimension
space), it places k centroids that can minimize the overall squared
distance between each data point and its closest centroid.

Silhouette coefficient [32] is usually used to evaluate effective-
ness of clustering, which is defined as:

s(i) = b(i)—a(i)

max{a(i),b(i)}

where, for each data point i in the dataset, a(i) is the average dis-
tance between i and all the other data points within the same cluster;
b(i) is the smallest average distance of i to all data points in any
other clusters, of which i is not a member; the average s(i) over all
data points of a cluster measures how tightly grouped all the data
points in the cluster. In general, the silhouette coefficient ranges
from —1 to +1, and a higher value usually indicates a more ideal
clustering model.

3 STUDYING ACCESS ACTIVITIES ON FLASH
MEMORY CAUSED BY REAL-WORLD
RANSOMWARE

Ransomware behaves differently from benign software and other
types of malware. For example, the ransomware usually needs to
read the victim data, encrypt them, and 1) over-write the victim
data with the ciphertext; or 2) write back the ciphertext to a differ-
ent location and delete the victim data. Our intuition is, the special
behaviors of ransomware in the upper layers (e.g, file system) will
eventually cause repeated special access behaviors (i.e., access pat-
terns) on the underlying flash memory. Since all the access requests
issued by the file system will be handled by the underlying FTL
(Sec. 2.2), by hacking into the real-world FTL, we may be able to
detect abnormal access behaviors on the flash memory caused by
ransomware, which is running in the upper layers.

In the FTL, there is no semantic information from the upper
layers. To monitor the access activities of ransomware on flash
memory, we can only utilize limited information as follows: access
type (i.e., read/write), destination LBA, and size of each I/O request.
Note that, the delete operation is usually implemented by writing
the target location with NULL data.

Session 8: System Security and Authentication

Collecting access activities of ransomware on flash memory.
To study specific access behaviors on flash memory caused by
ransomware, we randomly selected and ran 518 prevalent crypto-
ransomware samples collected from VirusTotal [42] and Github [12],
including 11 different ransomware families. Column 1 and 2 in Ta-
ble 1 summarize information about the samples being used. To
collect access activities of ransomware on flash memory, we fol-
lowed a few steps: 1) We ported an open-source FTL framework,
OpenNFM [9], to an electronic development board LPC-H3131 [24].
2) We attached LPC-H3131 as a USB mass storage device of a com-
puter running a virtual machine with Windows 7 and FAT32. 3) We
ran each ransomware sample in the virtual machine and used Tera
Term Pro [35], a serial debugging tool, to output access activities.
After each run, the virtual machine was restored to a clean state.
Extracting access patterns on flash memory caused by ran-
somware. To distill patterns of access behaviors on flash memory
caused by ransomware, we utilize K-means clustering algorithm
(Sec. 2.3), a widely used unsupervised learning algorithm. Compared
to supervised learning [4], the unsupervised learning algorithm is
more suitable for ransomware scenarios, because: the ransomware
samples are created by diversified hackers or organizations, re-
sulting in various ransomware categories with different behavior
patterns, and such prior knowledge is unknown. We consider a
3-dimensional space. These 3 dimensions include the access type
(i.e., read or write), the starting destination LBA, and the size of
each I/O request. In other words, each data point for K-means is a
3-dimension vector (access type, starting destination LBA, size of
I/O request).

Training. We used half ransomware samples from each ran-
somware family (Table 1) for training purpose. For each sample,
we collected 150 successive access. Note that each access contains
the access type (i.e., read or write), the starting destination LBA,
and the size of I/O request, and is viewed as a data point (i.e., a
3-dimension vector) for K-means clustering. During training, we
changed value of k incrementally from 2 to 8, and calculated the
silhouette coefficient for each k value. We found that K-means clus-
tering can obtain the best clustering result? when k=4. After the
training, we obtain the following results for our K-means clustering
model: 1) Centroids of 4 clusters, which can be used to label new
data; 2) Labels for the training data (each data point is assigned to
a single cluster).

Extracting access patterns. After having fixed the K-means cluster-
ing model (i.e., k=4), we extracted access patterns using remaining
ransomware samples from each ransomware family. For each ran-
somware sample, we selected 150 successive access. Each access
corresponds to a 3-dimension data point, which was used as an
input to the fixed K-means clustering model.

Column 3 to 6 in Table 1 show the classification results corre-
sponding to the four clusters A, B, C, and D. The corresponding four
types of access patters are summarized as follows (see Figure 3):

e Type A: the ransomware reads from successive LBAs, and writes
back ciphertext (after encryption) to these LBAs with the same

2During training of K-means clustering, we found the silhouette coefficient is both
high when k is either 2 or 4. However, k = 2 means there are only 2 clusters, which
may easily lead to a situation that mistakenly categorizes normal software behaviors
as ransomware behaviors, causing higher false positives. Therefore, we choose k as 4.

331

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

Table 1: Real-world ransomware samples and K-means clus-
tering results.

Family #Samples A B C D | Time
TeslaCrypt 26(5.02%) 145 5 0 0 12
Locky 131(2529%) | 137 | 1 | 9 | 3 | 12
Cerber 23(444%) | 143] 4 | 3 | 0 2
Ransom32 28(5.40%) 131 8 11 0 8
CTB-locker 71(13.71%) 2 | 141 5 2 2
CryptoLocker | 49(9.46%) 1 | 146 | 2 1 2
HydraCrypt 38(7.34%) 0 1 121 | 28 12
Samas 30(5.79%) 0 0 31 | 119 19
Bart 6(1.16%) 2 | 4 |10 [134]| 2
CryptoWall 102(19.69%) 1 7 15 | 127 13
Maktub 14(270%) | 0 | 3 | 15 | 132 | 4
Total 518 - - - - -

starting LBA. The size of the ciphertext being written back is
almost® the same as the size of the content being read.

e Type B: the ransomware reads from successive LBAs, and writes
back ciphertext to these LBAs with the same starting LBA. The
size of the ciphertext being written back is smaller than the size
of the content being read. This is because, the victim file may be
compressed before being encrypted or only a portion of a file is
encrypted (e.g., CryptoLocker).

e Type C: the ransomware reads from successive LBAs, and writes
the ciphertext to new free LBAs. The size of the ciphertext being
written is almost the same as the size of the content being read.

e Type D: the ransomware reads from successive LBAs, and writes
the ciphertext to new free LBAs. The size of the content be-
ing read/written exhibits certain periodic characteristics, e.g.,
the length of each successive read is always 32 or 64 (in LBAs),
and the length of each successive write is always 8 (in LBAs).
Potential reasons for this type of pattern are: To attack victim
files quickly, ransomware usually uses symmetric encryption to
encrypt files [22]. As plaintext input and ciphertext output of
symmetric encryption are commonly divided into groups with
fixed size (e.g., 16 bytes in AES), both the successive read/write
will exhibit certain periodic characteristics in length. For this
type of ransomware, we also observed that it will not overwrite
the original LBAs with random data until having attacked a large
number of data (i.e., the delay of overwriting the original LBAs
with randomness is more than 10 seconds [4]).

For each ransomware family, we also measured their average
time of attacking the entire external storage on LPC-H3131 (see
column 7 of Table 1, in minutes). The time varies from 2 to 19
minutes, which indicates that different ransomware variants may
have a completely different attack throughput. Therefore, detecting
ransomware by observing overwrites in a small fixed time window
(e.g., 10 seconds [4]) or simply restoring the victim system to a
fixed historical check point (e.g., before 10 seconds [4]) may not be

proper.
3Some ransomware samples like Ransom32 append RSA or AES key information at

the end of each ciphertext, and hence the size of the data being written back is slightly
increased.

Session 8: System Security and Authentication

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

R/W LBA Length R/W LBA Length
r--»R 6133 ""R 338
r‘i*"R 10023-10844 | 822 L>W 5
.w 8861-9123 | 263 =r-'*R 2609

R/W LBA Length R/W LBA Length
e st] ssz0 || w[1eseizsar | 8
A 08 || w[o | s
Lew[1205530 | 5411 R 32
>R 16380 | | W[1298813005 |

8
A 3

T

|
|
o
i

|

|

Cosamann], || " aseorr %

; 116380
L_piw [47428-55619 | w 8
- 3 2401 : :
r *R W[5466-5473 | g
L»w| 5536-7936 |2401 R[318381 |64

(1) Type A

)
<
°
o
-]

(3) Type C (4) Type D

Figure 3: Four types of ransomware access patterns observed in FTL. R:read, W:write, Length: the LBA length of a successive

read or write operation.

4 MIMOSAFTL DESIGN
4.1 Model and Assumptions

System model. We consider mobile computing devices which are
equipped with flash-based block devices (e.g., eMMC cards, SD
cards, MiniSD cards, SSD drives) as external storage. This is the
most common form of mobile computing devices nowadays. It can
be also applied to desktop/laptop systems which use flash-based
block devices (e.g., SSD drives).

Threat model. We consider crypto-ransomware which encrypts
the victim’s data and asks for ransom money. We do not consider
locker-ransomware which simply locks the victim system, since
it can be easily defended by copying out the data from the victim
system. In addition, the ransomware can compromise the entire
host OS. However, the ransomware cannot compromise the FTL.
This is because, a flash-based block device usually only exposes
a block access interface to the OS, with independent processor,
memory, firmware (i.e., FTL), all of which are inside the flash device
(Sec. 2.2) and invisible to the OS. Also, once the ransomware has
successfully propagated to the victim system, it will run and encrypt
the victim data to gain profit.

Assumptions. We assume ransomware will not imitate regular
non-malicious software when performing encryption (e.g, slowly
encrypt victim data in a long period). Such highly intelligent ran-
somware is rarely found in practice, since most ransomware tends
to encrypt victims’ data and ask for ransom in a short period. We
also assume the mobile device always has spare storage space in
flash memory.

4.2 Design Overview of MimosaFTL

MimosaFTL aims to design a practical ransomware defense strat-
egy, which is secure against privileged ransomware. To achieve
this goal, MimosaFTL adds three components to flash translation
layer (FTL): ransomware detection, data backup and data recovery.
The ransomware detection component is running in the FTL and

332

monitoring access behaviours on flash memory, aiming to detect
presence of ransomware in a timely manner. Since the privileged
ransomware is not able to compromise the FTL (Sec. 4.1), the detec-
tion component can always remain secure. The data backup com-
ponent backs up essential data for later recovery of external storage
hacked by ransomware. The external storage includes both data
and metadata. By utilizing the out-of-place-update feature of the
flash-based block device, MimosaFTL simply modifies the garbage
collection to preserve the data corrupted by the ransomware. In
addition, MimosaFTL periodically keeps the latest version of the
“good” metadata after relying on the detection component to iden-
tify a good state. The data recovery component restores the exter-
nal storage corrupted by ransomware once ransomware has been
detected. Both the data and the metadata will be recovered.

4.3 Ransomware Detection

Based on the access patterns extracted in Sec. 3, our detection
scheme can simply monitor access behaviors on the flash memory,
and compare them with the known ransomware patterns. We in-
troduce a new data structure, namely, recently requested access
(RRA) list, to keep track of the recent I/O requests from the block
device. When an access request is received by the FTL, its abstract
information will be inserted into the RRA list. Each entry of the list
consists of three components: access type (i.e., read/write), starting
destination LBA, and length of each access request. Note that the
delete (e.g., trim [40]) operation can be treated as an overwrite.

The length of the RRA list is determined by the user. When
the list is filled, the detection process will be triggered. After the
detection process, MimosaFTL will clear the RRA list and prepare
for the next detection process.

We elaborate details of the detection process in Algorithm 1,
in which access requests in the RRA list are analyzed to detect
presence of ransomware as follows:

1) For ransomware which writes ciphertext to the original LBAs
of the victim files (i.e., type A or B): Algorithm 1 first checks the

Session 8: System Security and Authentication

RRA list, to find out whether there are a read and a write, that start
with the same LBA address. It then compares their corresponding
read/write lengths. If the length difference is small (e.g., less than 5
LBAs), this is a type-A ransomware pattern. Otherwise, this is type
B ransomware pattern. It will accumulate the number of type A
patterns, and compute a ratio between the # of type A pattern and
the total number of the requests in the RRA. If the ratio is larger
than Threshold_1 (will be discussed in Sec. 6), it will conclude with a
detection of type A ransomware attack. Similarly, it will accumulate
the number of type B patterns, and conclude whether there is a
type B ransomware attack.

2) For ransomware which writes ciphertext of the victim files
to new free LBAs (i.e., type C or D): Algorithm 1 first compares
the length of a read request with the total length of the continuous
write requests before the next read request is invoked. If the two
lengths are almost the same (e.g., less than 5 LBAs), it will consider
it as a type C ransomware pattern. It will accumulate the number
of type C patterns, and compute a ratio between the # of type C
pattern and the total number of the requests in the RRA. If the ratio
is larger than Threshold_1, it will conclude with a detection of type
C ransomware attack.

For type D ransomware, Algorithm 1 uses a data structure to
help analyze frequency of each length. It then checks whether or
not the frequency exceeds Threshold_2 (condition 1). In addition,
Algorithm 1 distinguishes type D ransomware from benign appli-
cations like file encryption and compression applications, as they
may generate similar I/O access patterns. The idea is that benign
applications are not designed to deny access to the original files
(ie., the original files will not be deleted/overwritten) during their
running time. Therefore, during running time of an application,
it further checks whether or not the mappings of the destination
LBAs of the continuous read turn invalid gradually (condition 2). If
both condition 1 and 2 are true, Algorithm 1 concludes with a type
D ransomware attack.

4.4 Data Backup

To allow restoring external storage after ransomware attacks, Mi-
mosaFTL needs to back up both data and metadata (e.g., the map-
ping table, which records mappings between LBA and PBA).
Back up metadata. For creating metadata backup, we take ad-
vantage of the fact that MimosaFTL has a detection component.
Periodically, if no ransomware is detected, we will create a redun-
dant copy of the current essential metadata and discard old versions
of metadata. Note that: 1) The size of metadata is usually much
smaller than data, and hence only a few flash blocks are required
to store metadata. In addition, the blocks storing metadata backup
are usually invisible to the OS, and hence cannot be corrupted by
ransomware. 2) The metadata will be correctly backed up when
the ransomware is correctly detected, which is of high probability
according to our evaluation in Sec. 6.

Back up data. Thanks to the out-of-place-update feature of flash-
based block devices, the data will be temporarily preserved and
can be used for data recovery from ransomware attack. However,
garbage collection will eventually reclaim those data which have
been corrupted by ransomware since they have become invalid.
Simply disabling garbage collection [13] can prevent those data

333

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

Algorithm 1 Ransomware detection in MimosaFTL.

Require:
The RRA list, and each access request in the RRA list includes
the access type (Type), the starting destination LBA (DLBA)
and the length (Len).
1: for each access request in RRA list do
2. if read Type’s DLBA == write Type’s DLBA && Abs(read
Type’s Len— write Type’s Len) <= 5 then
3: Dete A+ +;
4 endif
5. if read Type’s DLBA write Type’s DLBA && write
Type’s Len < read Type’s Len then
6: Dete_B + +;
7. end if
8. if Abs(the length of a read request — the total length of
the continuous write requests be fore the next read request)
<=5 then
9: Dete C + +;
10: endif
11: Set the map < key,value >, where key=Len and value=
times of this Len appears. Obtain the first three largest
values: value_1, value_2, value_3;
Sum = value_1 + value 2 + value_3;
end for
ValLen « the length of RRA list;
if (Dete_A/ValLen > Threshold_1) || (Dete_B/ValLen >
Threshold_1) || (Dete_C/ValLen > Threshold_1) then
Ransomware is detected;
else if (Sum/ValLen > Threshold_2) && Mappings of the
destination LBAs of the continuous read requests in RRA list
become invalid gradually then
Ransomware is detected;
end if

12:
13:
14:
15:

16:

17:

18:
19:

from being removed. This, however, is problematic, since data will
fill the entire flash memory shortly without a garbage collection.
Taking advantage of the detection component and the out-of-place-
update feature of flash storage, we use a phased garbage collection
strategy. When detection process is invoked and does not detect
presence of ransomware (i.e., the beginning of a phase), the current
metadata will be backed up periodically (e.g., one day), and any data
being “touched” (e.g., write, delete) in this phase will be frozen (i.e.,
will not be removed by garbage collection) until the next detection
process is invoked (i.e, the end of the phase). Using the out-of-place-
update feature, the frozen is possible. In addition, at the beginning
of each phase, we will immediately conduct a garbage collection
on those blocks storing invalid data coming from last phase.

4.5 Data Recovery

Once ransomware is detected, MimosaFTL will immediately inform
the user and make the storage as read-only. Then, the ransomware
will be blocked and removed by the user (blocking and removing
malware is not our focus in this work). Once the attack is confirmed

Session 8: System Security and Authentication

i'{z} Recover to the corrupt poir‘u’r‘:,r (1) Recover to the !
. . 1] . 1
i with binary search method 1 latest good point !
., i : f --------‘l-‘ ———————————
| W o (0
(21 2}z
v W
>
A A A
The latest Corrupt Detection
good point point Point

Figure 4: Recovery timeline of MimosaFTL.

by the user, a recovery component will be triggered to interact* with
the victim user to restore the external storage being corrupted by the
ransomware. Since the data are preserved due to the out-of-place-
update feature of flash memory, the major problem in the recovery
component will be restoring the metadata at the point of time right
before the ransomware starts to damage the external storage (we
call this point of time “corruption point”). Such a recovery design is
advantageous, because: 1) The expensive direct data recovery can
be avoided since the “good” data are preserved in flash memory,
and by restoring the metadata which point to the “good” data, the
external storage can be recovered. 2) The recovery of metadata can
be done efficiently, considering their small size.

However, restoring the metadata at the corruption point is chal-
lenging, because: The detection component of MimosaFTL relies on
observing access behaviors of ransomware for detection, and a few
user files will be corrupted unavoidably before the point of time
when ransomware is detected (we call this point of time “detection
point”). Since MimosaFTL periodically backs up the latest “good”
metadata (we call this point of time “latest good point”), we can
first restore the external storage to this latest good point, and then
approach the corruption point from the latest good point.

To restore the metadata at the corruption point, MimosaFTL
needs to rely on information stored in the OOB areas. MimosaFTL
will store the following information in the OOB of each page:
backup version (which records the version number of the peri-
odic metadata backup), writing sequence number (which records
the write sequence number in a specific periodic metadata backup)
and destination LBA. Note that we usually only use a small portion
of the OOB area, which will not significantly affect its regular use.
For example, in our experimental evaluation, we only need to use 8
bytes of the OOB, which is 12.5% of its entire capacity.

When MimosaFTL detects the ransomware and informs the vic-
tim user, the user will trigger the recovery component to perform
the following steps (see Figure 4): First, it will recover the system to
the latest good point (i.e., from point C to A). This step is straight-
forward, since MimosaFTL has backed up metadata of point A and
all the valid data of point A has been preserved (Sec. 4.4). Second,
to recover the system to the corruption point (i.e., from point A to
B),

4User involvement (via customized I/O commands, e.g., SCSI commands) is usually
necessary, since only the user knows the latest version of the data.

334

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

MimosaFTL will read the entire OOB areas of the flash physical
pages storing the user data to find out the ones with the largest
backup version number (i.e., the latest backup version), then build
up a list of destination LBA and PBA mappings in the order of
their writing sequence number. Next, MimosaFTL will recover the
mapping table at point B using an efficient binary search approach
as described below:

MimosaFTL first applies half of the entire changes to the meta-
data at point A, restoring the metadata at point B;. The user then
checks the data (at the OS level) recovered at point B;. If the user
does not find corruption at By, the corruption point should be lo-
cated somewhere between B; and C (otherwise, the corruption
point should be located somewhere between A and B;), and the
next point being examined should be By. The metadata at By can
be restored by applying half of entire changes between By and C
to the metadata at point B;. Recursively, the search will reach the
corruption point B. Note that interacting with the user for data re-
covery is necessary since only the user knows the latest good state
of the data. However, due to the efficient binary search, the user
involvement can be kept small (i.e., log(n), where n is the number
of write operations between the latest good point and the detection
point).

The recovery process of MimosaFTL requires interacting with
the victim user, which can be achieved by taking advantage of
the reserved operation codes (i.e., 0x60H to 0x7FH) of SCSI com-
mands [15, 46]. Specially, we can adopt an SCSI command with
operation code 0x71H to inform MimosaFTL to modify mapping
table forward, and adopt another SCSI command with operation
code 0x72H to modify mapping table backward. If the user confirms
that all the victim files have been recovered, we can adopt another
SCSI command with operation code 0x73H to inform MimosaFTL
that the recovery process ends. Note that if the detection has false
positives, the user will not trigger the recovery component.

5 SECURITY ANALYSIS AND DISCUSSION
5.1 Security Analysis

A pattern-based detection solution usually cannot guarantee 100%
accuracy. In the following, we analyze the security of MimosaFTL
under two cases: 1) the ransomware is correctly detected; 2) the
ransomware is not correctly detected.

Case 1: the detection component correctly detects the ransomware.
Clearly in MimosaFTL, both data and metadata will be correctly
backed up and the ransomware is not able to bypass the FTL to
corrupt those backups even if it can compromise the host operat-
ing system (Sec. 4.1). Once the ransomware is correctly detected,
the recovery component will be correctly triggered by the user to
recover the external storage to the corruption point.

Case 2: the detection component does not correctly detect the ran-
somware. This usually includes false positives and false negatives,
which will be discussed respectively as follows.

e Rarely, benign applications and regular user operations may
exhibit similar access patterns as ransomware, causing false pos-
itives. MimosaFTL can handle false positives because, the data
recovery component is triggered by the user, and the user can
simply not trigger the data recovery component if that is a false
positive.

Session 8: System Security and Authentication

e Some ransomware variants may escape from being detected (e.g.,
new ransomware variants), causing false negatives. When the
false negative happens, MimosaFTL is at least as good as Flash-
Guard [14], which provides the possibility of external storage
recovery. Especially, for this case, MimosaFTL is even better than
FlashGuard, since a user-friendly recovery component has been
built into the FTL, which can allow a more convenient recovery
after the actual ransomware finishes hacking the victim mobile
device and informs the user.

5.2 Discussion

Working on the FTL layer rather than the upper layers. Mi-
mosaFTL is a solution which requires being incorporated into the
flash translation layer (FTL). This seems unavoidable since its se-
curity strongly relies on the close nature of flash memory. Such
an incorporation is not unique, since a lot of existing security de-
fenses (7, 8, 13, 14, 16, 17, 29, 43] for flash memory have a similar
requirement of incorporating security strategies into the FTL. The
incorporation could be achieved by either collaborating with flash
memory vendors or turning the defenses into industry standards.
Handling ransomware-like benign applications. Some special
benign applications like encryption, compression, and deletion
applications may exhibit ransomware-like access behaviors. Mi-
mosaFTL is designed to not mistakenly detect them as ransomware.
1) For benign encryption and compression applications, they com-
monly treat the original file content carefully, since their ultimate
goal is to generate an encrypted/compressed version of the original
file, rather than to restrict access to the file [19]. In other words, the
original files usually remain intact when they are running, though
automatic deletion may be deliberately activated by the user after
the encryption or compression is done. MimosaFTL checks the
mapping modifications of the destination LBAs of the continuous
read requests in the RRA list to differentiate ransomware and this
type of benign applications. 2) For secure deletion applications,
they commonly open a file and overwrite its contents with new,
meaningless data [30], e.g., all zeros, however, they will not read the
files during deletion. If the user changes the file content via a benign
application (e.g., updating the data of a Microsoft Word file), it may
also generate similar access patterns with ransomware. However,
there are some key differences. For example, benign applications
usually read a single file at a time and modify different parts of the
file continuously, but ransomware usually performs reading and
rewriting in an interleaved manner.

Protecting SCSI interface. MimosaFTL supports user interaction
via SCSI commands. To prevent privileged malware from abusing
this new interface to disturb our design, we can introduce a simple
authentication using secrets only known by the user. Specifically,
every time when the SCSI interface is used, the user needs to pro-
vide a secret password which needs to be verified by the FTL (the
secret password is stored in the metadata area of the flash which is
invisible to the upper layer and hence the ransomware). Since the
ransomware does not have this secret password and is not able to
pass the authentication in order to use this SCSI interface.
MimosaFTL does not affect data correctness. The out-of-place-
update feature of flash storage preserves data being deleted by
ransomware, and MimosaFTL only modifies garbage collection to

335

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

Table 2: Ransomware samples and portion of the selected
benign applications.

Ransomware | #Samples | Benign application | Main capability
Samas 36 7-zip Compression
Cerber 47 Winzip Compression

Ransom32 53 WinRAR Compression
Maktub 14 TrueCrypt Encryption
Jigsaw 56 DiskCryptor Encryption

Radamant 36 SDelete Deletion

CryptoFortress 37 Eraser Deletion

HydraCrypt 29 Davinci Resolve | Multimedia tools

WannaCry 12 Eclipse Developers tools
Critroni 20 Anaconda Developers tools

CryptoDefense 6 SQLite Developers tools

delay deletion of these preserved data, such that they can be used
for potential data recovery later. In addition, the latest metadata are
also backed up for potential data recovery. All the aforementioned
operations of MimosaFTL do not affect data correctness. In addition,
the detection of MimosaFTL mainly reads data which does not affect
data correctness either.

6 IMPLEMENTATION AND EVALUATION

6.1 Implementation

We have implemented a prototype of MimosaFTL using Open-
NEM [9], an open source NAND flash controller framework. We
ported MimosaFTL to LPC-H3131 [24], a development board
equipped with 180 MHz ARM processor, 512 MB NAND flash, and
32 MB SDRAM. The block size of the NAND flash is 128 KB and
the page size is 2 KB. The entire NAND flash has 4,096 erase blocks,
and each block is composed of 64 pages. Moreover, the size of the
OOB area in each page is 64 bytes. Each mapping entry can be rep-
resented by 3 bytes, and the mapping table occupies approximately
6 blocks.

6.2 Evaluation

6.2.1 Effectiveness of MimosaFTL in Detection. We evaluate ef-

fectiveness of the detection component of MimosaFTL by looking
into its false positives and false negatives.
Dataset construction. To provide a comprehensive evaluation of
the detection component, as shown in Table 2, we collected 346 new
prevalent ransomware samples belonging to 11 different families
from VirusTotal (73.4%) and Github (26.6%), which are completely
disjoint from the training samples used in Sec. 3. Our dataset cov-
ers a majority of existing ransomware families that appear from
2001 to 2018. In addition, we built a dataset containing 95 benign
application samples (partial of them are shown in Table 2), includ-
ing: 1) software that has ransomware-like behaviors such as file
encryption, compression and data deletion; 2) multimedia tools and
applications (e.g., media player, audio/video transcoding applica-
tions, and games); 3) developer tools; 4) office tools. Besides these
benign application samples, we also collected I/O access requests
from installing/upgrading these benign software and web server
(e.g., search engine service, web mail server).

Session 8: System Security and Authentication

Ransomware detection accuracy. In order to evaluate detection
accuracy of MimosaFTL, we measured both false negatives and false
positives, varying the thresholds to determine the best detection
effectiveness.

First, we evaluated whether MimosaFTL can successfully distin-
guish ransomware from benign applications, following a few steps:
1) We ported MimosaFTL to LPC-H3131, and used the board as an
external storage; 2) We ran all the ransomware samples and benign
application samples; 3) We varied the thresholds in the detection
algorithm (i.e., Threshold_1 and Threshold_2) simultaneously, and
kept track of those thresholds by which the detection algorithm
successfully detects ransomware samples or mistakenly detects
benign application samples as ransomware in Figure 5. The left
half of the figure is for ransomware samples (with thresholds vary
between 0.8 and 0.97), and the right half of the figure is for benign
application samples (with threshold vary between 0.02 and 0.5).
A clear difference is observed between the ransomware samples
(minimum 0.8) and the benign application samples (maximum 0.5).

Second, to determine thresholds described in the detection Algo-
rithm 1, we measured false positives and false negatives by varying
Threshold_1 for type A/B/C ransomware and Threshold_2 for type
D ransomware. As shown in Figure 6, MimosaFTL does not have
any false positives/false negatives when Threshold_1 €(0.55,0.78)
and Threshold_2 €(0.63,0.87).

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

s -
s I
s W

e
]

e

Threshold
o
Lockey I

7-zip —

Winzip

WiInRAR

TrueCryptor
DiskCryptor EEG————

TeslaCrypt
Cerber
CryptoFortress
CTB-Locker
CryptoLocker
HydraCrypt
Jigsaw
Samas
Bart
Radamant
SDelete W
Eraser
Multimedia tool
developers tool
office tool
install softwal
update softwa
web server i

Samples in the data set

Figure 5: The threshold that the detection component suc-
cessfully detects the ransomware or mistakenly detects be-
nign applications as ransomware.

6.2.2 Efficiency of MimosaFTL in Recovery. We evaluate how
efficiently the MimosaFTL can recover the external storage cor-
rupted by ransomware. Table 3 shows each separate time spent on
recovery. We observe that most time is spent on building the LBA
and PBA mappings, which requires reading the OOB areas of user
data blocks. The time cost of recovering to point A is mainly to
read metadata in the system reserved blocks. With binary search
process based on limited number of user interaction, the efficiency
of data recovery is optimistic.

6.2.3 Impact of MimosaFTL on Flash-based Block Devices. We
evaluate impact of MimosaFTL on regular flash-based block devices,
in terms of I/O throughput and lifetime of flash memory.

336

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

100 4 , 100 1 .

90 “+-False Positive f90 e = False Positive

80 | ™ —+False Negative ‘,i 80 ":‘ +False Negative |

70 \ / 70 LV |
_ \ ‘
K60 | 860 1]
> L / < "
S50 / 850 ‘
s \ / = \ {
240 \ 340 ‘ J
&30 S ¢ &30 f

20 20 J

10 10

0 ! 0 sosee S 00000000t s st

0 0102030405060.70809 1 0 010203040506070809 1
Threshold Value Threshold Value

(a) Threshold_1 for type A/B/C ransomware (b) Threshold_2 for type D ransomware

Figure 6: The false positive rate and false negative rate vary
with adjustment of the threshold.

Table 3: Individual time components for recovery (in sec-
onds).

Recover to | Build LBA and Rebuild a System
point A | PBA mappings | mapping table | restart
0.65 2.83 0.43 to 1.26 1.32

Impact on flash storage I/0 throughput. To access impact of Mi-
mosaFTL on the storage I/O throughput, we benchmarked the origi-
nal OpenNFM and MimosaFTL using fio [11] with non-buffered I/O
option. We ran fio in a host computer with Intel i5 CPU (3.30GHz,
4GB RAM) and Windows 10 Pro 64-bit. We set the array length of
the RRA list as 150 (i.e., the detection component is triggered upon
every 150 continuous access requests). We created backup for the
essential FTL metadata (e.g., addresses mapping table) once a day
if ransomware is not detected.

2000

1800

1600

E 1400
2]

1200

1000

800

600

400

200

0

SR

Figure 7: Comparisons of read/write throughput (KB/s) be-
tween OpenNFM and MimosaFTL. SR - sequential read, RR
- random read, SW - sequential write, RW - random write.

H OpenNFM B MimosaFTL

RR SwW RW

Access Patterns

Throughput (K

The benchmark results for I/O throughput of the two systems
are shown in Figure 7. We observe that MimosaFTL decreases the
read (i.e., sequential and random read) throughput by up to 6.8%,
and decrease the write (including sequential and random write)
throughput by up to 7.2%. We analyze the additional overhead of

Session 8: System Security and Authentication

MimosaFTL in the following: 1) MimosaFTL running the detection
algorithm needs to update the RRA list, and the detection process
is triggered when the RRA list is filled. The RRA list is maintained
in RAM, which does not incur too much overhead. In addition, the
detection process needs to analyze all the entries in the RRA list
which may incur overhead. However, it only happens periodically.
2) MimosaFTL needs to back up metadata daily in our implementa-
tion, which takes as less as 0.1 seconds for each back up operation. 3)
MimosaFTL adopts phased garbage collection, which delays execu-
tion of garbage collection on invalid blocks. MimosaFTL schedules
the garbage collection during idle time, reducing its impact on the
entire performance. 4) To allow restoring mapping tables during
recovery, MimosaFTL needs to write relevant information into the
OOB area of each page. Compared to OpenNFM, this does not bring
extra overhead, as OpenNFM also needs to keep similar information
to enable recovery from power lost.

Impact on the flash device’s lifetime. To prolong lifetime of
flash memory, MimosaFTL utilizes a global wear leveling strategy.
In MimosaFTL, when allocating blocks, blocks with smaller P/E
cycles will be allocated first. In addition, the blocks having larger
P/E cycles will be swapped with blocks having smaller P/E cycles.
To evaluate wear leveling effectiveness, we use hoover economic
wealth inequality indicator [7, 17, 31], which calculates an appro-
priately normalized sum of the difference of each measurement to
the mean. Assuming erasure counts of all the n erase blocks are ej,
€,..., en, and E = Z?:l e;, a wear leveling inequality (WLI) can be
computed as: WLI = % P e—é - %H This indicates the fraction
of erasures that must be re-assigned to other blocks in order to
achieve completely even wear.

We repeatedly wrote data to the board, completely filled the
480 MB flash, and then erased the data. After having written 480
GB data, we calculated the number of erasures performed on each
flash block. We then computed the WLI, obtaining 9.2%. This small
value indicates a small impact of MimosaFTL on the lifetime of
flash memory.

7 RELATED WORK

The existing work of ransomware defense can be categorized into
detection and recovery.

Ransomware detection. Existing ransomware detection ap-
proaches mainly monitor typical ransomware file system activ-
ities [10, 19, 20, 33] or analyze cryptographic primitives [10, 20, 22].
Kharraz et al. [20] were the first to analyze a large number of ran-
somware samples. They suggest some potential defenses in term
of file system interactions, encryption mechanisms and financial
incentives. Unveil [19] generates an artificial user environment
and monitors desktop lockers, file access patterns and I/O data
entropy. CryptoDrop [33] observes file type changes and measures
file modifications using similarity-preserving hash functions and
shannon entropy to detect ransomware. ShieldFS [10] monitors file
system access activities and collects features like folder listing, file
read/write/rename, file type and write entropy.

Additionally, some other works utilize honeypot techniques [27],
software-defined networking (SDN) [6] or machine learning ap-
proaches [34] to recognize ransomware. The detection approaches
discussed so far are workable under the assumption that the OS

337

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

is trusted and the malware cannot not compromise it. However,
advanced ransomware may run with root privileges, and is able to
disable or bypass the detection mechanisms. The detection com-
ponent of MimosaFTL is secure against this type of privileged
ransomware.
Data recovery from ransomware attacks. Inspired by copy-on-
write file systems, ShieldFS [10] automatically shadows a file when-
ever the original one is modified. PayBreak [22] leverages the fact
that in a hybrid cryptosystem the session key must be used during
the symmetric encryption. It observes the use of these keys, holds
them in escrow, and is able to decrypt files that would otherwise
only be recoverable by paying the ransom. The aforementioned
approaches are vulnerable to the privileged ransomware which can
compromise the OS and disturb the data (or key) recovery.
FlashGuard [14] can defend against the privileged ransomware
by exploiting features present in the lower layer flash memory. How-
ever, due to lack of a detection algorithm as well as a user-friendly
recovery component, FlashGuard is far from being practical. SSD-
Insider [4] incorporates a ransomware detection component based
on the overwriting patterns in a small fixed time window (e.g., 10
seconds). However, SSD-Insider is not practical either because: First,
it relies on an observation that ransomware “conducts overwriting
immediately after reading and encrypting the victim’s file”, which
is not necessarily true according to our study (Sec 3). Second, its
recovery component is coarsely designed and can only recover data
before 10 seconds.

8 CONCLUSION

In this work, we propose MimosaFTL, the first secure yet more prac-
tical ransomware defense strategy for mobile computing devices
that are equipped with flash memory as external storage. Security
analysis and experimental evaluation show that MimosaFTL can
defend against privileged ransomware with a small negative impact
on storage performance and device’s lifetime.

ACKNOWLEDGMENT

This work was partially supported by the National Natural Science
Foundation of China (No. 61802395, No. 61602475, N0.61602476 and
No.61872357) and National Cryptographic Foundation of China
(Grant No. MMJJ20170212). Peng Liu was supported by ARO
WO911NF-13-1-0421 (MURI), NSF CNS-1422594, NSF CNS-1505664,
and NSF CNS-1814679.

REFERENCES

[1] Mohammad Mehdi Ahmadian, Hamid Reza Shahriari, and Seyed Mohammad
Ghaffarian. 2015. Connection-monitor & connection-breaker: A novel approach
for prevention and detection of high survivable ransomwares. In Information Secu-
rity and Cryptology (ISCISC), 2015 12th International Iranian Society of Cryptology
Conference on. IEEE, 79-84.

Mohammad Mehdi Ahmadian, Hamid Reza Shahriari, and Seyed Mohammad
Ghaffarian. 2015. Connection-monitor & connection-breaker: A novel approach
for prevention and detection of high survivable ransomwares. (2015), 79-84.
Nicolo Andronio, Stefano Zanero, and Federico Maggi. 2015. HelDroid: Dissecting
and Detecting Mobile Ransomware. (2015), 382-404.

SungHa Baek, Youngdon Jung, Aziz Mohaisen, Sungjin Lee, and DaeHun Nyang.
2018. SSD-Insider: Internal Defense of Solid-State Drive against Ransomware
with Perfect Data Recovery. In 38th IEEE International Conference on Distributed
Computing Systems,ICDCS 2018, Vienna, Austria, July 2-6, 2018. 875-884.

Matias Bjerling, Javier Gonzalez, and Philippe Bonnet. 2017. LightNVM: The
Linux Open-Channel SSD Subsystem.. In FAST. 359-374.

5

B3

[4

—
i)

Session 8: System Security and Authentication

6]

~

]

=

]
[10]

[En
[OR=

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23

[24]
[25

Krzysztof Cabaj, Marcin Gregorczyk, and Wojciech Mazurczyk. 2017. Software-
defined networking-based crypto ransomware detection using HTTP traffic
characteristics. Computers & Electrical Engineering (2017).

Bo Chen, Shijie Jia, Luning Xia, and Peng Liu. 2016. Sanitizing data is not enough!:
towards sanitizing structural artifacts in flash media. In Proceedings of the 32nd
Annual Conference on Computer Security Applications. ACM, 496-507.

Bo Chen and Radu Sion. 2015. HiFlash: A history independent flash device. arXiv
preprint arXiv:1511.05180 (2015).

Google Code. 2011. OpenNFM. https://code.google.com/p/opennfm/.

Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De Pasquale,
Alessandro Barenghi, Stefano Zanero, and Federico Maggi. 2016. ShieldFS: a
self-healing, ransomware-aware filesystem. In Proceedings of the 32nd Annual
Conference on Computer Security Applications. ACM, 336-347.

Freecode. 2014. fio. http://freecode.com/projects/fio.

Github. 2018. A repository of LIVE malwares for your own joy and pleasure.
https://github.com/ytisf/theZoo.

Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin, Peng Liu,
Xinyu Xing, and Luning Xia. 2017. Supporting Transparent Snapshot for Bare-
metal Malware Analysis on Mobile Devices. In Proceedings of the 33rd Annual
Computer Security Applications Conference. ACM, 339-349.

Jian Huang, Jun Xu, Xinyu Xing, Peng Liu, and Moinuddin K Qureshi. 2017.
FlashGuard: Leveraging Intrinsic Flash Properties to Defend Against Encryption
Ransomware. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2231-2244.
INCITS. 2015. SCSI Command Operation Codes.
op-num.htm.

Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. 2016. Nfps: Adding undetectable
secure deletion to flash translation layer. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security. ACM, 305-315.

Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. 2017. DEFTL: Implementing
Plausibly Deniable Encryption in Flash Translation Layer. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. ACM,
2217-2229.

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. 2002. An Efficient k-Means Clustering Algorithm:
Analysis and Implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 7 (2002),
881-892.

Amin Kharraz, Sajjad Arshad, Collin Mulliner, William K Robertson, and En-
gin Kirda. 2016. UNVEIL: A Large-Scale, Automated Approach to Detecting
Ransomware.. In USENIX Security Symposium. 757-772.

Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin
Kirda. 2015. Cutting the gordian knot: A look under the hood of ransomware
attacks. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 3-24.

Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan Urgaonkar. 2009.
Flashsim: A simulator for nand flash-based solid-state drives. In Advances in
System Simulation, 2009. SIMUL 09. First International Conference on. IEEE, 125—
131.

Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel Egele. 2017.
PayBreak: defense against cryptographic ransomware. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security. ACM, 599—
611.

Xin Luo and Qinyu Liao. 2007. Awareness education as the key to ransomware
prevention. Information Systems Security 16, 4 (2007), 195-202.

Mantech. 2017. LPC-H3131. http://www.mantech.co.za/.

Mcafee. [n. d.]. WannaCry: Ransomware Spreads Like Wildfire, Attacks
Over 150 Countries. https://securingtomorrow.mcafee.com/consumer/

http://www.t10.org/lists/

338

[26

[27]

[28

[29

@
=

[31

[32

[33

&
=

&
&

=
=

=
i)

=
&

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

consumer-threat-notices/wannacry-ransomware-attacks/.

Shagufta Mehnaz, Anand Mudgerikar, and Elisa Bertino. 2018. RWGuard: A Real-
Time Detection System Against Cryptographic Ransomware. In International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 114-136.
Chris Moore. 2016. Detecting ransomware with honeypot techniques. In Cyber-
security and Cyberforensics Conference (CCC), 2016. IEEE, 77-81.

Bharti Nagpal and Vinayak Wadhwa. 2016. Cryptoviral Extortion: Evolution,
Scenarios, and Analysis. In Proceedings of the International Conference on Signal,
Networks, Computing, and Systems. Springer, 309-316.

Joon-Young Paik, Keuntae Shin, and Eun-Sun Cho. 2016. Poster: Self-defensible
storage devices based on flash memory against ransomware. In Proceedings of
IEEE Symposium on Security and Privacy.

Joel Reardon, David A Basin, and Srdjan Capkun. 2013. SoK: Secure Data Deletion.
ieee symposium on security and privacy 12, 3 (2013), 301-315.

Joel Reardon, Srdjan Capkun, and David Basin. 2012. Data node encrypted file
system: Efficient secure deletion for flash memory. (2012), 17-17.

PJ Rousseeuw. 1999. Silhouettes: A graphical aid to the interpretation and valida-
tion of cluster analysis. Journal of Computational & Applied Mathematics. 20, 20
(1999), 53-65.

Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin RB Butler. 2016. Cryp-
tolock (and drop it): stopping ransomware attacks on user data. In Distributed
Computing Systems (ICDCS), 2016 IEEE 36th International Conference on. IEEE,
303-312.

Daniele Sgandurra, Luis Muiioz-Gonzalez, Rabih Mohsen, and Emil C Lupu. 2016.
Automated dynamic analysis of ransomware: Benefits, limitations and use for
detection. arXiv preprint arXiv:1609.03020 (2016).

SOFTPEDIA. 2018. Tera Term Pro Web. http://www.softpedia.com/get/Network-
Tools/Telnet-SSH-Clients/Tera-Term-Web.shtml.

Statista. 2018. Number of mobile phone users worldwide from 2013
to 2019 (in billions). https://www.statista.com/statistics/274774/
forecast-of-mobile-phone-users-worldwide/.

Kul Prasad Subedi, Daya Ram Budhathoki, Bo Chen, and Dipankar Dasgupta.
2017. RDS3: Ransomware defense strategy by using stealthily spare space. In
Computational Intelligence (SSCI), 2017 IEEE Symposium Series on. IEEE, 1-8.
Symantec. [n. d.]. 2017 Internet Security Threat Report. https://www.symantec.
com/security-center/threat-report.

Symantec. [n. d.]. A new breed of threat: WannaCry and Petya.
https://www.symantec.com/content/dam/symantec/docs/security-center/
white-papers/istr-ransomware-2017-en.pdf.

Cactus Technologies. [n. d.]. Solid State Drive Primer-Controller Functions-
TRIM Command. https://www.cactus-tech.com/resources/blog/details/
solid-state-drive-primer-12-controller-functions- trim-command.

Thebestvpn. [n. d.]. Cyber Security Statistics. https://thebestvpn.com/
cyber-security-statistics-2018/.

virustotal. 2018. Virustotal. https://www.virustotal.com/en/.

Michael Yung Chung Wei, Laura M Grupp, Frederick E Spada, and Steven Swan-
son. 2011. Reliably erasing data from flash-based solid state drives.. In Fast, Vol. 11.
8-8.

Wikipedia. [n. d.]. Trojan.Winlock.
Winlock.

Joobeom Yun, Junbeom Hur, Youngjoo Shin, and Dongyoung Koo. 2017. CLDSafe:
An Efficient File Backup System in Cloud Storage against Ransomware. IEICE
TRANSACTIONS on Information and Systems 100, 9 (2017), 2228-2231.

Qionglu Zhang, Shijie Jia, Bing Chang, and Bo Chen. 2018. Ensuring data confi-
dentiality via plausibly deniable encryption and secure deletion-a survey. Cy-
bersecurity 1, 1 (2018).

https://ru.wikipedia.org/wiki/Trojan.

https://code.google.com/p/opennfm/
http://www.t10.org/lists/op-num.htm
http://www.t10.org/lists/op-num.htm
https://securingtomorrow.mcafee.com/consumer/consumer-threat-notices/wannacry-ransomware-attacks/
https://securingtomorrow.mcafee.com/consumer/consumer-threat-notices/wannacry-ransomware-attacks/
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://www.cactus-tech.com/resources/blog/details/solid-state-drive-primer-12-controller-functions-trim-command
https://www.cactus-tech.com/resources/blog/details/solid-state-drive-primer-12-controller-functions-trim-command
https://thebestvpn.com/cyber-security-statistics-2018/
https://thebestvpn.com/cyber-security-statistics-2018/
https://ru.wikipedia.org/wiki/Trojan.Winlock
https://ru.wikipedia.org/wiki/Trojan.Winlock

	Abstract
	1 Introduction
	2 Background
	2.1 Ransomware
	2.2 NAND Flash Memory
	2.3 K-means Clustering

	3 Studying Access Activities on Flash Memory Caused by Real-world Ransomware
	4 MimosaFTL Design
	4.1 Model and Assumptions
	4.2 Design Overview of MimosaFTL
	4.3 Ransomware Detection
	4.4 Data Backup
	4.5 Data Recovery

	5 Security Analysis and Discussion
	5.1 Security Analysis
	5.2 Discussion

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Evaluation

	7 Related Work
	8 Conclusion
	References

