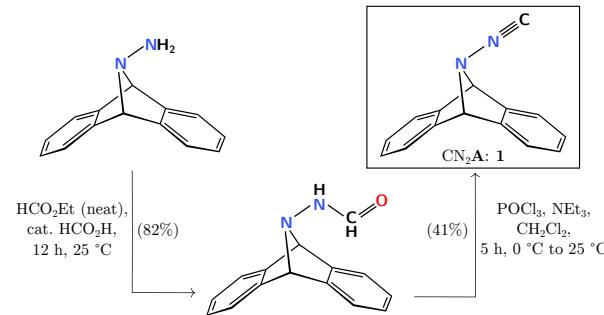


Cite this: DOI: 10.1039/xxxxxxxxxx

An Exploding *N*-Isocyanide Reagent Formally Composed of Anthracene, Dinitrogen and a Carbon Atom[†]

Maximilian Joost, Matthew Nava, Wesley J. Transue and Christopher C. Cummins*

Received Date


Accepted Date

DOI: 10.1039/xxxxxxxxxx

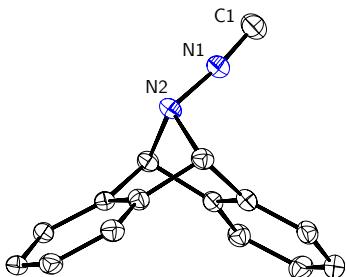
www.rsc.org/journalname

Targeted as an example of a compound composed of a carbon atom together with two stable neutral leaving groups, 7-isocyanato-7-azadibenzonorbornadiene, CN₂A (1, A = C₁₄H₁₀ or anthracene) has been synthesized and spectroscopically and structurally characterized. The terminal C atom of 1 can be transferred: mesityl nitrile oxide reacts with 1 to produce carbon monoxide, likely via intermediacy of the *N*-isocyanate OCN₂A. Reaction of 1 with [RuCl₂(CO)(PCy₃)₂] leads to [RuCl₂(CO)(1)(PCy₃)₂] which decomposes unselectively: in the product mixture, the carbide complex [RuCl₂(C)(PCy₃)₂] was detected. Upon heating in the solid state or in solution, 1 decomposes to A, N₂ and cyanogen (C₂N₂) as substantiated using molecular beam mass spectrometry, IR and NMR spectroscopy techniques.

Carbon atom transfer (CAT) remains a non-trivial synthetic problem. CAT chemistry was observed and studied via electric arc-generated C,¹ and is likely commonly occurring in space,² but the lack of suitable CAT reagents has hindered the development of such reactivity in solution chemistry. Notable exceptions exist: Shevlin reported on the thermal decomposition of a tetrazolyl diazonium salt, proposing C atom generation and unselective transfer reactions to ethylene and ethylene oxide.³ Willis and Bayes showed that upon irradiation carbon suboxide (C₃O₂) inserts in the gas phase into ethylene, propylene and butenes with concomitant CO loss to form the corresponding alenes.⁴ Hillhouse and coworkers investigated the coordination chemistry of C₃O₂ in solution, demonstrating the formal insertion of the central C atom of C₃O₂ into a W-phosphine bond, leading to a phosphinocarbyne complex.⁵ Heppert and coworkers developed a synthesis of a ruthenium carbide complex via CAT from a methylenecy-

Scheme 1 Synthesis of 1.

clopropane.⁶ Metal carbide complexes have also been obtained through breakdown of carbon monoxide.^{7–10}


In the present work we set out to synthesize a carbon source which like carbon suboxide could potentially transfer a C atom with release of a pair of stable, neutral leaving groups. Incorporation of a latent anthracene molecule (C₁₄H₁₀, A) which is readily released upon heating has been shown to be a fruitful strategy for mild thermal release of reactive fragments.¹¹ Group transfer reactions and small molecule release coupled with A formation from 7-pnicta-dibenzonorbornadiene-scaffolds have been shown to be especially efficient.¹² For example, LiNA, ON₂A and NCNA were employed as N-mono-anion, O-atom and NCN-group transfer reagents to transition metal centers, respectively.¹³ Herein we present the design and synthesis of a new type of CAT reagent.

7-isocyanato-7-azadibenzonorbornadiene CN₂A (1) was chosen as the synthetic target. Compound 1 is the isocyanato bonding isomer of NCNA and can be envisioned to fragment into A, dinitrogen and a C atom. The synthesis of 1 was achieved by formylation of Carpino's hydrazine H₂N₂A,^{12a} followed by dehydration of the resulting formohydrazide to yield the *N*-isocyanide (Scheme 1, 34% from H₂N₂A).[†]

Notable spectroscopic features that corroborate the formulated structure of 1 are the IR- and Raman NC stretching vibration band (IR: $\tilde{\nu} = 2098\text{ cm}^{-1}$ for 1, $\tilde{\nu} = 2060\text{ cm}^{-1}$ for ¹³CN₂A, 1-¹³C;

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. E-mail: ccummins@mit.edu

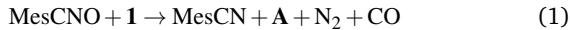
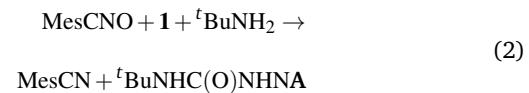

† Electronic Supplementary Information (ESI) available: For experimental and computational details, and crystallographic information in CIF format, see DOI: 10.1039/b000000x/

Fig. 1 Molecular structure of **1** drawn with thermal ellipsoids at the 50% probability level and with all H atoms omitted for clarity. Selected distances [Å] and angles [°]: N2-N1 1.381(3), N1-C1 1.164(3), N2-N1-C1 173.3(2).

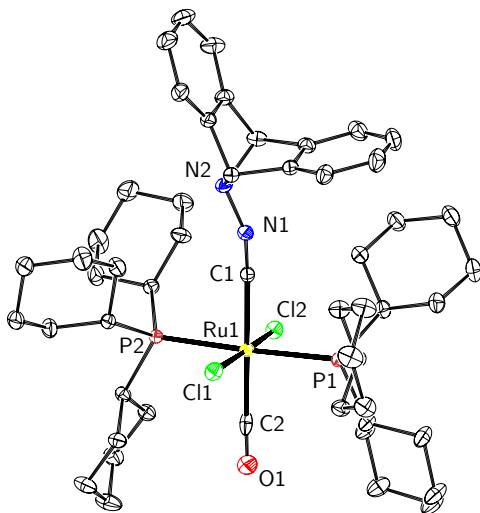
Raman: $\tilde{\nu} = 2093$ cm⁻¹ for **1**) and the ¹³C NMR resonance corresponding to the terminal carbon ($\delta = 135.5$ ppm). These data are typical of other known *N*-isocyanides.¹⁴ The metrical parameters of the molecular structure of **1** obtained from an X-ray diffraction analysis (Fig. 1) compare well with those reported for structurally characterized *N*-isocyanides.¹⁵


CAT reactivity of **1** was studied: we targeted the release of carbon monoxide from **1** by its oxidation, as the expulsion of a CO molecule should favor the transfer process. CO formation from elemental, electric arc-generated carbon was previously investigated by Skell and coworkers.^{1a} Our group previously performed an in-depth study of the oxidation of phosphines and carbenes with mesityl nitrile oxide (MesCNO) showing that this compound acts as an efficient and mild O-atom transfer agent.¹⁶ **1** was thus subjected to reaction with MesCNO in benzene solution at 25 °C (Equation 1).¹⁷

Monitoring the reaction for several hours by ¹H NMR spectroscopy indicated the formation of **A** over time, together with unidentified species. Gas evolution was observed and analysis of the headspace gases by gas IR spectroscopy revealed the presence of CO. By employing **1**-¹³C we confirmed the origin of C in the produced CO in solution by its characteristic ¹³C NMR resonance (δ (¹³C) = 184.5 ppm, benzene-*d*₆), and in the gas phase by a redshifted IR vibration band (¹²CO: $\tilde{\nu} = 2132$ cm⁻¹, ¹³CO: $\tilde{\nu} = 2101$ cm⁻¹).¹⁸ Quantification of CO gas by using [RuCl(Cp^{*})(PCy₃)] (Cp^{*} = C₅Me₅⁻) as a chemical trap indicated a yield of 27% for CO generation from **1**.¹⁹ The precise pathway for CO generation is unclear, but the oxidation of **1** likely involves an intermediate *N*-isocyanate, as the reaction of the model *N*-isocyanide *i*Pr₂N-NC with MesCNO yields a triazolidinone,²⁰ stemming from the expected dimerization of the corresponding isocyanate, *i.e.* *i*Pr₂N-NCO.†

Direct observation of OCN₂**A** was not realized: monitoring the reaction of MesCNO with **1** at low temperature (−60 °C to 25 °C) in THF-*d*₈ by ¹H NMR spectroscopy indicated that formation of **A** and MesCN started at 0 °C. No intermediate species was detected, suggesting that the oxidation is the rate-determining step and subsequent **A**, N₂ and CO formation occurs rapidly. The intermediacy of the *N*-isocyanate OCN₂**A** upon oxidation of **1** is how-

ever further supported by a trapping experiment with ^tBuNH₂ to yield the corresponding mixed urea (Equation 2).



Additional backing for transient OCN₂**A** is given by oxidation of **1** with DMSO and catalytic trifluoroacetic anhydride, an established method for the synthesis of isocyanates from isocyanides.²¹ Subsequent mechanistic steps remain obscure: DFT computations (B3LYP-D3BJ/Def2-TZVP) indicate that unimolecular, concerted fragmentation of OCN₂**A** on the singlet surface to CO, N₂ and **A** is linked to a high barrier (ca. 37 kcal·mol⁻¹) which does not conform with the experimental ease of reaction at ambient temperature.† The detection of the fleeting triplet OCN₂ which readily decomposes to CO and N₂ was claimed,²² and this species may be involved in a radical mechanism. A different potential route, in analogy to the commonly observed *N*-isocyanate chemistry,²⁰ is the occurrence of fast dimer formation and its subsequent collapse to yield **A**, N₂ and CO. Due to concurrent decomposition pathways, performing a kinetic analysis on the reaction of **1** with MesCNO proved unsuccessful.

Molecular terminal metal carbido complexes remain comparatively rare and their syntheses limited to only a few routes.^{6,9,10,23–25} We reasoned that **1** bound to a transition metal fragment might be a suitable precursor for accessing carbido complexes by thermal loss of **A** and N₂. We identified first a precursor complex to access the known carbido complex [RuCl₂(C)(PCy₃)₂].⁶ To this end, **1** was treated with [RuCl₂(CO)(PCy₃)₂] in THF,²⁶ leading to formation of [RuCl₂(1)(CO)(PCy₃)₂] (**2**). An X-ray diffraction analysis of crystals grown from a chloroform/pentane solution of **2** revealed the structure of this compound featuring an all-*trans* octahedral arrangement (Figure 2). The NNC angle in **2** deviates by ca. 15 ° from the quasi-linear geometry found in **1**. The origin of this effect is certainly the backbonding from Ru to C1,²⁷ although concomitant rehybridization at N1 must be minimal as the bond distances of the *N*-isocyanide group in **2** do not change significantly compared to **1**, *i.e.* the C1-N1 linkage remains a triple bond. The Ru-C1 distance is slightly longer than in the single structurally characterized Ru(II) *N*-isocyanide complex [RuCl₂(C₆H₂Me₄)(CNNⁱPr₂)] [2.035(2) Å vs. 1.947(7) Å].²⁸

Heating a toluene solution of **2** to 100 °C for 3 h led to complete disappearance of the ³¹P NMR signal corresponding to the starting material and to the appearance of signals due to several new species, among them the previously reported carbide complex [RuCl₂(C)(PCy₃)₂], as identified by its characteristic ¹³C NMR resonance at $\delta = 473$ ppm.⁶ Although this reaction was unselective and low-yielding (ca. 15% by ³¹P NMR spectroscopy) due to the harsh reaction conditions required to induce the carbide complex formation, this route presents an initial demonstration for the rational installation of a single C atom onto a transition metal complex using **1**.

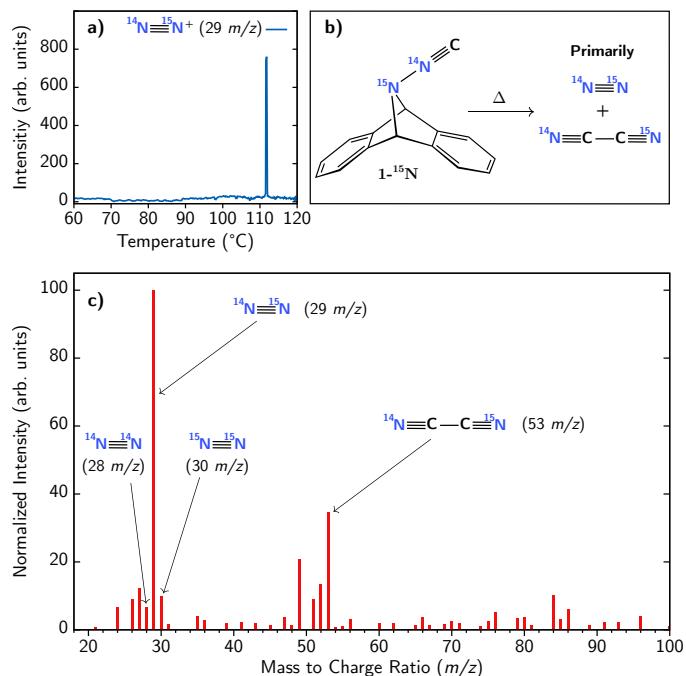
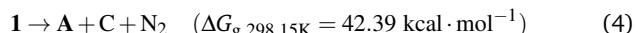
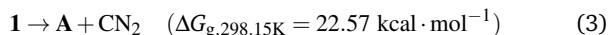

The thermal stability of **1** and the potential release of **A** and CN₂ or fragments thereof was studied by thermogravimetric anal-

Fig. 2 Molecular structure of **2** with thermal ellipsoids drawn at the 50% probability level and with all H atoms and solvent molecules of crystallization omitted for clarity. Selected distances [Å] and angles [°]: Ru1-C2 1.933(3), Ru1-C1 2.035(2), Ru1-P1 2.4221(5), Ru1-Cl1 2.4236(6), Ru1-Cl2 2.4339(6), Ru1-P2 2.4464(5), C2-O1 1.089(3), C1-N1 1.160(3), N1-N2 1.385(2), C1-N1-N2 158.6(2), C2-Ru1-C1 174.85(10), Cl1-Ru1-Cl2 176.16(2), P1-Ru1-P2 175.45(2).



ysis (TGA). A rapid, very significant mass loss, suggestive of explosive behavior of the compound, was observed at around 80 °C.† Following this process visually by heating a sample of **1** (5 mg) to 80 to 120 °C under air, under N₂ or under vacuum in a transparent flask indeed resulted in observation of a mild blast, rocketing solid material through the entire volume of the container. Although energetic materials containing only C, H and N are not uncommon,²⁹ the decomposition behavior of **1**, despite its low N content (12.7%) is remarkable. While we experienced no hazards in the course of working with compound **1** (at least up to a scale of 500 mg), and it did not exhibit shock-sensitivity, we recommend the exercise of due caution if working with this heat-sensitive explosive reagent. The remaining recovered solid residue was shown by NMR spectroscopic means to be predominantly composed of **A** next to minor unidentified species (C_xH_yN_z). Microanalysis revealed that the residue contained about 4.6% of N). By measuring the pressure increase upon decomposition in a closed vessel, the amount of released gases per mole of employed **1** was determined to be 0.61 mol.†

Molecular beam mass spectrometry (MBMS) allowed for the identification of the evolved, volatile compounds during the thermal decomposition of **1**. In line with the TGA, copious amounts of gases were detected upon heating **1** in the MBMS source vacuum chamber (to ca. 110 °C). These gases were primarily composed of cyanogen (NC–CN) or an isomer of identical mass, and dinitrogen.† No evidence for formation of CN₂ or any C allotrope was found. This result is in line with gas-phase free energy of formation calculations using a modified ccCA procedure,³⁰ predicting that fragmentation of **1** into either CN₂ and **A** (Equation 3) or C,

Fig. 3 a) Molecular beam mass spectrometry (MBMS) of **1**-¹⁵N: ion count of ¹⁴N¹⁵N as a function of temperature; b) Scheme depicting the observed major products with their isotope distributions upon thermal decomposition of **1**-¹⁵N. c) Integrated mass spectrum of the evolved gases from **1**-¹⁵N during thermolysis.

N₂ and **A** (Equation 4) are endergonic processes.†

The formation of NC–CN was confirmed by heating a sample of **1** in a gas IR cell and subsequent detection in the IR spectrum on the basis of its diagnostic vibrations ($\tilde{\nu} = 2662, 2562, 2158 \text{ cm}^{-1}$) and hence excluding isocyanogen as the ultimate product, although it may be involved, like thermally unstable diisocyanogen, as an intermediate species.³¹ Like the primary explosive mercury fulminate, *N*-isocyanide **1** is a rare example of a compound able to detonate with evolution of cyanogen gas.³²

In order to gain insight into the mechanism of NC–CN formation, we conducted the MBMS analysis employing **1** with a ¹³C-labeled isonitrile (¹³CN₂**A**, **1**-¹³C), and featuring a ¹⁵N-labeled bridge (C¹⁴N¹⁵NA, **1**-¹⁵N). Unsurprisingly, the source of carbon of formed cyanogen was the terminal isocyanide carbon. Though rather unexpected was that the evolved gas mixture from **1**-¹⁵N contained almost exclusively ¹⁴N, ¹⁵N cyanogen and ¹⁴N, ¹⁵N dinitrogen (Figure 3).

This finding eliminates several mechanistic scenarios for the formation of cyanogen such as homolytic N–N bond cleavage and subsequent recombination of cyano-radicals or a rearrangement involving two molecules of **1** via a cyclic intermediate or transition state to account for the observed products. The precise pathway for ¹⁴N, ¹⁵N cyanogen and ¹⁴N, ¹⁵N dinitrogen formation demands cleavage of a C≡N bond of **1**, but remains otherwise

speculative. An intuitive pathway involves fragmentation of **1** to **A** and CN_2 . CAT from **1** to CN_2 and subsequent rearrangement to cyanogen may account for the observed isotopic distribution.

The decomposition of **1** was studied as well in solution: Heating a solution of **1** in benzene- d_6 to 70 °C over ca. 3 h led to complete disappearance of the starting material. Kinetic analysis by ^1H NMR spectroscopy indicated that the decomposition occurs via a bimolecular mechanism, as a second-order dependence on the concentration of **1** was found. No intermediate was observed. ^1H and ^{13}C NMR analysis of the products revealed formation of minor amounts of unidentified species, together with **A** and cyanogen (δ (^{13}C) = 95.2 ppm) as the major products.³³

In conclusion, synthesis and reactivity studies of *N*-isocyanide **1** allowed establishment of a proof of concept for the transfer of a lone carbon atom. Thermal decomposition of **1** led to cyanogen formation.

This material is based on research supported by the National Science Foundation under CHE-1362118. M.J. thanks the Alexander von Humboldt foundation for a Feodor Lynen postdoctoral fellowship.

References

- (a) P. S. Skell, J. J. Havel and M. J. McGlinchey, *Acc. Chem. Res.*, 1973, **6**, 97–105; (b) R. M. Lemon, *Acc. Chem. Res.*, 1973, **6**, 65–73.
- A. G. G. M. Tielen and T. P. Snow, *The Diffuse Interstellar Bands*, Springer Science & Business Media, 2012.
- P. B. Shevlin, *J. Am. Chem. Soc.*, 1972, **94**, 1379–1380.
- C. Willis and K. D. Bayes, *J. Am. Chem. Soc.*, 1966, **88**, 3203–3208.
- (a) A. K. List, G. L. Hillhouse and A. L. Rheingold, *J. Am. Chem. Soc.*, 1988, **110**, 4855–4856; (b) A. K. List, G. L. Hillhouse and A. L. Rheingold, *Organometallics*, 1989, **8**, 2010–2016.
- R. G. Carlson, M. A. Gile, J. A. Heppert, M. H. Mason, D. R. Powell, D. V. Velde and J. M. Vilain, *J. Am. Chem. Soc.*, 2002, **124**, 1580–1581.
- R. E. LaPointe, P. T. Wolczanski and J. F. Mitchell, *J. Am. Chem. Soc.*, 1986, **108**, 6382–6384.
- D. R. Neithamer, R. E. LaPointe, R. A. Wheeler, D. S. Richeson, G. D. Van Duyne and P. T. Wolczanski, *J. Am. Chem. Soc.*, 1989, **111**, 9056–9072.
- J. C. Peters, A. L. Odom and C. C. Cummins, *Chem. Commun.*, 1997, 1995–1996.
- J. B. Greco, J. C. Peters, T. A. Baker, W. M. Davis, C. C. Cummins and G. Wu, *J. Am. Chem. Soc.*, 2001, **123**, 5003–5013.
- (a) E. J. Corey and W. L. Mock, *J. Am. Chem. Soc.*, 1962, **84**, 685–686; (b) H. H. Wasserman and J. R. Scheffer, *J. Am. Chem. Soc.*, 1967, **89**, 3073–3075; (c) J. E. Baldwin and R. C. G. Lopez, *J. Chem. Soc., Chem. Commun.*, 1982, 1029–1030; (d) H. Appier, L. W. Gross, B. Mayer and W. P. Neumann, *J. Organomet. Chem.*, 1985, **291**, 9–23.
- (a) L. A. Carpino, R. E. Padykula, D. E. Barr, F. H. Hall, J. G. Krause, R. F. Dufresne and C. J. Thoman, *J. Org. Chem.*, 1988, **53**, 2565–2572; (b) A. Velian and C. C. Cummins, *J. Am. Chem. Soc.*, 2012, **134**, 13978–13981; (c) W. J. Transue, A. Velian, M. Nava, C. García-Iriepa, M. Temprado and C. C. Cummins, *J. Am. Chem. Soc.*, 2017, **139**, 10822–10831; (d) W. J. Transue, A. Velian, M. Nava, M.-A. Martin-Drumel, C. C. Womack, J. Jiang, G.-L. Hou, X.-B. Wang, M. C. McCarthy, R. W. Field and C. C. Cummins, *J. Am. Chem. Soc.*, 2016, **138**, 6731–6734; (e) M.-A. Courtemanche, W. J. Transue and C. C. Cummins, *J. Am. Chem. Soc.*, 2016, **138**, 16220–16223.
- (a) D. J. Mindiola and C. C. Cummins, *Angew. Chem. Int. Ed.*, 1998, **37**, 945–947; (b) T. D. Palluccio, E. V. Rybak-Akimova, S. Majumdar, X. Cai, M. Chui, M. Temprado, J. S. Silvia, A. F. Cozzolino, D. Tofan, A. Velian, C. C. Cummins, B. Captain and C. D. Hoff, *J. Am. Chem. Soc.*, 2013, **135**, 11357–11372; (c) D. J. Mindiola, Y.-C. Tsai, R. Hara, Q. Chen, K. Meyer and C. C. Cummins, *Chem. Commun.*, 2001, 125–126.
- (a) H. Bredereck, B. Föhlich and K. Walz, *Justus Liebigs Ann. Chem.*, 1965, **686**, 92–101; (b) R. Bigler, R. Huber and A. Mezzetti, *Angew. Chem. Int. Ed.*, 2015, **54**, 5171–5174.
- (a) H. Stolzenberg, B. Weinberger, W. P. Fehlhammer, F. G. Pühlhofer and R. Weiss, *Eur. J. Inorg. Chem.*, 2005, **2005**, 4263–4271; (b) A. Jana, I. Objartel, H. W. Roesky and D. Stalke, *Inorg. Chem.*, 2009, **48**, 7645–7649; (c) M. F. Ibad, P. Langer, F. Reiß, A. Schulz and A. Villinger, *J. Am. Chem. Soc.*, 2012, **134**, 17757–17768.
- X. Cai, S. Majumdar, G. C. Fortman, L. M. Frutos, M. Temprado, C. R. Clough, C. C. Cummins, M. E. Germain, T. Palluccio, E. V. Rybak-Akimova, B. Captain and C. D. Hoff, *Inorg. Chem.*, 2011, **50**, 9620–9630.
- C. Alpoim, A. G. Barret, D. H. Barton and P. Hiberty, *Nouv. J. Chim.*, 1980, **4**, 127–129.
- (a) W. Lin and H. Frei, *J. Am. Chem. Soc.*, 2005, **127**, 1610–1611; (b) G. Ménard and D. W. Stephan, *Angew. Chem. Int. Ed.*, 2011, **50**, 8396–8399.
- (a) B. K. Campion, R. H. Heyn and T. D. Tilley, *J. Chem. Soc., Chem. Commun.*, 1988, 278–280; (b) J. S. Silvia and C. C. Cummins, *J. Am. Chem. Soc.*, 2010, **132**, 2169–2171.
- (a) C. Wentrup, J. J. Finnerty and R. Koch, *Curr. Org. Chem.*, 2011, **15**, 1745–1759; (b) W. Reichen, *Helv. Chim. Acta*, 1976, **59**, 2601–2609.
- H. V. Le and B. Ganem, *Org. Lett.*, 2011, **13**, 2584–2585.
- G. de Petris, F. Cacace, R. Cipollini, A. Cartoni, M. Rosi and A. Troiani, *Angew. Chem. Int. Ed.*, 2005, **44**, 462–465.
- T. Agapie, P. L. Diaconescu and C. C. Cummins, *J. Am. Chem. Soc.*, 2002, **124**, 2412–2413.
- A. Hejl, T. M. Trnka, M. W. Day and R. H. Grubbs, *Chem. Commun.*, 2002, 2524–2525.
- S. R. Caskey, M. H. Stewart, J. E. Kivela, J. R. Sootsman, M. J. A. Johnson and J. W. Kampf, *J. Am. Chem. Soc.*, 2005, **127**, 16750–16751.
- F. G. Moers, R. W. M. Ten Hoedt and J. P. Langhout, *J. Organomet. Chem.*, 1974, **65**, 93–98.
- A. Vogler, *Organic Chemistry*, Elsevier, 1971, vol. 20, pp. 217–233.
- W. P. Fehlhammer, R. Metzner and R. Kunz, *Chem. Ber.*, 1994, **127**, 321–327.
- (a) T. M. Klapötke and T. G. Witkowski, *Propellants Explos. Pyrotech.*, 2016, **41**, 470–483; (b) T. M. Klapötke, B. Krumm and C. Pflüger, *J. Org. Chem.*, 2016, **81**, 6123–6127.
- (a) N. J. DeYonker, T. Grimes, S. Yockel, A. Dinescu, B. Mintz, T. R. Cundari and A. K. Wilson, *J. Chem. Phys.*, 2006, **125**, 104111; (b) N. J. DeYonker, T. R. Cundari and A. K. Wilson, *J. Chem. Phys.*, 2006, **124**, 114104.
- J. C. Grecu, B. P. Winnewisser and M. Winnewisser, *J. Mol. Spectrosc.*, 2003, **218**, 246–255.
- T. B. Tang, G. M. Swallowe and V. K. Mohan, *J. Solid State Chem.*, 1984, **55**, 239–242.
- T. M. Klapötke, B. Krumm and M. Scherr, *Inorg. Chem.*, 2008, **47**, 7025–7028.