

1 Submesoscale coherent vortices in the Gulf Stream

2 **J. Gula¹, T. M. Blacic², and Robert E. Todd³**

3 ¹Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM,
4 Brest, France

5 ²Earth and Environmental Studies, Montclair State University, New Jersey, USA

6 ³Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole,
7 Massachusetts, USA

8 **Key Points:**

- 9 Submesoscale lenses of well-mixed water are observed in seismic reflection images
10 and glider sections across the Gulf Stream.
- 11 A realistic numerical simulation is used to characterize these lenses as anticyclonic
12 submesoscale coherent vortices.
- 13 Submesoscale coherent vortices are generated where the Gulf Stream interacts with
14 the Charleston Bump.

15 **Abstract**

16 Seismic images and glider sections of the Gulf Stream front along the U.S. eastern seaboard
 17 capture deep, lens-shaped submesoscale features. These features have radii of 5–20 km,
 18 thicknesses of 150–300 m, and are located at depths greater than 500 m. These are typ-
 19 ical signatures of anticyclonic submesoscale coherent vortices. A submesoscale-resolving
 20 realistic simulation, which reproduces submesoscale coherent vortices with the same char-
 21 acteristics, is used to analyze their generation mechanism. Submesoscale coherent vor-
 22 tices are primarily generated where the Gulf Stream meets the Charleston Bump, a deep
 23 topographic feature, due to the frictional effects and intense mixing in the wake of the
 24 topography. These submesoscale coherent vortices can transport waters from the Charleston
 25 Bump's thick bottom mixed layer over long distances and spread them within the sub-
 26 tropical gyre. Their net effect on heat and salt distribution remains to be quantified.

27 **1 Introduction**

28 Ocean eddies contribute significantly to global fluxes of heat, salt, carbon, and bio-
 29 geochemical tracers. Surface intensified mesoscale eddies, with radii typically correspond-
 30 ing to the Rossby deformation radius (30–200 km), have been studied extensively using
 31 altimetric observations (Chelton et al., 2007). However, we know much less about the
 32 contribution of subsurface eddies, particularly submesoscale (1–30 km) subsurface ed-
 33 dies due to the sparsity of in situ observations able to resolve submesoscales.

34 Subsurface submesoscale eddies are known as Submesoscale Coherent Vortices (SCVs)
 35 (McWilliams, 1985) or Intra Thermocline Eddies (ITEs) (Dugan et al., 1982). They are
 36 usually defined as energetic eddies with a radius smaller than the Rossby deformation
 37 radius, a structure localized in the vertical, and an interior velocity maximum (McWilliams,
 38 1985). SCVs are predominantly anticyclonic with isopycnals forming a convex lens shape
 39 (McWilliams, 2016). They can be very long-lived (>1 year) and travel far from their ori-
 40 gins. As SCVs retain much of their core water mass during their life, they can transport
 41 waters with anomalous properties over long distances; for instance, an SCV transport-
 42 ing water from Baja California was sampled near Hawaii (Lukas & Santiago-Mandujano,
 43 2001). The cumulative effect of SCVs can potentially affect the large scale transport and
 44 distribution of heat, nutrients, and other materials.

45 SCVs have been observed in most regions of the globe (see reviews in McWilliams
 46 (1985); Kostianoy and Belkin (1989)). One of the most well-known types of SCVs are
 47 the Meddies formed at the exit of the Mediterranean Sea (McDowell & Rossby, 1978),
 48 which spread salty Mediterranean waters in the subtropical Atlantic ocean. SCVs also
 49 form in eastern boundary regions such as along the West African coast (Kostianoy & Ro-
 50 dionov, 1986a, 1986b). These SCVs are essential for spreading oxygen-poor and nutrient-
 51 rich waters into the interior of gyres (Frenger et al., 2018). More generally, SCVs can
 52 be generated by interaction of boundary currents with topography, as in the Beaufort
 53 Gyre in the Arctic Ocean (Manley & Hunkins, 1985; D'Asaro, 1988), in the Mediterranean
 54 Sea along Sardinia (Bosse et al., 2015), at the tail of the Grand Banks (Bower et al., 2013),
 55 and over the Mid-Atlantic Ridge (Vic et al., 2018). They also form from wintertime deep
 56 convection, as observed in the Labrador Sea (Clarke, 1984; Lilly & Rhines, 2002) and
 57 the northwestern Mediterranean Sea (Testor & Gascard, 2003; Bosse et al., 2016, 2017)
 58 where they are essential for spreading the newly formed deep waters within ocean basins.

59 The western part of the North Atlantic Subtropical gyre is a crossroad where many
 60 different types of SCVs have been observed. From multiple hydrographic sections in the
 61 Sargasso Sea, Dugan et al. (1982) found 19 water lenses between 550 and 800 m depth
 62 with thicknesses less than 200 m and diameters less than 65 km. Using an array of cur-
 63 rent meter moorings deployed for one year northeast of Cape Hatteras, Bane, O'Keefe,
 64 and Watts (1989) identified 19 SCVs with radii less than 30 km at depths from 900 m
 65 to 4000 m. Hydrographic observations during the POLYMODE Local Dynamics Exper-

66 iment in the Sargasso Sea identified 31 SCVs with quite distinct water mass properties
 67 (Lindstrom & Taft, 1986). Based on salinity and oxygen anomalies, McDowell (1986) in-
 68 ferred approximate origins for some of these SCVs: six from the eastern North Atlantic
 69 (densities $26.5 < \sigma < 26.9 \text{ kg m}^{-3}$), three from the Labrador Sea ($\sigma > 27.8 \text{ kg m}^{-3}$),
 70 and others from the Central Sargasso Sea, Antilles, or Gulf Stream. Finally, Ebbesmeyer
 71 et al. (1986) found 10 lenses containing seven distinct water masses of the North Atlantic,
 72 Mediterranean Sea, and Labrador Sea in the same region; they estimated a spatial den-
 73 sity of about 1 lens per 100 km^2 , which could amount to a total number of 1,000–10,000
 74 lenses in the North Atlantic Ocean.

75 A number of SCVs observed in the North Atlantic subtropical gyre have unknown
 76 generation mechanisms. SCVs made of Mediterranean or Labrador Sea water can be tracked
 77 to the Mediterranean outflow and the Labrador Sea water. A few others can be tracked
 78 to the West African upwelling, and a number of SCVs in the upper layer of the ocean
 79 are likely formed locally by surface processes (convective or wind-driven events). How-
 80 ever, the majority of them are formed locally in the subtropical gyre from unknown pro-
 81 cesses happening below the mixed layer.

82 SCVs are challenging to detect because of their small horizontal scale. Most ob-
 83 servations of SCVs come from hydrographic profiles, and it is difficult to get more than
 84 one profile in a given SCV as the horizontal resolution of ship-based hydrographic mea-
 85 surements or Argo float profiles are typically of the same order as the radius of an SCV.
 86 Most SCVs do not have a measurable surface expression; only larger mesoscale subsur-
 87 face eddies can be detected using altimetry (Assassi et al., 2016). Thus, it is difficult to
 88 target a specific structure during a field campaign and most observations of SCVs come
 89 about by chance. Autonomous underwater gliders have become effective tools to obtain
 90 high-spatial-resolution hydrographic data (Rudnick, 2016). They have been able to sam-
 91 ple submesoscale vortices on several occasions (Bosse et al., 2015, 2016; Krug et al., 2017;
 92 Thomsen et al., 2016). Another available tool for exploring mid-depth processes is seis-
 93 mic oceanography, which provides two-dimensional vertical snapshots extending down
 94 to the seafloor and tens to hundreds of km in length with resolution on the order of me-
 95 ters in the horizontal and vertical. Seismic images can be thought of as maps of the ver-
 96 tical derivative of temperature smoothed by convolution with the seismic source wavelet
 97 (Ruddick et al., 2009) with sensitivity down to $\sim 0.03^\circ\text{C}$ (Nandi et al., 2004). Seismic
 98 reflection data have provided images of Meddies with unprecedented resolution (Ménesguen
 99 et al., 2012).

100 Here we present new seismic and glider observations in the western subtropical gyre
 101 which capture submesoscale lenses of well-mixed fluid in the ocean interior. Structures
 102 with the same properties are reproduced by a submesoscale-resolving realistic numer-
 103 ical simulation, which is used to study their dynamics and generation mechanism.

104 2 Methods

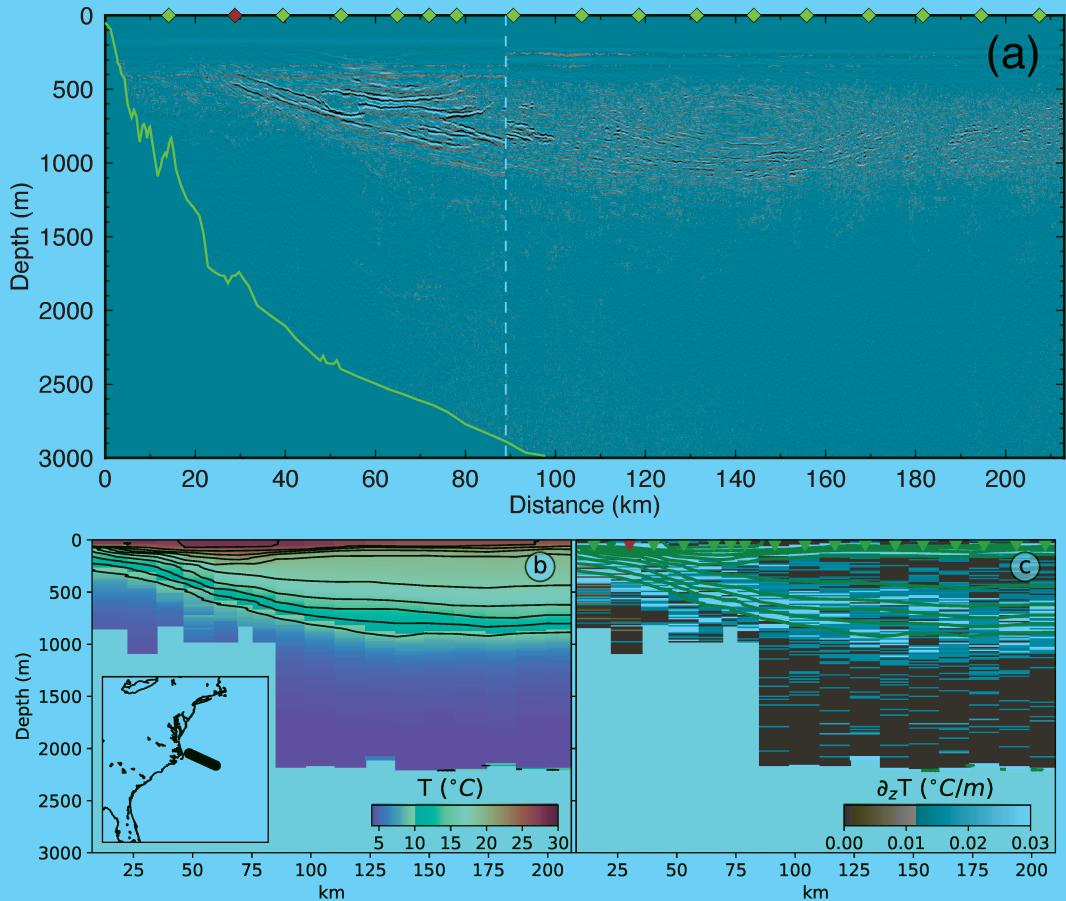
105 **Seismic observations.** Seismic data were collected as part of the Eastern North
 106 America Margin Community Seismic Experiment (ENAM CSE) in September and Oc-
 107 tober 2014. More than 2500 km of marine multichannel seismic (MCS) reflection pro-
 108 files were collected. Several MCS lines crossed the Gulf Stream front, most notably line
 109 1-1A (Fig. 1).

110 MCS data were collected using a standard 2-D source-receiver geometry (Ruddick
 111 et al., 2009). The low frequency (peak frequency of 60 Hz) acoustic source was provided
 112 by a 6600 cubic inch airgun array towed at a depth of 9 m with a shot spacing of 50 m.
 113 The reflections were recorded with a 2 ms sampling rate by the R/V *Marcus G. Langseth*'s
 114 636-channel, 8-km hydrophone streamer with a 12.5 m hydrophone group spacing result-
 115 ing in a 6.25 m horizontal sampling interval. During the acquisition of line 1-1A, 16 ex-

116 pendable bathythermographs (XBTs) and one conductivity temperature depth probe (XCTD)
 117 were deployed.

118 Standard MCS data processing routines were followed using the Echos software pack-
 119 age by Paradigm. Processing included merging with navigation information, trace edit-
 120 ing, suppression of the low frequency noise band, sorting into common midpoint (CMP)
 121 gathers, band pass filtering from 8 to 200 Hz, spherical divergence gain, velocity anal-
 122 ysis, normal moveout correction, stacking, and time migration. In addition, wavenum-
 123 ber domain poststack filtering was performed.

124 **Glider observations.** Autonomous underwater gliders have been routinely col-
 125 lecting high-resolution transects across the Gulf Stream since 2015 (Todd, 2017). Steer-
 126 ing across measured depth-average currents, the gliders provide profiles of temperature,
 127 salinity, and absolute horizontal velocity (Todd et al., 2017) to within a few meters of
 128 the seafloor or a maximum depth of 1000 m with cross-stream resolution of approximately
 129 5 km and temporal spacing of 6 hours or less. Here we focus on a subset of glider ob-
 130 servations collected over the Blake Plateau in May–June 2017 during mission 174007.


131 **Numerical Model.** Realistic simulations of the Gulf Stream region at submesoscale-
 132 resolving resolution were performed with the Regional Oceanic Modeling System (ROMS,
 133 (Shchepetkin & McWilliams, 2005)), which solves the free surface, hydrostatic, and primi-
 134 tive equations. The simulation has a horizontal resolution of 500 m and 100 topography-
 135 following vertical levels. The model domain spans 1400 km by 800 km and covers the
 136 Gulf Stream along the U.S. continental slope. Boundary conditions are supplied by a se-
 137 quence of two lower resolution simulations that span the entire Gulf Stream region and
 138 the Atlantic basin. The simulation is forced by daily winds and diurnally modulated sur-
 139 face fluxes. Vertical mixing of tracers and momentum is done with a K-Profile Param-
 140 eterization (KPP, Large, McWilliams, and Doney (1994)). The effect of bottom friction
 141 is parameterized through a logarithmic law of the wall with a roughness length $Z_0 =$
 142 0.01 m. The modeling approach is described in detail in Gula, Molemaker, and McWilliams
 143 (2015a, 2016a), where characteristics of the mean structure and variability of the Gulf
 144 Stream in the simulation have been validated against satellite and in situ observations.

145 3 Submesoscale coherent vortices near the Gulf Stream

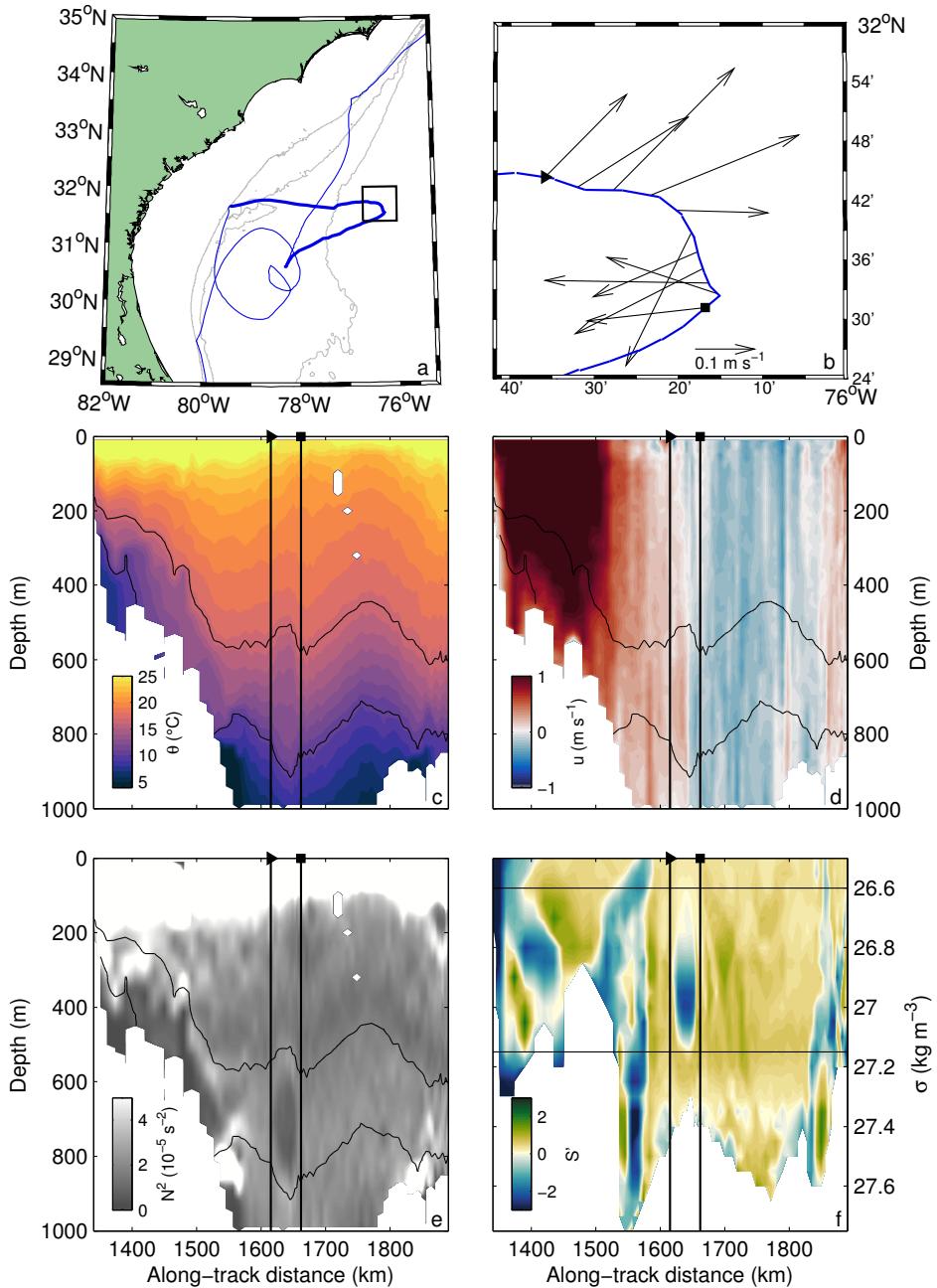
146 A seismic reflection image spanning the Gulf Stream offshore of Cape Hatteras re-
 147 veals mesoscale to submesoscale structures at depths of \sim 300–1000 m (Fig. 1a). Strik-
 148 ing features are lenses of well-mixed water visible as areas of low reflectivity (little to no
 149 coherent reflections) bordered by high-amplitude coherent reflections resulting from large
 150 sound speed gradients at the top and bottom of these features. One lens of well-mixed
 151 water, with radius around 5 km and thickness of 150 m, is visible 50 km from the coast
 152 at 600 m depth. A second lens, with radius around 10 km and thickness of 200 m, is vis-
 153 ible 140 km from the coast at 750 m depth.

161 The seismic reflections result from vertical sound speed gradients that are largely
 162 due to temperature gradients on short vertical scales (Sallarès et al., 2009). The coin-
 163 cident transects of temperature T and vertical temperature gradient $\partial T/\partial z$ derived from
 164 the XBT and XCTD profiles (Fig. 1b,c) capture vertical structure in the temperature
 165 field – including weak $\partial T/\partial z$ at the location of the lenses – but lack the horizontal res-
 166 olution necessary to capture the complexity of submesoscale structures at mid-depths
 167 as seen in the seismic image (Fig. 1a).

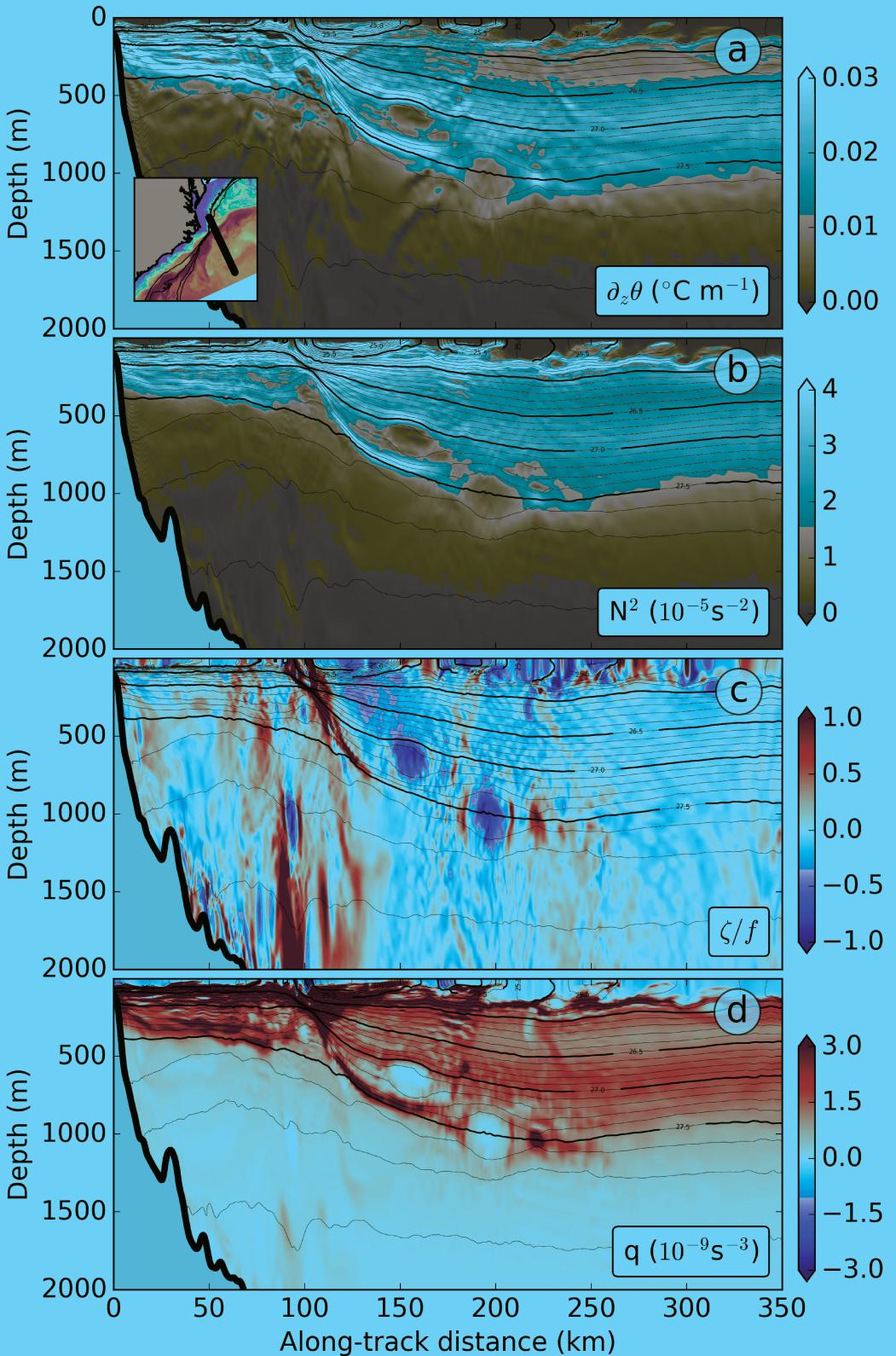
168 Glider observations near the seaward flank of the Gulf Stream between the Charleston
 169 Bump and Cape Hatteras captured a similar submesoscale structure: a lens of well mixed
 170 water centered at 700 m depth with low Brunt-Väisälä frequency N^2 and a thickness of
 171 about 300 m (Fig. 2). Horizontal velocities at the depth of the lens confirm the presence
 172 of anticyclonic rotation (Fig. 2b) with local vertical maxima in current speed between

154 **Figure 1. Submesoscale lenses in the Gulf Stream front.** (a) Seismic image across the
 155 Gulf Stream front (see insert (b) for location). Yellow (Red) diamonds show locations of XBT
 156 (XCTD) casts. Seafloor is highlighted by a green line. White dashed line denotes transition from
 157 Line 1 (eastern portion) to Line 1A (western portion), which was collected after data collection
 158 was stopped to repair one of the airgun arrays (time difference at transition between lines is ap-
 159 proximately 5 hours). (b) Temperature and (c) vertical gradient of temperature from the XBT
 160 and XCTD casts along the section.

700 and 800 m depth (Fig. 2d), confirming that the lens is an anticyclonic SCV. The SCV is located between the 26.6 and 27.15 kg m^{-3} isopycnals, which are computed using the potential density anomaly referenced to the surface. Potential density is preferred here to neutral density owing to the difficulty of estimating neutral density in a region close to ocean boundaries with such high spatial and temporal variability and to the minimum differences between the two quantities in the upper 1000 m of the ocean. In the core of the SCV, waters were anomalously cool (Fig. 2c) and fresh (Fig. 2f) along isopycnals. This fresh water anomaly indicates that the SCV contained waters within its core that were distinct from surrounding waters. Indeed, the salinity along isopycnals within the core of the SCV matched waters found along the same isopycnals near where those isopycnals intersect the continental slope (along-track distance of approximately 1500 km in Figs. 2c,f). This location is adjacent to the Charleston Bump, where strong near-bottom currents flowing over bottom topography result in formation of thick bottom mixed layers (Todd, 2017). It is likely that the observed SCV formed in the lee of the Charleston Bump and then carried well-mixed waters from the generation location in its core.


The structure of the Gulf Stream front in the simulation (Fig. 3) is remarkably similar to the observed structure (Figs. 1 and 2). A snapshot of the simulation at the location and time of the seismic section qualitatively exhibits the same submesoscale features. Several lenses of well-mixed water with properties consistent with those of observed SCVs are visible offshore of the Gulf Stream front below 500 m. They are associated with anticyclonic relative vorticity $\zeta = (\nabla \times \mathbf{u}) \cdot \mathbf{z} \approx -0.7f$, where \mathbf{u} is the horizontal velocity, f the Coriolis parameter, and \mathbf{z} the unit vertical vector. They are also associated with low potential vorticity (PV), which is defined as $q = \omega_a \cdot \nabla b$, the dot product of the absolute vorticity $\omega_a = f\mathbf{z} + \nabla \times \mathbf{u}$ and the gradient of buoyancy $b = -g \frac{\sigma}{\rho_0}$, where σ is the potential density referenced to the surface, ρ_0 the mean reference density, and g the gravitational acceleration.

SCVs with potential densities $26.5 < \sigma < 27.5 \text{ kg m}^{-3}$ are found regularly in the model (see supporting information Movie S1). Over the six months of the simulation, we count about 20 anticyclonic SCVs crossing the cross-Gulf Stream section shown in Fig. 3 with radii of 10–25 km and relative vorticity from $-0.8f$ to $-0.6f$. These SCVs are advected by the Gulf Stream and eventually detrained into the Sargasso Sea.


The model probably underestimates the number of SCVs in this region, in particular SCVs from remote origins, which may not be simulated correctly in the coarser parent simulations or may not have enough time to reach this region from their generation site.

4 Generation of submesoscale coherent vortices

Mechanisms of anticyclonic SCV formation must account for the creation of low PV anomalies; that is, they must provide a spatially or temporally intermittent source of low PV (McWilliams, 1985). The impermeability theorem states that there is no net transport of PV across isopycnal surfaces (Haynes & McIntyre, 1987). A SCV observed within a layer bounded by two given isopycnal surfaces has to be associated with non-conservative or diabatic effects within the same layer of fluid. There is no creation or destruction of PV within a layer bounded by two isopycnal surfaces away from boundaries, but PV can still be concentrated or diluted in the presence of interior nonconservative or diabatic effects. However, the values of PV found in SCVs are so extreme compared to the background PV that they most likely originate from regions where isopycnal surfaces intersect a boundary (i.e., the ocean's surface or bottom) in the presence of strong frictional or diabatic effects. At the surface, the diabatic and frictional effects can result from convective (Marshall & Schott, 1999) or wind-driven destruction of PV (Thomas, 2008). At the bottom, they can result from geothermal forcing (Baker et al., 1987), mixing (McWilliams, 1985), and bottom friction (D'Asaro, 1988).

188 **Figure 2. Glider observations of an SCV adjacent to the Gulf Stream in May–**
 189 **June 2017.** (a) Trajectory of the glider in and near the Gulf Stream from central Florida to
 190 North Carolina (blue); the bold portion is plotted in subsequent panels. The Charleston Bump
 191 is the topographic feature outlined by the 500-m isobath near 31.5°N; the 200-m and 1000-m
 192 isobaths are also drawn. (b) Zoomed view of the glider's trajectory from 25 May (triangle) to 28
 193 May (square) in the box drawn in (a) with horizontal currents vertically averaged between 500
 194 m and 900 m. Along-track transects of (c) potential temperature θ , (d) eastward velocity u , and
 195 (e) Brunt-Väisälä frequency N^2 . (f) Along-track transect of salinity anomaly S' along isopycnals
 196 normalized by the standard deviation of salinity along each isopycnal. In c–f, the SCV is brack-
 197 eted by the vertical lines and the 26.6 and 27.15 kg m^{-3} isopycnals (thin black lines); the vertical
 198 lines also bracket the dives for which velocity vectors are shown in (b) with positions denoted by
 199 the triangle and square in (b).

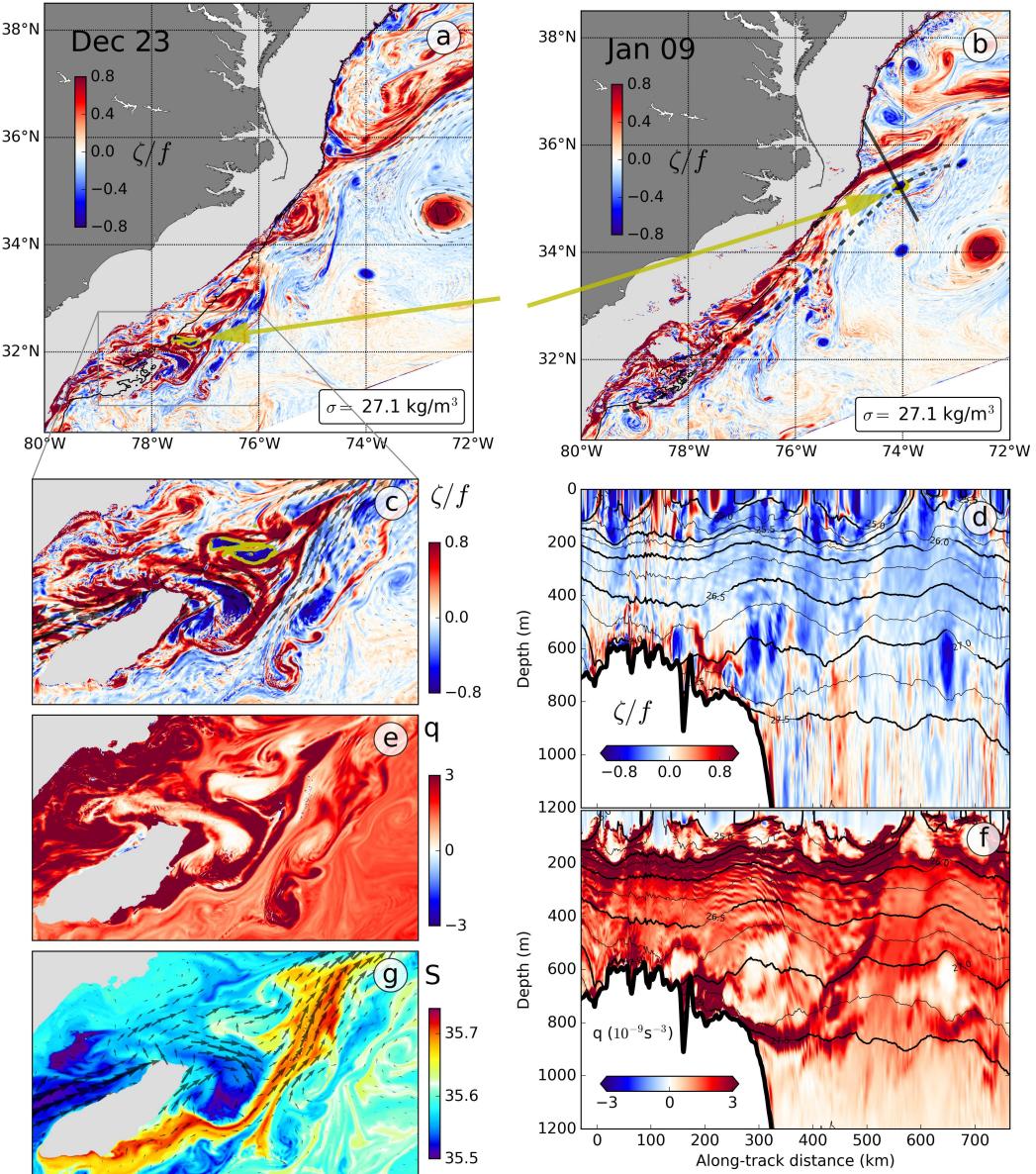
220 **Figure 3. SCVs in a high-resolution model of the Gulf Stream.** Vertical sections
 221 across the Gulf Stream front in the simulation east of Cape Hatteras (location shown in the
 222 upper panel insert) showing (a) potential temperature vertical gradient $\partial\theta/\partial z$ (in $^{\circ}\text{C}/\text{m}$), (b)
 223 Brunt-Väisälä frequency N^2 , (c) relative vorticity ζ (normalized by f), and (d) potential vorticity
 224 q (in s^{-3}). Potential density is shown in black contours on all panels.

Frictional effects at the bottom can trigger the following sequence of events: strong generation of relative vorticity in the boundary layer, separation from the slope, violent instability, strong mixing, and formation of SCVs (Molemaker et al., 2015; McWilliams, 2016). Recent high-resolution realistic simulations have shown that this mechanism might be ubiquitous (Molemaker et al., 2015; Gula et al., 2015b; Vic et al., 2015; Gula et al., 2016b). If a current is flowing in the direction of Kelvin wave propagation (with the topography on its right in the northern hemisphere), then the PV is reduced in the bottom boundary layer (Benthuyzen & Thomas, 2012), centrifugal instability can be triggered, and anticyclonic SCVs may form (D'Asaro, 1988; Molemaker et al., 2015; Gula et al., 2016b). On the other hand, if a current is flowing in the direction opposite to the Kelvin wave propagation direction, positive PV is generated, horizontal shear instability can be triggered, and cyclonic SCVs may form (Gula et al., 2015b; Krug et al., 2017).

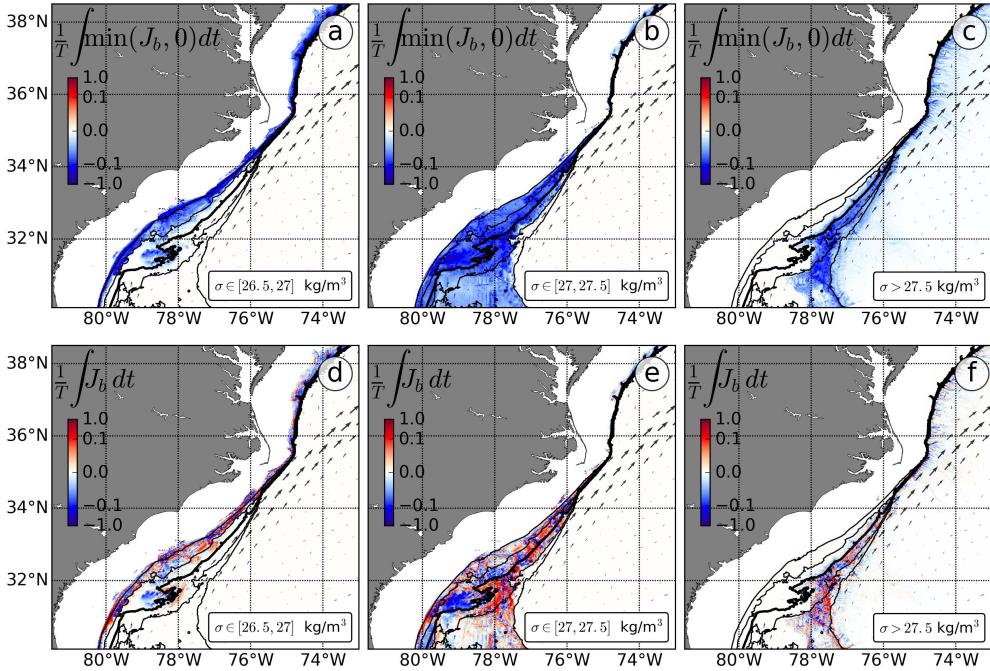
SCVs found east of the Gulf Stream front in the model (Fig. 3) are in the density range 26.9–27.6 kg m⁻³. These isopycnals do not outcrop at the surface in the model, but they intersect the bottom along the continental slope of the southeastern U.S. (e.g., Fig. 4). The Gulf Stream flows along the continental margin with the slope on its left, so it tends to generate positive vorticity. However, the Charleston Bump acts as an island in the Gulf Stream and allows isopycnals to intersect the sea floor on either side (Fig. 4a). Thus, the flow interacts with it intermittently to generate relative vorticity and PV of both signs (Fig. 4c–f). The anticyclonic SCVs visible in the wake of the Charleston Bump east of the Gulf Stream cyclonic front in Figs. 3 and 4b all originate from current-topography interactions at the location of the Bump (see supporting information Movie S1).

The water on the shoreward side of the Bump is cooler and fresher than the water offshore along a given isopycnal. As anticyclonic vorticity is generated where the Stream flows with the Bump on its right, the nascent anticyclonic SCVs entrain preferentially anomalously cool and fresh water from the shoreward side (Fig. 4g).

A conservation equation for PV (q) can be written using a flux form:


$$\frac{\partial q}{\partial t} + \nabla \cdot \underbrace{[q\mathbf{u}]}_{J_A} - \underbrace{\omega_a \frac{Db}{Dt}}_{J_D} + \underbrace{\nabla b \times \mathbf{F}}_{J_F} = 0, \quad (1)$$

where \mathbf{F} represents the nonconservative forces per unit mass (Marshall et al., 2001). The advection of PV is J_A , the diabatic flux of PV is J_D , and the frictional flux of PV is J_F . When integrated over a volume defined by two isopycnal surfaces that each intersect the seafloor but do not outcrop at the surface, the equation reduces to:


$$\frac{\partial}{\partial t} \int q dV = \int -(J_D + J_F) d\mathcal{A} = \int J_b d\mathcal{A}, \quad (2)$$

where \mathcal{A} represents the bottom area delimited by the two isopycnal surfaces and $J_b = -(J_D + J_F)$. This equation means that PV substance within an isopycnal layer can change only due to diabatic and/or frictional processes over the area \mathcal{A} .

This provides a convenient diagnostic to locate regions where injection of negative PV and creation of anticyclonic SCVs are more likely over a given density range. To highlight such regions, we conditionally average instantaneous negative PV fluxes over the duration T of the simulation ($1/T \int \min(J_b, 0) dt$, Figs. 5a–c) and compute mean PV fluxes ($1/T \int J_b dt$, Figs. 5d–f) over several density ranges. The Charleston Bump is the location where most of the negative PV is generated for potential densities between 26.5 kg m⁻³ and 27.5 kg m⁻³. In particular, mean PV fluxes are negative in the region of the Bump between the 400 m and 600 m isobaths (Figs. 5a–b). Negative PV generation is also possible all along the continental slope between 26.5 and 27 kg m⁻³ in regions shallower than 500 m. South of the Gulf Stream separation point at Cape Hatteras, negative PV generation along the slope will most likely be due to the presence of recurrent cyclonic eddies on the cyclonic side of the Gulf Stream, which induce local reversals of

267 **Figure 4. Generation of SCVs in the lee of the Charleston Bump.** (a,b) Snapshots of
 268 the relative vorticity ζ (normalized by f) on the 27.1 kg m^{-3} isopycnal: (a) shortly after the
 269 generation of several SCVs and (b) at the time of Fig. 3. Yellow contours and arrows on panels a, b,
 270 and c indicate the location of the water masses forming the core of the SCV shown in Fig. 3; 600
 271 m isobath is shown in black. The plain line in panel b shows the location of the section shown in
 272 Fig. 3. (c,e,g) zooms of panel a showing relative vorticity, PV (in s^{-3}), and salinity. (d) Relative
 273 vorticity and (f) PV in the along-stream direction (shown as a dashed gray line in panel b) at the
 274 time of panel b. Black contours showing potential density are repeated on panels d and f.

305 **Figure 5. Bottom injection of potential vorticity.** (top) Conditional integral for negative
 306 bottom PV fluxes only and (bottom) total bottom PV fluxes averaged over six months between
 307 isopycnals $26.5\text{--}27\text{ kg m}^{-3}$ (left), $27\text{--}27.5\text{ kg m}^{-3}$ (middle), and denser than 27.5 kg m^{-3} (right).
 308 Arrows show the mean velocity field on the 27 kg m^{-3} isopycnal.

295 the current but are less likely to form long-lived coherent structures due to the strong
 296 shear of the current (Gula et al., 2016a). North of the separation point, negative PV gen-
 297 eration happens more consistently as the time mean flow is equatorward. SCVs with po-
 298 tential densities less than 27.5 kg m^{-3} are routinely formed there, but they cannot eas-
 299 ily cross the North Wall of the Gulf Stream due to its strong positive PV anomaly and
 300 are often sheared apart when they reach it (Fig. 4a). SCVs with potential densities greater
 301 than 27.5 kg m^{-3} are created due to interactions between the southward deep western
 302 boundary current and the continental slope (one example is visible in Fig. 3c). These
 303 SCVs have properties similar to those generated along the Grand Banks (Bower et al.,
 304 2013) and are deep enough to cross the Gulf Stream without being destroyed.

309 5 Conclusions

310 New observations of submesoscale coherent vortices (SCVs) are reported in the west-
 311 ern North Atlantic subtropical gyre. Seismic images of the Gulf Stream front capture
 312 submesoscale lens-shaped features at depths greater than 500 m. A glider section cap-
 313 tures a similar feature adjacent to the Gulf Stream and downstream of the Charleston
 314 Bump. These features have radii of 5–20 km and thicknesses of 150–300 m, typical sig-
 315 natures of anticyclonic SCVs. Submesoscale-resolving simulations for the Gulf Stream
 316 region using ROMS reproduce SCVs with the same size and depth as those observed.
 317 The SCVs are generated primarily where the Gulf Stream meets the Charleston Bump
 318 due to frictional effects and intense mixing in the wake of the topography.

319 Riser, Owens, Rossby, and Ebbesmeyer (1986) examined a similar SCV in the Sar-
 320 gasso Sea using observations from the POLYMODE Local Dynamics Experiment; the

321 20-km-wide SCV was 300 m thick and centered at 750 m. Its core salinity of 35.42 ppt
 322 at a potential density of 27.05 kg m^{-3} was consistent with waters regularly observed near
 323 the Charleston Bump, as well as waters much farther south as suggested by Riser et al.
 324 (1986). Given the similarity to the SCVs examined here, it seems likely that the SCV
 325 studied by Riser et al. (1986) was generated near the Charleston Bump by the processes
 326 described here.

327 Observations and models provide glimpses of the ocean interior richness and sug-
 328 gest that it is populated by a large number of deep submesoscale structures, which may
 329 be essential to redistribute water properties. However, the ocean is still largely under-
 330 sampled and observational data remains limited. Thus, a global census of SCVs and their
 331 impact on global circulation is still lacking.

332 Acknowledgments

333 JG gratefully acknowledges support from the French government, managed by the French
 334 National Agency for Research (ANR), through programs ISblue (ANR-17-EURE-0015)
 335 and LabexMER (ANR-10-LABX-19) and from LEFE/IMAGO through the Project AO2017-
 336 994457-RADII. Simulations were performed using HPC resources from GENCI-TGCC
 337 (Grant 2017-A0010107638). Simulations output is available upon request. Seismic Data
 338 were processed using the Echos software package by Paradigm, Matlab, and Generic Map-
 339 ping Tools. The Eastern North America Margin Community Seismic Experiment was
 340 funded by the National Science Foundation under grant OCE-1347498 and UNOLS; cruise
 341 data is freely available via the Marine Geoscience Data System Academic Seismic Por-
 342 tal at Lamont-Doherty Earth Observatory (<http://www.marine-geo.org/portals/seismic/>).
 343 Spray glider observations in the Gulf Stream are available from <http://spraydata.ucsd.edu>
 344 and should be cited using the following DOI: 10.21238/S8SPRAY2675 (Todd & Owens,
 345 2016). Spray glider operations were funded by the National Science Foundation (OCE-
 346 1633911) and the Office of Naval Research (N000141713040).

347 References

- 348 Assassi, C., Morel, Y., Vandermeirsch, F., Chaigneau, A., Pegliasco, C., Morrow,
 349 R., ... Cambra, R. (2016). An index to distinguish surface- and subsurface-
 350 intensified vortices from surface observations. *J. Phys. Oceanogr.*, 46(8),
 351 2529-2552. doi: 10.1175/JPO-D-15-0122.1
- 352 Baker, E. T., Massoth, G. J., & Feely, R. A. (1987, 09 10). Cataclysmic hydrother-
 353 mal venting on the Juan de Fuca Ridge. *Nature*, 329, 149 EP -. Retrieved
 354 from <http://dx.doi.org/10.1038/329149a0>
- 355 Bane, J., O'Keefe, L., & Watts, D. (1989). Mesoscale eddies and submesoscale,
 356 coherent vortices: Their existence near and interactions with the Gulf Stream.
 357 In J. Nihoul & B. Jamart (Eds.), *Mesoscale/synoptic coherent structures
 358 in geophysical turbulence* (Vol. 50, p. 501 - 518). Elsevier. Retrieved from
 359 <http://www.sciencedirect.com/science/article/pii/S0422989408702046>
 360 doi: [https://doi.org/10.1016/S0422-9894\(08\)70204-6](https://doi.org/10.1016/S0422-9894(08)70204-6)
- 361 BenthuySEN, J., & Thomas, L. (2012). Friction and diapycnal mixing at a slope:
 362 Boundary control of potential vorticity. *J. Phys. Oceanogr.*, 42, 1509-1523.
- 363 Bosse, A., Testor, P., Houpert, L., Damien, P., Prieur, L., Hayes, D., ... Mortier,
 364 L. (2016). Scales and dynamics of submesoscale coherent vortices formed by
 365 deep convection in the northwestern Mediterranean Sea. *J. Geophys. Res.
 366 Oceans*, 121(10), 7716-7742. Retrieved from <http://dx.doi.org/10.1002/2016JC012144>
 367 doi: 10.1002/2016JC012144
- 368 Bosse, A., Testor, P., Mayot, N., Prieur, L., D'Ortenzio, F., Mortier, L., ... Raim-
 369 bault, P. (2017). A submesoscale coherent vortex in the Ligurian Sea: From
 370 dynamical barriers to biological implications. *J. Geophys. Res. Oceans*, 122(8),
 371 6196-6217. Retrieved from <https://agupubs.onlinelibrary.wiley.com/>

- doi/abs/10.1002/2016JC012634 doi: 10.1002/2016JC012634

Bosse, A., Testor, P., Mortier, L., Prieur, L., Taillardier, V., d'Ortenzio, F., & Coppoli, L. (2015). Spreading of Levantine Intermediate Waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders. *J. Geophys. Res. Oceans*, 120(3), 1599–1622. doi: 10.1002/2014JC010263

Bower, A., Hendry, R., Amrhein, D., & Lilly, J. (2013). Direct observations of formation and propagation of subpolar eddies into the Subtropical North Atlantic. *Deep-Sea Res.*, 85, 15–41.

Chelton, D. B., Schlax, M. G., Samelson, R. M., & de Szoeke, R. A. (2007). Global observations of large oceanic eddies. *Geophys. Res. Lett.*, 34(15). Retrieved from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007GL030812> doi: 10.1029/2007GL030812

Clarke, R. (1984). Transport through the Cape Farewell-Flemish Cap section. *Rapp. et Roc.-Verb. Cons. Int. Expl. Mer*, 185, 120–130.

D'Asaro, E. (1988). Generation of submesoscale vortices: A new mechanism. *J. Geophys. Res.*, 93(C6), 6685–6693.

Dugan, J. P., Mied, R. P., Mignerey, P. C., & Schuetz, A. F. (1982). Compact, intrathermocline eddies in the Sargasso Sea. *J. Geophys. Res. Oceans*, 87(C1), 385–393. doi: 10.1029/JC087iC01p00385

Ebbesmeyer, C., Taft, B., McWilliams, J., Shen, C., Riser, S., Rossby, H., ... Ostlund, H. (1986). Detection, structure and origin of extreme anomalies in a Western Atlantic oceanographic section. *J. Phys. Oceanogr.*, 16, 591–612.

Frenger, I., Bianchi, D., Sthrenberg, C., Oschlies, A., Dunne, J., Deutsch, C., ... Schtte, F. (2018). Biogeochemical role of subsurface coherent eddies in the ocean: Tracer cannonballs, hypoxic storms, and microbial stewpots? *Global Biogeochem. Cy.*, 32(2), 226–249. doi: 10.1002/2017GB005743

Gula, J., Molemaker, M., & McWilliams, J. C. (2015a). Gulf Stream dynamics along the Southeastern U.S. Seaboard. *J. Phys. Oceanogr.*, 45(3), 690–715.

Gula, J., Molemaker, M., & McWilliams, J. C. (2015b). Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. *Geophys. Res. Lett.*, 42, 4054–4062. doi: 10.1002/2015GL063731

Gula, J., Molemaker, M., & McWilliams, J. C. (2016a). Submesoscale dynamics of a Gulf Stream frontal eddy in the South Atlantic Bight. *J. Phys. Oceanogr.*, 46, 305325.

Gula, J., Molemaker, M., & McWilliams, J. C. (2016b). Topographic generation of submesoscale centrifugal instability and energy dissipation. *Nat. Commun.*, 7, 12811. doi: 10.1038/ncomms12811

Haynes, P. H., & McIntyre, M. E. (1987). On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. *J. Atmos. Sci.*, 44(5), 828–841. doi: 10.1175/1520-0469(1987)044<0828:OTEVOA>2.0.CO;2

Kostianoy, A., & Belkin, I. (1989). A survey of observations on intrathermocline eddies in the world ocean. In J. Nihoul & B. Jamart (Eds.), *Mesoscale/synoptic coherent structures in geophysical turbulence* (Vol. 50, p. 821 – 841). Elsevier. Retrieved from <http://www.sciencedirect.com/science/article/pii/S042298940870223X> doi: [https://doi.org/10.1016/S0422-9894\(08\)70223-X](https://doi.org/10.1016/S0422-9894(08)70223-X)

Kostianoy, A., & Rodionov, V. (1986a). Intrathermocline eddies in the ocean. In (p. 50–52). P.P. Shirshov Inst. of Oceanology, Moscow (in Russian).

Kostianoy, A., & Rodionov, V. (1986b). On the formation of intrathermocline eddies in the Canary upwelling region. *Okeanologiya (in Russian)*, 26, 892–895.

Krug, M., Swart, S., & Gula, J. (2017). Submesoscale cyclones in the Agulhas Current. *Geophys. Res. Lett.*, 44.

Large, W., McWilliams, J. C., & Doney, S. (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. *Rev. Geophys.*, 32(4), 363–397.

- 427 *phys.*, 32, 363-403.
- 428 Lilly, J. M., & Rhines, P. B. (2002). Coherent eddies in the Labrador Sea
429 observed from a mooring. *J. Phys. Oceanogr.*, 32(2), 585-598. doi:
430 10.1175/1520-0485(2002)032<0585:CEITLS>2.0.CO;2
- 431 Lindstrom, E., & Taft, B. (1986). Small water property transporting eddies: sta-
432 tistical outliers in the hydrographic data of the POLYMODE Local Dynamics
433 Experiment. *J. Phys. Oceanogr.*, 16, 613-631.
- 434 Lukas, R., & Santiago-Mandujano, F. (2001). Extreme water mass anomaly observed
435 in the Hawaii ocean time-series. *Geophys. Res. Lett.*, 28(15), 2931-2934. doi:
436 10.1029/2001GL013099
- 437 Manley, T. O., & Hunkins, K. (1985). Mesoscale eddies of the Arctic Ocean. *J. Geo-
438 phys. Res. Oceans*, 90(C3), 4911-4930. doi: 10.1029/JC090iC03p04911
- 439 Marshall, J., Jamous, D., & Nilsson, J. (2001). Entry, flux, and exit of potential vor-
440 ticity in ocean circulation. *J. Phys. Oceanogr.*, 31, 777-789.
- 441 Marshall, J., & Schott, F. (1999). Open-ocean convection: Observations, theory, and
442 models. *Rev. Geophys.*, 37, 1-64.
- 443 McDowell, S. (1986). On the origin of eddies discovered during the POLYMODE Lo-
444 cal Dynamics Experiment. *J. Phys. Oceanogr.*, 16, 632-652.
- 445 McDowell, S., & Rossby, H. (1978). Mediterranean water: An intense mesoscale
446 eddy off the bahamas. *Science*, 202, 1085-1087.
- 447 McWilliams, J. C. (1985). Submesoscale, coherent vortices in the ocean. *Rev. of
448 Geophys.*, 23, 165-182.
- 449 McWilliams, J. C. (2016). Submesoscale currents in the ocean. *Proc. R. Soc.
450 A*, 472(2189). Retrieved from [http://rspa.royalsocietypublishing.org/
451 content/472/2189/20160117](http://rspa.royalsocietypublishing.org/content/472/2189/20160117) doi: 10.1098/rspa.2016.0117
- 452 Ménesguen, C., Hua, B. L., Carton, X., Klingelhoefer, F., Schnrle, P., & Re-
453 ichert, C. (2012). Arms winding around a meddy seen in seismic reflec-
454 tion data close to the Morocco coastline. *Geophys. Res. Lett.*, 39(5). doi:
455 10.1029/2011GL050798
- 456 Molemaker, M., McWilliams, J. C., & Dewar, W. (2015). Submesoscale instability
457 and generation of mesoscale anticyclones near a separation of the California
458 Undercurrent. *J. Phys. Oceanogr.*, 45, 613-629.
- 459 Nandi, P., Holbrook, W. S., Pearse, S., Pramo, P., & Schmitt, R. W. (2004). Seis-
460 mic reflection imaging of water mass boundaries in the Norwegian Sea. *Geo-
461 phys. Res. Lett.*, 31(23). doi: 10.1029/2004GL021325
- 462 Riser, S. C., Owens, W. B., Rossby, H. T., & Ebbesmeyer, C. C. (1986). The
463 structure, dynamics, and origin of a small-scale lens of water in the West-
464 ern North Atlantic thermocline. *J. Phys. Oceanogr.*, 16(3), 572-590. doi:
465 10.1175/1520-0485(1986)016<0572:TSDAOO>2.0.CO;2
- 466 Ruddick, B., Song, H., Dong, C., & Pinheiro, L. (2009). Water column seismic im-
467 ages as maps of temperature gradient. *Oceanography*, 22. Retrieved from
468 <https://doi.org/10.5670/oceanog.2009.19>
- 469 Rudnick, D. L. (2016). Ocean research enabled by underwater gliders. *Annu. Rev.
470 Mar. Sci.*, 8(1), 519-541. doi: 10.1146/annurev-marine-122414-033913
- 471 Sallarès, V., Biescas, B., Buffet, G., Carbonell, R., Dañobeitia, J., & Pelegrí, J.
472 (2009). Relative contribution of temperature and salinity to ocean acoustic
473 reflectivity. *Geophys. Res. Lett.*, 36(24). doi: 10.1029/2009GL040187
- 474 Shchepetkin, A., & McWilliams, J. C. (2005). The Regional Oceanic Modeling Sys-
475 tem (ROMS): A split-explicit, free-surface, topography-following- coordinate
476 ocean model. *Ocean Modelling*, 9, 347-404.
- 477 Testor, P., & Gascard, J.-C. (2003). Large-scale spreading of deep waters
478 in the western Mediterranean Sea by submesoscale coherent eddies. *J.
479 Phys. Oceanogr.*, 33(1), 75-87. doi: 10.1175/1520-0485(2003)033<0075:
480 LSSODW>2.0.CO;2
- 481 Thomas, L. N. (2008). Formation of intrathermocline eddies at ocean fronts by

- 482 wind-driven destruction of potential vorticity. *Dynam. Atmos. Oceans*,
483 45(34), 252 - 273. Retrieved from <http://www.sciencedirect.com/science/article/pii/S0377026508000353> doi: <http://dx.doi.org/10.1016/j.dynatmoce.2008.02.002>
- 484 485 Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., & Lavik,
486 G. (2016). The formation of a subsurface anticyclonic eddy in the Peru-Chile
487 Undercurrent and its impact on the near-coastal salinity, oxygen, and nutri-
488 ent distributions. *J. Geophys. Res. Oceans*, 121(1), 476–501. Retrieved from
489 <http://dx.doi.org/10.1002/2015JC010878> doi: 10.1002/2015JC010878
- 490 491 Todd, R. E. (2017). High-frequency internal waves and thick bottom mixed lay-
492 ers observed by gliders in the Gulf Stream. *Geophys. Res. Lett.*, 44(12),
493 6316–6325. Retrieved from <http://dx.doi.org/10.1002/2017GL072580>
494 (2017GL072580) doi: 10.1002/2017GL072580
- 495 496 Todd, R. E., & Owens, W. B. (2016). *Gliders in the Gulf Stream*. Publicly available
497 dataset. Scripps Institution of Oceanography, Instrument Development Group.
498 doi: 10.21238/S8SPRAY2675
- 499 500 Todd, R. E., Rudnick, D. L., Sherman, J. T., Owens, W. B., & George, L. (2017).
501 Absolute velocity estimates from autonomous underwater gliders equipped
502 with Doppler current profilers. *J. Atmos. Oceanic Technol.*, 34(2), 309–333.
503 doi: 10.1175/JTECH-D-16-0156.1
- 504 505 Vic, C., Gula, J., Roullet, G., & Pradillon, F. (2018). Dispersion of deep-sea hy-
506 drothermal vent effluents and larvae by submesoscale and tidal currents. *Deep
507 Sea Res. Pt. I*, 133, 1 - 18. Retrieved from <http://www.sciencedirect.com/science/article/pii/S0967063717300717> doi: <https://doi.org/10.1016/j.dsr.2018.01.001>
- 508 509 Vic, C., Roullet, G., Carton, X., Capet, X., Molemaker, M., & Gula, J. (2015).
510 Eddy-topography interactions and the fate of the Persian Gulf Outflow. *J.
511 Geophys. Res. Oceans*, 120, 67006717.