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Key Points:

+ Submesoscale lenses of well-mixed water are observed in seismic reflection images
and glider sections across the Gulf Stream.

A realistic numerical simulation is used to characterize these lenses as anticyclonic
submesoscale coherent vortices.

e Submesoscale coherent vortices are generated where the Gulf Stream interacts with
the Charleston Bump.
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Abstract

Seismic images and glider sections of the Gulf Stream front along the U.S. eastern seaboard
capture deep, lens-shaped submesoscale features. These features have radii of 5-20 km,
thicknesses of 150-300 m, and are located at depths greater than 500 m. These are typ-
ical signatures of anticyclonic submesoscale coherent vortices. A submesoscale-resolving
realistic simulation, which reproduces submesoscale coherent vortices with the same char-
acteristics, is used to analyze their generation mechanism. Submesoscale coherent vor-

tices are primarily generated where the Gulf Stream meets the Charleston Bump, a deep
topographic feature, due to the frictional effects and intense mixing in the wake of the
topography. These submesoscale coherent vortices can transport waters from the Charleston
Bump’s thick bottom mixed layer over long distances and spread them within the sub-
tropical gyre. Their net effect on heat and salt distribution remains to be quantified.

1 Introduction

Ocean eddies contribute significantly to global fluxes of heat, salt, carbon, and bio-
geochemical tracers. Surface intensified mesoscale eddies, with radii typically correspond-
ing to the Rossby deformation radius (30-200 km), have been studied extensively using
altimetric observations (Chelton et al., 2007). However, we know much less about the
contribution of subsurface eddies, particularly submesoscale (1-30 km) subsurface ed-
dies due to the sparsity of in situ observations able to resolve submesoscales.

Subsurface submesoscale eddies are known as Submesoscale Coherent Vortices (SCVs)
(McWilliams, 1985) or Intra Thermocline Eddies (ITEs) (Dugan et al., 1982). They are
usually defined as energetic eddies with a radius smaller than the Rossby deformation
radius, a structure localized in the vertical, and an interior velocity maximum (McWilliams,
1985). SCVs are predominantly anticyclonic with isopycnals forming a convex lens shape
(McWilliams, 2016). They can be very long-lived (>1 year) and travel far from their ori-
gins. As SCVs retain much of their core water mass during their life, they can transport
waters with anomalous properties over long distances; for instance, an SCV transport-
ing water from Baja California was sampled near Hawaii (Lukas & Santiago-Mandujano,
2001). The cumulative effect of SCVs can potentially affect the large scale transport and
distribution of heat, nutrients, and other materials.

SCVs have been observed in most regions of the globe (see reviews in McWilliams
(1985); Kostianoy and Belkin (1989)). One of the most well-known types of SCVs are
the Meddies formed at the exit of the Mediterranean Sea (McDowell & Rossby, 1978),
which spread salty Mediterranean waters in the subtropical Atlantic ocean. SCVs also
form in eastern boundary regions such as along the West African coast (Kostianoy & Ro-
dionov, 1986a, 1986b). These SCVs are essential for spreading oxygen-poor and nutrient-
rich waters into the interior of gyres (Frenger et al., 2018). More generally, SCVs can
be generated by interaction of boundary currents with topography, as in the Beaufort
Gyre in the Arctic Ocean (Manley & Hunkins, 1985; D’Asaro, 1988), in the Mediterranean
Sea along Sardinia (Bosse et al., 2015), at the tail of the Grand Banks (Bower et al., 2013),
and over the Mid-Atlantic Ridge (Vic et al., 2018). They also form from wintertime deep
convection, as observed in the Labrador Sea (Clarke, 1984; Lilly & Rhines, 2002) and
the northwestern Mediterranean Sea (Testor & Gascard, 2003; Bosse et al., 2016, 2017)
where they are essential for spreading the newly formed deep waters within ocean basins.

The western part of the North Atlantic Subtropical gyre is a crossroad where many
different types of SCVs have been observed. From multiple hydrographic sections in the
Sargasso Sea, Dugan et al. (1982) found 19 water lenses between 550 and 800 m depth
with thicknesses less than 200 m and diameters less than 65 km. Using an array of cur-
rent meter moorings deployed for one year northeast of Cape Hatteras, Bane, O’Keefe,
and Watts (1989) identified 19 SCVs with radii less than 30 km at depths from 900 m
to 4000 m. Hydrographic observations during the POLYMODE Local Dynamics Exper-
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iment in the Sargasso Sea identified 31 SCVs with quite distinct water mass properties
(Lindstrom & Taft, 1986). Based on salinity and oxygen anomalies, McDowell (1986) in-
ferred approximate origins for some of these SCVs: six from the eastern North Atlantic
(densities 26.5 < o < 26.9 kg m~3), three from the Labrador Sea (o > 27.8 kg m~3),

and others from the Central Sargasso Sea, Antilles, or Gulf Stream. Finally, Ebbesmeyer
et al. (1986) found 10 lenses containing seven distinct water masses of the North Atlantic,
Mediterranean Sea, and Labrador Sea in the same region; they estimated a spatial den-
sity of about 1 lens per 100 km?, which could amount to a total number of 1,000-10,000
lenses in the North Atlantic Ocean.

A number of SCVs observed in the North Atlantic subtropical gyre have unknown
generation mechanisms. SCVs made of Mediterranean or Labrador Sea water can be tracked
to the Mediterranean outflow and the Labrador Sea water. A few others can be tracked
to the West African upwelling, and a number of SCVs in the upper layer of the ocean
are likely formed locally by surface processes (convective or wind-driven events). How-
ever, the majority of them are formed locally in the subtropical gyre from unknown pro-
cesses happening below the mixed layer.

SCVs are challenging to detect because of their small horizontal scale. Most ob-
servations of SCVs come from hydrographic profiles, and it is difficult to get more than
one profile in a given SCV as the horizontal resolution of ship-based hydrographic mea-
surements or Argo float profiles are typically of the same order as the radius of an SCV.
Most SCVs do not have a measurable surface expression; only larger mesoscale subsur-
face eddies can be detected using altimetry (Assassi et al., 2016). Thus, it is difficult to
target a specific structure during a field campaign and most observations of SCVs come
about by chance. Autonomous underwater gliders have become effective tools to obtain
high-spatial-resolution hydrographic data (Rudnick, 2016). They have been able to sam-
ple submesoscale vortices on several occasions (Bosse et al., 2015, 2016; Krug et al., 2017;
Thomsen et al., 2016). Another available tool for exploring mid-depth processes is seis-
mic oceanography, which provides two-dimensional vertical snapshots extending down
to the seafloor and tens to hundreds of km in length with resolution on the order of me-
ters in the horizontal and vertical. Seismic images can be thought of as maps of the ver-
tical derivative of temperature smoothed by convolution with the seismic source wavelet
(Ruddick et al., 2009) with sensitivity down to ~ 0.03°C' (Nandi et al., 2004). Seismic
reflection data have provided images of Meddies with unprecedented resolution (Ménesguen
et al., 2012).

Here we present new seismic and glider observations in the western subtropical gyre
which capture submesoscale lenses of well-mixed fluid in the ocean interior. Structures
with the same properties are reproduced by a submesoscale-resolving realistic numer-
ical simulation, which is used to study their dynamics and generation mechanism.

2 Methods

Seismic observations. Seismic data were collected as part of the Eastern North
America Margin Community Seismic Experiment (ENAM CSE) in September and Oc-
tober 2014. More than 2500 km of marine multichannel seismic (MCS) reflection pro-
files were collected. Several MCS lines crossed the Gulf Stream front, most notably line
1-1A (Fig. 1).

MCS data were collected using a standard 2-D source-receiver geometry (Ruddick
et al., 2009). The low frequency (peak frequency of 60 Hz) acoustic source was provided
by a 6600 cubic inch airgun array towed at a depth of 9 m with a shot spacing of 50 m.
The reflections were recorded with a 2 ms sampling rate by the R/V Marcus G. Langseth’s
636-channel, 8-km hydrophone streamer with a 12.5 m hydrophone group spacing result-
ing in a 6.25 m horizontal sampling interval. During the acquisition of line 1-1A; 16 ex-
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pendable bathythermographs (XBTs) and one conductivity temperature depth probe (XCTD)
were deployed.

Standard MCS data processing routines were followed using the Echos software pack-
age by Paradigm. Processing included merging with navigation information, trace edit-
ing, suppression of the low frequency noise band, sorting into common midpoint (CMP)
gathers, band pass filtering from 8 to 200 Hz, spherical divergence gain, velocity anal-
ysis, normal moveout correction, stacking, and time migration. In addition, wavenum-
ber domain poststack filtering was performed.

Glider observations. Autonomous underwater gliders have been routinely col-
lecting high-resolution transects across the Gulf Stream since 2015 (Todd, 2017). Steer-
ing across measured depth-average currents, the gliders provide profiles of temperature,
salinity, and absolute horizontal velocity (Todd et al., 2017) to within a few meters of
the seafloor or a maximum depth of 1000 m with cross-stream resolution of approximately
5 km and temporal spacing of 6 hours or less. Here we focus on a subset of glider ob-
servations collected over the Blake Plateau in May—June 2017 during mission 174007.

Numerical Model. Realistic simulations of the Gulf Stream region at submesoscale-
resolving resolution were performed with the Regional Oceanic Modeling System (ROMS,
(Shchepetkin & McWilliams, 2005)), which solves the free surface, hydrostatic, and prim-
itive equations. The simulation has a horizontal resolution of 500 m and 100 topography-
following vertical levels. The model domain spans 1400 km by 800 km and covers the
Gulf Stream along the U.S. continental slope. Boundary conditions are supplied by a se-
quence of two lower resolution simulations that span the entire Gulf Stream region and
the Atlantic basin. The simulation is forced by daily winds and diurnally modulated sur-
face fluxes. Vertical mixing of tracers and momentum is done with a K-Profile Param-
eterization (KPP, Large, McWilliams, and Doney (1994)). The effect of bottom friction
is parameterized through a logarithmic law of the wall with a roughness length Z, =
0.01 m. The modeling approach is described in detail in Gula, Molemaker, and McWilliams
(2015a, 2016a), where characteristics of the mean structure and variability of the Gulf
Stream in the simulation have been validated against satellite and in situ observations.

3 Submesoscale coherent vortices near the Gulf Stream

A seismic reflection image spanning the Gulf Stream offshore of Cape Hatteras re-
veals mesoscale to submesoscale structures at depths of ~300-1000 m (Fig. la). Strik-
ing features are lenses of well-mixed water visible as areas of low reflectivity (little to no
coherent reflections) bordered by high-amplitude coherent reflections resulting from large
sound speed gradients at the top and bottom of these features. One lens of well-mixed
water, with radius around 5 km and thickness of 150 m, is visible 50 km from the coast
at 600 m depth. A second lens, with radius around 10 km and thickness of 200 m, is vis-
ible 140 km from the coast at 750 m depth.

The seismic reflections result from vertical sound speed gradients that are largely
due to temperature gradients on short vertical scales (Sallares et al., 2009). The coin-
cident transects of temperature T and vertical temperature gradient 9T /9z derived from
the XBT and XCTD profiles (Fig. 1b,c) capture vertical structure in the temperature
field — including weak 0T/0z at the location of the lenses — but lack the horizontal res-
olution necessary to capture the complexity of submesoscale structures at mid-depths
as seen in the seismic image (Fig. 1la).

Glider observations near the seaward flank of the Gulf Stream between the Charleston
Bump and Cape Hatteras captured a similar submesoscale structure: a lens of well mixed
water centered at 700 m depth with low Brunt-Viisild frequency N? and a thickness of
about 300 m (Fig. 2). Horizontal velocities at the depth of the lens confirm the presence
of anticyclonic rotation (Fig. 2b) with local vertical maxima in current speed between
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Figure 1. Submesoscale lenses in the Gulf Stream front. (a) Seismic image across the
Gulf Stream front (see insert (b) for location). Yellow (Red) diamonds show locations of XBT
(XCTD) casts. Seafloor is highlighted by a green line. White dashed line denotes transition from
Line 1 (eastern portion) to Line 1A (western portion), which was collected after data collection
was stopped to repair one of the airgun arrays (time difference at transition between lines is ap-
proximately 5 hours). (b) Temperature and (c¢) vertical gradient of temperature from the XBT
and XCTD casts along the section.



173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

700 and 800 m depth (Fig. 2d), confirming that the lens is an anticyclonic SCV. The SCV
is located between the 26.6 and 27.15 kg m~3 isopycnals, which are computed using the
potential density anomaly referenced to the surface. Potential density is preferred here
to neutral density owing to the difficulty of estimating neutral density in a region close
to ocean boundaries with such high spatial and temporal variability and to the minimum
differences between the two quantities in the upper 1000 m of the ocean. In the core of
the SCV, waters were anomalously cool (Fig. 2¢) and fresh (Fig. 2f) along isopycnals.
This fresh water anomaly indicates that the SCV contained waters within its core that
were distinct from surrounding waters. Indeed, the salinity along isopycnals within the
core of the SCV matched waters found along the same isopycnals near where those isopy-
cnals intersect the continental slope (along-track distance of approximately 1500 km in
Figs. 2c¢,f). This location is adjacent to the Charleston Bump, where strong near-bottom
currents flowing over bottom topography result in formation of thick bottom mixed lay-
ers (Todd, 2017). It is likely that the observed SCV formed in the lee of the Charleston
Bump and then carried well-mixed waters from the generation location in its core.

The structure of the Gulf Stream front in the simulation (Fig. 3) is remarkably sim-
ilar to the observed structure (Figs. 1 and 2). A snapshot of the simulation at the lo-
cation and time of the seismic section qualitatively exhibits the same submesoscale fea-
tures. Several lenses of well-mixed water with properties consistent with those of observed
SCVs are visible offshore of the Gulf Stream front below 500 m. They are associated with
anticyclonic relative vorticity ¢ = (Vxu)-z ~ —0.7f, where u is the horizontal veloc-
ity, f the Coriolis parameter, and z the unit vertical vector. They are also associated with
low potential vorticity (PV), which is defined as ¢ = wa - Vb, the dot product of the
absolute vorticity wa = fz + V x u and the gradient of buoyancy b = — ggio, where o
is the potential density referenced to the surface, py the mean reference density, and g
the gravitational acceleration.

SCVs with potential densities 26.5 < o < 27.5 kg m~3 are found regularly in
the model (see supporting information Movie S1). Over the six months of the simula-
tion, we count about 20 anticyclonic SCVs crossing the cross-Gulf Stream section shown
in Fig. 3 with radii of 10-25 km and relative vorticity from -0.8f to -0.6f. These SCVs
are advected by the Gulf Stream and eventually detrained into the Sargasso Sea.

The model probably underestimates the number of SCVs in this region, in partic-
ular SCVs from remote origins, which may not be simulated correctly in the coarser par-
ent simulations or may not have enough time to reach this region from their generation
site.

4 Generation of submesoscale coherent vortices

Mechanisms of anticyclonic SCV formation must account for the creation of low
PV anomalies; that is, they must provide a spatially or temporally intermittent source
of low PV (McWilliams, 1985). The impermeability theorem states that there is no net
transport of PV across isopycnal surfaces (Haynes & Mclntyre, 1987). A SCV observed
within a layer bounded by two given isopycnal surfaces has to be associated with non-
conservative or diabatic effects within the same layer of fluid. There is no creation or de-
struction of PV within a layer bounded by two isopycnal surfaces away from boundaries,
but PV can still be concentrated or diluted in the presence of interior nonconservative
or diabatic effets. However, the values of PV found in SCVs are so extreme compared
to the background PV that they most likely originate from regions where isopycnal sur-
faces intersect a boundary (i.e., the ocean’s surface or bottom) in the presence of strong
frictional or diabatic effects. At the surface, the diabatic and frictional effects can result
from convective (Marshall & Schott, 1999) or wind-driven destruction of PV (Thomas,
2008). At the bottom, they can result from geothermal forcing (Baker et al., 1987), mix-
ing (McWilliams, 1985), and bottom friction (D’Asaro, 1988).
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Figure 2. Glider observations of an SCV adjacent to the Gulf Stream in May—
June 2017. (a) Trajectory of the glider in and near the Gulf Stream from central Florida to
North Carolina (blue); the bold portion is plotted in subsequent panels. The Charleston Bump
is the topographic feature outlined by the 500-m isobath near 31.5°N; the 200-m and 1000-m
isobaths are also drawn. (b) Zoomed view of the glider’s trajectory from 25 May (triangle) to 28
May (square) in the box drawn in (a) with horizontal currents vertically averaged between 500
m and 900 m. Along-track transects of (c) potential temperature 6, (d) eastward velocity u, and
(e) Brunt-Viisali frequency N2. (f) Along-track transect of salinity anomaly S’ along isopycnals
normalized by the standard deviation of salinity along each isopycnal. In c—f, the SCV is brack-
eted by the vertical lines and the 26.6 and 27.15 kg m™? isopycnals (thin black lines); the vertical
lines also bracket the dives for which velocity vectors are shown in (b) with positions denoted by

the triangle and square in (b).
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Frictional effects at the bottom can trigger the following sequence of events: strong
generation of relative vorticity in the boundary layer, separation from the slope, violent
instability, strong mixing, and formation of SCVs (Molemaker et al., 2015; McWilliams,
2016). Recent high-resolution realistic simulations have shown that this mechanism might
be ubiquitous (Molemaker et al., 2015; Gula et al., 2015b; Vic et al., 2015; Gula et al.,
2016b). If a current is flowing in the direction of Kelvin wave propagation (with the to-
pography on its right in the northern hemisphere), then the PV is reduced in the bot-
tom boundary layer (Benthuysen & Thomas, 2012), centrifugal instability can be trig-
gered, and anticyclonic SCVs may form (D’Asaro, 1988; Molemaker et al., 2015; Gula
et al., 2016b). On the other hand, if a current is flowing in the direction opposite to the
Kelvin wave propagation direction, positive PV is generated, horizontal shear instabil-
ity can be triggered, and cyclonic SCVs may form (Gula et al., 2015b; Krug et al., 2017).

SCVs found east of the Gulf Stream front in the model (Fig. 3) are in the density
range 26.9-27.6 kg m 3. These isopycnals do not outcrop at the surface in the model,
but they intersect the bottom along the continental slope of the southeastern U.S. (e.g.,
Fig. 4). The Gulf Stream flows along the continental margin with the slope on its left,
so it tends to generate positive vorticity. However, the Charleston Bump acts as an is-
land in the Gulf Stream and allows isopycnals to intersect the sea floor on either side (Fig. 4a).
Thus, the flow interacts with it intermittently to generate relative vorticity and PV of
both signs (Fig. 4c—f). The anticyclonic SCVs visible in the wake of the Charleston Bump
east of the Gulf Stream cyclonic front in Figs. 3 and 4b all originate from current-topography
interactions at the location of the Bump (see supporting information Movie S1).

The water on the shoreward side of the Bump is cooler and fresher than the wa-
ter offshore along a given isopycnal. As anticyclonic vorticity is generated where the Stream
flows with the Bump on its right, the nascent anticyclonic SCVs entrain preferentially
anomalously cool and fresh water from the shoreward side (Fig. 4g).

A conservation equation for PV (gq) can be written using a flux form:

dq Db
XL V. [qu —wa"r +Vbx F|] =0, 1
8t+v [qu —w Dt+v X 0 (1)
JA J' JF
D

where F represents the nonconservative forces per unit mass (Marshall et al., 2001). The
advection of PV is Ja, the diabatic flux of PV is Jp, and the frictional flux of PV is Jg.

When integrated over a volume defined by two isopycnal surfaces that each intersect the
seafloor but do not outcrop at the surface, the equation reduces to:

0

a dV = /—(JD + JF)dA = /deA, (2)
where A represents the bottom area delimited by the two isopycnal surfaces and J, =
—(Jp+Jr). This equation means that PV substance within an isopycnal layer can change
only due to diabatic and/or frictional processes over the area A.

This provides a convenient diagnostic to locate regions where injection of negative
PV and creation of anticyclonic SCVs are more likely over a given density range. To high-
light such regions, we conditionally average instantaneous negative PV fluxes over the
duration T of the simulation (1/7 [ min(.J,,0)dt, Figs. 5a—) and compute mean PV fluxes
(1/T [ Jy dt, Figs. 5d—f) over several density ranges. The Charleston Bump is the loca-
tion where most of the negative PV is generated for potential densities between 26.5 kg
m~3 and 27.5 kg m~3. In particular, mean PV fluxes are negative in the region of the
Bump between the 400 m and 600 m isobaths (Figs. ba—b). Negative PV generation is
also possible all along the continental slope between 26.5 and 27 kg m~2 in regions shal-
lower than 500 m. South of the Gulf Stream separation point at Cape Hatteras, nega-
tive PV generation along the slope will most likely be due to the presence of recurrent
cyclonic eddies on the cyclonic side of the Gulf Stream, which induce local reversals of
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the current but are less likely to form long-lived coherent structures due to the strong
shear of the current (Gula et al., 2016a). North of the separation point, negative PV gen-
eration happens more consistently as the time mean flow is equatorward. SCVs with po-
tential densities less than 27.5 kg m™2 are routinely formed there, but they cannot eas-

ily cross the North Wall of the Gulf Stream due to its strong positive PV anomaly and

are often sheared apart when they reach it (Fig. 4a). SCVs with potential densities greater
than 27.5 kg m~2 are created due to interactions between the southward deep western
boundary current and the continental slope (one example is visible in Fig. 3c). These
SCVs have properties similar to those generated along the Grand Banks (Bower et al.,
2013) and are deep enough to cross the Gulf Stream without being destroyed.

5 Conclusions

New observations of submesoscale coherent vortices (SCVs) are reported in the west-
ern North Atlantic subtropical gyre. Seismic images of the Gulf Stream front capture
submesoscale lens-shaped features at depths greater than 500 m. A glider section cap-
tures a similar feature adjacent to the Gulf Stream and downstream of the Charleston
Bump. These features have radii of 5-20 km and thicknesses of 150-300 m, typical sig-
natures of anticyclonic SCVs. Submesoscale-resolving simulations for the Gulf Stream
region using ROMS reproduce SCVs with the same size and depth as those observed.

The SCVs are generated primarily where the Gulf Stream meets the Charleston Bump
due to frictional effects and intense mixing in the wake of the topography.

Riser, Owens, Rossby, and Ebbesmeyer (1986) examined a similar SCV in the Sar-
gasso Sea using observations from the POLYMODE Local Dynamics Experiment; the
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20-km-wide SCV was 300 m thick and centered at 750 m. Its core salinity of 35.42 ppt

at a potential density of 27.05 kg m™3 was consistent with waters regularly observed near
the Charleston Bump, as well as waters much farther south as suggested by Riser et al.
(1986). Given the similarity to the SCVs examined here, it seems likely that the SCV
studied by Riser et al. (1986) was generated near the Charleston Bump by the processes
described here.

Observations and models provide glimpses of the ocean interior richness and sug-
gest that it is populated by a large number of deep submesoscale structures, which may
be essential to redistribute water properties. However, the ocean is still largely under-
sampled and observational data remains limited. Thus, a global census of SCVs and their
impact on global circulation is still lacking.
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