
REQ-YOLO: A Resource-Aware, Efficient Quantization
Framework for Object Detection on FPGAs

Caiwen Ding2,+, Shuo Wang1,+, Ning Liu2, Kaidi Xu2, Yanzhi Wang2 and Yun Liang1,3,∗
+These authors contributed equally.

1Center for Energy-Efficient Computing & Applications (CECA), School of EECS, Peking University, China
2Department of Electrical & Computer Engineering, Northeastern University, Boston, MA, USA

3Peng Cheng Laboratory, Shenzhen, China
1{shvowang, ericlyun}@pku.edu.cn, 2{ding.ca, liu.ning, xu.kaid}@husky.neu.edu, 2yanz.wang@northeastern.edu

ABSTRACT

Deep neural networks (DNNs), as the basis of object detection, will
play a key role in the development of future autonomous systems
with full autonomy. The autonomous systems have special require-
ments of real-time, energy-efficient implementations of DNNs on a
power-constrained system. Two research thrusts are dedicated to
performance and energy efficiency enhancement of the inference
phase of DNNs. The first one ismodel compression techniqueswhile
the second is efficient hardware implementation. Recent works on
extremely-low-bit CNNs such as the binary neural network (BNN)
and XNOR-Net replace the traditional floating point operations
with binary bit operations which significantly reduces the memory
bandwidth and storage requirement. However, it suffers from non-
negligible accuracy loss and underutilized digital signal processing
(DSP) blocks of FPGAs.

To overcome these limitations, this paper proposes REQ-YOLO,
a resource aware, systematic weight quantization framework for
object detection, considering both algorithm and hardware re-
source aspects in object detection. We adopt the block-circulant
matrix method and propose a heterogeneous weight quantiza-
tion using Alternative Direction Method of Multipliers (ADMM),
an effective optimization technique for general, non-convex opti-
mization problems. To achieve real-time, highly-efficient imple-
mentations on FPGA, we present the detailed hardware imple-
mentation of block circulant matrices on CONV layers and de-
velop an efficient processing element (PE) structure supporting the
heterogeneous weight quantization, CONV dataflow and pipelin-
ing techniques, design optimization, and a template-based auto-
matic synthesis framework to optimally exploit hardware resource.
Experimental results show that our proposed REQ-YOLO frame-
work can significantly compress the YOLO model while introduc-
ing very small accuracy degradation. The related codes are here:
https://github.com/Anonymous788/heterogeneous_ADMM_YOLO.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’19, February 24ś26, 2019, Seaside, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6137-8/19/02...$15.00
https://doi.org/10.1145/3289602.3293904

KEYWORDS

FPGA; YOLO; object detection; compression; ADMM

ACM Reference Format:

Caiwen Ding, Shuo Wang, Ning Liu, Kaidi Xu, Yanzhi Wang and Yun Liang.

2019. REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for

Object Detection on FPGAs. In The 2019 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (FPGA ’19), Feb. 24ś26, 2019, Seaside, CA,

USA. ACM, NY, NY. 10 pages. DOI: https://doi.org/10.1145/3289602.3293904

1 INTRODUCTION

Autonomous systems such as unmanned aerial vehicles (UAVs),
autonomous underwater vehicles (AUVs), and unmanned ground
vehicles (UGVs) have been rapidly growing for performing surveil-
lance, object detection [2], and object delivery [21] tasks in scien-
tific, military, agricultural, and commercial applications. The full
autonomy of such systems relies on the integration of artificial
intelligence software with hardware.

The deployment of deep neural networks (DNNs) in autonomous
systems include multiple aspects, i.e., object detection/surveillance
algorithms, and advanced control (e.g., deep reinforcement learn-
ing technique). Since DNN-based advanced control is not widely
in place yet, we focus on the former aspect. Object detection al-
gorithms are different from image classification [26] in that the
former need to simultaneously detect and track multiple objects
with different sizes. Representative object detection algorithms
include R-CNN [14] and YOLO [38]. The autonomous system ap-
plications have special requirements of real-time, energy-efficient
implementations on a power-constrained system.

Two research thrusts are dedicated to performance and energy
efficiency enhancement of the inference phase of DNNs. The first
one is model compression techniques for DNNs [16, 29, 52, 9],
including weight pruning, weight quantization, low-rank approx-
imation, etc. S. Han et al. [16] have proposed an iterative DNN
weight pruning method, which could achieve 9× weight reduc-
tion on the AlexNet model and has been applied to LSTM RNN as
well [18]. However, this method results in irregularity in weight
storage, and thereby degrades the parallelism degree and hard-
ware performance, as observed in [46, 10, 51]. Recent work [10,
46] adopts block-circulant matrices for weight representation in
DNNs in both image classification DNN [10] and LSTM RNN [46]
tasks. This method is demonstrated to achieve higher hardware
performance than iterative pruning due to the regularity in weight
storage and computation. The second one is efficient hardware im-
plementations, including FPGAs and ASICs [50, 7, 54, 36, 1, 31, 32,
49, 53]. FPGAs are gaining more popularity for striking a balance

Session 1: Machine Learning 1 FPGA ’19, February 24–26, 2019, Seaside, CA, USA

33

between high hardware performance and fast development round.
A customized hardware solution on FPGA can offer significant im-
provements in energy efficiency and power consumption compared
to CPU and GPU clusters.

Convolutional (CONV) layers are more computation-intensive
than fully-connected (FC) layers. Recently CONV layers are becom-
ing more important in state-of-the-art DNNs [39, 26]. Extremely-
low-bit CNNs such as the binary neural network (BNN) [9] and
XNOR-Net[37] have demonstrated hardware friendly ability on
FPGAs [45]. Binarization not only reduces memory bandwidth and
storage requirement but also replaces the traditional floating point
operations with binary bit operations, which can be efficiently im-
plemented on the look-up-tables (LUT)-based FPGA chip, whereas
suffering non-negligible accuracy degradation on large datasets
due to the over-quantized weight representation. More importantly,
the majority of DSP resource will be wasted due to the replacement
of multipliers, introducing significant overhead on LUTs. Overall,
there lacks a systematic weight quantization framework consider-
ing hardware resource aspect on FPGAs. In addition, despite the
research efforts devoted to the hardware implementation of image
classification tasks [26, 27, 19], there lacks enough investigation on
the hardware acceleration of object detection tasks.

In this paper, we propose REQ-YOLO, a resource-aware, efficient
weight quantization framework for object detection by exploring
both software and hardware-level optimization opportunities on
FPGAs. We adopt the block-circulant matrix based compression
technique and propose a heterogeneous weight quantization using
ADMM on the FFT results considering hardware resource. It is
necessary to note that the proposed framework is also applicable to
other model compression techniques. To enable real-time, highly-
efficient implementations on FPGA, we present the detailed hard-
ware implementation of block circulant matrices on CONV layers
and develop an efficient processing element (PE) structure support-
ing the heterogeneous weight quantization method, dataflow based
pipelining, design optimization, and a template-based automatic
synthesis framework.

Our specific contributions are as follows:

• We present a detailed hardware implementation and opti-
mization of block circulant matrices on CONV layers on
object detection tasks.
• We present a heterogeneous weight quantization method in-
cluding both equal-distance and mixed powers-of-two meth-
ods considering hardware resource on FPGAs. We adopt
ADMM to directly quantize the FFT results of weight.
• We employ an HLS design methodology for productive de-
velopment and optimal hardware resource exploration of
our FPGA-based YOLO accelerator.

Experimental results show that our proposed REQ-YOLO frame-
work can significantly compress the YOLOmodel while introducing
very small accuracy degradation. Our framework is very suitable
for FPGA and the associated YOLO implementations outperform
the state-of-the-art designs on FPGAs.

2 PRELIMINARIES ON OBJECT DETECTION

Deep neural networks (DNNs) have dominated the state-of-the-art
techniques of object detection. There are typically two main types
of object detection methods: (i) region proposal based method and
(ii) proposal-free method. For the region proposal based methods,

S × S grid on input

CNN

Conv+Pooling

Bounding boxes & confidence score Detection output

boattrain

Figure 1: Example of object dection using YOLO.

R-CNN first generates potential object regions and then performs
classification on the proposed regions [12]. SPPnet [20], Fast R-
CNN [13], and Faster R-CNN [41] are typical in this category. As for
the proposal-free methods, MS-CNN [5] proposes a unified multi-
scale CNN for fast object detection. YOLO [38] simultaneously
predicts multiple bounding boxes and classification class probabili-
ties. Compared to the region proposal-based methods, YOLO does
not require a second classification operation for each region and
therefore it achieves significant faster speed. However, YOLO suf-
fers from several drawbacks: (i) YOLO makes a significant number
of localization errors compared to Fast R-CNN; (ii) Compared to re-
gion proposal-based methods, YOLO has a relatively low recall. To
improve the localization and recall while maintaining classification
accuracy, YOLO v2 [39] has been proposed. In this paper, we focus
on an embedded version of YOLO - tiny YOLO [44] for hardware
implementation. Compared to other versions such as YOLO v2 [39],
v3 [40], and YOLO [38], it has a smaller network structure and
fewer weight parameters, but with tolerable accuracy degradation.

2.1 You Only Look Once (YOLO) Network

Fig. 1 shows an overview of object detection and tiny YOLO appli-
cation. It uses CONV layers to extract features from images, anchor
boxes to predict bounding boxes, and regression for object detec-
tion, based on the yolov2 tiny [44] framework. The input image
(frame) is separated into an S × S grid. Each grid cell detects an
object and predicts B bounding boxes and the corresponding con-
fidence scores when the grid cell and the center of object overlap
each other. Typically S = 13 and B = 5. For each bounding box,
there are 5 predictions made: x , y, w, h, and a confidence score.
(x , y) is the coordinates of the box center located in the grid cell,
and w and h are the width and height of the bounding box. The

confidence score is defined as Pr (Obj) × IOU truth
pred

, where Pr (Obj)

is the prediction probability and IOU truth
pred

is the intersection over

union (IOU). Here, IOU is determined by dividing the area of over-
lap between the predicted bounding box and its corresponding
ground-truth bounding box by the area of union.

There are C conditional class probabilities on the grid cell con-
taining the object, Pr (Classi |Obj), predicted by each grid cell. The
class-specific confidence scores for each box are calculated as follows:

Pr (Classi |Obj) · Pr (Obj) · IOU
truth
pred

= Pr (Classi) · IOU
truth
pred

(1)

The scores represent how accurate the box is pertinent to the
object and the probability of the object class. These predictions are
encoded as an S×S× (B ·5+C)) tensor. Fig. 2 shows the architecture
of tiny YOLO. It has 9 CONV layers. The input images are re-sized
to 416 by 416 from the PASCAL 2007 detection dataset [12]. From

the 1st to the 8th layer, a 3 × 3 CONV operation (stride 1 and zero
padding with 1) is followed by a max pooling operation with 2 × 2

Session 1: Machine Learning 1 FPGA ’19, February 24–26, 2019, Seaside, CA, USA

34

have combinatorial constraints and can be solved using traditional
optimization method, e.g., stochastic gradient descent for DNN
training. The second subproblem is: minx д(x) + q2 (x), where д(x)
corresponds to the original combinatorial constraints and q2 (x)

is another quadratic term. For special types of combinatorial con-
straints, including block circulant matrices, quantization, etc., the
second subproblem can be optimally and analytically solved, as we
will see in the following discussions.

In the tiny YOLO network, the weights in the lth layer is denoted

by Wl . The loss function is represented by f
(

{Wl }
N
l=1

)

. Assume a

weight sub-matrix (Wl)i j ∈ R
Lb×Lb is mapped to a block circulant

matrix. Directly training the network in the structured format will
incur a large number of equality constraints (to maintain the struc-
ture). This makes the training problem inefficient to solve using
the conventional stochastic gradient descent. On the other hand,
ADMM can be utilized to efficiently solve this problem, and a large
number of equality constraints can be avoided.

We introduce auxiliary variables Zl and Ul , which have the
same dimensionality asWl . Through the application of ADMM1,
the original structured training problem can be decomposed into
two subproblems, which are iteratively solved until convergence.
In each iteration k , the first subproblem is

minimize
{Wl }

f
(

{Wl }
N
l=1

)

+

N
∑

l=1

ρl
2
∥Wl − Z

k
l
+ U

k
l
∥2F , (5)

where Uk
l
is the dual variable updated in each iteration, Uk

l
:=

U
k−1
l
+W

k
l
− Zk

l
. In the objective function of (5), the first term is

the differentiable loss function, and the second quadratic term is
differentiable and convex. Thus, this subproblem can be solved by
stochastic gradient descent and the complexity is the same as train-
ing the original DNN. A large number of constraints are avoided

here. The result of the first subproblem is denoted by W
k+1
l

.

The second subproblem, on the other hand, is to quantizeWk+1
l
+

U
k
l
in the frequency domain, and the result of the second subprob-

lem is denoted by Zk+1
l

. For a matrix (Wk+1
l
+U

k
l
)i j for frequency-

domain quantization, we first perform FFT on the index vector. Then
we perform quantization on the FFT results. For the equal-distance
quantization, we constrain them on a set of quantization levels

α × {−(M2 − 1), ...,−1, 0, 1, 2, ...,
M
2 − 1} associated with a layerwise

coefficient α , whereM is the predefined number of quantization lev-
els; for the mixed powers-of-two quantization, we constraint them

to α × {0,±20,±21,±22, ...,±2M1 }
⋃

{0,±20,±21,±22, ...,±2M2 },
where M1 and M2 is the total number of bits in the primary and
secondary part, respectively.

This step is simply mapping each FFT value to the nearest quanti-
zation level. The quantization levels are determined by the (i) range
of FFT results of index vector, and (ii) the predefined number S
of quantization levels. The coefficient α may be different for dif-
ferent layers, which will not increase hardware implementation
complexity because α will be stored along with the FFT results
after quantization. Finally, as the key step, we perform IFFT on the
quantized FFT results, and the restored vector becomes the index

vector of (Zk+1
l

)i j . We then retrieve block-circulant matrix Z
k+1
l

from the index vector after IFFT.

1The details of the ADMM algorithm are discussed in [4]. We omit the details because
of space limitation.

We have proved that the above frequency-domain quantization
procedure is the optimal, analytical solution of the second sub-
problem. Because of the symmetric property of quantization above

and below 0, the restored index vector of (Zk+1
l

)i j will still be a

real-valued vector. Besides, the frequency-domain quantization pro-
cedure is applied after the block circulant matrix training of DNNs,
and the circulant structure will be maintained in quantization. This

is because we restore a single index vector for (Zk+1
l

)i j and thus

(Zk+1
l

)i j will maintain the imposed circulant structure. After the

convergence of ADMM, the solution Wl meets the two require-
ments: (i) the block-circulant structure, and (ii) the FFT results are
quantized.

5 HARDWARE IMPLEMENTATION

In this section, we implement the YOLO-based object detection on
FPGAs. In order to achieve both low-power and high-performance,
the proposed REQ-YOLO framework ensures that the limited FPGA
on-chip BRAM has enough capacity to load the weight parame-
ters from the host memory due to the following reasons: (i) the
regularity of the block circulant matrices introduces no additional
storage such as weight indices after compression in ESE [18]; (ii)
we use the heterogeneous weight quantization using ADMM con-
sidering hardware resource, further reducing the weight storage
and exploiting the hardware resource while satisfying the accu-
racy requirement. The extra communication overhead caused by
accessing FPGA off-chip DDR for common designs [18, 34] can be
eliminated.

5.1 FPGA Resource-Aware Design Flow

The resource usage model including Look-up tables (LUTs), DSP
blocks, and BRAM of an FPGA implementation can be estimated
using analytical models. According to our design, there are two
types of PEs: DSP-based PE for equal distance quantization and shift-
based PE for mixed powers-of-two quantization. In the convolution
operation, suppose the DSP resource for DSP-based and shift-based
PE are ∆DSPD and ∆DSPS , respectively, and the LUT resouce for
DSP-based and shift-based PE are ∆LUTD and ∆LUTS , respectively.
The models of # DSP, # LUT, and # BRAM are shown as follows,

#DSP = ∆DSPD × #CONVD + ∆DSPS × #CONVD (6)

#LUT = ∆LUTD × #CONVL + ∆LUTS × #CONVL (7)

#BRAM =max {
Model size

BRAM size
,
Onchip bandwidth

BRAM bandwidth
} (8)

where #CONVD , #CONVL are the number of CONV operations
for DSP and LUT, respectively. Generally, in Xilinx Virtex-7 FPGA
fabric, the BRAM size is 36kb and the BRAM bandwidth is 64b.

Indeed, replacing multiplications with bit shift operations sig-
nificantly reduces the usage of DSP blocks, resulting in much less
power assumption. However, the DSP resource will be wasted, caus-
ing utilization overhead on LUTs since LUT is the basic building
block in implementing the logic function of bit shift operations.
To fully exploit the limited FPGA resource for both LUTs and DSP
blocks, we propose to adopt both the equal-distance quantization
and the mixed powers-of-two-based quantization techniques for
hardware implementation. More specifically, for each CONV layer,
we select either equal-distance or mixed powers-of-two as the quan-
tization method. Please note that the quantization method inside a
CONV layer is identical.

Session 1: Machine Learning 1 FPGA ’19, February 24–26, 2019, Seaside, CA, USA

37

 Input

buffer(x)

16

208 208

Load

...

...

...

...

YOLO CONV layer

 Kernel

 buffer

(FFT(w))

FFT(x0,0)
FFT(x0,1)
FFT(x0,2)
FFT(x1,0)
FFT(x1,1)
FFT(x1,2)
FFT(x2,0)
FFT(x2,1)
FFT(x2,2)

∑FFT(x)
·FFT(w)

IFFT(∑)

cl
k
 1

1 2 3 4

cl
k
 2

cl
k
 3

cl
k
 4

cl
k
 5

cl
k
 6

cl
k
 7

cl
k
 8

cl
k
 9

cl
k
 1

0
cl

k
 1

1
cl

k
 1

2

x
0
,0

0

x
0
,1

x
0
,2

x
2
,1

x
2
,2

Output

buffer

 (y)

y
0

,0
21

6 87
3 54

mult

 &

add

(pipelined,

details omited)

cl
k
 2

2
cl

k
 2

3
cl

k
 2

4
cl

k
 2

5

Load Compute Store

Load Compute Store

Store

Load

Intra-layer pipeline

Inter-layer pipeline

Compute Store

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Compute

Figure 9: An illustration of the CONV operation data flow in

the 2nd CONV layer.

N -point FFT uses N /2 butterfly units for each stage and has a total

of r =logN2 stages.
We use an input size of 208 × 208 × 16 and weight kernel size

3 × 3 × 16 using 16-point FFT (4 stages) as shown in Fig. 9, to

demonstrate the CONV dataflow in the 2th CONV layer of the tiny
YOLO network structure. Both inter-level and intra-level pipelining
techniques are adopted. The input pixels are loaded to input buffers
followed by a sequence corresponding to the spatial relationship
with kernel window. The first input data needed for CONV opera-
tion is marked as red bars with the same input size of 16-point FFT.
The PE accepts each input vector (red bar) each per clock cycle,
computes the łFFT→MAC→IFFTž operation and the result is stored
in the output buffer.

5.5 Design Optimization

In YOLO, the CONV operation, performed by PEs, is the most
resource-intensive arithmetic. Therefore, from the perspective of
computation, the hardware design optimization targets at PE size/num-
ber. Through reducing PE size/number, we can achieve less power
and area consumption, leading to more available on-chip resource
and more parallelism. From the communication perspective, the
cost of moving data from one physical location to another on FP-
GAs, named communication cost, can dominate the computational
energy and our design. Communication cost consists of accessing
memory of weight parameters and intermediate results, and mov-
ing data bits over interconnect wires between PEs. Therefore, we
can optimize the required computation and communication cost by
reducing PE size/number including LUTs and DSPs, and memory
access.

5.5.1 DSP Usage Optimization. Reducing the number of multipli-
cations will be critical to the overall hardware design optimization.
In the FFT operation, the multipliers of the Radix-2 FFT butterflies
with twiddle factor 1 and -1 can be eliminated, and the multiplier

Algorithm 1: Pseudo-code for resource-aware exploration

Input: #CONVD, #CONVL, ∆DSPD, ∆DSPS , ∆LUTD, ∆LUTS ,

BRAM size and bandwidth, YOLO model Size, and onchip

bandwidth.

Output: bit-length b , mode type of ith layerMi (i ∈ (0, ..., 8)).

Analyze the sensitivity of all the CONV layers;

Set initial b & accuracy degradation margin ∆ACCm ;

for i ← 0 until n_layers do
Mi ← 2;

while resource & performance not optimized do
Change b or ∆ACCm ;

if actual accuracy loss ∆ACCact ≥ ∆ACCm then
Mi ← 1;

end

Calculate resource usage #DSP, #LUT, and #BRAM using

Equation (6, 7, 8);

end

end

return b, M.

of those butterflies with twiddle factor j and −j can be replaced
with conjugation operators. In the dot product stage, the two inputs
of dot product are both from FFT operators, which are conjugate
symmetric. And the dot product results of such conjugate sym-

metric inputs are also conjugate symmetric. Therefore, in
(

FFT(xj)

◦ FFT(wi j)
)

with input size of FFT N , the last N /2 − 1 dot prod-

uct outputs can be obtained using conjugation operations from
their corresponding symmetric points. And the amount of N /2 − 1
multipliers can be eliminated.

The DSP48E1 block in modern Xilinx FPGAs generally consists
of three sub-blocks: pre-adder, multiplier, and ALU. These hard
blocks directly implement commonly used functions in silicon,
therefore consuming much less power and area, and operating at
a higher clock frequency than the same implementations in logic.
For these hard blocks with constrained resource, resource sharing
could be applied. Generally, non-overlapping MAC operations are
scheduled using the combination of pre-adder, multiplier blocks or
ALU, multiplier blocks based on the function itself and bit-length
of operands.

In order to take full advantage of the limited DSP resource and
achieve more design parallelism, we further optimize the proposed
design using low-bit DSP sharing. More specifically, we can divide
each sub-block into smaller slices, in which the internal carry prop-
agation between slices is segregated to guarantee independence
for all slices. In other word, we can group and feed several non-
overlapping operands into one of the inputs of a DSP sub-block.
For example, the ALU unit in DSP48E1 block can be divided into
six 8-bit smaller slices with carry out signal for 8-bit computation.

5.5.2 Reducing Weight Memory Accesses. The input feature map
xi (i ∈ (1, ...,C)) is real value [12] and all the weight parameters
W are real-valued. According to [42, 6], the FFT or IFFT result
is mirrored (have the property of complex conjugated symmetry)
when its inputs are real-valued. Therefore, for an FFT/IFFT with

N -point inputs, we only need to store N
2 +1 of the results instead of

N results into the BRAM, thereby reducing communication energy.

Session 1: Machine Learning 1 FPGA ’19, February 24–26, 2019, Seaside, CA, USA

39

Table 1: Comparison of equal-distance-based quantization method and heterogeneous-based quantization method on the

YOLO-3 model (block size 16).

Model
Layer Comp. Comm. Bound Equal-distance-based Heterogeneous-based

Size In_size Out_size Type Latency (µ s) Model Size Latency (µ s) Model Size

YOLO-3

Conv0 173,056 519,168 692,224 Comm.-bound 872.5 0.16kb 881.3 0.13kb

Conv1 86,528 692,224 32,448 Comm.-bound 442.2 6.75kb 443.6 5.63kb

Conv2 21,632 32,448 173,056 Comm.-bound 219.3 27.0kb 216.2 22.5kb

Conv3 21,632 173,056 86,528 Comm.-bound 119.8 108.0kb 120.5 90.0kb

Conv4 21,632 86,528 43,264 Comp.-bound 117.1 432.0kb 54.5 360.0kb

Conv5 21,632 43,264 86,528 Comp.-bound 117.9 1.69Mb 69.4 1.41Mb

Conv6 86,528 86,528 173,056 Comp.-bound 905.1 3.38Mb 430.4 2.81Mb

Conv7 173,056 173,056 173,056 Comp.-bound 1,832.7 286.88kb 872.7 239.06kb

Conv8 16,224 173,056 19,244 Comp.-bound 174.3 37.88kb 93.2 26.57kb

Total 621,920 - - - 4,801.0 5.93Mb 3,183.6 4.95Mb

Table 2: Comparison among different tiny YOLO implementations.

Implementation
Titan X-YOLO Our GTX-YOLO Our TX2-YOLO Virtex-YOLO Zynq-YOLO Our FPGA-YOLO0 Our FPGA-YOLO1

[38] [33] [15] (Equal-distance-based) (Heterogeneous-based)

Device Type Titan X GTX 1070 GPU TX2 embedded GPU Xilinx Virtex-7 485t Zynq 7020 ADM-7V3 FPGA ADM-7V3 FPGA

Memory 12GB GDDR5 8GB GDDR5 8 GB LPDDR4 4.5 MB BRAM 0.6 MB BRAM 6.6 MB BRAM 6.6 MB BRAM

Clock Freq. 1.0 GHz 1.6 GHz 1.3 GHz 0.14 GHz 0.15 GHz (Peak) 0.2 GHz 0.2 GHz

Performance (FPS) 155 220.8 28.4 21 8 208.2 314.2

Power (W) 180 140 10.8 - - 23 21

Energy Efficiency (FPS/W) 0.9 1.6 2.6 - - 9.1 15.0

The results of performance and energy efficiency of our FPGA
based YOLO implementations are presented in Table 2. Our FPGA-
YOLO1 using heterogeneous quantization outperforms our FPGA-
YOLO0 using equal-distance quantization in terms of both perfor-
mance and energy efficiency, i.e., 1.5× in performance and 1.6×
in energy efficiency, since the heterogeneous quantization fully
exploits the hardware resource and design parallelism. Please note
that since the DataDJI dataset is the latest released, we cannot find
the related FPGA based implementations to compare with. For PAS-
CAL VOC dataset, compared to other FPGA based works [15, 33],
our FPGA-YOLO1 achieves at least 10× performance enhancement,
while the FPGA fabric Virtex-7 690t in our platform is only slightly
better than Virtex-7 485t used in [33] in resource capacity. We can
not compare the energy efficiency among them since the power
measurements are not provided in [15, 33].

6.3.2 Cross-platform Comparison. We implement the same YOLO
network on two GPU platforms and compare with the tiny YOLO
proposed in [38] using Titan X GPU. The first one is GeForce GTX
1070, which is a Nvidia GPU designed for PC. The second one is
a Jetson TX2, which is the latest embedded GPU platform. The
detailed specifications and comparisons among these platforms are
shown in Table 2. We implement the trained model on both plat-
forms and measure the performance using frame per second (FPS)
and power consumption (W). Compared to Titan X-YOLO [38], our
GTX-YOLO and our TX2-YOLO achieve 1.8× and 2.9× enhancement
in energy efficiency.

Compared toGPU-based YOLO implementation (OurGTX-YOLO),
our two FPGA YOLO implementations has the similar or better
speed while dissipating around 6× less power, and the efficiency
(performance per power) of our FPGA-YOLO0 and our FPGA-YOLO1
are 5.7× and 9.4× better, respectively. It indicates that our proposed
REQ-YOLO framework is very suitable for FPGAs, since usually
GPUs often perform faster than FPGAs as discussed in [3]. Com-
pared to the GPU-based YOLO implementation with the best energy
efficiency (our TX2-YOLO), our two FPGA YOLO implementations

achieve 3.5× and 5.8× improvement in energy efficiency. While our
FPGA YOLO implementations are at least 7.3× faster while only
dissipating at most 2.1× more power.

Overall, our proposed REQ-YOLO framework is effective on both
GPUs and FPGAs. It is highly promising to deploy our proposed
REQ-YOLO framework on FPGA to gain much higher energy effi-
ciency for autonomous systems on object sections than on GPUs.
More importantly, the proposed framework achieves much higher
FPS over the real-time requirement.

7 CONCLUSION

In this work, we propose REQ-YOLO, a resource-aware, systematic
weight quantization framework for object detection, considering
both algorithm and hardware resource aspects in object detection.
We adopt the block-circulant matrix method and we incorporate
ADMM with FFT/IFFT and develop a heterogeneous weight quanti-
zation method including both equal-distance and heterogeneous
quantization methods considering hardware resource. We imple-
ment the quantized models on the state-of-the-art FPGA taking
advantage of the potential to store the whole compressed DNNmod-
els on-chip. To achieve real-time, highly-efficient implementations
on FPGA, we develop an efficient PE structure supporting both
equal-distance and mixed powers-of-two quantization methods,
CONV dataflow and pipelining techniques, design optimization
techniques focus on reducing memory access and PE size/numbers,
and a template-based automatic synthesis framework to optimally
exploit hardware resource. Experimental results show that our pro-
posed framework can significantly compress the YOLOmodel while
introducing very small accuracy degradation. Our framework is
very suitable for FPGA and our FPGA implementations outperform
the state-of-the-art designs.

ACKNOWLEDGMENTS

This work is supported by Beijing Natural Science Foundation (No.
L172004), Municipal Science and Technology Program under Grant

Session 1: Machine Learning 1 FPGA ’19, February 24–26, 2019, Seaside, CA, USA

41

Z181100008918015, and National Science Foundation under grants
CNS #1704662 and CNS #1739748. We thank all the anonymous
reviewers for their feedback.

REFERENCES
[1] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-

layer CNN accelerators. InMicroarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on. IEEE, 1ś12.

[2] Yakoub Bazi and Farid Melgani. 2018. Convolutional SVM Networks for Object
Detection in UAV Imagery. IEEE Transactions on Geoscience and Remote Sensing,
56, 6, 3107ś3118.

[3] Brahim Betkaoui, David B Thomas, and Wayne Luk. 2010. Comparing per-
formance and energy efficiency of FPGAs and GPUs for high productivity
computing. In IEEE FPT’10.

[4] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et
al. 2011. Distributed optimization and statistical learning via the alternating
direction method of multipliers. Foundations and Trendső in Machine learning,
3, 1, 1ś122.

[5] Zhaowei Cai, Quanfu Fan, Rogerio S Feris, and Nuno Vasconcelos. 2016. A
unified multi-scale deep convolutional neural network for fast object detection.
In European conference on computer vision. Springer, 354ś370.

[6] Yun-Nan Chang and Keshab K Parhi. 2003. An efficient pipelined fft architecture.
Ieee transactions on circuits and systems ii: analog and digital signal processing,
50, 6, 322ś325.

[7] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE Journal of Solid-State Circuits, 52, 1, 127ś138.

[8] James W Cooley and John W Tukey. 1965. An algorithm for the machine
calculation of complex fourier series. Mathematics of computation, 19, 90, 297ś
301.

[9] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon-
nect: training deep neural networks with binary weights during propagations.
In Advances in neural information processing systems, 3123ś3131.

[10] Caiwen Ding et al. 2017. CirCNN: Accelerating and Compressing Deep Neural
Networks using Block-circulant Weight Matrices. In Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO). ACM,
395ś408.

[11] DJI. 2018. http://www.cse.cuhk.edu.hk/byu/2018-DAC-HDC. (2018).
[12] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and

Andrew Zisserman. 2010. The pascal visual object classes (voc) challenge.
International journal of computer vision, 88, 2, 303ś338.

[13] Ross Girshick. 2015. Fast R-CNN. In Proceedings of the IEEE international con-
ference on computer vision, 1440ś1448.

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the ieee conference on computer vision and pattern recognition,
580ś587.

[15] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Song Yao, Song Han, Yu Wang, and
Huazhong Yang. 2016. From model to FPGA: Software-hardware Co-design for
Efficient Neural Network Acceleration. In Hot chips 28 symposium (hcs), 2016
ieee. IEEE, 1ś27.

[16] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: efficient inference engine on compressed deep
neural network. In Proceedings of the 43rd International Symposium on Computer
Architecture. IEEE Press, 243ś254.

[17] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: compress-
ing deep neural networks with pruning, trained quantization and huffman
coding. Arxiv preprint arxiv:1510.00149.

[18] Song Han et al. 2017. Ese: efficient speech recognition engine with sparse lstm
on fpga. In Fpga. ACM, 75ś84.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the ieee conference on computer
vision and pattern recognition, 770ś778.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2014. Spatial pyramid
pooling in deep convolutional networks for visual recognition. In European
conference on computer vision. Springer, 346ś361.

[21] Donald R High and Noah Ryan Kapner. 2018. Apparatus and method for provid-
ing unmanned delivery vehicles with expressions. US Patent App. 15/638,960.
(Jan. 2018).

[22] Sergey Ioffe. 2017. Batch renormalization: towards reducing minibatch depen-
dence in batch-normalized models. In Advances in neural information processing
systems, 1945ś1953.

[23] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: accelerating
deep network training by reducing internal covariate shift. Arxiv preprint
arxiv:1502.03167.

[24] Rong Jin. 2017. Deep learning at alibaba. In Proceedings of the 26th international
joint conference on artificial intelligence. AAAI Press, 11ś16.

[25] Diederik P Kingma and Jimmy Ba. 2014. Adam: a method for stochastic opti-
mization. Arxiv preprint arxiv:1412.6980.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems.

[27] Yann LeCun. 2015. Lenet-5, convolutional neural networks. Url: http://yann.
lecun. com/exdb/lenet.

[28] Yun Liang et al. 2012. High-level Synthesis: Productivity, Performance, and
Software Constraints. JECE’12.

[29] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016. Fixed point
quantization of deep convolutional networks. In International conference on
machine learning, 2849ś2858.

[30] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio.
2015. Neural networks with fewmultiplications. Arxiv preprint arxiv:1510.03009.

[31] Liqiang Lu and Yun Liang. 2018. SpWA: An Efficient Sparse Winograd Convo-
lutional Neural Networks Accelerator on FPGAs. In DAC’18.

[32] Liqiang Lu, Yun Liang, Qingcheng Xiao, and Shengen Yan. 2017. Evaluating
Fast Algorithms for Convolutional Neural Networks on FPGAs. In FCCM’17.

[33] Jing Ma, Li Chen, and Zhiyong Gao. 2017. Hardware implementation and
optimization of tiny-yolo network. In International forum on digital tv and
wireless multimedia communications. Springer, 224ś234.

[34] Hiroki Nakahara, Haruyoshi Yonekawa, Tomoya Fujii, and Shimpei Sato. 2018.
A lightweight yolov2: a binarized cnn with a parallel support vector regression
for an fpga. In Proceedings of the 2018 acm/sigda international symposium on
field-programmable gate arrays. ACM, 31ś40.

[35] Victor Pan. 2012. Structured matrices and polynomials: unified superfast algo-
rithms. Springer Science & Business Media.

[36] Jiantao Qiu et al. 2016. Going deeper with embedded fpga platform for con-
volutional neural network. In Proceedings of the 2016 acm/sigda international
symposium on field-programmable gate arrays. ACM, 26ś35.

[37] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: imagenet classification using binary convolutional neural networks.
In European conference on computer vision. Springer, 525ś542.

[38] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: unified, real-time object detection. In Proceedings of the ieee
conference on computer vision and pattern recognition, 779ś788.

[39] Joseph Redmon and Ali Farhadi. 2017. Yolo9000: better, faster, stronger. Arxiv.
[40] Joseph Redmon and Ali Farhadi. 2018. Yolov3: an incremental improvement.

Arxiv preprint arxiv:1804.02767.
[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:

towards real-time object detection with region proposal networks. In Advances
in neural information processing systems, 91ś99.

[42] Sayed Ahmad Salehi, Rasoul Amirfattahi, and Keshab K Parhi. 2013. Pipelined
architectures for real-valued fft and hermitian-symmetric ifft with real dat-
apaths. Ieee transactions on circuits and systems ii: express briefs, 60, 8, 507ś
511.

[43] Julius Orion Smith. 2007. Mathematics of the discrete fourier transform (dft):
with audio applications. Julius Smith.

[44] Trieu. 2016. https://github.com/AlexeyAB/darknet. (2016).
[45] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip

Leong, Magnus Jahre, and Kees Vissers. 2017. Finn: a framework for fast,
scalable binarized neural network inference. In Proceedings of the 2017 acm/sigda
international symposium on field-programmable gate arrays. ACM, 65ś74.

[46] Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, Yanzhi Wang, and Yun
Liang. 2018. C-LSTM: Enabling Efficient LSTM Using Structured Compression
Techniques on FPGAs. In Fpga’18.

[47] Shuo Wang and Yun Liang. 2017. A Comprehensive Framework for Synthesiz-
ing Stencil Algorithms on FPGAs using OpenCL Model. In DAC’17.

[48] Shuo Wang, Yun Liang, and Wei Zhang. 2017. FlexCL: An Analytical Perfor-
mance Model for OpenCL Workloads on Flexible FPGAs. In DAC’17.

[49] Xuechao Wei, Yun Liang, Xiuhong Li, Cody Hao Yu, Peng Zhang, and Jason
Cong. 2018. TGPA: Tile-grained Pipeline Architecture for Low Latency CNN
Inference. In ICCAD’18.

[50] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han
Hu, Yun Liang, and Jason Cong. 2017. Automated systolic array architecture
synthesis for high throughput cnn inference on fpgas. In Proceedings of the
54th annual design automation conference 2017. ACM, 29.

[51] WeiWen, ChunpengWu, YandanWang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in neural information
processing systems, 2074ś2082.

[52] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Chen. 2016.
Quantized convolutional neural networks for mobile devices. In Computer
vision and pattern recognition, 2016. cvpr 2016. ieee conference on.

[53] Qingcheng Xiao, Yun Liang, Liqiang Lu, Shengen Yan, and Yu-Wing Tai. 2017.
Exploring Heterogeneous Algorithms for Accelerating Deep Convolutional
Neural Networks on FPGAs. In DAC’17.

[54] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing fpga-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 acm/sigda international symposium on
field-programmable gate arrays. ACM, 161ś170.

[55] Liang Zhao, Siyu Liao, Yanzhi Wang, Zhe Li, Jian Tang, and Bo Yuan. 2017.
Theoretical properties for neural networks with weight matrices of low dis-
placement rank. In International conference on machine learning, 4082ś4090.

Session 1: Machine Learning 1 FPGA ’19, February 24–26, 2019, Seaside, CA, USA

42

	Abstract
	1 Introduction
	2 Preliminaries on Object Detection
	2.1 You Only Look Once (YOLO) Network
	2.2 Convolutional (CONV) Layers
	2.3 Pooling layer and other types of layers

	3 Compressed Convolution Layers
	3.1 Block-Circulant Matrices
	3.2 Block-Circulant Matrices-Based CONV

	4 The REQ-YOLO Framework
	4.1 Heterogeneous Weight Quantization
	4.2 ADMM for Weight Quantization

	5 Hardware Implementation
	5.1 FPGA Resource-Aware Design Flow
	5.2 Overall Hardware Architecture
	5.3 PE Design
	5.4 Convolution Dataflow and Pipelining
	5.5 Design Optimization
	5.6 Design Space Exploration

	6 Evaluation Results
	6.1 Training of Tiny YOLO
	6.2 Accuracy after Weight Quantization
	6.3 Performance and Energy Efficiency

	7 Conclusion
	Acknowledgments

