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ABSTRACT

Deep learning solutions are being increasingly deployed in mobile

applications, at least for the inference phase. Due to the large model

size and computational requirements, model compression for deep

neural networks (DNNs) becomes necessary, especially considering

the real-time requirement in embedded systems. In this paper, we

extend the prior work on systematic DNN weight pruning using

ADMM (Alternating Direction Method of Multipliers). We integrate

ADMM regularization with masked mapping/retraining, thereby

guaranteeing solution feasibility and providing high solution qual-

ity. Besides superior performance on representative DNN bench-

marks (e.g., AlexNet, ResNet), we focus on two new applications

facial emotion detection and eye tracking, and develop a top-down

framework of DNN training, model compression, and acceleration

in mobile devices. Experimental results show that with negligible

accuracy degradation, the proposed method can achieve significant

storage/memory reduction and speedup in mobile devices.
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1 INTRODUCTION

Recently, deep learning has been expanded into many new applica-

tion fields, such as automatic drive system, 3D printing detection,

and medical imaging and diagnosis [15, 19, 25]. As an example for

the latter application, deep neural networks (DNNs) can be trained

for the detection of facial expressions and performing eye track-

ing for the patients [6, 16]. By extracting complex and high-level

features from large-scale data, DNNs can achieve a high accuracy

and provide significant help and convenience for both doctors and

patients.

DNNs are typically trained in an offline manner, and are often

deployed in low-power, embedded, or mobile devices during in-

ference. One of the major challenges is the large model size and

computational requirement, which makes it difficult for real-time

implementation in mobile devices. To overcome this challenge,

many efforts have been devoted to DNN model compression from

both industry and academia. One pioneering work [9] adopts an

iterative heuristic for DNNweight pruning, achieving good pruning

results: 9× weight reduction in AlexNet [17] and 12× in LeNet-5

[18]. Despite the promising results, the compression gain mainly

focuses on the fully-connected (FC) layers, and the pruning ratio is

limited on convolutional (CONV) layers (e.g., 2.7× for CONV layers

in AlexNet). This limitation needs to be overcome as CONV layers

become the most computationally intensive layers in current DNNs

[11, 17].

Later weight pruning work extend to (i) use more sophisticated

heuristic such as both weight prune and grow [4, 8], (ii) strike a

desirable tradeoff between pruning ratio and accuracy, and (iii)

incorporate regularity or structure in weight pruning framework

[12, 26]. To partially overcome the heuristic nature, recently, a

systematic DNN weight pruning framework has been proposed in

[27], based on the powerful ADMM (Alternating Direction Methods

of Multipliers) technique [1]. This work formulates the DNNweight

pruning problem as a mathematical optimization problem, and

observes the compatibility between the combinatorial constraints

(associated with weight pruning) with ADMM. It achieves improved

weight pruning results, 21× on AlexNet and 71.2× on LeNet-5, with

no accuracy loss. However, this work adopts a direct application of

ADMM, and lacks rigorous guarantee on feasibility (satisfying all



constraints) and solution quality due to the non-convex objective

function.

Using [27] as the starting point, this work first develops a sys-

tematic, algorithmic DNN weight pruning framework, with an inte-

gration of ADMM regularization and masked mapping/retraining

steps. In this way the solution feasibility can be guaranteed and

solution quality (test accuracy) can be improved. The proposed

framework outperforms prior work on representative benchmarks

such as AlexNet and LeNet-5, and also achieves 18× weight reduc-

tion on ResNet-50 [11], which is widely accepted to be difficult

for compression. We further incorporate structured pruning [26],

including filter-wise, channel-wise, and filter shape-wise sparsities,

into the ADMM regularization framework, thereby facilitating high

parallelism and hardware implementations.

Deep learning solutions are being increasingly deployed in mo-

bile applications, at least for the inference phase[20]. Due to the

large model size and computational requirements, model compres-

sion for deep neural networks (DNNs) becomes necessary, espe-

cially considering the real-time requirement in embedded systems.

For real-world and real-time applications, we apply the proposed

framework on two medical-related applications and implement

on different embedded systems. The first application is the facial

emotion recognition [6]. The second application is eye tracking

[16]. DNNs for both applications are mainly CONV layers. The first

application uses the FER-2013 dataset [6], and we prune 78.33%

of total weights with (almost) no accuracy loss. We can achieve

97.2% weight reduction in the second application. For inference

acceleration in mobile devices, we use sparse matrices and dictio-

nary of keys[5] for weight representation and computation after

pruning, and perform testing on three mobile devices. We achieve

10x speedup and 13.2x speedup on these two applications, respec-

tively, when testing on mobile devices. Our models are released at

the anonymous link https://bit.ly/2P1ehdb.

2 A SYSTEMATIC WEIGHT PRUNING

FRAMEWORK USING ADMM

2.1 Systematic View of Weight Pruning

Similar to [27], we provide a systematic view of DNN weight prun-

ing during training as an optimization problem. Consider a general

N -layer DNN. Sets of weights and biases of the i-th (CONV or FC)

layer are denoted by Wi and bi , respectively. Let us denote the

loss function of the N -layer DNN as f
(

{Wi }
N

i=1, {bi }
N

i=1

)

. Then

the overall problem is defined as

minimize
{Wi }, {bi }

f
(

{Wi }
N

i=1, {bi }
N

i=1

)

,

subject toWi ∈ Si , i = 1, . . . ,N .
(1)

The set Si =
{

Wi

�

�card(supp(Wi )) ≤ αi
}

reflects constraint for

weight pruning, where ‘card’ refers to cardinality and ‘supp’ refers

to support set. Elements in Si are Wi solutions, satisfying that

the number of non-zero elements inWi is limited by αi for layer

i . Because of such combinatorial constraints, problem (1) cannot

be solved using conventional stochastic gradient descent which

assumes no hard constraints. This is key reason that prior work

use heuristic methods to get rid of these constraints. To overcome

this limitation, a key observation is that such form of combinatorial

constraints is compatible with ADMM technique.

2.2 Connection to ADMM

ADMM [23, 24] is a powerful optimization tool, by decomposing an

original problem into two subproblems that can be solved separately

and iteratively. Consider optimization problem

min
x

f (x) + д(x). (2)

In ADMM, the problem is first re-written as

min
x,z

f (x) + д(z), subject to x = z. (3)

Next, by using augmented Lagrangian [1], the above problem is de-

composed into two subproblems on x and z. The first is minx f (x)+

q1(x|z), where q1(x|z) is a quadratic function of x with fixed z.

Subproblem 2 is minz д(z) + q2(z|x), where q2(z|x) is a quadratic

function on z with fixed x. The two subproblems will be solved

iteratively until convergence is achieved [23, 24].

ADMM is conventionally utilized to accelerate convergence of

convex optimization problems. The optimality and fast convergence

have been proven for convex problems [1, 23]. As a special prop-

erty, ADMM can effectively deal with a subset of combinatorial con-

straints and yields optimal (or at least high quality) solutions [14, 21].

Our observation is that associated constraints in DNN weight prun-

ing belong to this subset. More specifically, we use indicator func-

tions to incorporate combinatorial constraints into objective func-

tion. The indicator functions are дi (Wi ) =

{

0 if Wi ∈ Si

+∞ otherwise
.

Then problem (1) becomes:

minimize
{Wi }, {bi }

f
(

{Wi }
N

i=1, {bi }
N

i=1

)

+

N
∑

i=1

дi (Wi ) (4)

Despite the compatibility of the combinatorial constraints with

ADMM, there is difficulty in using ADMM directly due to the non-

convex nature of the objective function in (1). Therefore, special

mechanisms are needed to guarantee the solution feasibility and

solution quality.

2.3 Systematic DNN Weight Pruning

Instead of direct application of ADMM, we develop an integrated

framework of ADMM regularization and masked mapping and re-

training as showed in Algorithm 1.We guarantee solution feasibility

(satisfying all constraints) and provide high quality (maintaining

test accuracy).

The ADMM regularization starts from a DNN model without

compression. By incorporating auxiliary variables Zi ’s, and dual

variables Ui ’s, we decompose (4) into two subproblems, and itera-

tively solves them until convergence. The first subproblem is

minimize
{Wi }, {bi }

f
(

{Wi }
N

i=1, {bi }
N

i=1

)

+

N
∑

i=1

ρi

2
∥Wi − Z

k

i
+ U

k

i
∥2
F
. (5)

The first term in (5) is the differentiable (non-convex) loss function

of the DNN, while the other quadratic terms are differentiable and

convex. As a result, this subproblem can be solved by stochastic



gradient descent similar to the one that would be used to train the

original DNN.

The second subproblem is

minimize
{Zi }

N
∑

i=1

дi (Zi ) +

N
∑

i=1

ρi

2
∥Wk+1

i
− Zi + U

k

i
∥2
F
. (6)

The optimal, analytical solution is the Euclidean projection of

W
k+1
i
+ U

k

i
onto the set Si . Since αi is the desired number of

weights after pruning in the i-th layer, we can prove that the Eu-

clidean projection results in keeping αi elements in W
k+1
i
+ U

k

i

with the largest magnitudes and setting the remaining weights to

zeros. After both subproblems solved, we update the dual variables

Ui as Eqn. (7) and complete one iteration in ADMM regularization.

U
k+1
i
= U

k

i
+W

k+1
i

− Z
k+1
i

(7)

Masked Mapping and Retraining: We extend the formulation in

[27] by introducing masked mapping and retraining step. After

ADMM regularization, we obtain intermediate Wi solutions. In

this step, we first perform the said Euclidean projection (mapping)

to guarantee that at most αi weights in each layer are non-zero.

Next, we mask the zero weights and retrain the DNN with non-zero

weights using training sets (while keeping the masked weights 0).

In this way test accuracy can be partially restored.

Algorithm 1 shows the pseudo-codes of the proposed weight

pruning training algorithm, in which ADMM_ITERA

TION is normally set as 1
10 ofMAX_ITERATION_FOR_SGD.

Algorithm 1: Systematic Weight Pruning Training Algorithm

using ADMM

1 Initialize training hyperparameters;

2 for CURRENT_ITERATION <

MAX_ITERATION_FOR_SGD do

3 Solve(Eqn. (5));

4 if CURRENT_ITERATION % ADMM_ITERATION == 0

then

5 Solve(Eqn. (6));

6 Solve dual update according to Eqn. (7);

7 end

8 end

9 Masked mapping;

10 Retrain the pruned model;

Feasibility and Solution Quality: One can observe that con-

straints on weight pruning are satisfied through the mapping step

and that the retraining process restores the accuracy loss of map-

ping. ADMM regularization acts as a smart, adaptive DNN regular-

ization (see Eqn. (5)), where the regularization targets are dynami-

cally updated in each iteration by solving subproblem 2 (optimally

and analytically). This is one key reason that this method outper-

forms many prior works on DNN weight pruning based on fixed

regularization [26], where regularization targets are not updated.

Sample Results on Representative DNNs: Sparse matrices

are employed for representing the pruned weights due to the re-

duced space complexity (by storing only the non-zero entries and

Table 1: Sample results on representative DNNs

Network Method
Accuracy

Loss
Weights

Pruning

Rate

LeNet-5

(99.2%)

Network Pruning [10] 0.0% 34.5K 12.5x

Direct ADMM[27] 0.0% 6.05K 71.2x

Our Proposed Method 0.2% 1.75K 246x

AlexNet

(80.2%)

Network Pruning [10] 0.0% 6.7M 9x

NEST [4] 0.0% 3.9M 15.7x

Direct ADMM[27] 0.0% 2.9M 21x

Our Proposed Method 0.0% 1.68M 36x

ResNet-50

(92.4%)

Fine-grained Pruning [22] 0.1% 12.6M 2.6x

Our Proposed Method
0.4% 2.18M 15x

0.7% 1.82M 18x

Figure 1: Examples of filter-wise, channel-wise and shape-

wise structured sparsities.

index to the next non-zero entry) and associated computation sav-

ings. We have performed testing on representative DNNs, LeNet-5

[18] for MNIST dataset, and AlexNet [17] and ResNet-50 [11] for

ImageNet dataset. As shown in Table 1, we achieve 167x reduc-

tion in number of weights in LeNet-5, 31x in AlexNet, and 15x in

ResNet-50, with (almost) no accuracy loss. These results consis-

tently outperform prior arts especially on ResNet, which is difficult

for pruning in prior work.

2.4 Incorporating Structures inWeight Pruning

As discussed before, the DNN after weight pruning is an irregular,

sparse neural network, and sparse matrices with indices are uti-

lized for weight storage. One clear disadvantage is the limitation on

parallelism degree and therefore degradation in hardware perfor-

mance as also observed in [26]. Prior work (e.g., [26]) incorporates

regularity or łstructures" in DNN weight pruning in order to solve

this problem, but lacks a systematic approach to achieve this goal.

We make an observation that structured pruning is compatible

with the ADMM-based weight pruning framework, and therefore

can be solved systematically. We use CONV layers (the most com-

putationally intensive in current DNNs [11, 17]) as an illustrative

example while FC layers can be treated similarly. There are three

types of structured sparsities, filter-wise, channel-wise, and shape-

wise sparsities as shown in Figure 1.





Table 2: Platforms under test and specifications.

Platform Android Primary CPU Companion CPU CPU Architecture GPU RAM (GB)

Huawei Honor 6X 7 (Nougat) 4 × 2.1GHz Cortex-A53 4 × 1.7GHZ Cortex-A53 ARMv8-A Mali T830 3

LG Nexus 5X 8.1 (Oreo) 4 × 1.4 GHz Cortex-A53 2 × 1.8GHz Cortex-A57 ARMv8-A Adreno 418 2

Huawei Honor 10 8.1 (Oreo) 4 × 2.4 GHz Cortex-A73 4 × 1.8 GHz Cortex-A53 ARMv8-A Mali-G72 MP12 6

multiple mobile devices to evaluate the applicability of the infer-

ence phase. Table 2 summarizes the specifications of test mobile

platforms.

The performance evaluation includes two aspects: (a) storage

reduction due to the reduced DNN model size, (b) inference accel-

eration (running time reduction). The largest portion of inference

time is from GEMM operation, which will benefit from sparse matri-

ces. We compare the run-time cost of GEMM as well as the overall

run-time.

4.1 Case I: Facial Emotion Recognition

Facial emotion recognition is utilized in many fields such as medical,

entertainment and security. For this application, FER-2013 face

database [6] is used to train and test the DNN model. The dataset

comprises a total of 35,887 pre-cropped, 48-by-48-pixel grayscale

images of faces each labeled with one of the 7 emotion classes:

anger, disgust, fear, happiness, sadness, surprise, and neutral. Due

to the small portion of the disgust class, the dataset is merged into

six classes including angry, fear, happy, sad, surprise, and neutral

[13].

A typical DNN is constructed, comprising 9 CONV layers with

one max-pooling after every three CONV layers. There are 32, 64,

and 218 filters in these three CONV-layer groups, respectively. In

addition, 2 FC layers are constructed followed by a softmax layer

in the end. Table 3 shows the weight pruning result. Our pruning

algorithm can achieve a high compression ratio by 4.6x without

accuracy loss.

Table 3: Weight Pruning Result on Facial Emotion Recogni-

tion Model

Layer Weights Weights after prune Matrices sparsity

conv1 288 230 20%

conv2 9216 3687 60%

conv3 9216 2765 70%

conv4 18432 3687 80%

conv5 36864 7373 80%

conv6 36864 5530 85%

conv7 73728 11060 85%

conv8 147456 22119 85%

conv9 147456 22119 85%

fc1 294912 88474 70%

fc2 4096 1639 60%

fc3 384 154 60%

Total 778912 168837 78.33%

In Table 4, the overall performance is shown including the ac-

curacy and inference time on various mobile systems. According

to the results, the overall acceleration of the pruned model can

achieve up to 10x, while the GEMM acceleration can achieve up to

22x compared with the non-pruned model. The actual speedup is

even higher than the pruning ratio, due to two reasons: (i) we focus

more on the pruning of computationally intensive CONV layers

than FC layers, and (ii) the bandwidth requirement is also reduced

besides computation reduction.

Table 4: Performance of Facial Emotion Recognition Model

on Mobile Devices

Model Pruned model Speedup

Accuracy 58.2056% 58.0663% -

Honor 6X
Overall 0.971s 0.133s 7.3x

GEMM 0.925s 0.082s 11.3x

Nexus 5X
Overall 0.161s 0.015s 10x

GEMM 0.137s 0.006s 22x

Honor 10
Overall 0.304s 0.046s 6.6x

GEMM 0.283s 0.025s 11.3x

4.2 Case II: Eye Tracking

Eye tracking is one widely used application in many areas such

as human-computer interaction, medical diagnoses, psychological

studies and computer vision. To implement the weight pruned eye

tracking model for embedded systems, we use GazeCapture, a large-

scale mobile eye tracking dataset, containing data from over 1,450

people with almost 2.5M frames [16].

The eye tracking DNN model takes as input the detected and

cropped portions of the original frame, including left eye, right eye,

and face images (all of size 224 x 224). Additionally, the face grid

is considered as another input, with a binary mask to indicate the

location and size of the head within the frame (of size 25 x 25). The

output is the distance, in centimeters, from the camera. The whole

model consists of 13 CONV layers and 7 FC layers. Compared with

typical DNN, the eye tracking network has a more complicated

architecture. It consists of three small typical DNNs taking inputs

from the right eye, left eye and face respectively. The outputs get

concatenated and go through 7 FC layers along with the input from

face grid. The details of model structure are demonstrated in [16].

The network architecture also shows a big impact on the overall

real-time speedup.

After applying our weight pruning method, the weight reduction

result is shown in Table 5. The overall pruning ratio can achieve 36x.

The total number of weights is reduced from 718K to 19K. The per-

formance on three mobile devices is demonstrated in the following

Table 6. The pruned model achieves up to 13x speedup compared

with the non-pruned model, especially, the GEMM computing time

gets accelerated up to 28x.



Table 5: Weight Pruning Result of Eye Tracking Model

Layer Weights Weights after prune Matrices sparsity

conv-e1 4875 3413 30%

conv-e2 102400 512 99.5%

conv-e3 73728 369 99.5%

conv-e4 8192 1229 85%

conv-f1 4875 3413 30%

conv-f2 102400 512 99.5%

conv-f3 73728 369 99.5%

conv-f4 8192 1229 85%

fc-e1 65536 3933 94%

fc-f1 32768 656 98%

fc-f2 8192 1475 82%

fc-fg1 160000 800 99.5%

fc-fg2 32768 984 97%

fc1 40960 615 98.5%

fc2 256 256 -

Total 718870 19765 97.25%

Table 6: Performance of Eye Tracking Model on Mobile De-

vices

Model Pruned model Speedup

Accuracy 92.97% 91.47% -

Honor 6X
Overall 0.563s 0.043s 13.2x

GEMM 0.541s 0.019s 28.8x

Nexus 5X
Overall 0.070s 0.009s 7.5x

GEMM 0.065s 0.002s 28x

Honor 10
Overall 0.142s 0.018s 7.7x

GEMM 0.131s 0.007s 17.4x

5 CONCLUSION

In this paper, we extend the prior work on systematic DNN weight

pruning using ADMM. We integrate ADMM regularization with

masked mapping/retraining, thereby guaranteeing solution feasi-

bility and providing high solution quality. We develop two new

applications: facial emotion detection and eye tracking, and pro-

pose a top-down framework of DNN training, model compression,

and acceleration in mobile devices. The proposed method shows

significant storage/memory reduction and speedup measured on

mobile devices.
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