Paper Session: Access

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

Increasing Capacity for Computer Science Education in Rural
Areas through a Large-Scale Collective Impact Model

Jayce R. Warner
University of Texas at Austin
jaycewarner@utexas.edu

Ryan Torbey
University of Texas at Austin
ryan.torbey@utexas.edu

ABSTRACT

Students living in rural areas are less likely to attend schools that
offer computer science (CS) courses largely because educational in-
stitutions in these remote areas lack the resources to staff teaching
positions for these courses. This study investigated the impact of
WeTeach_CS, a program designed to train teachers to become certi-
fied to teach high school CS in Texas. The WeTeach_CS collective
impact model may be well suited to influence rural areas at scale
because it utilizes an existing network of organizations across the
state to bring high-quality professional development opportunities
to teachers in remote areas. Results from a comparative interrupted
time series analysis showed a significant, positive change in the
rate in which the number of certified CS teachers in rural areas
increased during the period of time after WeTeach_CS began com-
pared to the period before the program was implemented, whereas
the number of teachers certified in technology applications showed
no such change. Furthermore, the growth rate in the number of
certified CS teachers was much higher for rural schools than urban,
suggesting that collective impact models like WeTeach_CS may be
especially beneficial for rural communities.
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1 INTRODUCTION

Schools in rural areas are behind their more urbanized counterparts
in terms of access to CS education [12]. Rural schools constituted
only 10% all U.S. public schools that offered an AP computer science
course in 2017 [2], even though the latest estimates show that
28% of all public schools in the U.S. are designated as rural and
42% as rural or small-town [7]. At the core of this issue is that
the lack of qualified CS teachers overall is exacerbated in rural
areas, where schools have a relatively harder time funding new
teaching positions and recruiting highly qualified teachers to fill
those positions. Schools simply cannot offer courses for which they
have no qualified teacher, implying that one crucial antecedent
to increasing access to CS education for underserved students is
increasing the CS teacher workforce in those areas.

Efforts to increase the number of qualified CS teachers are invari-
ably met with challenges of scalability and sustainability. Collective
impact models [13], which unite interdisciplinary partners towards
a common goal, may be better suited to overcome these challenges
than stand-alone interventions. A collective impact model has the
potential to effect change in rural schools because it connects local
education agencies with resources and expertise to which they may
not otherwise have access. The WeTeach_CS program has worked
extensively with rural schools and teachers over the past three
years to build capacity for K-12 CS Education. Approximately 40%
of the 640 schools served by WeTeach_CS in 2016-17 are in rural
or small-town districts. WeTeach_CS, which serves teachers across
multiple districts, is particularly helpful in creating an economy of
scale for CS teacher professional development that is not possible
to obtain for individual small, rural districts. WeTeach_CS supports
sustainability of program effects by using a network of professional
development partners to support local teachers before and after
becoming certified to teach CS. This research project examines
the effectiveness of the WeTeach_CS collective impact model for
increasing the number of certified CS teachers in rural schools.

2 BACKGROUND
2.1 Equitable Access to CS Education in K-12

A growing consensus is emerging around the need for computer
science (CS) education for all K-12 students. CSforAll as a national
movement was catalyzed by President Obama’s announcement in
January of 2016 of a new initiative focused on making sure every
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student had the computer science and computational thinking ex-
periences they needed to become "active citizens in our technology-
driven world" [19]. Economic competitiveness in the United States
rests in large part on the ability to develop and leverage technology
to fuel progress and innovation. The CS field is booming, with jobs
like Software Developer positioned to have hundreds of thousands
of openings between now and 2026 [16]. The value for students
who study CS is immense. Computer science majors earn an aver-
age of $1.67 million throughout their lifetimes, 40% greater than
the average of all college graduates [18]. Even for those students
who will not eventually pursue a post-secondary career specific to
CS or information technology, learning to reason and solve prob-
lems computationally may be of value. Computational thinking has
been marked as a transferable problem-solving skill, and computa-
tional literacy is seen as a modern way of learning and representing
knowledge [1].

Equitable access to CS education is important since the opportu-
nity to study CS opens doors to above-average earning potential
and the ability to create, rather than simply consume, in the digital
world. Schools, however, are struggling to adequately meet the chal-
lenge of providing equitable access to CS education opportunities
for all students. Despite the fact that the majority of teachers and
parents believe that CS should be a required part of K-12 education,
only 40% of schools are estimated to offer at least one CS course
[11]. Access to CS courses is even lower for students in rural areas,
students of color, and students from low-income families [10]. One
of the most significant barriers to the ability of schools to offer CS
courses is the lack of certified teachers [6]. Many schools, especially
those in poorer districts, simply lack the resources to train new CS
teachers. For this reason, scalable interventions to incentivize and
train teachers across a diverse range of schools and districts are
needed to achieve the goals of increasing the number of certified
CS teachers and providing all students opportunities to study CS.
Little is known, however, about the effectiveness of such large-scale
programs in relatively new subject areas like computer science and
in rural areas.

2.2 Interventions to Increase the Teacher
Workforce in High-Need Areas

District and state programs have utilized professional development
and financial incentives as a means to influence teacher choices re-
lated to where they work and what they teach. For example, in New
York City public schools, where teachers must have the relevant
coursework to be qualified to teach a particular subject, the New
York City Department of Education offers current teachers tuition
reimbursement to gain additional certification in hard-to-staff sub-
ject areas [17]. Research on the effectiveness of similar programs
has produced mixed results [4]. An analysis of Florida’s Critical
Teacher Shortage Program showed that tuition reimbursement pro-
grams and one-time bonuses had positive effects on the retention of
teachers in math and special education [5]. Other research, however,
calls into question the effectiveness of financial incentives that do
not also provide teachers with professional support. Massachusetts
and North Carolina implemented teacher bonus programs to in-
centivize teachers to teach hard-to-staff subjects at high-poverty
schools. Over half of the Massachusetts teachers in the study ended

1158

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

up leaving before the four year program was complete [15], and the
North Carolina program was mired by misunderstanding and low
perceived value among teachers [3]. Another study showed that
although a financial incentive increased the likelihood of having
teachers to teach in low-performing schools, teachers who received
the incentive were just as likely to leave the school as teachers
who did not receive the incentive [20]. A common theme of the
findings from these studies is that financial incentives alone may
not be enough if not coupled with proper training and support. In
addition, the majority of the studies in this field focus on the impact
of incentives on the retention of teachers, whereas few studies take
up the initial question of whether and how these incentives im-
pact recruitment or the achievement of new certifications to teach
additional, high-need subjects.

We have highlighted research regarding large, statewide pro-
grams because of their ability to effect change across a broad range
of economically- and resource-diverse districts. Incentive and pro-
fessional development programs designed for implementation by
individual school districts can have the unfortunate result of per-
petuating educational inequities since only those districts with
adequate resources can successfully implement such programs. For
example, one study found that larger school districts were more
likely to implement incentive programs than smaller school dis-
tricts [14]. Thus, to meet the needs of smaller, rural school districts,
we need large-scale, collective impact programs that bring together
educational institutions with similar goals, pool resources across
geographic boundaries, and create a sustainable network of these
institutions and resources to support efforts beyond the program’s
initial stages.

2.3 Collective Impact Models

Collective impact models have grown in prominence as viable so-
lutions to complex social sector challenges. Projects applying a
collective impact approach address a wide range of challenges in-
cluding addressing worldwide malnutrition, reducing teenage binge
drinking, combating childhood obesity, and tackling environmental
cleanup efforts [8]. Other collective impact projects are addressing
educational challenges. The Strive Partnership in Cinncinatti is a
prime example of the potential of collective impact models to make
significant and sustainable changes to student educational outcome
measures, with 81% of its 34 measures of student achievement
showing postive improvement over four years [8].

Collective impact models incorporate five key components: a
backbone organization that supports the entire system, a common
agenda regarding the problem to be solved, shared measurement
systems to track progress toward goals, mutually reinforcing activ-
ities, and continuous communication across all stakeholders [13].
By leveraging the expertise of multiple players across the system,
collective impact models can address a variety of variables that
influence the problem of practice simultaneously. In the education
sector, this includes building teacher content knowledge, develop-
ing administrator leadership, addressing school funding and teacher
incentives, and identifying and modifying when possible state or
local policies that impede progress.
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2.4 The WeTeach_CS Program

The University of Texas at Austin (UT Austin) STEM Center’s
WeTeach_CS program trains K-12 educators to improve access to
high quality CS experiences for a broad and diverse range of stu-
dents. The objectives of the WeTeach_CS program are to increase
the number of CS certified high school teachers, increase the num-
ber of high schools offering CS courses, increase the number and
diversity of students enrolled in CS courses, and expand access to
computational thinking, coding and programming experiences for
all students in K-8.

The WeTeach_CS program is a collective impact model currently
serving the entire state of Texas. The program offers a $1,000 stipend
to Texas teachers who successfully achieved certification in com-
puter science. To help teachers learn the content, WeTeach_CS
provides a 7-week online certification preparation course along
with a 2-day in-person training that was offered at various loca-
tions around the state. In order to reach and serve teachers across
all geographic and economic areas of the state, WeTeach_CS utilizes
an existing network of 30 region-level organizations (e.g., educa-
tion service centers, universities) within the state to publicize and
implement the program.

The WeTeach_CS program reflects the five key characteristics of
collective impact models mentioned above. The UT Austin STEM
Center serves as the WeTeach_CS backbone organization, coor-
dinating all state level professional development, CS Collaborative
funding and support, data collection, and convening of leaders and
teacher participants. Teachers, schools, universities, non-profits,
industry partners, and professional development providers who
participate in the WeTeach_CS program all share the common
agenda of broadening participation in K-12 computing. The com-
mon goal is grounded in four key building blocks of broadening
participation in K-12: 1) Capacity, 2) Access, 3) Participation, and 4)
Equity. While the final goal is equitable participation of all students
in CS-related experiences in K-12, the three prior components are
necessary antecedents to reaching equity at scale. In this study
we focus on the first of those components, capacity, operational-
ized here as the availability of qualified teachers certified to teach
computer science. Partner organizations within WeTeach_CS all
use the same shared measurement systems. For example, to be-
come certified to teach computer science in Texas, all teachers
must pass the same state certification exam specific to computer
science. Additionally, public schools and districts across the state
are all required to use one common data reporting system for all
teacher and student data. Mutually reinforcing activities of the
WeTeach_CS network include professional development related to
teacher certification as well as other training that builds teacher
content knowledge, equitable practices, and instructional skills. UT
Austin also hosts an annual 3-day WeTeach_CS Summit, attended
by over 400 educators in 2018, to provide professional development
and build community across the statewide network. Finally, the
WeTeach_CS community is connected through an ecosystem of
support and continuous communication. The WeTeach_CS blog
is a weekly online newsletter subscribed to by over 1,300 stake-
holders focused on keeping teachers aware of various professional
development opportunities, funding and policy updates related to
CS education, instructional resources, and student opportunities.
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Over 2,400 people follow the WeTeach_CS Facebook and Twitter
feeds. Each WeTeach_CS Collaborative teacher also receives regular
communication from their own CS Collaborative Project Director
related to their regional professional development program and
meets regularly with the teachers in their CS Collaborative (20-40
teacher per cohort). WeTeach_CS Project Directors are supported
by UT Austin staff through virtual and in-person meetings as well
as CS workshops and training opportunities.

Many of the teachers and schools served by the collaborative
organizations within this collective impact model were located in
school districts that lacked the resources typical of larger districts
in more affluent areas. The purpose of this study was to investigate
whether and to what extent the WeTeach_CS program increased
the number of certified CS teachers in rural areas of Texas.

3 METHOD

Comparative interrupted times series (CITS) analysis was used to
investigate the impact of the WeTeach_CS program on the number
of certified computer science teachers in rural schools. CITS is a
quasi-experimental method that tests whether the introduction of
an intervention produces a change in the target outcome over time
for the treatment group to a greater degree than a comparison group.
We refer to the periods of time before and after the introduction
of the program as the pre-intervention and intervention phases,
respectively. Two types of causal effects can be estimated with
CITS: level change and slope change. In the current analysis, the
presence of a level change would mean a change in the number of
certified teachers immediately following the introduction of the
WeTeach_CS program that could not be explained by the overall
trend. A statistically significant slope change would indicate that
the intervention phase trend differs from the pre-intervention phase
trend. Similar level and slope changes for the comparison group
would suggest that the observed changes for the treatment group
were due to some other factor not accounted for in the model.

We hypothesized that the WeTeach_CS program would positively
impact the number of certified CS teachers in rural schools but that
this effect would happen gradually over time. Accordingly, we
expected results to reveal a statistically significant, positive change
in slope but no significant level change. We further expected null
results for changes in the level and slope of the number of certified
teachers in the comparison group.

In contrast to standard interrupted time series (ITS) analyses,
CITS seeks to rule out the possibility of unknown confounders
by including a comparison group that is similar to the treatment
group such that it would be influenced by the same unknown con-
founding factors as the treatment group but remain unaffected by
the treatment. We included teachers who obtained certification in
technology applications to serve as the comparison group for a cou-
ple reasons. First, technology applications is the certification most
similar to the computer science licensure in terms of the content
knowledge covered on the certification exam and the curricular con-
tent of the courses that a teacher holding that certification would be
qualified to teach. Second, technology applications and computer
science had relatively similar slopes for the pre-intervention phase.
For both computer science and technology applications, the number
of certified teachers steadily increased over the four years prior
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to the start of WeTeach_CS, whereas other certification fields (e.g.,
mathematics) showed less stable increases or no increases during
that time period.

3.1 Data Sources

Education data were collected through the Texas Educational Re-
search Center, a data clearinghouse that contains a broad range of
data on every public school and public school teacher and student
in the state. This clearinghouse includes data maintained by the
State Board of Educator Certification (SBEC), which oversees and
administers educator certifications for the state. To obtain a certifi-
cation for a particular subject area in Texas, teachers are required
to hold a bachelor’s degree, complete an approved certification pro-
gram, and pass the appropriate certification exam for that subject.
Teachers who already hold certification in one area can become
certified in another area by passing the appropriate content exam
and applying for certification. The SBEC maintains records of all
exam administrations and all certifications issued. Access to these
data allowed us to determine precise counts of the number of active
CS certifications each month across several years. By merging these
data with data on teacher assignment, we were able to determine
for all certified teachers the name and location of the school in
which they were teaching at the time they became certified and
each time point thereafter. We included data spanning six years,
from the beginning of the 2011-12 school year through the end of
2016-17.

To determine whether teachers taught in rural or urban/suburban
school districts, we used the district type designations developed
and assigned by the Texas Education Agency (TEA). These include
eight categories, which we list here in order from the largest, most
urban type of school districts to the smallest, most remote type
of districts: major urban, major suburban, other central city, other
central city suburban, independent town, non-metropolitan fast-
growing, non-metropolitan stable, and rural. (A ninth category,
charter school districts, was excluded from the analysis because
the criteria for inclusion in this category was entirely unrelated to
geographic location. Computer science teachers in this category
comprised approximately two percent of the total population of
certified CS teachers employed in the state at the start of the inter-
vention.) Because the TEA designation of "rural” includes only the
smallest, most remote school districts, we further grouped these
eight categories into two super categories: urban-suburban and
rural. To determine whether each of the eight TEA district types
should be classified as urban-suburban or rural, we considered sev-
eral factors, including average district size (in terms of student en-
rollment), average number of campuses per district, and remoteness.
Clear distinctions were evident between the first three categories
and the latter five in terms of district size and number of campuses
per district, as shown in Table 1. Visual inspection of the districts
within each category confirmed the remoteness of the latter five
district types. Thus, these five district types were designated as
rural in the current study.
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Table 1: District Type Designations

Designation TEA Avg.No.of  Avg.

in Current District Campuses Student

Study Type Per District ~ Enrollment
Major Urban 124 89,059

Urban- )

Suburban Major Suburban 26 22,066

ubu Other Central City 29 21,142

0O.C.C. Suburban 7 4,603
Independent Town 6 3,744

Rural Non-Met Growing 3 1,057
Non-Met Stable 4 1,687
Rural 2 388

4 RESULTS

Huitema’s [9] guidelines for two-stage model selection were fol-
lowed to conduct model fit tests to identify the appropriate param-
eters to include in the model and determine correct model specifi-
cations. Results from these tests suggested that a four-parameter
model that accounted for autocorrelated errors would be the best
fit to analyze the data. The resulting model assumed this form:

Yy = fo + P11t + PoLs + P3St + pres—1 +us (1)

where Y; is the number of certified teachers at time ¢; fy is the
intercept; f; is the pre-intervention slope; f is the level-change
at the time of the intervention; f3 is the change in slope from
pre-intervention phase to intervention phase; T; is the value of
the time variable at time ¢; L; represents the level-change and is a
dummy-code variable that denotes the phase at time ¢; S; represents
the slope-change variable and is defined as [Ty — (n1 + 1)]L; ny is
the number of observations in the first phase; ¢, is the first-order
autoregressive coefficient; e;—1 is the residual at time ¢ — 1; and u;
is the residual at time t.

Inspection of scatter plots of the data revealed evidence of sea-
sonal trends recurring annually. Specifically, the number of certified
teachers decreased slightly each year between the months of Au-
gust and September. These decreases are likely the result of some
teachers allowing their certifications to lapse before renewing them
again, since certifications are often set to expire at the end of the
school year. To account for this seasonality, we added 11 dummy-
coded variables to the model to indicate the month of the year
for each time point. Due to space constraints, we omitted these
variables from the results tables.

Table 2: Time Series Regression Results: Rural CS Teachers

B SE t p
Pre-intervention slope 033 0.15  2.14 .037
Level change 3.09 379 082 .418
Slope change 6.46 0.44 1459 .000
Constant 56.47 491 11.48 .000
p=.83
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Results showed that, as expected, the level change was not statis-
tically significant (#(57)=0.82, p=.418), indicating that there was no
immediate change in the number of certified CS teachers that could
not be explained by the overall trend (see Table 2). However, the
slope change was statistically significant (#(57)=14.59, p<.001), sig-
naling that the intervention slope differed from the pre-intervention
slope. The coefficient for this estimate (B=6.46) suggests that an av-
erage of approximately 6 more teachers were certified each month
in the intervention phase than in the pre-intervention phase. By
adding the slope-change coefficient to the coefficient for the pre-
intervention slope (B=0.33), we can calculate the actual slope for
the intervention phase. In doing so, we note that an average of
about 7 new teachers were certified each month during the time
after WeTeach_CS began compared to an average of less than 1
new teacher per month during the time before WeTeach_CS was
implemented. Figure 1 illustrates these trends.
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Figure 1: The number of certified CS teachers in rural areas
before and after the start of the WeTeach_CS program

To check whether these trends were similar or dissimilar to the
trends for urban-suburban school districts, we conducted the same
analysis for CS teachers in those areas. The statistical significance
of this analysis was similar to that of rural schools in that there was
no level change but there was a significant change in slope from
the pre-intervention to the intervention phase (#(57)=9.11, p<.001),
indicating that there was a significant increase in the rate at which
teachers in urban-suburban districts became certified after the start
of WeTeach_CS compared to the period of time before the program.
However, the rate at which teachers became certified in rural areas
was substantially larger than urban-suburban areas. Whereas the
number of certified CS teachers in urban-suburban areas increased
by 88% during the intervention phase, it increased by 169% in rural
areas during the same period (see Figure 2).

To ensure this difference between rural and urban-suburban
areas was unique to the intervention phase and not simply a contin-
uation of differences that existed prior to the intervention, we calcu-
lated the percent change for comparable periods of time before and
after the start of the WeTeach_CS program. Because the interven-
tion phase comprised a two-year period and the pre-intervention
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phase comprised a period of four years in the analysis, we calcu-
lated the pre-intervention percent change using just the two years
prior to the start of WeTeach_CS and found that the number of
CS teachers increased by 31% in urban-suburban areas and 34% in
rural areas during this time period. Thus, whereas the rate in which
teachers became certified in urban-suburban areas was twice as
large during the two years of the intervention phase than the last
two years of pre-intervention phase (63% vs 31%, respectively), it
was over five times greater in rural areas (178% vs 34%).
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Figure 2: The number of certified CS teachers in rural
and urban-suburban areas before and after the start of the
WeTeach_CS program

To aid in ruling out the presence of unknown confounding fac-
tors, an interrupted time series analysis was run on the comparison
group, rural teachers obtaining certification in Technology Applica-
tions. In conducting this analysis, we followed the same procedures
used to conduct the analysis for rural CS teachers. We followed
Huitema’s [9] two-stage model selection guidelines to determine
appropriate model specification, tested and accounted for auto-
correlation, and included month dummy variables to control for
seasonality. Results showed no statistically significance change in
level or slope (see Table 3). Thus, we conclude that there were no
changes in the number of certified Technology Applications teach-
ers immediately after the start of the intervention phase that could
not be accounted for by the overall trend, nor was there any differ-
ence between the trends in the intervention and pre-intervention

phases.

Table 3: Time Series Regression Results: Rural Technology
Applications Teachers

B SE t P
Pre-intervention slope 433 0.63 6.83 .000
Level change -2.24 1155 -0.19 .847
Slope change 1.27 173 073 467
Constant 1060.44 20.70 51.24 .000
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5 DISCUSSION

The results of this study demonstrate that large-scale collective
impact interventions can be effective in increasing the number of
certified CS teachers. Moreover, given the statistically significant
change in slope between the pre-intervention and intervention
phases, this study shows that program effects can be sustained
over time. Perhaps most importantly, the WeTeach_CS program
seemed to have had an even greater impact in rural schools, where
the number of certified CS teachers increased by 178% compared
to 63% in urban-suburban areas. As advocates make the case for
expanding K-12 CS education for all students in the United States,
initiatives that demonstrate success in rural locations will be of
great importance. There has been a focus on closing the digital
divide, in which rural schools have lagged behind urban-suburban
institutions in gaining access to technical advances. Unless effective
strategies in broadening participation in CS in rural districts are
developed and implemented, there is a risk that this divide will
perpetuate and even widen.

Whereas previous research on increasing the teacher workforce
in high-need areas focused on interventions enacted on relatively
smaller scales (typically at the district level), this study provides
evidence for the effectiveness of a large-scale intervention as it
was implemented across an entire state. WeTeach_CS appears to be
implementing a promising strategy yielding positive results across
a state which has large socioeconomic and geographic diversity.
We believe the distinguishing factors that have contributed to the
success of the WeTeach_CS program lay in its utilization of the
collective impact model as well as its combination of financial
incentives with ample available training. The results of this study
provide strong evidence for the value of collective impact models
for effecting change in rural areas and across large geographic
regions generally.

The unique impact on rural areas may have been due to three
challenges that rural school districts face to a greater degree than
urban and suburban districts. First, while many school districts,
regardless of geography, lack computer science expertise, school
districts in urban and suburban areas can often tap into nearby
institutions of higher education and industry partners to access
resources. Second, administrators and teachers in rural communi-
ties often have overlapping responsibilities due to the small school
size and simply lack the bandwidth to launch and support new
initiatives in which they lack personal expertise. Finally, it if of-
ten the case that rural school districts simply lack the ability to
afford expensive initiatives, such as implementing new courses and
training teachers in new content areas.

We theorize that WeTeach_CS has been more successful in rural
communities because it addresses these specific challenges. Col-
lective impact models like WeTeach_CS, which function at a large
scale and create collaborative networks of like-minded organiza-
tions, can be especially beneficial for educational institutions in
remote areas. With the collective impact model, small rural schools
can leverage the expertise of the network to compensate for limited
CS expertise within their organizations. While these schools are
geographically isolated, through collective impact they become
connected to institutions of higher education, industry partners,
and other teachers and schools all focused on addressing the same

1162

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

challenges. Because rural schools have relatively few teachers, it
is difficult for individual school districts to achieve an economy
of scale to support the creation and growth a CS program. How-
ever, in a collective impact model the investment can be distributed
across an entire statewide network, thus achieving the economy
of scale that would be too inefficient for rural districts to do on
their own. The CS certification preparation training provided by the
WeTeach_CS program purposefully leverages the strengths of the
collaborative network, allowing the local organizations to utilize
their existing relationships with teachers to propagate the online
course and promote in-person training sessions. This allowed the
initiative to scale more quickly into all areas of the state while
keeping the financial cost to schools and districts at manageable
levels.

Another distinguishing feature of the WeTeach_CS program is its
focus on training and incentivizing inservice teachers as opposed
to preservice teachers. This approach may have provided additional
benefits to rural districts since training existing teachers who are
already serving in rural schools means reducing the need to recruit
CS teachers to remote areas.

5.1 Limitations

Despite the fact that we used a comparative design to strengthen
claims of causal inference, it is important to consider the possi-
bility of other confounding factors. The existence of unknown
confounding factors would be more plausible if other programs or
interventions were implemented at the same time as WeTeach_CS
that were likely to influence the number of certified CS teachers
but not the number of certified Technology Applications teachers.
However, we believe the presence of such factors to be highly un-
likely given the fact that the WeTeach_CS program was the only
statewide CS program in effect at the time.

One limitation of this study is the fact that rules and regula-
tions concerning teacher certification vary from state to state in the
United States and country to country worldwide. Texas teacher cer-
tification rules enable currently certified teachers to take a subject-
matter certification exam and then add that subject to their teaching
certificate. This can be done without any additional coursework, al-
lowing for a relatively flexible teacher workforce in terms of adding
additional academic subjects to teaching credentials. Where certi-
fication requirements differ in other states, interventions like the
one examined in this study may need to be altered to be effective.

5.2 Conclusion

A major strength of this study lies in the fact that it was done at
scale, as the intervention canvassed the entire state of Texas and the
analysis took into account the whole of certification data in the state.
This has important implications for efforts to improve equitable
access to CS education. The lack of qualified teachers is one of the
foremost barriers to students’ access to CS courses in their schools.
This study is an important step forward in understanding how to
improve equitable access to CS education for all students because
it examines and demonstrates the effectiveness of a large-scale
collective impact model to build capacity in rural communities.
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