Theme Article: Machine Learning Acceleration

A
s]

ardware—Software
ueprint for Flexible
_earning Specialization

Deep

Josh Fromm

Thierry Moreau
University of Washington

Tiangi Chen
University of Washington

Luis Vega
University of Washington

Jared Roesch
University of Washington

Eddie Yan
University of Washington

Lianmin Zheng

University of Washington

Ziheng Jiang
University of Washington
Luis Ceze

University of Washington

Carlos Guestrin
University of Washington

Arvind Krishnamurthy
University of Washington

Shanghai Jiao Tong University

Abstract—This article describes the Versatile Tensor Accelerator (VTA), a programmable
DL architecture designed to be extensible in the face of evolving workleads. VTA achieves
“flexible specialization” via a parameterizable architecture, two-level Instruction Set
Architecture (ISA), and a Just in Time (JIT) compiler.

B Haroware speclauzaTion 15 a powerful way
to accelerate a known set of applications and
workloads. Unfortunately, deep learning (DL) is
anything but a static field, ie, the machine

Digital Object identifier 10,1 1089, MM 2019 2028962
Date of publication 16 fuly 2008 date of current version 10
September 2019,

02721732 € 2010 |EEE

Published by the IEEE Computer Sociaty

learning (ML) community constantly changes the
software they use to write models, the architec-
ture of models themselves, the operators used by
said models, and the data types they operate
over.

Researchers have primarily focused on two
approaches for accelerator designs, fixed function
accelerators and programmable accelerators
{also known as domain-specialized accelerators).

IEEE Micro

HW / BW Conatrainta WTA Deeign Space WTA Candidate Designa
Anchitacuam Knota H
AN BRI i e g 0,50 w 300 ACN v [, 1) @ (18, 18) ';
FRGA PP

pREA chasnele
Logie E

¥oof ursls n s LU - e g, 22 v 18 2 Design BEE & TG0

#3 Dasign COC @ 307TC0Ps
#4 Dacsign ODO @ 226000

BASM plincaton betwaen butiees, regleter flin, micm-op eacta

batah sime

I
| I Emdats typas
chanmal width

Figure 1. VTA provides flexibility with respect to hardware targets and DL models. This flow diagram shows the steps in
adapting a given model to a hardware backend by exploring VTA hardware configurations and performing operator
autotuning on the top hardware candidates. This process generates the binaries and hardware overlays necessary to

it Knohs
¢ Circult Pipsiicing: &0 for GEWM cove bebwean |11, 20| slages
PLL Frequency Seeece e, 950 v, 300w J030H

Meeds o pass plooe & muts
aned pis Bming chours

deploy VTA in any DL framework.

Current solutions offer compelling peak perfor-
mance, but they often fail to integrate into the
evolving ML landscape.

Fixed-model accelerators are commaonly spa-
tially and statically laid out, offering attractive
performance for certain kinds of workloads.
Unfortunately, their static nature rules out the
reuse of hardware resources, limiting support for
larger or newer models.,

In contrast, programmable accelerators
offer far more flexibility by leveraging Instruc-
tion Set Architecture (I15As). Due to their pro-
grammable nature, achieving peak performance
requires a competent DL compiler that can
map many different workloads onto a fixed
set of hardware intrinsics. Consequently, cus-
tomizing the behavior of these accelerators,
even when opensourced, greatly depends on
the availability of a transparent and modular
software stack.

A central challenge of prior work is how to
link innovations in specialization to rapidly
changing ML applications. This challenge is not
specific to computer architecture; it is present
at all levels of the stack. An end-to-end approach
requires integration of frameworks, systems,
compilers, and architecture in order to execute
state-of-the-art ML using hardware acceleration.
Peak floating point operations per second
(FLOPs) provide value only if a programmer can
access them.

We present versatile tensor accelerator (VTA),
an explicitly programmed accelerator paired with
a capable Just in Time (JIT) compiler and runtime
that can evolve in tandem with DL models without
sacrificing the advantages of specialization. The
VTAmakes the following contributions.

G

A programmable accelerator design that
exposes a two-level programming interface,

September/Dctober 2019

i.e, a high-level task [SA to allow explicit task
scheduling by the compiler stack, and a low-
level microcode 1SA to provide software-
defined operational flexibility. In addition,
the VTA architecture is fully parameteriz-
able, i.e., the hardware intrinsics, memories,
and data types can be customized to adapt
the hardware backend requirements.

+ An extensible runtime system for heteroge-
neous execution that performs JIT compilation
of microcoded kernels to provide operational
flexibility. For example, the VTA runtime ena-
bles us extend the functionality of VTA's origi-
nal computerwvision-centric design to support
operators found in style transfer applications
without requiring any hardware modifications.

+ A schedule autotuning platform that optimizes
data access and reuse in order to rapidly
adapt to the changes to underlying hardware
and to workload diversity.

We demonstrate VTA’s flexibility by adapting
different workloads for two edge class Field Pro-
grammable Gate Array (FPGAs). Figure 1 shows
how to map a workload to FPGAs using the VTA
accelerator and runtime. This process explores
VTA hardware variants and performs software
autotuning for each candidate design. The
resulting design and customized software bina-
ries can be easily integrated into a DL frame-
work. Finally, we evaluate the full system,
demonstrating VTA’s ability to outperform edge
Graphical Processing Unit (GPUs) using edge
FPGAs on inference workloads.

VTA HARDWARE-SOFTWARE STACK
OVERVIEW

Running an end-<toend workload on VTA
requires a complete software stack that can map

Machine Leaming Acceleration

| Deap Learning Frameworks | the computation to maximize data reuse. Sec-

. = programming productivity \

&y + @& @ - development and trainng of new models ond, it inserts thread parallelism that VTA's

runtime can translate into task-level pipeline

parallelism. Third, it partitions operators

- - - data kayout _ ~ B
Relay Graph Optimizer - oparator fusion into subcomputations, which can be mapped
: — ¢ - bit packing to highJevel hardware intrinsics, such as
L]

) - - scheduls ransfonmations bulk Direct Memory Access (DMA) load or

TVM Operstor Optimizer | - SEHPLATER P General Matrix Multiply (GEMM). TVM incor-

1 - lower schecule to hardware ntrinsics porates AutoTVM,! an automated schedule

) , optimizer, to guide our hardware candidate
JIT Compiler Runtime - praciics: platfonm-spaclfio cods

- Meatibifty bo generate diffarent kormels

WA,

| VTA Hardware Architecture

| - energy efficient axecution
| - expose knoba to alow for custom|zation

Figure 2. Overview of the software stack built for VTA. We
leverage the Apache TVM compiler stack to target VTA.

10

high-level models down to the programming inter-
face exposed by the VTA., We outline below and in
Figure 2 the layers of the VTA system stack, which
we built into the Apache Tensor Virtual Machine
(TVM) DL compiler stack (https://tvm.ai/).

1} Framework: Frameworks let programmers eas-
ily express models in a declarative fashion and
perform training at scale on standard datasets.
Frameworks like TensorFlow, PyTorch, and
MxNet have dgained widespread adoption,
allowing the community to easily share and
deploy models. TVM's ability to ingest models
from these popular frameworks enables the
generic compilation from frameworks to VTAL

2) Relay graph optimizer Relay’ is TVM's high-
level program representation. Relay general-
izes the computation graphs used by prior
frameworks and DL compilers into a full pro-
gramming language. The Relay optimization
pipeline performs generic optimizations, such
as operator fusion and partial evaluation.
Relay's design focuses on extensibility, a prop-
erty we use to extend Relay with optimizations
specific to VTA. To target VTA, we quantize
inputs to match its low-precision data types,
transform data layout, maximize data reuse,
and transform input and weight data layouts
to utilize VTA's tensor intrinsics.

%) TVM operator optimizer: TVM® automates the
tedious process of scheduling workloads
onto VTA accelerator variants. Scheduling is
important for multiple reasons. First, it tiles

exploration search for the best VTA candi-
dates given a workload.

4y AT compiler and runtime: The runtime performs
JIT compilation of accelerator binaries and
manages heterogeneous execution between
the CPU and VTA. The JIT compiler abstracts
binary compatibility by introducing one level
of indirection. We describe the compiler and
runtime in more detail in “JIT Runtime System.”

5) Hardware architecture: VTA Is a parameteriz-
able accelerator that speeds up computation-
ally expensive portions of the DL compute
graph. It is explicitly programmed by the com-
piler stack using a two-level programming
interface. The architecture is parameterized
by the size of the GEMM core, the shared
memory (SRAM) shapes, and data type widths.
A parameterized hardware architecture makes
it possible to retarget the same design to
devices with different hardware resources. We
describe VT A in more details in the “Hardware
Architecture” section.

VTA ARCHITECTURE AND JIT
RUNTIME

A successful implementation of a flexible DL
accelerator requires the codesign of hardware and
soltware stacks. We next describe, at a high level,
two components that we codesigned to achieve
this goal: the VTA hardware accelerator architec-
ture and the VTA JIT compiler and runtime.

Hardware Architecture

Figure 3 presents a highlevel overview ol
the VTA hardware organization. VTA consists of
four modules: fetch, load, compute, and
store. Together, these modules define a task
pipeline, which enables both high compute
resource utilization on compute-bound work-
loads, and high memory bandwidth utilization on

IEEE Micro

memory-bound workloads. These modules com-
municate over command queues and on-chip
SRAMs, which act as unidirectional data chan-
nels. Accesses to these memories are synchro-
nized via dependency queues to prevent data
hazards, such as reap after werme and wrire after
reap. Finally, the multistage architecture (load-
compute-store) can be used to build task pipe-
lines of arbitrary depth as long as dependencies
are properly managed.

Parameterizability: The VTA architecture is
fully parameterizable, i.e., the shape of the
GEMM tensor intrinsic can be modified to influ-
ence the utilization of hardware resources. Modi-
fying the shape of the nput, weight, and
accumulator tensors that feed the GEMM unit
directly affects how many arithmetic units to
instantiate and how many SEAMs rean banks
need to be exposed. In addition, each data type
can be costomized to a different integer preci-
siomn, i.e., weight and input types can be 8 hits or
fewer, whereas the accumulation type can be
32 bits or fewer. Control of integer precision ena-
bles us scale arithmetic density on the chip
when resources are constrained.

Exposing taskdevel pipeline parallelism Task-
level pipeline parallelism (TLPP) is a vital VTA
feature because it enables simultaneous use of
compute and memory resources to maximize
their utilization. TLPF is based on the paradigm
of access-execute decoupling® To extract TLPP,
we partition tasks into two mutually exclusive
execution contexts, so that concurrent load,
compute, and store operations do not interfere
with one another. Virtual threads® make this par-
titioning intuitive in TVM. To guarantee timely
and correct execution of decoupled access-exe-
cute instruction streams, we encode dependency
information into task instructions. This results in
memory latency hiding for compute-bound work-
loads (e.g., 2-D convolutions).

Task level ISA: VT A supports a high-level task
ISA that encodes multicycle compute and mem-
ory operations, including LOAD, GEMM, ALL, and
STORE instructions. LOAD and STORE describe
how data from Dynamic Random Access Mem-
ory (DRAM) is loaded and stored into on-chip
SRAMs. Strided memory access is supported to
load tensor tiles without modifying memory lay-
out. GEMM and ALU instructions invoke micro-
coded kernels based on micro-op instructions,

September/Dctober 2019

LA GOMPUTE STORE
CMDQ Guoa CMDQ
LO—+CMP O CMF—=5T Q

- COMPUTE MODLLE |
(=]

LOALD STORE
MODULE MODULE
CMP DO u.'r—rl:urf

——+[_WEIGHT EUFFER_|

Figure 3. VTA hardware organization. VTA consists of four
modules that communicate via queues and shared memories
(SRAMS). This defines a task pipeline, which helps maximize

compute resource utilization.

which describe the data-access patterns over
inputs, weights, and biases tensors that define a
given DL operator.

Asimple execution pipeline in VTA follows.

+ The fetch module loads task instructions
from DRAM and dispatches them according
to their tyvpe to the corresponding command
queues connected to load, compute, and
store modules.

* The load module loads input, weight, and bias
tensor tiles from DRAM into on-chip memories.

* The compute module loads a microcoded
kernel from DRAM into on-chip memory.

+ The compute module executes the microcoded
kemnel to perform either a dense linear algebra
computation via the GEMM core or a pairwise
arithmetic operation via the Tensor ALLL

+ The store module reEans results processed by
the compute module and wrmes them to DREAM.

Compute module: Two functional units perform
operations on the register file, ie., the tensor ALL
and the GEMM core. The tensor AL performs
element-wise tensor operations, such as addition,
activation, normalization, and pooling tasks. The
GEMM core performs high-arithmeticintensity
matrix multiplication over input and weight tensors
to implement common DL operators including 2-D
convolutions or fully connected layers.

The GEMM core performs matrix multiply
operations at a pipelined rate of one input-
weight matrix multiplication per cycle. Its lodic
is implemented as parallel vector dot-product

11

12

Machine Leaming Acceleration

using reduction trees, but it can be substituted
with other implementations, such as systolic
arrays. The GEMM core defines a low-level ten-
sor hardware intrinsic that is exposed to the TVM
compiler stack. The TVM uses fensorization.” an
automated approach to mapping DL operators,
such as 2-D convolutions, down to fixed tensor
hardware intrinsics.

Microcode ISA: The compute core READS
instructions from the micro-op cache, which
describes how to perform computation over
data. These micro-ops provide no control flow,
Therefore, instructions must be unrolled to
express repeatable data access stencils. The two
tvpes of compute micro-ops are ALU and GEMM
operations. To minimize the footprint of micro-
op kernels in the on-chip SRAMs and avoid the
need for controlflow instructions, the compute
core executes micro-op sequences inside a two-
level nested loop that computes the location of
each tensor register via an affine function.

JIT Runtime System

VTA's JIT runtime enables the cooperative
execution of DL workloads between a CPU host
and the accelerator. Its design adheres to five
ohjectives:

1} enable heterogeneous execution;
2) lower compiler design complexity;
3) overcome physical limitations;

4) reduce binary bloat;

3) enable future proofing.

Heterogeneous execution: One challenge of
fixed-function accelerators is model evolution
because they are generally built for specific mod-
els. The heterogeneous execution schedules
operators into appropriate targets (e.g., CPUs or
VTA) depending on their affinity for different
types of computation; for instance, it is well
known that the first convolutional layer in maost
CNMNs have low arithmetic intensity, and there-
fore, execute efficiently on CPUs. Heterogeneous
execution also provides a fallback mechanism
for supporting emerging operators that are not
vet supported by VTA

Compiler design: By adding a level of indirec-
tion, JIT compilation eliminates the need to wrire
compiler code-generation backends, which can be
tedious to maintain for different programmable
accelerators. The JIT compiler exposes a high-

level Application Programming Interface (APT) to
TVM to lower schedules onto abstracting away
VTA wvariant-specific architectural details. This
enables us extend the TVM compiler support we
built for VTA to cover future variants of different
shapes and sizes.

Physical limitations: The JIT runtime gener-
ates and manages microkernels on the fly. It con-
trols when to load kernels from DRAM into the
accelerator-limited micro-op cache. This elimi-
nates micro-op memaory physical limitations and
enables us support large models, even if all
microkernels for all layers do not fit in SRAM at
once. It also lets us trade area used by the
micro-op cache for other resources, such as
data storage or compute units.

Binary bloat: Delaying microkernel generation
to the JIT compilation stage minimizes binary
bloat, Since VTA's architecture has limited sup-
port for control flow, microkernels must be
unrolled, which can produce fairly lardge bina-
ries. In addition, microkernel JIT compilation
expresses binaries for heterogeneous execution
in a single IS4, ie instead of shipping a hybrid
binary, we ship only one CPU binary to perform
accelerator binary JIT compilation at runtime.

Future proofing. Advancements in DL have
described the prevalence of dynamic neural net-
work workloads that incorporate control flow.
Additionally, advances in systems show trends
toward heterogeneous multiaccelerator systems
and scale-out acceleration. Having a runtime that
handles dynamic decisions across heterogensous
platforms will simplify the design of hardware
accelerators like VTA, and make future model sup-
port mainly a software-related endeavor.

VTA HIERARCHICAL OPTIMIZATION

Hardware Exploration for Varying FPGA Sizes

One way to showcase VTA's architectural
flexibility is to target different FPGA platforms.
FPGAs are becoming increasingly accessible,
with sub-5100 development boards, and accessi-
ble FPGA cloud computing instances.

Our VTA design offers multiple architectural
customization parameters, as shown in Figure 1.
Architectural knobs include GEMM hardware
intrinsic shape, data types, the number of parallel
arithmetic units in the tensor ALU, ALU opera-
tions, and Block Random Access Memory (BRAM)
distribution between on-chip memories. Circuit

IEEE Micro

knobs include PLL frequency and the degree of
hardware pipelining to close timing at higher fre-
quencies. These customization knobs define a
hardware design space with hundreds to thou-
sands of individual designs. This design space can
be exhaustively explored to find the best candi-
date for a particular workload. We perform this
exploration in a sequence of stratified steps. First,
we use a simple FPGA resource model to prune
infeasible VTA parameterizations. After pruning,
each candidate hardware design is compiled,
placed, and routed. We pick the best feasible
design for each {fpgax diype x batch} combina-
tion, but our exploration typically returns a hand-
ful of promising candidates; the rest of the designs
either vield low peak performance or fail place-
ment, routing, or timing closure. For this final set
of designs, we denerate optimized schedules using
operator autotuning,? and we use these schedules
to obtain the workload's performance profile.

An analytical model of peak performance is
used to initially filter hardware designs based on
theoretical throughput and frequency assuming
compute resources are 100% utilized. However,
assuming 100% utilization of compute resources
by a particular operator is often inaccurate. For
example, depending on the workload mix, opera-
tors like convZd with large window sizes may
exhibit high arithmetic intensity (measured in
Op/Byte). Such operations translate to high utili-
zation and are, therefore, close to peak perfor-
mance. Operators with low arithmetic intensity
(e.g., convZd with a window size of 1) are gener-
ally memory bandwidth constrained. For such
operators, we use task-level pipeline parallelism
to mitigate performance loss resulting from wait-
ing on memaory.

Schedule Exploration for Operator Autotuning
Schedule autotuning is the process by which an
automated search algorithm attempts to optimize
a given program or workload toward peak hard-
ware performance. We perform autotuning by
applying different memory tiling, loop transforma-
tions (e.g., splitting, reordering, and unrolling),
vectorization/tensorization, and parallelization
strategies? We then use the TVM compiler to
express schedule templates for each operator (e.g.,
convZd, convZd transpose, group_convad,
fi) we support in hardware. We use TVM's auto-
mated scheduling library to obtain schedules
that maximize performance for a given

September/Dctober 2019

combination of operator, tensor shape, and hard-
ware parameterization.

We used the XGBoost! search algorithm to
find the best schedules for each hardware variant
in a limited number of trials. Each workload's
layers were then tuned for each hardware candi-
date. Aggregate inference time was used to select
the best VTA hardware variant for a given model.

It takes several hours to exhaustively tune a
network on a single hardware variant. Given the
large number of VTA hardware designs to test and
model architectures to support, autotuning
search quickly becomes intractable without care-
ful design. Minimizing full-network autotuning
time across multiple hardware candidates intro-
duces a hierarchical prioritization problem. We
approach this challenge by applying a hyperpara-
meter optimization technique that is based on
SuccessiveHalving.® Instead of choosing from
hyperparameters that define a network architec-
ture, we apply this technique to choose from VTA
design candidates. We simultaneously inspect
how the relative performance of each hardware
design evolves for a given workload over each iter-
ation of the optimization algorithm. Throughout
optimization we use a roundrobin policy to
update latency estimates across all operators for
each hardware design.

Full Network Optimization Case Study

Figure 4 shows an example of hierarchical
optimization for the ResNet-18 workload based
on hardware exploration and schedule explora-
tion techniques described previously. We per-
form these optimizations over a set of VTA
candidates generated using W8AS (8-bit weights,
B-hit activations) data representations. We select
eight promising hardware candidates and apply
SucecessiveHalving to prune designs that do
not appear promising. Similar to hyperparameter
optimization for neural network training, this task
is difficult since the relative performance differen-
ces hetween hardware designs may initially be
small. After a moderate number of iterations,
SuccessiveHalving is able to converge to the
best candidate hardware design.

This case study showcases VTA's ahbility to
quickly navigate a nontrivial space of accelerator
configurations for a given workload. As accelerator
configurations change, so does the software that
programs them. This joint-optimization problem
can be solved only with a flexible stack.

13

Machine Leaming Acceleration

- Full Reshet-18 Network Optimization with Successive Halving

Sum of Latancy (5]

plenes

3

WTA Deslgn ©
WTA Dasign 1
WTA Dasign 2
A Dasign 3
WTA Dasign 4
VTA Dasign 5
A Dasign €
A Dasign 7

2000 3000 a000 000
Optimization Rkerations (step ske=1 [teration]

1000 B

Figure 4. Example of hardware design exploration and schedule
autotuning on a complete ResMat-18 inference workload run on
Ultra®6 FPGA. The exploration begins with promising VTA
hardware variants and convarges to the optimal hardware design
while using a fraction of the optimization time required to
exhaustively evaluate each hardware design.

20040 4

Timie cost [ms)

504 4

EVALUATION

s the landscape of DL continues to evolve, it
is important to support emerging models, We
evaluate VTA's ability to support two recent
maodel architectures beyond standard deep con-
volution nets. First, we evaluate MobileNets, a
variant of MobileNet that groups convolution
channels by the vector factor of the VTA's
GEMM core. Second, we evaluate DCGREN, a gener-
ative adversarial network model that is used for
image-to-image translation and generation.

These models require nontrivial extensions to
support new operators. MobileNetG reguires

4

-

LE
Mabiletet ResMet=1B

TWM Cortax AS
VTA PyngLl

TWM Cortex AS3
BEMCL Mal-TaBn
WTA Ultrads

Reshet=34 AesNet=50 DCTEAN

Figure 5. End to end performance evaluation over multiple CPU,
GPU, and FPGA-equipped edge systems. For comparable
systems, VTA provides a significant performance edge over
conventional CPU and GPU-based inference.

14

support for grouped convolutions that exhibit
block sparse patterns on channel groups. DOGAN
requires support for 200 convolution transpose,
which has a spatial sparsity pattern. Accelerators
must support these access patterns to avoid
unnecessary computations and achieve maximum
performance. The runtime can readily make use
of schedules to generate microkemels that sup-
port these access pattems without changing the
hardware.

We integrated VTA into Apache TVM and eval-
uate five DL models on two FPGA devices with dif-
ferent resource budgets. We import all models
from MxNet® a DL framework used by Amazon. It
is worth noting that Relay's model importers pro-
vide access to a wide variety of other front-ends,
and VTA is not limited to MxNet.

Figure 5 compares performance across these
models, showing VT A-accelerated execution
versus highly optimized ARM CPU and GPL plat-
forms that rely on industry-strength DL libraries,
ie., ARM Computelib (ARM CL) and TVM. The
ARM Cortex-A%9, ARM Cortex-A53, and Mali-T86(0
GPU are taken from the Pyng-Z1 ($65), Ultra-96
(5250), and the Firefly-RE3399 ($200) development
boards. For VTA hardware variants, we use an
automated 8-bit integer scaling and translation
pass from 32-hit floating-point (FP32) with negligi-
ble accuracy degradation. For our CPU baselines,
we use the TVM autotuner to obtain FP32 CPU ker-
nels that take advantage of NEON vectorization,
multithreading and state-of-theart scheduling
tricks (spatial tiling, Winograd transform, etc.).
For our GPL baseline, we use the ARM CL v18.03
and exploit 16-hit floating-point (FP16) library sup-
port. At the time of the evaluation, ARM CL lacked
support for conv2d transpose for DCGANs. This
motivates our flexible specialization approach to
stay ahead of the curve while targeting unconven-
tional workloads.

Figure 5 shows end-to-end results that can be
discussed in two groups of comparable devices
in terms of cost: first, VTA on the Pyng versus
Cortex-A9 (sub-5100) and second, VTA on Ultra%é
versus Cortex-AS3 and Mali-TR60 GPU {5200~
£250). First, VTA on the Pyng-Z1 outperforms the
Cortex-A9 CPU by 3.0x, 44x, 5.3%, and 2.1x on
MobileNets, Reslet-18, Reslet-34, and
DCGAN, respectively. Second, VT A on the Ultra-96
outperforms the Cortex-AS3 by 2.5x, 4.7x, 6.0=,
3.8x, and 11.5x on MobilsNets, ResNet-18,
EesNet-34, ResMet-50, and DCGRN,

IEEE Micro

respectively, In addition, VTA on the Ultra-96 out-
performs the mobile-class Mali-T860 GPU by
2.1%, 2.5x, 3.2x, and 2.1x on MobileNats,

FesNet-18, BResNet-34, and BResNet-50,
respectively.
Owerall, VTA demonstrates its software-

defined architectural flexibility, offering high
performance while forming an evolutionary path
forward for accelerating diverse workloads on
various devices.

CONCLUSION

This article presented a hardware-software
blueprint for “flexible specialization,” L.e., the idea
that efficiency gains from hardware specialization
are not mutually exclusive with workload flexibil-
ity. We introduced VTA, a parameterizable DL
architecture that is explicitly programmed via a
tworlevel [SA. We codesigned the accelerator with
a runtime system that JIT compiles microkernels
to provide operational fexibility. Using this
approach, we can support less conventional opera-
tors, such as convolution transpose and grouped
convolutions without needing to make hardware
changes. Our evaluation showed that the VTA
effectively maps multiple workloads onto different
PGAs by leveraging off-thesheli deep learning
compilers to quickly integrate optimized software
with specialized hardware. Finally, we demon-
strated that a well-integrated hardware and soft-
ware stack helps us perform fullstack optimization

and exploration to automate model4o-gates compi-
lation on FPGAs,

ACKNOWLEDGMENTS

The authors would like to thank members of
Sampa and SAMPL groups at the Allen School for
their feedback on the work and manuscript. This
work was supported in part by the Google Ph.D.
Fellowship for Tiangi Chen; in part by the National
Sclence Foundation under Grants CCF-1518703,
CNS-1614717, and CCPF-1723352; in part by the Cen-
ter for Resilient Infrastructures, Systems, and Pro-
cesses, and Applications Driving Architectures
(ADA), two of six centers in Joint University Micro-
electronics Program (JUMP); in part by a Semicon-
ductor Research Corporation program sponsored
by Defense Advanced Research Projects Agency
(DARPA); and by the gifts from Xilinx, Intel (under
the Computer Assisted Programming for

September/Dctober 2019

Heterogeneous Architectures (CAPA) program),
Oracle, Amazon, Qualcomm, NVIDIA Corporation,
and other anonymaous sources,

W REFERENCES

1. T. Chen and C. Guestrin, *XGBoost: A scalable tree
boosting system,” in Proc. 22nd ACM int. Conf. Know,
Discovery Data Mining, 2016, pp. 785-794.

2. T. Chen et al, "MxMNet A flexible and efficient
machine lkeaming library for heterogeneous distributed
systems,” in Proc. Meural Inf, Frocess. Syst.,
Workshop Mach. Learn. Syst., 2015,

3. T. Chen et al, "TVM: An automated end-to-end
optimizing compiler for deep learning,” in Froc. 13th
LISENIX Symp. Oper. Syst. Des. implementation,
2018, pp. 578-594.

4. T.Chan et al, "Learning to optimize tensor programs,”
in Proc. 32nd Int. Conf. Neural Inf. Process. Syst,
pp. 3389-3400, 2018,

5. K. Jamigson and A Talwakar, “Non-stochastic best arm
identification and hyperparameter optimization,” in Froe.
int. Canf. Arti. infall. Stafist, 2016, pp. 240-248.

6. N. P. Jouppi
analysis of a tensor processing unit,” in Proc. 44th ACM
Annu. Int. Symp. Comput. Archit, 2017, pp. 112

7. J. Boesch at al, “Relay: A new ir for machineg learning
frameworks,” in Froc. 2nd ACM Int. Workshop Mach.
Laarn. Program. Lamng., 2018, pp. 58-68.

a. J. E. Smith, "Decoupled access/executa computer
architecturas,” in Proc. Sth Annu. Symp. Comput.
Archit., 1982 pp. 112-119.

gt al, “In-datacenter performance

Thierry Moreau is a postdoctoral researcher at the
University of Washington. He helps run the multidisci-
plinary Systems, Architectures and Programming
Languages for Machine Learning Laboratory group
on systems, architectures, machine leaming, and
programming languages for machine learning. His
research interest focuses on building platforms and
abstractions that make hardware accelerators easier
to adapt and deploy as application trends evolve. He
lzads the YTA open source DL accelerator effort and
serves as an Apache TVM PMC member. He has a
BASc in computer engineering from the University of
Toronto, and an MS and a PhD in computer science
and engineering from the University of Washington.
Contact him at: moreau@es. washington. edu.

Tiangi Chen iz working toward a PhD at the Paul
G. Allen School of Computer Science and

15

16

Machine Leaming Acceleration

Engineering Department, University of Washington,
working on the intersection of machine learning
and systems. He has led the creation of many
important machine learning systems, including
XGBoost, Apache MxXMNet, and Apache TVM. He is
a recipient of Google PhD fellowship. Contact him
at: tgchen@cs. washington.edu,

Luis Vega is working toward a PhD at the Paul G.
Allen School of Computer Science and Engineering
Departrment, University of Washington. His research
interests include computer architecture, hardware
accelerators for machine leaming, and domain-spe-
cific hardware languages. He has an MS in electrical
and computer engineering from the University of Kai-
serslautern, Germany. Contact him at: vegaluis@cs.
washington.edu.

Jared Roesch is working toward a PhD at the Uni-
varsity of Washington, where he works on a variety of
topics, including machine |earning, programming
languages, computer architecture, formal methods,
and moreg. He has a BS in computer science from the
University of California, Santa Barbara and an MS
from the University of Washington. Contact him at:
jroesch@cs washington.edu.

Eddie Yan is working toward a PhD at the Paul G.
Allen School of Computer Science and Engineering
Department, University of Washington. His current
research interest includes deep leaming optimization
with an eye toward automatic optimization techni-
gues. He has a BS in electrical engineering from the
University of California, Los Angeles. Contact him at:
eqy@cs.washington.edu.

Lianmin Zheng is currently an undergraduate
student at Shanghai Jiao Tong University, His
research interest includes the intersection of
maching leaming and computer systems. He par-
ticipated in TVM project during his internship at the
University of Washington. Contact him at: lianminz-
heng@gmail .com.

Josh Fromm is working toward a PhD at the Uni-
varsity of Washington, where he specializes in
enabling deep learning on resource-constrained
platforms through the development of novel architec-
tures, approximating algorithms, and hardware
aware scheduling. He has a BS in electrical engi-
neering and computer science from the California
Institute of Technology. Contact him at jwfrom-
m&uw.edu.

Ziheng Jiang is working toward a PhD at the Uni-
varsity of Washington. His research interests include
theories and practices of large-scale computer sys-
temn and its intersection with machine learning, in par-
ticular deep-learning. He has a BS from Fudan
University, where he was a member of Fudan NLP
Lab. Contact him at: ziheng@cs.washington.edu.

Luis Ceze is cumently a professor with the Paul G.
Allen School of Computer Science and Engineering
Department, University of Washington. His research
interests focus on the intersection between computer
architecture, programming languages, maching learr-
ing, and biology, currently focusing on end-to-end sys-
tem optimizations for efficient machine leaming and
DiMA-based data storage and computing. He codirects
the Mdecular Information Systems Laboratory, and the
Systemns, Architectures and Programming Languages
for Machine Learning Laboratory. He has a BEng and
an MEng from the University of Sao Paulo, Brazil, and a
PhD in computer science from the University of llinois at
Urbana-Champaign. He is a Senior Member of IEEE
and ACM, Contact him at: luisceze@cs washington.edu,

Carlos Guestrin is currently the Amazon Professor
with Machine Learning in Computer Science and
Engineering Department, University of Washington.
He codirects the Systems, Architectures and Program-
ming Languages for Machine Leaming Laboratory, an
interdisciplinary ML research group addrassing prob-
lems in the intersection between ML, systems, com-
puter architecture, and programming languages. He
also codirects the MODE Laboratory. He is also the
Senior Director of Machine Learning and Al at Apple,
where he runs the central ML team for the company,
after the acquisition of Turi, Inc. (formerly Graphlab
and Dato), a company he cofounded, which dewval-
oped a platform for developers and data scientists to
build and deploy inteligent applications. Contact him
at: guestrindcs.washington.edu.

Arvind Krishnamurthy is currently a professor
with the Computer Science and Enginesring Depart-
ment, University of Washington. His research interests
include all aspects of buiding practical and robust
computer systems, currently focusing on to develop
way's to dramatically improve the performance of appli-
cations deployed inside datacenters by integrating
hardware innovations, rearchitecting across all layers
of the software stack, and developing new algorithms
for effective use of computing resources. He has a
BTech from Indian Institute of Technology, Madras
and a PhD in computer science from the University of
California Berkeley, Contact him at: arvind@cs. wash-
ington.edu.

IEEE Micro

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

