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GWASs for EKG phenotypes have found >500 risk variants1, 
the majority of which are noncoding and enriched in regula-
tory elements of the genome. Detecting the causal variants 

and the molecular mechanisms that drive these associations has 
been challenging2; therefore, only a handful of genetic associations 
with EKG traits have been explained by variants with clear molecu-
lar mechanisms3,4.

Altered TF binding has been proposed as one of the major  
mechanisms by which noncoding regulatory variants are causally 
associated with complex traits5–7. NKX2-5 is an evolutionarily con-
served, cardiac-specific TF, which, through cooperative binding 
with other core cardiac TFs such as TBX5 and GATA4, regulates 
heart development8–11 and is implicated in a spectrum of human 
congenital heart defects12. Moreover, common noncoding vari-
ants near NKX2-5, TBX5 and MEIS1 have been associated through 
GWASs13–17 with EKG phenotypes, indicating that variation in 
developmental pathways plays an important role in these traits. 
Therefore, it is likely that genetic variation affecting the binding of 
developmental cardiac TFs also influences the heritability of EKG 
traits. However, this hypothesis has not yet been examined on a 
genome-wide scale.

Because the function of regulatory variants that contribute to 
common traits is often cell type specific, attention to the appropriate 

cellular model with which to test the variants is important. Human 
induced pluripotent stem cell (iPSC)-derived cell types have recently 
emerged as a novel platform to analyze the functional consequence 
of genetic variants on molecular phenotypes in target cell types. 
iPSCs show variation in molecular phenotypes associated with their 
genetic background18–20, making them a suitable model to perform 
expression quantitative trait locus (eQTL) studies19–24. However, 
there are only a few studies showing similar utility of iPSC-derived 
cardiomyocytes (iPSC-CMs) to study regulatory variations22, with 
potential limitations being cell type heterogeneity that arises from 
directed differentiation24–26, as well as the functional immaturity of 
iPSC-CMs27. Thus, while human iPSC-CMs are a promising model 
system, it is yet to be shown that they could enable the identification 
and characterization of regulatory variants that play important roles 
in cardiac traits.

Here, we conducted a genome-wide analysis to identify regu-
latory variants affecting the binding of NKX2-5, and investigated 
their role in cardiac gene expression and EKG phenotypes. We 
generated iPSC-CM lines from a pedigree of seven whole-genome-
sequenced individuals and profiled them with a variety of func-
tional genomic assays, including RNA sequencing (RNA-Seq), assay 
for transposase-accessible chromatin using sequencing (ATAC-Seq) 
and chromatin immunoprecipitation sequencing (ChIP-Seq) of 
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both NKX2-5 and histone modification H3K27ac. After identify-
ing heterozygous sites that showed allele-specific effects (ASEs),  
we investigated NKX2-5 ASE-SNVs in detail by examining whether 
they altered cardiac TF motifs and whether they were enriched  
for eQTLs and EKG GWAS single-nucleotide polymorphisms 
(SNPs). By applying a fine-mapping statistical approach to three 
GWAS studies (heart rate, atrial fibrillation and PR interval), we 
prioritized putative causal variants at known (as well as novel)  
loci. As a proof of principle, we experimentally interrogated  
two NKX2-5 ASE-SNVs, providing evidence that they are causal 
variants underlying genetic associations with EKG traits. Our data 
show that variation affecting the binding of NKX2-5 and other  
cardiac TFs probably serves as a molecular mechanism underly-
ing the control of numerous EKG loci across the genome, and that  
fine-mapping approaches, combined with molecular phenotype 
data from iPSC-CMs, can be used to prioritize causal variants in 
EKG GWAS loci.

Results
Generation and functional genomic profiling of iPSC-CMs. We 
generated iPSC-CMs from seven individuals in a three-generation 
family that included three genetically unrelated subjects and two 
parent–offspring quartets (Fig. 1a and Supplementary Table 1). In 
total, we differentiated nine iPSC lines28 into 26 iPSC-CM samples: 
12 were harvested at day 25 after lactate selection to obtain purer 
cardiomyocytes, and 14 were harvested at day 15, of which one was 
lactate purified (Fig. 1a). After confirming the expression of car-
diac markers by flow cytometer and immunofluorescence (TNNT2 
and MYL7; Supplementary Fig. 1a,b and Supplementary Note), we 
further examined the iPSC-CMs, as well as the iPSCs from which 

they were derived, by comparing their functional genomics profiles 
(RNA-Seq, ATAC-Seq and ChIP-Seq of H3K27ac and NKX2-5;  
Supplementary Tables 2 and 3) with those from the Roadmap 
Epigenomics Project14. We confirmed that the iPSC-CMs and 
iPSCs, respectively, expressed cardiac-specific and stem cell-specific 
genes and epigenetic signatures (Fig. 1b, Supplementary Note and 
Supplementary Figs. 1c and 2).

Genetic background underlies the variability of molecular  
phenotypes in iPSC-CMs. Experimental sources of variation 
across the iPSC-CMs, such as differentiation efficiency, may con-
found the effects that are driven by different genetic backgrounds24. 
To identify sources of variability in our iPSC-CM datasets, and to 
evaluate the contribution of genetic background to this variation 
compared with the iPSCs, we performed principal component 
analysis on each of the RNA-Seq and ChIP-Seq datasets, and tested 
whether known covariates, such as batch, TNNT2 expression (for 
iPSC-CMs) and subject, were associated with each of the top ten 
principal components. While we observed variation in both the 
iPSC-CMs and iPSCs due to differentiation efficiencies and/or 
batch effects (Supplementary Fig. 3), the average sample-to-sample 
Spearman correlation of molecular phenotypes was higher between 
samples of the same individual than between different individuals 
(Mann–Whitney U-test, P < 0.05). Additionally, samples of related 
individuals tended to be more correlated than samples of unrelated 
individuals (Fig. 1c–g). Of note, the iPSC-CMs showed slightly 
greater variation (that is, lower correlation values) than the iPSCs, 
probably due to cellular heterogeneity24–26. These analyses show that 
genetic background was a major driver of variability in our iPSC-CM  
molecular datasets.
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Fig. 1 | Generation and characterization of iPSCs and iPSC-CMs by gene expression and epigenetic profiling. a, Pedigree showing the relationships  
of the seven individuals (left), along with a summary of the derived cell types analyzed (right). b, Principal components (PCs) 1 and 2 of RNA-Seq (15,725 
genes) from iPSCs (29 samples from seven individuals), iPSC-CMs (27 samples from seven individuals), Roadmap stem cell lines (H1-hESC, HUES64,  
iPS-20b and iPS-18) and human tissues (right ventricle, left ventricle, right atrium and fetal heart). hESC, human embryonic stem cell. c–g, Distributions  
of the average Spearman correlation coefficients between pairs of samples across the 1,000 most variable genes (c and d) or peaks (e–g) for the  
indicated molecular phenotypes. Medians (white dots), interquartile ranges (thick bars) and the rest of the distributions (lines) are shown within each 
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NKX2-5 peaks commonly show ASEs. We examined the fraction of 
genetic variants associated with variable NKX2-5 peaks compared 
with the other molecular phenotypes by identifying heterozygous 
sites that showed ASEs within each individual. First, we merged the 
sequencing reads of different samples from the same subject and 
calculated the ASEs. Then, when multiple individuals carried the 
same heterozygous SNV, we combined the ASE results across indi-
viduals in a meta-analysis. For each phenotype, we tested between 
19,371 (NKX2-5) and 123,151 (H3K27ac in iPSC-CMs) heterozy-
gous SNVs within 12,492–57,631 regions (genes or peaks) (Fig. 2a) 
and identified the fraction of SNVs with significant imbalance at a 
false discovery rate (FDR) < 0.05 (ASE-SNVs) (Fig. 2b). The differ-
ent phenotypes showed a difference of >30-fold in the percentage 

of ASE-SNVs, with NKX2-5 ChIP-Seq having the highest fraction  
(10% of tested SNVs), while H3K27ac (0.7% in iPSC-CMs) and 
ATAC-Seq (0.3% in iPSC-CMs) had considerably lower frac-
tions. The fact that NKX2-5 ChIP-Seq was so much more efficient 
for detecting ASE-SNVs was largely due to its higher effect sizes,  
consistent with the fact that the assay directly measures differen-
tial TF binding, whereas ATAC-Seq and H3K27ac measure altered  
chromatin accessibility and histone modification, respectively, which 
are indirect consequences of differential TF binding (Supplementary 
Note and Supplementary Fig. 4). Shared ASE-SNVs between  
iPSC-CMs and iPSCs (519 in RNA-Seq and 43 in H3K27ac) showed 
high concordance of ASE effects (Fig. 2c)—defined as the mean pro-
portion of the alternate allele across heterozygous sites (Spearman 

Shared
iPSCs/CMs

0 0.4 0.8

0

0.4

0.8

ASE iPSCs

A
S

E
 iP

S
C

-C
M

s

mRNA
r = 0.94

P = 1 × 10−242

H3K27ac
r = 0.85

P = 3 × 10−13

a b c

mRNA H3K27ac NKX2-5d e f

Spearman
correlation

–log10[FDR]

NKX2-
5 

CM
s

H3K
27

ac
 C

M
s

H3K
27

ac
 iP

SCs

m
RNA C

M
s

m
RNA iP

SCs

H3K27ac iPSCs

H3K27ac CMs

NKX2-5 CMs

20 60

−2 0 1 2

−2

−1

0

1

2

−1

β 
cl

os
es

t H
3K

27
ac

β NKX2-5 ASE

g h

ASE loci

Neighboring locir = 0.58
P = 1.7 × 10–77

0 0.4 0.8

−3

−1

1

2

3

Alt. proportion (ASE)

E
ffe

ct
 s

iz
e 

(β
)

iPSCs
r = 0.45

P = 3 × 10−49

CMs
r = 0.4

P = 3 × 10−32

0 0.4 0.8

−3

−1

1

2

3

Alt. proportion (ASE)

iPSCs
r = 0.58

P = 2 × 10−24

CMs
r = 0.57

P = 5 × 10−48

0.0 0.4 0.8

−3

−1

1

2

3

Alt. proportion (ASE)

CMs
r = 0.69

P = 9 × 10−240

−2

0

−2

0

−2

0

RNA-S
eq

 (i
PSCs)

RNA-S
eq

 (C
M

s)

H3K
27

ac
 (i

PSCs)

H3K
27

ac
 (C

M
s)

ATAC (i
PSCs)

ATAC (C
M

s)

NKX2-
5 

(C
M

s)
0

20

40

60

80

100

120

1,000

1,500

2,000

0

500

T
ot

al
 n

um
be

r 
of

 lo
ci

 te
st

ed
fo

r 
A

S
E

s 
(×

10
3 )

T
ot

al
 n

um
be

r 
of

 lo
ci

 w
ith

 A
S

E
s

RNA-S
eq

 (i
PSCs)

RNA-S
eq

 (C
M

s)

H3K
27

ac
 (i

PSCs)

H3K
27

ac
 (C

M
s)

ATAC (i
PSCs)

ATAC (C
M

s)

NKX2-
5 

(C
M

s)

Regions

SNVs

3.6%

2.5%

0.3%

0.7%

0.4%
0.3%

10%

E
ffe

ct
 s

iz
e 

(β
)

E
ffe

ct
 s

iz
e 

(β
)

0.30 0.59 0.06 0.41

0.60 0.39 0.33 0.17

0.58 0.07 0.03 0.05

Fig. 2 | identification of coordinated ASEs in gene expression, H3K27 acetylation, chromatin accessibility and NKX2-5 binding in iPSCs and iPSC-CMs. 
a, Total numbers of regions and heterozygous SNVs tested for ASE across all individuals and samples in each dataset. b, Total numbers of heterozygous 
SNVs and corresponding regions across all individuals and samples with ASEs at FDR < 0.05. Numbers of ASEs shared between iPSCs and iPSC-CMs are 
indicated by hatching. c, Scatterplot of the alternate allele proportion at shared ASE-SNVs between iPSCs and iPSC-CMs for RNA-Seq (n = 516 SNVs) and 
H3K27ac (n = 43 SNVs). Spearman correlation statistics are indicated. d–f, Scatterplots of the mean proportion of the alternate allele of SNVs with ASEs 
in heterozygous individuals and the effect size of each ASE-SNV, expressed as the slope of linear regression (ß) between gene expression or peak density 
and the genotypes of all seven individuals. Spearman correlation statistics are indicated. The numbers of SNVs analyzed were: n = 970 for iPSCs and 
n = 799 for iPSC-CMs in d; n = 255 for iPSCs and n = 550 for iPSC-CMs in e; and n = 1,714 in f. g, Scatterplot showing the relationship between effect sizes 
(ß values) of ASE-SNVs in NKX2-5 peaks on both NKX2-5 and H3K27ac phenotypes (n = 854 SNPs). h, Table showing Spearman correlation coefficients 
of effect sizes between pairs of different molecular phenotypes. Correlations were calculated between ß values of SNVs that showed ASEs in ChIP-Seq 
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correlation, r > 0.85), indicating consistency of allelic effects between 
the two cell types. We further tested whether the ASE observed in 
heterozygous individuals was consistent with the overall effect size 
(ß; linear regression) on the phenotype when including homozygous 
samples, and observed a significant (P < 0.05), positive relationship 
for all molecular phenotypes (Fig. 2d–f), with the highest correla-
tion in NKX2-5 peaks (r = 0.69; Spearman correlation). These data 
show that the majority of ASEs identified in both iPSC-CMs and 
iPSCs are due to genetic variation, and that, among all molecular  
phenotypes examined, NKX2-5 peaks had substantially more  
ASE-SNVs and showed the highest consistency across individuals.

NKX2-5 correlated effects are consistent with dual role as  
activator and repressor. Genetic loci associated with differential 
TF binding between individuals often show coordinated effects 
across different molecular traits29. To examine whether NKX2-5 
loci with ASEs were correlated with H3K27ac and gene expression  
ASEs, we compared the effect sizes (ß) of ASE-SNVs identified 
within ChIP-Seq peaks with the effect sizes of the same SNVs on 
neighboring regions from different molecular phenotypes (nearest 
peak or nearest gene) (Fig. 2g,h). The strongest positive correlation  

was found between NKX2-5 and H3K27ac genetic effects in  
iPSC-CMs (Spearman correlation coefficient, r = 0.58; P = 1.7 × 10−77 
for NKX2-5 ASE-SNVs (Fig. 2g); and r = 0.60; P = 1.6 × 10−30 for 
H3K27ac ASE-SNVs), supporting the role of NKX2-5 binding in 
enhancer and promoter activation in these cells. However, genetic 
effects on NKX2-5 binding were not positively correlated with the 
expression of neighboring genes (Fig. 2h), possibly due to NKX2-5’s 
dual role as an activator or repressor30,31. We also observed that, when 
iPSC-CMs or iPSCs had H3K27ac ASEs, the effect sizes were posi-
tively correlated (r = 0.39; P = 3 × 10−13; and r = 0.59; P = 1.3 × 10−11, 
respectively), with H3K27ac peaks in nearby or overlapping regions 
in the other cell type, suggesting conserved genetic effects at shared 
enhancers and promoters. In contrast, while H3K27ac ASE sizes 
were moderately correlated with gene expression in the correspond-
ing cell type, they were not correlated with gene expression in the 
other cell type (r = 0.33; P = 4 × 10−12; and r = 0.41; P = 1.7 × 10−7, 
respectively, within the same cell type; and r = 0.17; P = 7 × 10−4  
and r = 0.06; P = 0.43, respectively, for mismatched comparisons; 
Fig. 2h). These results show that, in both iPSC-CMs and iPSCs, 
genetic variation underlies coordinated and cell type-specific dif-
ferences across multiple molecular phenotypes. Of note, while 
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NKX2-5 and H3K27ac ASE-SNVs were highly correlated, altered 
NKX2-5 binding was not positively correlated with gene expres-
sion changes, consistent with a more complex function as both an  
activator and repressor.

Variation in cardiac TF binding motifs underlies NKX2-5  
ASE-SNVs. To investigate whether NKX2-5 ASE-SNVs affected 
sequence motifs of TF binding sites (TFBSs), we selected the most 
enriched motifs in NKX2-5 peaks, which included the NKX2-5 
homeobox motif (cognate motif), as well as motifs of other heart 
development TFs (GATA4, TBX5, TBX20, MEF2A/C and MEIS1; 
Supplementary Table 4) (secondary motifs). For both alleles of all 
heterozygous SNVs tested for ASEs within NKX2-5 peaks, we calcu-
lated the motif position weight matrix (PWM) score of each motif. 
We then compared SNVs with ASEs versus SNVs without ASEs 
and observed that those with ASEs were enriched for altered motifs 
(Fisher’s exact test, FDR < 0.05) (Fig. 3a). Out of the 1,941 NKX2-5 
ASE-SNVs, 735 (37.8%) modified at least one of the 12 tested TF 
motifs: 94 (4.8%) modified both the cognate and a secondary motif; 
247 (12.7%) modified only the cognate motif; and 394 (20.3%) 
modified one or more secondary motifs. Next, we asked whether 
the preferred allele (highest read count) of each ASE-SNV was asso-
ciated with a higher predicted motif score. For most motifs, the pre-
ferred allele increased the motif score in 70–88% of SNVs (Fig. 3b),  
and the allelic proportion of ASE-SNVs positively correlated with 
the change in motif score, supporting an underlying causal effect 
for the majority of these SNVs (Fig. 3c,d and Supplementary  
Fig. 5). We additionally observed that ASE-SNVs tended to affect 
core, conserved positions within the motif more frequently than 
they affected less conserved positions (Fig. 3e–h), indicating a 
stronger effect on TF binding affinity. These data indicate that 
~40% of sites containing NKX2-5 ASE-SNVs have altered motifs 
for NKX2-5 and/or other known cardiac TFs, suggesting that dif-
ferential allelic binding of NKX2-5 at these sites probably occurred 
either directly, due to alterations of its own binding sequence, or 
indirectly, via alterations of TFBSs of co-binding partners.

NKX2-5 ASE-SNVs modulate cardiac-specific gene expression. 
We examined whether NKX2-5 ASE-SNVs were associated with 
cardiac-specific effects on gene regulation by comparing the enrich-
ment of NKX2-5 and H3K27ac ASE-SNVs with quantitative trait 
loci (QTLs) from diverse cell types, including DNase hypersensi-
tivity QTLs (dsQTLs) in lymphoblastoid cell lines (LCLs)32, eQTLs 
from iPSCs21 and eQTLs from 13 combined studies obtained from 
HaploReg33 (‘combined tissues’) (Fig. 4a–c and Supplementary 
Table 5). In iPSC-CMs, H3K27ac ASE-SNVs were enriched over 
SNVs without ASEs for all three types of QTL (Fisher’s exact test, 
P < 0.05). In contrast, H3K27ac ASE-SNVs in iPSCs were only 
enriched for iPSC eQTLs. Of note, NKX2-5 ASE-SNVs were signifi-
cantly depleted for iPSCs and combined tissue eQTLs, suggesting 
that they exert regulatory functions only in cardiac tissues.

We therefore investigated whether NKX2-5 ASE-SNVs were 
enriched for heart-specific eQTLs. NKX2-5 and H3K27ac ASE-SNVs  
were compared with SNVs without ASEs to assess enrichment for 
tissue-specific eQTLs (defined in the Methods) in 26 tissue types 
from the Genotype-Tissue Expression (GTEx) project (version 6)34. 
ASE-SNVs in both NKX2-5 and H3K27ac peaks in iPSC-CMs were 
more enriched for heart-specific eQTLs (Fig. 4d and Supplementary 
Table 5) than other tissue-specific eQTLs, while H3K27ac ASE-SNVs  
in iPSCs were not enriched for any GTEx tissue-specific eQTL. 
Notably, there were 55 NKX2-5 ASE-SNVs that overlapped a  
heart-specific eQTL, of which nine affected the NKX2-5 binding 
motif and 13 affected one or more of the other cardiac TF motifs 
in Fig. 3 (Supplementary Table 5). These results indicate that  
ASE-SNVs in the iPSC-CM lines are enriched for tissue-specific regu-
latory variants associated with molecular traits in previous studies. 

Overall, consistent with its importance as a cardiac identity tran-
scriptional regulator, we found that SNVs affecting the binding of 
NKX2-5 and other cardiac TFs (with which NKX2-5 cooperatively 
binds) are likely to underlie cardiac-specific eQTLs.

NKX2-5 ASE-SNVs are enriched for GWAS associations with 
EKG traits. Based on the fact that GWAS variants near the NKX2-5  
gene have been previously associated with EKG traits13–15,35,36, we 
hypothesized that the altered binding of NKX2-5 in other GWAS 
loci could be causally implicated in these traits. First, we examined 
whether NKX2-5, H3K27ac or ATAC peaks from iPSC-CMs were 
enriched for GWAS SNPs for six EKG traits (heart rate, PR interval, 
QT interval, QRS duration, atrial fibrillation and P-wave duration), 
compared with GWAS SNPs from 119 other traits with a compara-
ble number of associated SNPs. We observed strong relative enrich-
ment for several EKG traits (binomial test FDR < 0.05; Fig. 5a–c and 
Supplementary Fig. 6), with QRS duration GWAS SNPs and heart 
rate GWAS SNPs being the top two enriched traits in NKX2-5 peaks. 
We also examined H3K27ac and DNase I hypersensitive site (DHS) 
peaks from Roadmap cardiac tissues, which similarly showed high 
enrichment for all EKG GWAS SNPs, while H3K27ac and DHS 
peaks from iPSCs did not (Supplementary Fig. 6). These data show 
that enhancer regions in iPSC-CMs and Roadmap cardiac tissues 
both show enrichment for EKG trait-specific regulatory variants.

To examine whether differential binding of NKX2-5 might  
have a role in EKG phenotypes, we determined whether NKX2-5 
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Fig. 4 | Enrichment of ChiP-Seq ASE variants for known QtLs.  
a–c, Histograms showing the percentage of SNVs with and without ASEs in 
each ChIP-Seq (from combined iPSC or iPSC-CM samples) and overlapping 
dsQTLs from LCLs32 (a), eQTLs from iPSCs21 (b) and combined eQTLs 
identified in different tissues33 (c). Two-sided Fisher’s exact test P values 
are shown in red or blue for enrichment or depletion, respectively. OR, odds 
ratio. d, Heat map showing enrichment of ASE variants for tissue-specific 
eQTLs34 (similar tissues in GTEx were merged; see Methods). Asterisks 
indicate two-sided Fisher’s exact test FDR-corrected P values < 0.05. 
The heat map is colored based on −log10[FDR-corrected P values], with 
a negative sign if the odds ratio was <1. The complete Fisher’s exact test 
statistics, including P values, odds ratios and numbers of SNVs analyzed, 
are reported in Supplementary Table 5.
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ASE-SNVs were enriched for being EKG GWAS SNPs. In total, there 
were 121 SNPs that were associated with any of the six EKG traits 
and were within NKX2-5 peaks, of which 81 were heterozygous in 
the family and had sufficient read coverage to be tested for ASEs. 
Of these, 14 GWAS SNPs (17%) were NKX2-5 ASE-SNVs (Table 1),  
which were significantly enriched compared with the propor-
tion of NKX2-5 ASE-SNVs overlapping heterozygous non-GWAS 
SNPs (1,927/19,290 (10%); Fisher’s exact test; odds ratio = 1.88; 
P = 0.0392; Fig. 5d). Among these 14 NKX2-5 ASE-SNVs  

at EKG GWAS loci, seven were evolutionarily conserved in  
mammals (SiPhy conservation33) and/or altered a cardiac TF motif 
(Table 1), and three overlapped heart-specific eQTLs from GTEx. 
These results suggest a functional link between NKX2-5 binding, 
cardiac-specific gene expression and EKG phenotypes at these loci.

Validation of the NKX2-5 ASE-SNV in the SSBP3 locus  
as a functional regulatory variant. To provide evidence that 
NKX2-5 ASE-SNVs within EKG GWAS loci could be functional, 
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two-sided Fisher’s exact test P value and numbers of SNVs are given. e, From top to bottom: regional plot of association P values with P-wave duration37, 
color coded based on linkage disequilibrium (r2; squared Pearson correlation) values54; regional plot of eQTLs for SSBP3 in atrial appendage samples from 
GTEx (NKX2-5 allelic imbalance (pie chart) for rs590041 is shown); epigenetic tracks from iPSC-CM combined samples; and University of California, 
Santa Cruz (UCSC) Genome Browser tracks for Roadmap fetal heart ChromHMM, DHS and gene annotations. f, EMSA with nuclear extract from iPSC-
CMs using probes containing two allelic variants of rs590041. Similar results were obtained in two independent experiments. The full scans of the blots 
are shown in Supplementary Fig. 9. g, Screenshot from the GTEx portal (https://gtexportal.org) showing an association between rs590041 genotypes and 
expression levels of SSBP3 in heart atrial appendage samples. Box-plot elements: median (thick line), lower and upper quartiles (box edges), maximum and 
minimum (wiskers). h, Luciferase assay in iPSC-CMs for rs590041, in both forward and reverse orientations. RLUs (relative light units) are normalized to 
cells transfected with the empty vector (pgl4.23). Lines indicate median values, with lower and upper quartiles, of six transfection replicates per plasmid. 
P values from two-tailed t-tests are shown, comparing the expression from the two alleles. i, qPCR expression of SSBP3 in iPSC-CMs (ID: iPSCORE_1_5) 
stably expressing dCas9–KRAB (CRISPRi) and either a control gRNA (gCTL) or two gRNAs targeting the region encompassing rs590041 (gSNP). Bars 
and error bars represent means ± s.d. from three qPCR measurements. The two-tailed t-test P value is also shown. Similar results were obtained in an 
independent cell line (Supplementary Fig. 10). All iPSC-CMs used in f, h and i were lactate purified.
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we experimentally investigated the SNV that showed the strongest 
evidence for allelic imbalance: rs590041 (NC_000001.10:g.547424
71T>C) (Table 1). Two SNPs in the TF SSBP3 locus are in perfect 
linkage disequilibrium and showed ASEs in the same peak; while 
rs562408 (NC_000001.10:g.54742618A>G) was the lead variant in 
a P-wave duration GWAS37, our data suggested that rs590041 is the 
probable functional variant, as it is more centrally located in the 
peak and alters both TBX5 and NKX2-5 motifs (Fig. 5e). We con-
firmed that rs590041 had a direct causal effect on NKX2-5 binding 
by electrophoretic mobility shift assay (EMSA), showing that the 
alternate (C) allele, which creates an NKX2-5 motif, had stronger 
binding to nuclear extract from iPSC-CMs (Fig. 5f), consistent 
with the allelic imbalance that we identified in NKX2-5 ChIP-Seq  
(Fig. 5e). Interestingly, the stronger NKX2-5-binding C allele was 
associated with lower SSBP3 expression in human atrial appendages 
(GTEx) (Fig. 5g), suggesting a repressive function of the regula-
tory element harboring rs590041. In luciferase assays in iPSC-CMs  
(Fig. 5h), sequences encoding both alleles showed lower expres-
sion than the control, but the stronger NKX2-5-binding C allele 
was significantly lower than the T allele, additionally supporting a 
repressive function of NKX2-5 binding in this region. This hypoth-
esis was further substantiated by the fact that specific dCas9–KRAB 

blocking (CRISPRi) of the region resulted in increased expression 
of SSBP3 in iPSC-CMs (Fig. 5i). Of note, there is no previously 
described role for SSBP3 in EKG phenotypes. Altogether, these data 
show that rs590041 is a regulatory variant that represses the expres-
sion of SSBP3 in cardiac cells, and suggest that it probably underlies 
the association of P-wave duration in this locus.

NKX2-5 ASE-SNVs prioritize causal variants in heart rate GWAS 
loci. To examine more broadly whether NKX2-5 ASE-SNVs could 
help prioritize causal variants for EKG traits, we utilized fgwas38—a 
statistical framework that integrates functional genomics annotations 
and GWAS summary statistics to identify putative causal variants 
at know loci, as well as at potentially novel loci. We initially applied 
a single annotation model to examine a heart rate15 meta-analysis 
to determine whether genetic associations were enriched within 
each individual iPSC-CM genomic annotation (NKX2-5, H3K27ac 
and ATAC-Seq peaks, and NKX2-5 ASE-SNVs and H3K27ac ASE-
SNVs). We found that NKX2-5 ASE-SNVs were the most enriched 
annotation, followed by NKX2-5 peaks (Supplementary Fig. 7). 
Next, we applied a joint model, where the association enrichment 
was quantified simultaneously for all five annotations and refined 
using tenfold cross-validation, and again found NKX2-5 ASE-SNVs 

Table 1 | Allelic binding of NKX2-5 at GWAS loci for EKG traits

dbSNP iD ASE FDR ASE 
reference 
allele ratio

Gene locus eQtL GWAS traits Altered 
motifs

Conserved? Functional 
validation

rs590041
rs562408

2.5 × 10−105

7.9 × 10−4
0.07
0.05

SSBP3 (intron) Heart specific P-wave duration 
(lead = rs562408)37

Tbx5 and 
Nkx2-5
–

–
–

EMSA, 
luciferase 
assay and 
CRISPRi 
(rs590041)

rs35176054 3.4 × 10−18 0.16 SH3PXD2A (intron) – Atrial fibrillation (lead)47 Gata Yes –

rs7612445 2.1 × 10−15 0.08 GNB4 (>3 kb) Heart specific Heart rate (lead)15,39 Meis1 
and Tbx5

– EMSA

rs4890490 2.1 × 10−12 0.29 SETBP1 (intron) – QRS duration55–57 – – –

rs4657167 3.5 × 10−12 0.74 NOS1AP (intron) – QT interval42 – – –

rs6606689 3.8 × 10−9 0.29 PPTC7 (intron) Other Heart rate15 – Yes –

rs7132327 4.9 × 10−4 0.68 TBX3 (>130 kb) – PR segment14

PR interval13

QRS duration (lead)56

– – –

rs3807989 6.9 × 10−4 0.66 CAV1 (intron) Other PR segment (lead)14

PR interval (lead)13,41,43

Atrial fibrillation (lead)58

– Yes EMSA, 
luciferase 
assay and 
CRISPRi

rs8044595 1.4 × 10−3 0.62 MYH11 (intron) – Resting heart rate39 – –

rs6932481 2.0 × 10−3 0.79 SAMD3 (intron) Other PR interval59 – – –

rs6801957 4.2 × 10−3 0.37 SCN10A (intron) – PR segment (lead)14

PR interval (lead)13,40,41

QT interval (lead)42

P-wave duration (lead)14

QRS duration (lead)43,44

Brugada syndrome60

Resting heart rate39

Meis1 Yes EMSA and 
reporter 
assays45

rs7986508 1.0 × 10−2 0.65 LRCH1 (intron) Heart specific PR segment14 – – –

rs10841486 1.2 × 10−2 0.28 PDE3A (>49 kb) Other Resting heart rate (lead)39 Eomes – –

rs6569252 1.7 × 10−2 0.63 GJA1 (>7 Mb) – Atrial fibrillation47 – – –

Fourteen GWAS loci for EKG traits overlapping NKX2-5 ASE-SNVs, ordered by P value for allelic imbalance, are listed. For each SNV, we indicate the dbSNP ID (build 137), ASE-corrected P value (FDR) 
combined across heterozygous samples from the seven individuals, ASE reference allele ratio, closest genes and relative location of the SNV, known association with gene expression (eQTL), tissue (heart 
specific = restricted to the left ventricle and/or atrial appendage in GTEx; other = any other tissue or cell line), associated EKG GWAS traits, whether the SNV is the lead variant, altered motifs, conservation 
in mammals and experiments performed for functional validation in this or previous studies. Additional annotations are reported in Supplementary Table 5.
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to be the most significantly enriched, followed by H3K27ac peaks 
(Fig. 6a). Then, to prioritize causal variants, we used the enrichment 
estimates from the joint model as priors to update the probability 
for a variant to be causal (posterior probability of association (PPA)) 
within consecutive 1-megabase (Mb) windows across the genome. 
We found 21 variants with a >30% probability of being causal,  
of which seven (30%) were NKX2-5 ASE-SNVs (Supplementary 
Table 6), suggesting that altered binding of NKX2-5 accounts for 
a considerable fraction of the genome-wide genetic contribution 
underlying variable heart rate. Of these seven NKX2-5 ASE-SNVs 
(Fig. 6b), four were from ‘subthreshold’ loci that did not reach 
genome-wide significance in the heart rate15 meta-analysis. One of 
these variants, rs6801957 (NC_000003.11:g.38767315T>C), identi-
fied with a 35% PPA, did not reach genome-wide significance in 
the heart rate15 meta-analysis, but was significantly associated in 
a larger heart rate GWAS39, as well as in several GWASs for mul-
tiple EKG traits13,14,40–44. While we predicted that rs6801957 altered 
a T-box binding sequence and resulted in differential co-binding of 
NKX2-5 (Fig. 6c), previous functional experiments showed that this 
variant affects the binding of TBX3 and TBX5 and the expression 
of SCN5A, which transcribes the main cardiac sodium channel3,45. 
Thus, rs6801957 serves as a proof of principle for using NKX2-5 
ASE-SNVs to identify causal variants at known EKG trait GWAS 
loci, as well as to identify novel associated loci.

To further investigate the mechanisms of association between 
heart rate and NKX2-5 ASE-SNVs identified as candidate causal 
variants by fgwas (Fig. 6b), we followed up three loci previously 
associated with heart rate (rs7612445 (NC_000003.11:g.17917297
9G>T), rs8044595 (NC_000016.9:g.15906130A>G) and rs6606689 
(NC_000012.11:g.110975675T>C)) and a potential novel locus 
(rs176107 (NC_000005.9:g.89392662A>G)) with additional exper-
imental data (Supplementary Note). These data included Hi-C 

chromatin conformation maps from the same iPSC-CM samples46 
(Supplementary Table 2a) and RNA-Seq data from iPSC-CMs from 
an additional 128 whole-genome-sequenced subjects26, to examine 
associations between the putative causal NKX2-5 ASE-SNVs and the 
expression of nearby or distal candidate target genes. For rs7612445 
(98% PPA), which altered a T-box motif in the GNB4 locus, we val-
idated that the two alleles have differential binding using EMSA, 
and that it is associated with differential expression in iPSC-CMs 
of several genes, including GNB4 (heart-specific eQTL in GTEx) 
and MFN1 (influencing heart rate in zebrafish and Drosophila15; 
Supplementary Fig. 8a–c). rs8044595 (89% PPA) was associated with 
the expression of multiple genes within the same chromatin loop in 
iPSC-CMs, including a strong candidate NOMO3 (nodal signaling 
protein associated with heart defects) (Supplementary Fig. 8d,e). 
rs6606689 (86% PPA) was associated with ARPC3 gene expres-
sion—an actin cytoskeleton regulator (Supplementary Fig. 8f,g).  
For rs176107 (35% PPA), Hi-C showed numerous long-range inter-
actions, including with the key cardiac TF MEF2C (~1.2 Mb distal),  
and it was also associated with the expression of MEF2C in  
iPSC-CMs (Supplementary Fig. 8h,i). Overall, these results uncover 
plausible molecular mechanisms underlying variability in heart 
rate, both at novel and previously identified GWAS loci.

Validation of the NKX2-5 ASE-SNV rs3807989 as a functional 
variant at the CAV1 locus. To examine other EKG traits, we applied 
the fgwas fine-mapping framework to both atrial fibrillation47 and 
PR interval17 GWAS studies (Fig. 7a and Supplementary Fig. 7), 
and identified 26 and 102 SNPs, respectively, with a >30% prob-
ability of being causal, of which 8% (2/26) and 14% (14/102) were 
NKX2-5 ASE-SNVs (Supplementary Table 6). In both the atrial 
fibrillation and PR interval fgwas analyses, rs3807989 (NC_00000
7.13:g.116186241A>G) had the highest probability of being causal 
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(>99% PPA) (Fig. 7b,c); therefore, we experimentally investigated 
potential mechanisms underlying these associations. rs3807989, 
located within the CAV1 associated interval, has been reported as 
an eQTL for both CAV1 and CAV2 (encoding caveolins—scaffold-
ing proteins involved in various signaling pathways) in multiple 
tissues34,48,49, including left atrial samples17. This eQTL was repro-
duced in our 128 iPSC-CMs (Fig. 7d), confirming that there is a 
clear genetic association between rs3807989 and the expression 
levels of CAV1 and CAV2 in cardiomyocytes. To provide evidence 
that this SNP is directly responsible for differential regulatory  

activity, we performed EMSA using iPSC-CM nuclear extracts, which  
showed that oligonucleotide probes for the reference allele (A)  
bound more strongly than those for the alternate allele (G), consis-
tent with the allelic imbalance we identified in NKX2-5 ChIP-Seq 
(Fig. 7e). Although rs3807989 was not predicted to directly modify 
a motif for NKX2-5 or other cardiac TFs, the SNV is located 6 base  
pairs (bp) from a NKX2-5 motif (Fig. 7f), and could modify a 
sequence important for recognition of the binding site, such as 
those affecting DNA shape50–52. Furthermore, we observed con-
sistent allele-specific enhancer activity in iPSC-CMs by luciferase 
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assays (Fig. 7g). Finally, by repressing the rs3807989-containing 
genomic region using dCas9–KRAB (CRISPRi), we observed a sig-
nificant reduction in the expression levels of both CAV1 and CAV2 
in iPSC-CMs (Fig. 7h and Supplementary Fig. 10). Altogether, these 
results show that rs3807989 is a regulatory variant that modulates 
the expression levels of CAV1 and CAV2 via differential protein 
binding and, as such, is highly likely to be the causal variant under-
lying the atrial fibrillation and PR interval GWAS signals in the 
CAV1 interval.

Discussion
Our study shows that differential binding of NKX2-5 probably 
underlies the molecular mechanisms of numerous genetic associa-
tions with EKG traits across the genome. Additionally, we showed 
that molecular phenotype data from iPSC-CMs combined with 
fine-mapping statistical approaches can be used to prioritize puta-
tive causal variants underlying genetic associations with cardiac-
specific traits. Furthermore, our study shows the effectiveness of 
using iPSC-derived cells as a model system for understanding the 
genetic basis of complex human traits and diseases by conducting 
genome-wide genotype–phenotype analyses as well as interrogating 
the function of individual variants.

Within ~38,000 NKX2-5 binding sites, we identified 1,941 
genetic variants that altered the binding of the TF. Because we 
investigated seven individuals in a three-generational family, the 
statistical power for identifying ASE-SNVs was increased as there 
were multiple replicates of allelic imbalance at the same heterozy-
gous SNV. However, we anticipate that analyzing a larger sample 
size would identify a greater fraction of the NKX2-5 sites affected 
by genetic variants. For the NKX2-5 sites with differential bind-
ing, ~40% had genetic variants that altered the cognate TF motif 
and/or motifs of functionally related cardiac TFs, suggesting that a 
large fraction of the observed allelic binding of NKX2-5 was either a 
direct consequence of the SNV or an indirect consequence resulting 
from the differential binding of a known co-factor. ASE-SNVs that 
were not associated with core cardiac TF motifs could: (1) affect 
consensus motifs from TFs that were not included in our targeted 
analysis; (2) affect important sequences that impact DNA shape or 
an as-of-yet unknown regulatory mechanism50–52; or (3) be non-
functional. Combinatorial interactions between key cardiac TFs are 
known to be an important mechanism for orchestrating the cardiac 
gene expression program during development8–11. While genetic 
variation has been shown to affect collaborative binding of lineage-
determining TFs in mice53, our study shows these effects in humans.

Coding mutations in (and noncoding variants near) the NKX2-
5 gene have, respectively, been associated with congenital heart 
defects12, as well as heart rate, atrial fibrillation and PR inter-
val13–15, implicating this TF in a range of cardiac diseases in both 
development and adult stages. Here, our analysis of genome-wide 
NKX2-5 binding enabled us to investigate its role in cardiac phe-
notypes through a different genetic mechanism (that is, variation 
in TFBSs resulting in the differential expression of target genes).  
We showed that differential NKX2-5 binding was positively  
correlated with H3K27ac peaks at iPSC-CM enhancers, but not 
iPSC enhancers, suggesting that NKX2-5 ASE-SNVs altered 
cardiac-specific enhancer activity. These findings are consistent  
with the fact that we found enrichment for GTEx heart-specific 
eQTLs in both NKX2-5 and H3K27ac ASE-SNVs in iPSC-CMs. 
Importantly, out of all the molecular phenotypes examined, 
NKX2-5 ASE-SNVs were more strongly enriched within EKG loci, 
thereby implicating NKX2-5 in the development of these traits, 
and indicating that NKX2-5 ASE-SNVs could be used to prioritize  
putative causal variants.

Analyzing GWASs for heart rate, atrial fibrillation and PR inter-
val using a fine-mapping method that integrates functional anno-
tations with GWAS summary statistics (fgwas) revealed several 

NKX2-5 ASE-SNVs with a high probability of causality at known 
loci, as well as potentially novel subthreshold GWAS signals. As 
proof that this approach was effective to prioritize causal variants, 
one of the NKX2-5 ASE-SNVs (rs6801957 at the SCN10A–SCN5A 
locus) had previously been investigated in detail and had been 
shown to be functionally implicated in the association with EKG3,45. 
Further investigation of NKX2-5 ASE-SNV heart rate loci using 
Hi-C generated from the same iPSC-CMs and gene expression in 
iPSC-CMs derived from 128 individuals revealed an association 
between the putative causal NKX2-5 ASE-SNVs and the expression 
of nearby or distal candidate target genes. As a notable example, 
one of the prioritized variants (rs176107) at a subthreshold locus 
showed long-range (~1.2 Mb) interaction with MEF2C—a key car-
diac morphogenesis regulator—and was associated with its expres-
sion, thus providing a plausible mechanism underlying associations 
between differential NKX2-5 binding and heart rate.

We further followed up two NKX2-5 ASE-SNVs that were 
potential causal variants underlying associations with EKG traits 
with experimental validation, including EMSA, luciferase assay 
and CRISPRi. These analyses showed that the two common 
SNPs—rs590041 (associated with P-wave duration) and rs3807989 
(associated with PR interval and atrial fibrillation)—are func-
tional regulatory variants that influence the expression of SSBP3 
and CAV1–CAV2 genes, respectively, via differential TF binding. 
Interestingly, while the rs3807989 stronger TF binding allele was 
associated with higher gene expression, the rs590041 stronger TF 
binding allele was associated with reduced gene expression, indi-
cating that NKX2-5 binding is associated with both activating and 
repressing regulatory elements. Although future experimental stud-
ies are needed to elucidate the function of SSBP3 and CAV1–CAV2 
with respect to the associated EKG phenotypes, our results provide 
novel insights into the roles that differential bindings of NKX2-5 and 
other cardiac TFs play in the genetic underpinnings of EKG traits.

Finally, our study shows that analyzing the allelic binding of 
master developmental TFs in iPSC-CMs is highly effective to pin-
point genetic variation important for cardiac traits, and suggests 
that expanding this approach to study other cardiac TFs (such as 
TBX5, GATA4 and MEF2C) in larger sample sizes could potentially 
identify and characterize many of the regulatory variants that play a 
role in cardiac traits and diseases.

Online content
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Methods
Additional details are provided in the Supplementary Note and Reporting 
Summary.

Subjects and iPSC derivation. We selected seven individuals who were part of a 
three-generational family (three genetically unrelated subjects and two parent–
offspring quartets) in the iPSCORE resource28 (Supplementary Table 1). Fibroblasts 
from skin biopsies of each subject were reprogrammed using non-integrative 
Sendai virus61 and analyzed for pluripotency as described by Panopoulos et al.28. 
For five individuals, we analyzed one iPSC line (‘clone’), and for two individuals we 
analyzed two iPSC lines (Fig. 1). The nine iPSC lines were harvested in multiple 
replicates between passages 12 and 40. A total of 35 different iPSC harvests were 
used in this study (Supplementary Table 2). This study was approved by the 
institutional review boards of the University of California, San Diego (project 
number 110776ZF).

Differentiation of iPSCs into cardiomyocytes. The nine iPSCs were each 
differentiated multiple times using a monolayer protocol62, resulting in a total of 
26 iPSC-CM samples (Supplementary Table 2). Twelve of the iPSC-CM samples 
were subjected to selection using 4 mM sodium l-lactate media63 and collected 
at day 25. Fourteen iPSC-CM samples were collected at day 15, of which one was 
subjected to lactate purification at day 11. At the day of collection, iPSC-CMs 
were dissociated using Accutase (Thermo Fisher Scientific), pooled, counted and 
separated into different aliquots. About 6 × 107 cells were fixed with formaldehyde 
and frozen for ChIP-Seq. Cells (2 × 107) were lysed and stored in RLT Plus buffer 
(Qiagen) for RNA extraction. Nuclei from 2 × 105 cells were frozen for ATAC-Seq. 
The differentiation efficiency was measured by the percentage of cells that stained 
positive for the cardiac marker cardiac troponin T (TNNT2; MA5-12960; Thermo 
Fisher Scientific) using flow cytometry (FACSCanto system; BD Biosciences). The 
same protocols of dissociation and collection of samples for RNA-Seq, ChIP-Seq 
and ATAC-Seq were applied to non-differentiated iPSC lines.

Whole-genome sequencing (WGS). Genomic DNA was whole-genome sequenced 
as part of the iPSCORE collection, as described by DeBoever et al.21. Briefly, reads 
were aligned against human genome b37 with decoy sequences64 using BWA-MEM 
and default parameters65. The resulting BAM files were sorted using Sambamba66, 
and duplicate reads were marked using biobambam2 (ref. 67). Variant calling was 
performed using the GATK best-practices pipeline68,69 on BAM files separated into 
individual chromosomes.

RNA-Seq. We generated and analyzed 56 RNA-Seq samples (iPSCs: 29 
independent samples; iPSC-CMs: 26 independent samples and one technical 
replicate). Total RNA was isolated using the Qiagen RNAeasy Mini Kit from frozen 
RTL plus pellets, and run on a Bioanalyzer (Agilent). Illumina TruSeq Stranded 
mRNA libraries were prepared and sequenced on a HiSeq 2500 system, to an 
average of 40 million 100-bp paired-end reads per sample. RNA-Seq reads were 
aligned using STAR70 with a splice junction database built from the GENCODE 
v19 gene annotation71. Gene-based expression values were quantified using the 
RSEM package72 and normalized to transcripts per million bp (TPM).

ChIP-Seq. We generated and analyzed 48 ChIP-Seq samples of histone 
modification H3K27ac (iPSCs: 17 samples and four technical replicates; iPSC-CMs:  
25 samples and two technical replicates) and 15 ChIP-Seq samples of NKX2-5 
(iPSC-CMs: 12 samples and three technical replicates) (Supplementary Tables 2 
and 3), using anti-H3K27ac (ab4729; Abcam) and anti-NKX2-5 antibodies  
(sc-8697×; Santa Cruz Biotechnology). Libraries were sequenced to an average 
of 35 million 100-bp paired-end reads per sample. ChIP-Seq reads were mapped 
to the hg19 reference using BWA65. Duplicate reads, reads mapping to blacklisted 
regions and read pairs with mapping quality Q < 30 were filtered. Peak calling was 
performed using MACS2 (ref. 73), with reads derived from sonicated chromatin  
not subjected to immunoprecipitation (that is, input chromatin) from a pool of 
samples used as a negative control. For each data type, peak coordinates were  
called from combined BAM files across all samples of either iPSCs or iPSC-CMs.  
Quantification of the signal at peaks in each sample was performed using 
featureCounts74. Motif enrichment analysis was performed using HOMER75 and, 
for NKX2-5, also using MEME-ChIP76.

ATAC-Seq. We generated 37 ATAC-Seq libraries (iPSCs: 12 samples and five 
technical replicates; iPSC-CMs: 11 samples and nine technical replicates) using an 
adapted protocol from Buenrostro et al.77. Libraries were sequenced to an average 
depth of 20 million 100–150-bp paired-end reads. ATAC-Seq reads were aligned 
using STAR to hg19 and filtered using the same protocol as for ChIP-Seq. In 
addition, to restrict analysis to regions spanning only one nucleosome, we required 
an insert size no larger than 140 bp. Peak calling was performed using MACS2 on 
combined BAM files of either iPSC or iPSC-CM samples.

Analysis of gene expression differences between iPSCs and iPSC-CMs. A matrix 
of raw gene expression values from 64 RNA-Seq samples (29 iPSCs, 27 iPSC-CMs 
and eight RNA-Seq samples from Roadmap, including H1-hESC, HUES64, iPS-20b, 

iPS-18, right atrium, right ventricle, left ventricle and fetal heart) was created from 
the RSEM expected counts, filtered for >1 TPM on average samples, and rounded 
to integer values. After filtering, 15,725 genes remained from the initial 57,820. 
Expression values were normalized using variance stabilizing transformation 
(vst) implemented in DESeq2 (ref. 78). Hierarchical clustering and the heat map in 
Supplementary Fig. 1 were generated using vst-normalized read counts for a panel 
of 61 selected genes using the ‘pheatmap’ package in R. Analysis and plotting of 
principal components of all 15,725 genes were performed in R (Fig. 1).

To identify differentially expressed genes between iPSCs and iPSC-CMs, we 
used a matrix of raw expression counts from 56 RNA-Seq samples (29 iPSCs and 
27 iPSC-CMs), filtered for an average TPM value of >1 (22,447 genes), and applied 
DESeq2 with default settings to identify genes that were differentially expressed 
more than twofold and at a Benjamini and Hochberg FDR of 5%.

Normalization and analysis of variability of molecular phenotypes. For RNA-Seq,  
we restricted the analysis to autosomal genes that had, on average, a minimum 
of one TPM per sample (14,933 and 15,167 genes for iPSCs and iPSC-CMs, 
respectively) and integer-rounded RSEM expected counts were used as expression 
levels. For ChIP-Seq, we excluded peaks >5 kilobases (kb) long and those located 
on sex chromosomes, resulting in 110,345 H3K27ac peaks analyzed in iPSCs 
and 83,689 H3K27ac peaks and 37,994 NKX2-5 peaks analyzed in iPSC-CMs 
(Supplementary Table 3). Matrices of raw expression levels or peak coverage for 
each of the five datasets were vst-normalized using DESeq2, and analyzed for 
principal components using R. To investigate the major sources of variability 
within each dataset, values for the first ten principal components were correlated 
with known covariates across samples (for iPSCs, sequencing batch, passage and 
subject; for iPSC-CMs, TNNT2 expression, protocol of differentiation and subject; 
for ChIP-Seq of both cell types, we also included the fraction of reads mapping to 
peaks) using analysis of variance. We corrected the respective datasets by fitting a 
model including the covariates that were most associated with the first principal 
component (batch for iPSCs; TNNT2 expression and protocol/batch for iPSC-
CMs; and fraction of reads mapping to peaks for all ChIP-Seq datasets) using 
the lmFit function from the limma package, and calculating the residuals using 
the residuals function in R. Mean expression and coverage values for each gene/
peak were added back to the residuals. Residual-corrected values were used in all 
subsequent analyses.

To assess the consistency of data generated from cell lines derived from the 
same individual versus cell lines from different individuals, we selected the 1,000 
most variable genes or peaks and computed matrices of Spearman correlation 
values across all pairs of samples for each molecular phenotype. We then separated 
correlation values between pairs of samples from the same, different, related or 
unrelated individuals and calculated the average correlation per sample. Technical 
replicates were excluded for the comparisons between samples of the same subject. 
We tested for a significant increase in correlation between samples from the same 
subject using a one-tailed Mann–Whitney U-test (Fig. 1c–g and Supplementary 
Fig. 3k–o).

ASE analysis. ASE analysis was performed as previously described21. To increase  
the sensitivity of ASEs and maximize the number of genes/peaks to analyze, reads 
from all samples from each individual per assay were merged. Heterozygous  
SNVs were identified by intersecting variant calls from WGS with either exonic  
regions from GENCODE v19 or regions identified by each ChIP-Seq or  
ATAC-Seq dataset. The WASP pipeline79 was employed to reduce reference 
allele bias at heterozygous sites. The number of read pairs supporting each 
allele was counted using the ASEReadCounter from GATK80. Heterozygous 
SNVs were then filtered to keep SNVs where the reference or alternate allele 
had more than eight supporting read pairs, the reference allele frequency was 
between 2 and 98%, and the SNV was located in unique mappability regions 
according to wgEncodeCrgMapabilityAlign100mer track, and not located within 
10 bp of another variant in a particular subject (heterozygous or homozygous 
alternative)49,81,82. ASE P values for each SNV were calculated in each sample using a 
binomial test method49,82. To combine ASE results at each SNV across samples, we 
performed a meta-analysis on all samples that were heterozygous for a given SNV 
and for which ASEs could be tested. The binomial P values of heterozygous SNVs 

were combined using the Stouffer z-score method83, using the formula Z 
Pk

i¼1
Ziffiffi

k
p

I

,  
where Z is the z score derived from P values and signed according to the direction 
of the effect, and k is the number of individuals for each SNV. The combined 
- scores were transformed to P values and a Benjamini and Hochberg FDR was 
calculated using p.adjust in R. The alternate allele frequency was averaged across 
all heterozygous samples.

Correlation of ASEs across all individuals. The direction of ASE effects across 
all family members (including homozygous individuals) was estimated using 
the ß coefficient of a linear model testing the association between the corrected 
gene expression or peak coverage (normalized to z scores across individuals) and 
the genotype of the seven family members (0, 1 or 2, testing only one ASE-SNV 
per region). Spearman correlation was used to compare ß with the average allele 
proportion of ASE-SNVs, to estimate the consistency of effects (Fig. 2d–f).
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Correlation of ASEs across different molecular phenotypes. To test whether the 
direction of ASEs of SNVs within ChIP-Seq peaks correlated with changes in peak 
coverage of other ChIP-Seq peaks or with gene expression, we performed a linear 
regression between the ASE-SNV genotypes and each phenotype. ChIP-Seq peaks 
were paired with the closest gene or peak within 500 bp using bedtools closest. 
Using linear regression, we tested the association between the individual genotypes 
(0, 1 or 2, testing only one ASE-SNV per region) of the ASE-SNVs (FDR < 0.05) 
and either the corresponding corrected and z-score-normalized peak coverage or 
gene expression or those of the closest feature. In both peak–gene and peak–peak 
pairs, Spearman correlation was calculated between the two slopes (ß) of linear 
regression (Fig. 2g,h).

Analysis of SNVs altering TFBS motifs. The effect of NKX2-5 ASE-SNVs on TFBS 
motifs was estimated using position probability matrices (PPMs) of the 12 most 
enriched families of motifs identified using HOMER (Supplementary Table 4), from 
a library of known motifs. For NKX2, GATA, TEAD, MEF2, TBX20 and PDX1, 
we also used PPMs derived from a de novo analysis. All PPMs are provided in 
Supplementary Table 4. PWMs were calculated from the PPMs using a background 
nucleotide frequency of 0.25 for each base. Using a custom R script, a 40-bp window 
centered on each SNV tested for ASEs was scanned with PWMs for each motif, 
and the position with the highest score was identified. For SNVs where either the 
reference or the alternate sequence matched or exceeded the log[odds detection 
threshold] reported by HOMER PPMs, the difference between the scores of the two 
alleles was calculated. In cases where an SNV matched multiple motifs from the 
same family, we kept only the motif with the highest score for either of the alleles. 
Fisher’s exact test was used to calculate enrichment for motif-altering SNVs in 
variants with ASEs compared with variants without ASEs (Fig. 3a). For each of the 
12 motifs, we also calculated Spearman correlation between the allelic imbalance 
proportion of the reference allele and the difference in motif score between the 
reference and the alternate allele (Fig. 3c,d and Supplementary Fig. 5). Motifs that 
were altered at NKX2-5 ASE-SNVs are indicated in Supplementary Table 5.

Enrichment of ASE-SNVs for known QTLs. To examine the enrichment of 
ASE-SNVs in known QTLs across different tissues, we obtained dsQTLs in LCLs 
from Degner et al.32, eQTLs from iPSCs from DeBoever et al.21, and eQTLs from 
HaploReg version 4.1 (ref. 33), which contained combined results from 13 different 
studies, including GTEx version 6 (ref. 82). To identify tissue-specific eQTLs (Fig. 4d),  
the 44 tissues from GTEx were classified into 26 groups by merging similar tissues 
(adipose (n = 2), artery (n = 3), brain (n = 10), cell lines (n = 2), colon (n = 2), 
esophagus (n = 3), heart (n = 2), skin (n = 2) and the remaining 18 tissues (n = 1 
each)). A gene–eQTL combination was defined as tissue-specific if ≥50% of the 
significant associations were in a single tissue group. All SNVs tested for ASEs in 
ChIP-Seq datasets (H3K27ac in iPSCs and H3K27ac and NKX2-5 in iPSC-CMs) 
were intersected with these annotations, and enrichment between heterozygous 
SNVs with and without ASEs was calculated using Fisher’s exact test in R. In cases 
where multiple SNPs overlapped a peak, we counted only one SNP per peak. The 
complete Fisher’s exact test statistics, including P values, odds ratios and numbers 
of SNVs analyzed, are reported in Supplementary Table 5.

Enrichment of GWAS SNPs in regulatory regions in iPSC-CMs. To calculate 
enrichment for GWAS SNPs in ChIP-Seq and ATAC-Seq peaks, we extracted sets 
of SNPs associated with six EKG traits (heart rate, PR interval, QT interval, QRS 
duration, atrial fibrillation and P-wave duration) from the GWAS catalog1 and 
119 non-EKG traits that were associated with a similar number of SNPs. We used 
GREGOR84 to test each of these 125 SNP sets for enrichment in ChIP-Seq and 
ATAC-Seq peaks from iPSCs and iPSC-CMs from this study, as well as in peaks from 
cardiac tissues from Roadmap as a control (Fig. 5a–c and Supplementary Fig. 6). To 
calculate the enrichment for EKG GWAS SNPs in NKX2-5 ASE-SNVs, we obtained 
the SNVs overlapping NKX2-5 peaks and associated with any of the six EKG traits. 
For the SNVs that could be tested for ASEs, we calculated the proportion with and 
without ASEs and tested their relative enrichment using Fisher’s exact test (Fig. 5d).

Estimating GWAS enrichment in molecular phenotypes and prioritizing putative 
causal variants. To determine the enrichment of genetic variants influencing EKG 
traits within the different iPSC-CM molecular phenotypes, and to identify putative 
causal variants and novel associations, we employed the fgwas framework, as 
described by Pickrell et al.38. We obtained summary statistics from the den Hoed 
et al.15 heart rate GWAS meta-analysis (2,516,407 SNPs analyzed) from LD Hub 
(http://ldsc.broadinstitute.org/ldhub/), the Christophersen et al.47 atrial fibrillation 
meta-analysis (11,779,664 SNPs) from the CVD portal (http://broadcvdi.org/) and 
the van Setten at al.17 PR interval GWAS (2,712,310 SNPs) as a collaboration with 
the authors. For each GWAS, we annotated each variant with the type of molecular 
phenotype it overlapped (peaks (ATAC-Seq, H3K27ac and NKX2-5 peaks) and/or 
ASE-SNVs (H3K27ac and NKX2-5)) and applied a single annotation model  
followed by a joint model, where the association enrichment was quantified 
simultaneously for all five annotations. To prioritize causal variants, we used the 
enrichment estimates from the joint model as priors to estimate the probability  
for a variant to be causal (PPA) within consecutive 1-Mb windows across the 
genome. We report all variants with PPA > 0.3 in Supplementary Table 6.

Gene expression analysis of 128 iPSC-CMs. We used RNA-Seq of iPSC-CMs 
from 128 different individuals26. Subjects included 43 males and 85 females, 
between 9 and 88 years of age, of diverse ethnicities (Europeans (n = 78) and Asians 
(n = 23)). iPSCs were differentiated into day-25 cardiomyocytes using the method 
described above, including a 4 mM sodium l-lactate enrichment step at day 15, and 
yielded on average 83.9 ± 13.6% cardiac troponin T-positive populations. RNA-Seq 
was generated and processed as described above. Raw gene expression data were 
first filtered for genes with TPM ≥ 2 in at least 5% of the samples and then quantile 
normalized. From these values, we calculated PEER factors85 and used the residuals 
of the first ten factors as normalized gene expression values. We extracted the 
individuals’ genotypes from WGS and performed linear regression for the specific 
SNV–gene expression associations in R.

EMSA. EMSAs were performed using the LightShift Chemiluminescent EMSA Kit 
(Thermo Fisher Scientific) with biotinylated and non-biotinylated single-stranded 
oligonucleotides corresponding to 33 or 34 genomic fragments containing 
the SNPs rs590041, rs3807989 and rs7512445 (Supplementary Table 7). Both 
forward and reverse strands were tested. The forward strand was bound in the 
case of rs590041 and rs3807989, and the reverse strand was bound in the case of 
rs7512445. Nuclear extract from day-30–33 iPSC-CMs was extracted using the 
NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Fisher Scientific) 
with 1× Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific). The binding 
reaction was carried in 10 µl volume containing 1 µl of 10× Binding Buffer 
(100 mM Tris (pH 7.5), 500 mM KCl and 10 mM dithiothreitol), 2.5% glycerol, 
5 mM MgCl2, 0.05% NP-40, 50 ng Poly(dI:dC), 1 pmol biotin-labeled probe and 
15.3–16.8 µg nuclear extract. For competition experiments, a 200-fold molar 
excess of unlabeled probe was added. Binding reactions were incubated at room 
temperature for 20 min and loaded onto a 6% polyacrylamide 0.5× TBE gel. After 
sample electrophoresis and transfer to a 0.45-µm Biodine B pre-cut modified nylon 
membrane (Thermo Fisher Scientific), DNA was ultraviolet-crosslinked for 15 min, 
and the biotinylated probes were detected using a Chemiluminescent Nucleic Acid 
Detection Module (Thermo Fisher Scientific). Membranes were acquired using a 
C-DiGit Blot scanner (LI-COR Biosciences).

Luciferase assay. The candidate functional variants rs590041 (SSBP3 intron) and 
rs3807989 (CAV1 intron) were tested for differential transcriptional activity by 
luciferase reporter assay. Regions of ~1.7 kb centered on each SNP were amplified 
from genomic DNA and cloned into pGL4.23 Firefly Luciferase reporter vectors 
(Promega) using Kpn I restriction sites, with primers given in Supplementary 
Table 7. For rs590041, the two allelic variants were obtained using site-directed 
mutagenesis of a homozygous alternate genomic DNA, while for rs3807989, they 
were obtained by subcloning DNA with a heterozygous genotype. Cryopreserved 
day-25 iPSC-CMs were seeded onto a Matrigel-coated 96-well plate at a density 
of 30–40 × 106 cells per well and cultured in RPMI + insulin for 5–10 d before 
transfection, when the media was exchanged to Opti-MEM (Life Technologies). 
Each well was transfected with a mix of 120 ng Firefly Luciferase reporter vector, 
30 ng Renilla Luciferase control vector (pRL-TK; Promega) and 0.6 µl Viafect 
transfection reagent (Promega) in 10 µl Opti-MEM. We transfected six wells per 
construct. Luciferase activity was measured 24 h after transfection using the Dual-
Luciferase Reporter Assay System (Promega).

CRISPRi experiments. Two guide RNAs (gRNAs) targeting CAV1 and SSBP3 
regulatory elements were designed using the online software CHOPCHOP  
(http://chopchop.cbu.uib.no) and cloned into the lentiviral vector pLKO.1-U6-
2sgRNA-ccdB-EF1a-Puromycin. Lentiviral gRNAs or Lenti-dCas9-KRAB-blast  
plasmids (89567; Addgene) were co-transfected with packaging plasmids (psPAX2  
and pMD2.G) into human 293T cells. Culture medium containing lentivirus 
particles for gRNA and dCas9–KRAB was harvested, mixed well with polybrene 
(10 µg ml−1), and added to a 24-well plate. Day-30 iPSC-CMs (cell lines iPSCORE_ 
1_5 and iPSCORE_75_1) were dissociated and added to the virus-containing  
media at around 80% confluence. For a higher infection efficiency, a new collection 
of lentiviral particles mixed with polybrene was added to the medium after 24 h.  
The medium was exchanged after 24 h to regular culture medium, and changed  
to selection medium containing 0.2 µg ml−1 puromycin and 6 µg ml−1 blasticidin  
after another 24 h. Cells were cultured for 6 d, when all cells from the noninfected 
control died, and then harvested. RNA was isolated with a Quick-RNA kit  
(Zymo Research) and reverse transcribed using SuperScript III Reverse Transcriptase 
(Life Technologies). Quantitative PCR (qPCR) reactions were performed in StepOne 
Real-Time PCR systems (Applied Biosystems) using 2× Affymetrix qPCR master 
mix. Relative quantities of gene expression levels were normalized to the METTL2B 
gene. gRNAs and primers for qPCR are given in Supplementary Table 7.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All iPSC lines are available through the WiCell Research Institute (www.wicell.org;  
NHLBI Next Gen Collection). All genomic data are available through the database 
of Genotypes and Phenotypes (accessions phs000924 (RNA-Seq, ChIP-Seq, 
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ATAC-Seq and Hi-C) and phs001325 (whole-genome-sequenced SNV and copy 
number variation genotypes)) and National Center for Biotechnology Information 
BioProject PRJNA285375. Processed data files are available through Gene Expression 
Omnibus accessions GSE125540 and GSE133833.

Code availability
Custom-written code is available via GitHub (https://github.com/frazer-lab/
NKX2-5_ASE_iPSC-CM).
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All iPSC lines are available through WiCell Research Institute (www.wicell.org; NHLBI Next Gen Collection). All genomic data are available through dbGAP accessions 
phs000924 (RNA-Seq, ChIP-Seq, ATAC-Seq, Hi-C) and phs001325 (whole-genome sequence SNV and CNV genotypes), NCBI BioProject PRJNA285375. Processed data 
files are available through GEO accessions GSE125540 and GSEXXXXXX. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample sizes. We selected seven individuals of Asian and European descent in the iPSCORE 
resource that are part of a three-generational family.  Our study design included three genetically unrelated subjects and two parent-offspring 
quartets, which enabled us to examine the inheritance of genetic effects. The primary analyses in this manuscript identify differences in 
molecular phenotypes between two alleles within an individual (ASE – allele-specific effects). Therefore, the power for these analyses was 
primarily dependent on the read depth of RNA-Seq, ChIP-Seq or ATAC-Seq at heterozygous SNVs, rather than the number of subjects. To 
improve power we then combined the results from the same SNV across individuals using a meta-analysis.

Data exclusions We used established quality control metrics and filtering criteria for all molecular data: 
For all sequencing data, blacklisted regions from ENCODE, reads mapping in chromosome other than chr1-chr22, chrX, chrY, and read-pairs 
with mapping quality Q<30 were filtered. 
For ChIP-Seq and ATAC-Seq, peaks were filtered for q-value <0.01, and samples with a FrIP <4%  were excluded.

Replication We compared the ASE (allele-specific effects) between the different molecular data, which showed good correlation, indicating that the 
genetic effects are reproducible.  
Using our approach we identified at least one variant (at the SCN10A locus)  that was previously described to be functional and showing allele-
specific binding.  
EMSA experiment for variants at the CAV1 and GNB4 loci were performed twice and showed consistent results in both independent 
experiments, as shown in the paper's figures; for the variant at the SSBP3 locus, we performed 4 EMSA experiments, of which 3 showed 
consistent allelic differences (two of those are shown in the paper) and one showed no difference.  
CRISPRi was performed in two independent cell lines and the results were reproducible.  
Luciferase assays had 6 replicates each variant, consisting of transfection of 6 different wells.

Randomization As we are testing for genetic associations, there are no experimental groups in this study

Blinding As there are no experimental groups in this study, blinding was not applicable for this study

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used anti-TNNT2 (Thermo Scientific MA5-12960, clone 13-11, dilution 1:200, monoclonal) 

anti -MYL7 (Synaptics Systems 311011, clone 56F5, dilution 1:200, monoclonal) 
anti-H3K27ac  (Abcam ab4729, lots GR183922-2 (1.75μg per IP), GR184333-2 (1μg per IP), or GR00324078 (1μg per IP), 
polyclonal) 
anti- NKX2-5  (Santa Cruz Biotechnology, sc-8697x, lot C0113, 5μg per IP, polyclonal)

Validation anti-TNNT2: from company website: MA5-12960 targets Troponin T Cardiac Isoform in IF/ICC, IHC (P), and IM applications and 
shows reactivity with Avian, Canine, Chicken, Fish, Guinea Pig, Human, mouse, Porcine, Rabbit, and Rat samples. Referenced in 
122 publications. 
anti -MYL7:from company website: Tested applications: WB, ICC, IHC, IHC-P/FFPE, Reacts with: human (Q01449), rat, mouse 
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(Q9QVP4). No signal: chicken. Referenced in 36 publications. 
anti-H3K27ac: from company website: Suitable for: IHC-Fr, ICC/IF, WB, IHC-P, CHIPseq, ChIP/Chip, ChIP, PepArr. Reacts with: 
Mouse, Rat, Chicken, Cow, Human, Arabidopsis thaliana, Drosophila melanogaster, Monkey, Zebrafish, Plasmodium falciparum, 
Rice, Cyanidioschyzon merolae. Referenced in 766 publications. 
anti- NKX2-5: from company website: recommended for detection of Nkx-2.5 and, to a lesser extent, Nkx-2.3 of mouse, rat and 
human origin by WB, IP, IF and ELISA; also reactive with additional species, including and canine, bovine and porcine. Referenced 
in 30 publications. Nkx-2.5 (N-19) has been discontinued and replaced by Nkx-2.5 (A-3): sc-376565 
 
Additionally,  anti-NKX2-5 (lot C0113) was further validated in our laboratory by ChIP followed by Western Blot in iPSC-CMs.

Human research participants
Policy information about studies involving human research participants

Population characteristics All subject information is provided in Supplementary Table 1.  In summary, a family of seven individuals spanning three 
generations was utilized, with all individuals from EAS, EUR, or EAS/EUR descent, spanning ages 18-77.  Five members of this 
family segregate the long-QT syndrome type 2 mutation KCNH2 p.Trp1001* (rs121912509, c.3003G>A), and the genotypes are 
reported. However, the disease phenotype is not analyzed in this study. These individuals are explained  in Panopolous et. al, as 
cited in the references. Individual covariates (sex, ethnicity, disease state) were not used in the analysis of NKX2-5 allele-specific 
effect. 

Recruitment Recruitment for these individuals is explained fully in Panopolous et. al, as cited in the references. Specifically, these 7 individuals  
were recruited  through both the Twin Sibling Pedigree cohort (TSP; a population-based twin registry spanning counties in 
Southern California) and open enrollment through the Clinical and Translational Research Institute (CTRI) at the University of 
California at San Diego (UCSD). Each of the subjects first consented to the study and filled out a questionnaire. These data were 
transcribed to a database and subjects were de-identified with a new sample ID. Ethnicity was reported as a free-response 
answer and translated into one of six recorded ethnicity groupings (African American, European, Hispanic, Indian, Middle 
Eastern, Asian). A seventh category was used when more than one ethnicity was reported; that individual was recorded as 
“Multiple ethnicities reported.” We do not report any recruitment or self-selection bias that could have influenced the results of 
this study.

Ethics oversight This study was approved by the Institutional Review Boards of the University of California at San Diego (Project #110776ZF). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

BAM files for all ChIP-seq data are available through dbGAP ( phs000924, BioProject PRJNA285375), as it contains 
identifiable information. 
BigWig files  for H3K27ac were deposited in GEO (GSE125540), as a part of  a parallel publication utilizing the same data 
(Greenwald, W.W. and Li, H. et al. Subtle changes in chromatin loop contact propensity are associated with differential gene 
regulation and expression. Nat Commun, 2019). 
The NKX2-5 ChIP-Seq BigWig files were deposited in GEO, accession GSE133833

Files in database submission NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_1_FS009 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_3_FS010 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_3_FS003 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_6_FS018_A 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_2_FS005_A 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_4_FS015_A 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_9_FS008 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_1_FS016 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_7_FS011 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_4_FS015_B 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_3_FS024 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_9_FS007 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_6_FS018_B 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_7_FS014 
NKX2-5_ChIPSeq_iPSC-CM_iPSCORE_2_2_FS005_B 
NKX2-5_ChIPSeq_iPSC-CM_Pool_Input control 
036253ba-25d4-4b93-9127-adc21527a082_iPSC-CM (ChIP-seq) 
03a95c32-f31e-4846-b4e7-6991a7bbbd86_iPSC (ChIP-seq) 
0441cd83-9d1a-416b-a82d-856f7f04f6e4_iPSC-CM (ChIP-seq) 
079927aa-29e1-462c-8b15-af1a3d8f1b20_iPSC (ChIP-seq) 
093b028a-b5e8-496e-b2cb-aa5e0d4da368_iPSC (ChIP-seq) 
190c0665-f7ff-48af-925f-a50607fe9af3_iPSC (ChIP-seq) 
1a75c25e-c463-47ab-b838-0fdf7af5ea24_iPSC-CM (ChIP-seq) 
20f37c64-0c86-4cb7-9501-6132d1801b84_iPSC-CM (ChIP-seq) 
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232f80c9-44f3-45e5-ac7c-88c3b27950ea_iPSC-CM (ChIP-seq) 
262ead42-62d0-45fb-a309-dfb9fdeceb28_iPSC-CM (ChIP-seq) 
2d5dda6b-f7cb-428b-8c85-380325c4926a_iPSC (ChIP-seq) 
31ae89ae-0296-415c-b202-e9668ab4461c_iPSC (ChIP-seq) 
32ddc48c-0759-4444-ad25-465c591b9d7a_iPSC (ChIP-seq) 
36f8c31d-b865-4424-a829-8e55cbba6411_iPSC (ChIP-seq) 
4a049ce8-ac3f-4d2b-8bc8-76a2c376bed9_iPSC (ChIP-seq) 
4ee11143-6657-4375-b56e-51b1c35c8f3d_iPSC (ChIP-seq) 
6a65308f-37d0-4b06-94b3-c5301d760afd_iPSC-CM (ChIP-seq) 
6d634ac7-1854-4d2c-b7db-1d9913dc8dc6_iPSC-CM (ChIP-seq) 
76a804b4-b3ec-4b54-9c70-92b11cf82f33_iPSC (ChIP-seq) 
7a1966dd-3453-4d30-8e77-6870ee9cd790_iPSC-CM (ChIP-seq) 
7ba84fca-758f-4068-a7ef-914e68be9c3e_iPSC-CM (ChIP-seq) 
7d2f5a9b-831d-4859-9451-3c7dcc0a00ed_iPSC-CM (ChIP-seq) 
84943ee6-4aef-468e-ba30-55d150e879b5_iPSC-CM (ChIP-seq) 
881424e7-e3cb-482c-830b-69c6897eb772_iPSC-CM (ChIP-seq) 
955ebdbe-26c8-43c3-8a1d-207728297dc0_iPSC (ChIP-seq) 
960c428e-6eba-4fd6-b926-f8776fc20cbc_iPSC (ChIP-seq) 
962cd048-2790-4ef4-8c06-acf9ec1b7bc2_iPSC-CM (ChIP-seq) 
a1d6f499-3f5f-494f-a182-1e3211bd5ae1_iPSC-CM (ChIP-seq) 
a31d0ae6-a7ef-4054-98f0-2928ccf16cf4_iPSC-CM (ChIP-seq) 
a80bc6f4-b918-4461-ab7b-c1f16136bed6_iPSC-CM (ChIP-seq) 
a8241e50-58c1-40de-9551-573d41ea4f19_iPSC (ChIP-seq) 
aa613f3f-2ff5-4d09-84bc-008c30c6ef66_iPSC (ChIP-seq) 
ac83d79a-3621-4eb2-8245-5bcccc209d58_iPSC-CM (ChIP-seq) 
aeeaf78e-a3ae-4071-b364-5d4e35e06799_iPSC (ChIP-seq) 
b389c69b-47cc-4b1e-ae53-bc0a8b23f88a_iPSC-CM (ChIP-seq) 
b56fb523-1e03-4812-a745-1f97314359e7_iPSC-CM (ChIP-seq) 
c92b23f5-206f-4892-ba1b-90dfb8cfe2ee_iPSC-CM (ChIP-seq) 
cc566b8a-fc54-4941-8328-f57401635839_iPSC-CM (ChIP-seq) 
d08fcfb6-1540-4174-bc73-b625da9d9ab9_iPSC-CM (ChIP-seq) 
d56606a1-e263-4da9-acf9-2d6f14a822cb_iPSC-CM (ChIP-seq) 
d7a034e7-2916-409d-9197-51c6b3b8e173_iPSC-CM (ChIP-seq) 
dd8bcb5e-15bf-4be6-97ac-94f54ed811eb_iPSC (ChIP-seq) 
e241faad-584b-41b5-9d1d-07f8ce5ecd30_iPSC (ChIP-seq) 
e86d9c4d-d0ca-4122-b729-9b1f0fbee934_iPSC-CM (ChIP-seq) 
e8d0daf3-5f47-44eb-afdd-f060c0d8a3f9_iPSC (ChIP-seq) 
e9586b34-11fc-4cdf-907a-beb5643ee3ae_iPSC-CM (ChIP-seq) 
f0f2cac5-03e9-4334-8dfe-0d4c13c9a511_iPSC (ChIP-seq) 
f8db3685-37ed-409c-8216-c0d045108403_iPSC (ChIP-seq)

Genome browser session 
(e.g. UCSC)

https://genome.ucsc.edu/s/PaolaB/Benaglio_NKX2%2D5_ChIPSeq_public 
https://genome.ucsc.edu/s/PaolaB/Benaglio_H3K27ac_iPSC%2DCMs_public 
https://genome.ucsc.edu/s/PaolaB/Benaglio_H3K27ac_iPSCs_public

Methodology

Replicates We generated and analyzed 48 ChIP-Seq of histone modification H3K27ac (iPSCs: 17 samples and 4 technical replicates; 
iPSC-CMs: 25 samples and 2 technical replicates), and 15 ChIP-seq of NKX2-5 (iPSC-CMs: 12 samples and 3 technical 
replicates) as detailed in Supplementary Tables 2 and 3. 
The median pairwise Spearman correlation coefficient across all samples and across replicate samples of the same individual 
were, respectively : 
0.97 and 0.98 for H3K27ac in iPSCs, 0.93 and 0.93 for H3K27ac in iPSC-CMs and 0.79 and 0.79 for NKX2-5

Sequencing depth All details on individual sequencing metrics are provided in Supplementary table 2 and summarized in Supplementary table 
3. For NKX2-5 the average depth was 26 M uniquely mapped reads while for H3K27ac was 27 M for iPSC-CMs, and 40 M for 
iPSCs. We used in 100 PE reads in most of cases, and 150 PE in few cases.

Antibodies anti-H3K27ac  (Abcam ab4729, lots GR183922-2 (1.75μg), GR184333-2 (1μg), or GR00324078 (1μg) ) 
anti- NKX2-5  (Santa Cruz Biotechnology, sc-8697x, lot C0113, 5μg)

Peak calling parameters Peak calling was performed using MACS2 (‘macs2 callpeak -f BAMPE -g hs -B --SPMR --verbose 3 --cutoff-analysis --call-
summits -q 0.01’) with reads derived from sonicated chromatin not subjected to IP (i.e. input chromatin) from a pool of 
samples used as negative control. Peak coordinates were called from combined samples of either iPSCs or iPSC-CMs, 
generated by pooling the BAM files of each data type across all samples of the given cell type.

Data quality All peaks provided and utilized in the analyses were FDR (q) < 0.01 
Motif enrichment analysis was performed using HOMER ‘findMotifsGenome.pl’ and, for NKX2-5, also using MEME ChIP. 
Motif analysis of the NKX2-5 ChIP-Seq confirmed a significant enrichment (binomial test, q-value <0.0001) for the NKX2-5 
homeobox motif, as well as for the motifs of other heart development TFs (GATA4, TBX5, TBX20, MEF2A/C and MEIS1). 

Software Alignment: BWA 
Peak calling: MACS2 
Quantification of signal: featureCounts 



5

nature research  |  reporting sum
m

ary
O

ctober 2018
Motif enrichment: HOMER and MEME 
Allele-specific effect analysis: WASP, MBASED, GATK 
Postprocessing analyses and data manipulation: R custom codes found at  https://github.com/frazer-lab
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