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Abstract— The surge in mobile broadband data demands is
expected to surpass the available spectrum capacity below 6 GHz.
This expectation has prompted the exploration of millimeter wave
(mm-wave) frequency bands as a candidate technology for next
generation wireless networks. However, numerous challenges to
deploying mm-wave communication systems, including channel
estimation, need to be met before practical deployments are
possible. This paper addresses the mm-wave channel estimation
problem and treats it as a beam discovery problem in which
locating beams with strong path reflectors is analogous to locating
errors in linear block codes. We show that a significantly small
number of measurements (compared to the original dimensions of
the channel matrix) is sufficient to reliably estimate the channel.
We also show that this can be achieved using a simple and
energy-efficient transceiver architecture.

Index Terms— Millimeter wave, channel estimation, beam
discovery, linear block codes, sparse recovery.

I. INTRODUCTION

WE investigate the problem of channel estimation in
millimeter wave (mm-wave) wireless communication

networks. Mm-wave refers to the wavelength of electromag-
netic signals at 30-300 GHz frequency bands. At these high
frequencies, channel measurement campaigns revealed that
wireless communication channels exhibit very limited number
of scattering clusters in the angular domain [2]–[4]. A cluster
refers to a propagation path or continuum of paths that span
a small interval of transmit Angles of Departure (AoD) and
receive Angles of Arrival (AoA). Moreover, signal attenuation
is very significant at mm-wave frequencies. This motivates
the use of large antenna arrays at the transmitter (TX) and
receiver (RX) to provide high antenna gains that compen-
sate for high path losses [5]. Nevertheless, due to the high
power consumption of mixed signal components, e.g., Ana-
log to Digital Converters (ADCs) [6], conventional digital
transceiver architectures that employ a complete RF chain
per antenna is not practical. Hence, alternate architectures
have been proposed for mm-wave radios with the objective
of maintaining close performance to channel capacity. Among
the proposed solutions are the use of hybrid analog/digital
beamforming [7]–[9] and fully digital beamforming with low
resolution ADCs [10]–[12].
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For all proposed solutions, channel estimation remains one
of the most critical determinants of performance in commu-
nication. Due to the large number of antennas at TX and
RX, estimating the full channel gain matrix may require a
large number of measurements. For instance, classical analog
beamforming transceivers with directional beam patterns at
TX and RX demands a number of measurements equal to
the product of the number of transmit and receive antennas
(ruling out the availability of side information as in [13]
and [14]). This imposes a great burden on the estima-
tion process. To address this issue, various methods have
been used, the most prevalent among them, is compressed
sensing [7], [12], [15]–[17], which leverages channel sparsity.
Performance of compressed sensing based approaches is heav-
ily dependent on the design of sensing matrices. For instance,
while random sensing matrices are known to perform well,
in practice, sensing matrices involve the design of transmit
and receive beamforming vectors and the choice of dictionary
matrices.1 Hence, purely random matrices have not been used
in practice [18]. On the other hand, no design that involves
deterministic sensing matrices has been considered for sparse
channel estimation.

Despite the efforts, we do not have a full understanding
of the dependence of channel estimation performance on the
channel parameters and number of measurements. In an effort
to understand this relationship, the study in [19] proposed
a multi-user mm-wave downlink framework based on com-
pressed sensing in which the authors evaluate the achievable
rate performance against the number of measurements.

In this work, we follow a different approach. We propose
a systematic method in which we use sequences of error
correction codes chosen in a way to control the channel
estimation performance. To demonstrate our approach, con-
sider the following simple example. Let a point to point
communication channel be such that, there exists 3 possible
receive AoA directions, only one of which may have a strong
path to TX. We need to obtain the correct AoA at RX, if it
exists. Instead of exhaustively searching all 3 possible AoA
directions, we alternatively measure signals from combined
directions. For instance, by combining directions 1&2 in one
measurement and 2&3 in the next measurement, we can find
the AoA in just two measurements. Specifically, four different
scenarios might occur, namely, i) only the 1st, or ii) only the
2nd measurement contains a strong path, iii) both 1st and 2nd

measurements contain a strong path, and finally, iv) neither
measurement reveals a strong path. Interpretation of those
cases is: AoA is in i) direction 1, ii) direction 3, iii) direction 2,
and iv) none exists. Therefore, only 2 measurements are
sufficient for beam detection instead of 3 that are needed for
exhaustive search.

1A dictionary matrix is used to express the channel in a sparse form.
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We will generalize this idea to develop a systematic method
for beam detection, inspired by linear block coding. Specifi-
cally, we show that linear block error correcting codes (LBC)
possess favorable properties that fit in with the desirable
behavior of sparse channel estimation. As a result, we are
able to i) provide rigorous criteria for solving the channel
estimation problem, ii) significantly decrease the number
of required measurements, and iii) utilize a fairly simple
and energy-efficient transceiver architecture. We design the
system using LBCs that leverage the fact that transmission
errors are typically sparse in transmitted data streams, and
hence, only a few number of erroneous bits need to be cor-
rected per transmitted codeword. Similarly, mm-wave channels
are also sparse, i.e., only a small number of AoAs/AoDs carry
strong signals. LBCs can correct sparse transmission errors by
identifying their location in a transmitted sequence (followed
by flipping them). We are inspired by LBC’s ability to locate
erroneous bits and exploit it to identify the AoAs/AoDs that
carry strong signals (and their path gains) among all possible
AoA/AoD values. To this end, we exploit hard decision
decoding of LBCs, in which the receiver obtains an error
syndrome that maps to one of the correctable error patterns. An
obtained error pattern determines the positions where errors
have occurred. Likewise, for channel estimation, the receiver
will be designed to do a sequence of measurements that would
result in a channel syndrome. The resultant channel syndrome
shall identify the positions (and values) of non-zero angular
channel components.

Contributions of this work can be summarized as follows:
• We set an analogy between beam discovery and channel

coding to utilize low-complexity decoding techniques for
efficient beam discovery.

• We provide rigorous criteria for setting the number of
channel measurements based on the size of the channel
and its sparsity level.

• We show that the number of measurements required for
beam discovery is linked to the rate of a used linear block
code. Hence, maximizing the rate of the underlying code
is equivalent to minimizing the number of measurements.

• We develop a simple receiver architecture that enables us
to measure signals arriving from multiple directions.

Related Work: The main objective of mm-wave channel
estimation is to find a mechanism that can reliably estimate the
channel using as few measurements as possible. For instance,
in [7], a compressed sensing based algorithm to estimate
single-path channels is proposed and an upper bound on
its estimation error is derived. Further, the authors propose
a multipath channel estimation algorithm based on that of
single-path channels. The proposed algorithms in [7] use an
adaptive approach with a hierarchical codebook2 of increasing
resolution. Similarly, the work in [16] proposes an adap-
tive compressive sensing channel estimation algorithm that
accounts for off-the-grid AoAs and AoDs by using continuous
basis pursuit [20] dictionaries. Such adaptive algorithms divide
the estimation process into stages and demand frequent feed
back to the TX after each stage. Hence, while the number of
required measurements are shown to decrease, these methods
may add a considerable overhead.

Other works like [21], [22] and [23] have proposed channel
estimation algorithms using overlapped beam patterns. For
instance, the algorithm in [23] can estimate multipath channel

2A codebook refers to the set of all possible beamforming vectors.

components by sequentially estimating each path gain using an
algorithm designed to estimate single-path channels followed
by recursively removing the estimated paths’ effect from
subsequent measurements. Similar to [7], [16] adaptive beams
with increasing resolution that require feedback to TX are used
to refine the AoA/AoD estimates. On the other hand, the beam
alignment algorithms proposed in [21] and [22] assume a
multipath mm-wave channel. These algorithms, with a high
probability, can find the best beam alignment in a logarithmic
number of measurements (with respect to the total number of
available AoA directions). Nonetheless, despite the possible
existence of multiple paths, those algorithms are designed to
find one path to TX.

Exploiting the results of previous beam alignment opera-
tions could be used to reduce the overhead of subsequent
alignments. For instance, assuming that successive beam align-
ments are statistically correlated, Hashemi et al. [24] use this
contextual information to improve beamforming delay via
Multi-Armed Bandit based models. Similarly, changes in the
channel can occur due to user’s mobility. Zhou et al. [13]
exploit the spatio-temporal channel correlations due to mobil-
ity to enhance beamforming performance. Similarly, [14] used
a Markov process to model the evolution of the gains of
channel paths. This enabled the reduction of the number of
pilots necessary for channel estimation. These studies address
the channel tracking problem and did not focus on the first
phase of estimation, i.e., beam discovery. In the existing
art, the beam discovery problem is typically addressed via
exhaustive search/scanning.

Most research efforts in the field of mm-wave channel
estimation use the magnitude and phase information of the
acquired channel measurements. Nevertheless, if a carrier fre-
quency offset (CFO) error occurs in the transceiver hardware,
the phase information might be unreliable. Hence, the work
in [21], [22], and [25] tackle this problem by ignoring the
phase information. Similar to [21], [22], the solution in [25]
can only obtain one (dominant) path between TX and RX
using a compressed sensing based technique. The CFO prob-
lem is tackled in [26] by considering it as a variable to be
estimated.

While the power consumption problem of mmwave systems
is commonly alleviated using analog or hybrid beamforming
transceivers, an alternative solution is to use low resolution
ADCs in fully digital architectures. Owing to the fact that low
resolution ADCs operate at much lower power than their high
resolution counterparts, the work in [10]–[12] and [27] employ
low resolution (single-bit) ADCs in digital transceivers. The
work in [17] and [28] study the channel estimation problem
using such architectures. Moreover, other solutions include
integrated mm-wave and sub-6 GHz systems [29] to provide
reliable and energy efficient communication systems.

Notations: A vector and a matrix are denoted by x and X ,
respectively, while x denotes a scalar or a complex number
depending on the context. The transpose, conjugate transpose
and frobenius norm of X are given by XT , XH and ∥X∥F ,
respectively. The sets of real and complex numbers are R and
C. The k×k identity matrix is Ik. A set is denoted by X , while
|X | is its cardinality. Finally, 1() is the indicator function.

II. MOTIVATING EXAMPLE

To elaborate, we present the following example: consider a
point to point communication link between a TX with single
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Fig. 1. Beam patterns of all possible angular directions.

antenna (nt = 1) and RX with nr = 15 antennas. Therefore,
the vector of channel gains,3 q, is a 15×1 vector, and its
corresponding angular (virtual) channel, qa, is a vector of the
same size which can be derived using the DFT matrix Ur as
qa = UH

r q [30] (this is merely a linear transformation that
maps the sequence of channel gains into a sequence of gains
from different AoAs. This mapping will be presented in more
detail in Section III). Assume a single-path channel, i.e., the
channel has only one cluster with a single path in it. Let the
path gain be denoted by α. For simplicity assume α = 1.
Further, let us assume perfect sparsity such that the AoA is
along one of the directions defined in the DFT matrix Ur,
i.e., the channel path will only contribute to one angular bin.
Finally, let us also neglect the channel noise.

Based on the channel description above, we get an angular
channel vector of the form

qa = (qa
0 qa

1 . . . qa
14)

T
, (1)

such that qa
i ∈ {0, 1} and the number of non-zero components

in qa is 1. Any component of qa can be measured using one
of the beam patterns shown in Fig. 1.

Objective: Suppose the transmitter sends pilot symbols of
the form x=1. Thus, the received vector y can be obtained as

y = qx = q ⇐⇒ ya = qa (2)

where ya is the received vector in the angular domain. So, with
change of basis, we can think of qa as a received sequence
with just one non-zero component. To identify the position of
this non-zero component, the receiver performs a sequence of
channel measurements. Let ysi denote the ith measurement:

ysi = wH
i y = wH

i q, (3)

where wi denotes the ith receive (rx-)combining vector. Our
aim is to design channel measurements (i.e., wi’s) such
that the correct AoA is identified using a small number of
measurements (compared to the number of available AoAs).

Proposed Solution: We consider this non-zero component to
be an anomaly to a normally all-zero 15-bin angular channel.
Hence, the goal of identifying its position is analogous to
finding the most likely 1-bit error pattern of a 15-bit codeword
in a linear block code. Now, we need to identify an error
correction code with codewords of length 15 and with 1-bit
error correction capability [31]. Hence, we can use the binary
(15, 11, 3) Hamming code with parity check matrix H of size

3Let all the channels have one single significant tap.

TABLE I

MAPPING OF CHANNEL SYNDROMES TO ANGULAR CHANNELS

4×15 and given by

H =

⎛

⎜⎝

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

⎞

⎟⎠ (4)

where hi,j represents the component at the intersection of
row i and column j of H . Using hard decision decoding of
LBCs, error syndrome vectors of length 4 are obtained. Every
possible syndrome vector maps to only one correctable error
pattern.4 Similarly, for channel estimation, several measure-
ments should be performed at RX where each measurement
mimics the behavior of a corresponding component in the error
syndrome vector. Each measurement boils down to adding
signals from a subset of the available 15 directions. Since
each measurement can either include the direction of the
incoming strong path of gain α = 1 or no strong paths at
all, then the components of the channel syndrome vector are
in {0, 1}.

For every measurement ysi , we design wi based on the
entries of the ith row of H such that: if hi,j = 1, then we
include the beam pattern that points to direction j in wi. For
example, the 0th row of H is given by [100010011010111].
Hence, w0 should include beam patterns pointing to the set
of directions {0, 4, 7, 8, 10, 12, 13, 14}.

Fig. 2 illustrates this operation for w0. We can see that the
resultant beam pattern of wi combines signals coming from
a set of selected directions dictated by the ith row of H .
We call the obtained measurement vector, ys, the channel
syndrome which is analogous to error syndromes in hard
decision decoding of LBCs. Then, a table that maps every
possible channel syndrome to a unique corresponding channel
can be constructed. Table I shows this mapping.

In this example, we are able to estimate the channel based
on only 4 measurements as opposed to 15, which is the number
of measurements with exhaustive search. Important aspects of
our proposed method include the choice of codes, the design of
precoding and rx-combining measurement vectors, the effect
of variable gains and phases of different paths and the occur-
rence of measurement errors.

Remark (Receiver Architecture): Note that, to achieve beam
patterns similar to the one shown in Fig. 2, the receiver
architecture needs controllable low-power amplifiers (variable
gain amplifiers (VGA)) at each antenna element. The reason
is that, unlike analog beamforming where the components of
rx-combining vectors wi’s have equal magnitudes but different
phases, the rx-combing vectors that produce beam patterns

4A correctable error pattern of a (15, 11, 3) Hamming code is any 15×1
binary vector that contains only one ’1’ (at the error’s position).
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Fig. 2. Beam pattern of receive combining vector w0.

Fig. 3. Hardware Block Diagram: Every antenna is connected to a phase
shifter and low-power variable gain amplifier. Then, all outputs are combined
using an adder and passed to an RF chain with in-phase and quadrature
channels.

as in Fig. 2 would have different magnitude values, as well.
In fact, it is typical for existing implementations to include
VGAs to correct for imperfections of the transceiver’s elec-
tronic components [32]. Such amplitude control is also pre-
sumed possible in mm-Wave standards, e.g., IEEE 802.11ad,
and is available in commercial off-the-shelf devices, e.g.
Wilocity Wil6200 network cards [33].

Motivation for LBC-inspired approach: LBCs are designed
to discover and correct a certain maximum number of errors in
a codeword of a specified length. This objective is achieved by
adding redundant parity check bits to the original information
sequence. The number of parity bits is dependent on the
length of the original information sequence and the required
error correction capability. What makes our devised approach
attractive is that the number of measurements needed for
channel estimation can be shown to be equal to the number of
parity bits of some corresponding code. Hence, we can control
the estimation performance via appropriate code selection. In
this work, we will propose a method to specify the number of
necessary channel measurements as a function of the rate of
the underlying code.

III. SYSTEM MODEL

Consider a point-to-point millimeter-wave wireless commu-
nication system with a transmitter (TX) equipped with nt

antennas and a receiver (RX) with nr antennas placed at
fixed locations. Uniform Linear Arrays (ULA) are assumed at
both TX and RX where each antenna element is connected
to a phase shifter and a variable gain amplifier. A single
RF chain at the receiver, with in-phase (I) and quadrature
(Q) channels, is fed through a linear combiner (see Fig. 3).
Only two mid-tread ADCs, with 2b+1 quantization levels, are
utilized, where quantization levels take values from the set
Y = {−2b−1, . . . ,−1, 0, 1, . . . , 2b−1}.

We adopt a single-tap channel model where Q ∈ Cnr×nt

denotes the channel matrix between TX and RX. Assume
that the channel has L clusters, where each cluster contains a

single path with gain αl, AoD θl, and AoA φl. The channel
is assumed to be sparse such that L ≪ nt, nr. Let αb

l ∈ C
denote the baseband channel gain and is defined as

αb
l =αl

√
ntnr e−j

2πρl
λc , (5)

where ρl is the length of path l and λc is the carrier wave-
length. The angular cosines of AoD and AoA associated with
path l are denoted by Ωtl and Ωrl, respectively. The transmit
and receive spatial signatures along the direction Ω are given
by ℵt(Ω) and ℵr(Ω) such that

ℵt(Ω)=
1
√

nt

(
1,e−j2π∆tΩ,e−j2π2∆tΩ,. . . ,e−j2π(nt−1)∆tΩ

)
,

(6)

where ℵr(Ω) has a similar definition to ℵt(Ω), and ∆t and
∆r are the antenna separations at TX and RX normalized by
the wavelength λc. Let the average path loss be denoted by µ.
Thus, Q can be written as

Q =
L∑

l=1

αb
l

µ
ℵr(Ωrl) ℵH

t (Ωtl). (7)

We define Ut and Ur as the unitary Discrete Fourier Trans-
form (DFT) matrices whose columns constitute an orthonor-
mal basis for the transmit and receive signal spaces Cnt and
Cnr , respectively. Ut (and similarly Ur) is given by

Ut =
(
ℵt(0) ℵt( 1

κt
) . . . ℵt(nt−1

κt
)
)
, (8)

where κt (κr) is the normalized length of the trans-
mit (receive) antenna array such that κt=nt∆t (κr=nr∆r).
Let Qa be the channel matrix in the angular domain [30],
where

Qa = UH
r QUt. (9)

The rows and columns of Qa divide the channel into resolv-
able RX and TX bins, respectively. Further, we assume a
perfect sparsity model in which AoDs θl, and AoA φl, are
along the directions defined in Ut and Ur [7], [17], [23].
Hence, each channel cluster will only contribute to a single
pair of TX and RX bins. Therefore, Qa has a maximum of L
non-zero TX and RX bins.

The baseband channel model is given by

y = Qx + n, (10)

where x ∈ Cnt is the transmitted signal, y ∈ Cnr is the
received signal and n ∼ CN (0, N0Inr) is an i.i.d. complex
Gaussian noise vector.

Let f ∈ Cnt and w ∈ Cnr be the precoding and
rx-combining vectors, respectively. The transmit signal x is



1450 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

given by x = fs where s is the transmitted symbol with
average power E(ssH)=P . After the receiver applies the
rx-combining vector w, the resultant symbol u can be written
as

u = wHQfs + wHn. (11)

Afterwards, u is passed forward to the ADCs. There, a quan-
tized version, us, of u is obtained such that

us = [wHQfs + wHn]+ , (12)

where [ · ]+ represents the quantization function. Now, us

constitutes a single, quantized, unit measurement obtained
using specific f and w vectors such that us = u(r)

s +iu(i)
s ⊆ C

where
(
u(r)

s , u(i)
s

)
∈ Y2 are the real and imaginary compo-

nents of us, respectively.
We assume that Q remains fixed throughout the entire

estimation process. The noise component wHn normalized
by ∥w∥ is also a complex gaussian random variable such that
wH

∥w∥n ∼ CN (0, N0). We define the signal to noise ratio (SNR)
on a per path basis such that SNR of path l is given by

SNRl =
P

N0

∣∣∣∣
αb

l

µ

∣∣∣∣
2

. (13)

Note that the actual received SNR depends on all path gains
included in a measurement.

IV. PROBLEM STATEMENT

Suppose a maximum number of L clusters need to be
discovered in the channel where L ≪ nt, nr. Under the
prefect sparsity assumption, Qa has a maximum of L non-zero
RX and TX angular bins. Our objective is to identify the
angular positions at which channel clusters exist and identify
their path gain values using the least possible number of
measurements. Let the number of measurements be m such
that each measurement, usi,j , is obtained using the precoder
fj and rx-combiner wi. Let the number of rx-combiners
and precoders be m1 and m2, respectively. Measurements
take the form usi,j = [wi

HQfjs + wi
Hn]+. Let ξ() be a

mapping function that takes in the measurements {usi,j}∀i,j

as inputs and returns the estimated channel Q̂
a

. For each j,
we stack the measurements {usi,j}∀i in a single (syndrome)
vector such that usj = [us0,j us1,j . . . usm1−1,j ]T . Our design
variables are the precoding vectors fj , rx-combining vectors
wi, the number of measurements m, the mapping function
ξ(), and the transmitted symbol power P .

In its essence, solving this problem boils down to finding
the optimal set of measurements {usi,j}∀i,j and the map-
ping function ξ() such that Qa can be estimated using the
minimum number of measurements. For ease of explanation,
we first consider a channel with a single transmit antenna
and nr receive antennas. Therefore, no precoding is needed
and the design of measurements is reduced to designing
the rx-combining vectors wi. Recall that in the motivating
example in Section II, we dealt with a special case of nr×1
channels where we sought to find the direction of arrival of
a channel with a single path of known gain, α = 1. In the
general case, we should consider arbitrary path gains α ∈ C
and channels with multiple paths.

V. BEAM DISCOVERY

In this section, we present our proposed solution. As an
initial step, we solve a simplified version of the problem
where communication channels have a single transmit antenna
and multiple receive antennas. Afterwards, we will build on
it to provide the solution for general channels with multiple
transmit and receive antennas.

A. Beam Detection using LBC-inspired approach
To identify the exact number of measurements and their

corresponding design, we follow a decoding-like approach of
LBC.5 First, we need to find an LBC, C, that has an error
correction capability en such that i) the maximum number of
clusters in the channel, L, is equal to en and ii) the length of
its codewords n is equal to the number of antennas nr (nr

is also the number of resolvable directions). The code C has
a parity check matrix H which represents the link between
channel decoding and beam detection problems. Binary codes
deal with data and error sequences defined over the finite
field GF (2), i.e., addition and multiplication operations are
defined over GF (2) with binary inputs and outputs, i.e., 1’s
and 0’s. However, mm-wave channel parameters are defined
over the complex numbers field C. Therefore, to account for
arbitrary path gains, we should be able to extend this concept
to C.

Although H is defined over GF (2), we interpret its ′1′
and ′0′ entries as real numbers. Then, similar to channel
decoding, we seek to obtain a channel syndrome, ys, such
that (ys)

T≡(qa)T HT =⇒ ys≡Hqa. This matrix multipli-
cation can be realized using channel measurements such that
each measurement gives one component in ys. Measurements
{ysi}∀i make up the components of the channel syndrome
vector ys. Then, we need to find a mapping function ξ()
that takes in the channel syndrome vector {ys} as an input
and returns the estimated channel q̂a. The position of each
non-zero component in q̂a identifies a path’s AoA, and its
value identifies its baseband path gain. Finally, for this to work,
we need to show that such channel measurements provide one-
to-one mapping to the channel. In other words, ys must be a
sufficient statistic for estimating the channel. In Section V-C,
we will show that our design results in the sufficient statistic
we seek to achieve.

Remark (Difference between ys and us): Both ys and
us refer to vectors of measurement symbols, however, us

is considered to be the noise corrupted and quantized ver-
sion of ys. Specifically, us=[ys + z]+ such that z is the
measurement noise vector. While us is what we expect to
observe, our design of measurements focuses on finding ys; an
error-free symbol. Of course, errors degrade beam discovery
performance. Thus, in Section VI, we will deal with the effect
of measurement errors separately and present a solution that

5In channel coding, the convention is to use row vectors. Thus, let x and c
be 1×k and 1×n binary row vectors that represent an information sequence
and its corresponding codeword of an LBC, respectively. Also let r=c+e
be a received sequence corrupted by 1×n error pattern e. To decode r,
we calculate an error syndrome vector s, of size 1×n−k, such that s=rHT ,
where H is the parity check matrix of the used LBC. Then, a most likely
error pattern ê can be uniquely identified by s using a look-up table called
the standard array. Finally, the decoded codeword is obtained using ĉ=r−ê.
A decoding error occurs if the number of errors, identified using 1’s in e,
is beyond the error correction capability of the used code, denoted by en.
Note that in this context, all vectors, matrices and math operations are over
GF(2).



SHABARA et al.: BEAM DISCOVERY USING LINEAR BLOCK CODES FOR MILLIMETER WAVE COMMUNICATION NETWORKS 1451

increases reliability of beam discovery. The separate treatment
of measurement errors simplifies the design and provides a
clear understanding of the nature of our solution.

Remark (Number of Measurements): The solution we obtain
is dependent on channel parameters, namely, the number of
antennas and the sparsity level of the channel. That is, at a
fixed sparsity level, i.e., fixed number of clusters L, a larger
number of antennas necessitates more channel measurements.
In other words, the high resolution realized by large nr comes
at a price of an increased number of measurements. Similarly,
at fixed nr, more channel clusters involve more measurements
for correct channel estimation.

B. Measurements Design
Recall that each component in qa represents a resolvable

angular direction at the receiver. Let each resolvable direction
be given an identification number (dirrx#i). Also let beamrx#i
denote the beam pattern pointing to dirrx#i, i.e., a signal com-
ing from dirrx#i can be individually measured using beamrx#i
(similar to beam patterns in Fig. 1).

Now, using careful design of wi’s, we seek to obtain

ys = (ys0 , ys1 , . . . , ysm−1)
T ≡Hqa, where (14)

ysi = wH
i q , ∀ 0 ≤ i ≤ m−1 (15)

To achieve this, each rx-combining vector wi is designed as a
multi-armed beam, i.e., composed of several sub-beams similar
to the beam pattern in Fig. 2. The sub-beams included in each
wi are identified by the ith row of the matrix H . That is, only
if hi,j , the intersection of the ith row and jth column, is = 1,
do we include beamrx#j as a sub-beam in wi (also refer to
our discussion in Section II).

The design of rx-combining vectors is a crucial aspect
of this work. As an initial step towards obtaining
proper rx-combining vectors, we consider designing
wi’s using linear summation of all analog beamformers
that correspond to beamrx#j’s ∀j : hi,j = 1. Let
Ωj=cos(φj)= j

Lr
∀j∈{0, . . . , nr−1}, such that ℵr(Ωj)

is the spatial signature of beamrx#j. Then, wi can be designed
as

wi =
nr−1∑

j=0

1{hi,j=1}ℵr(Ωj) (16)

C. Sufficient Statistic
We will show in this section that each channel syndrome can

only be mapped to a single measurable channel. A measurable
channel in this context refers to nr×1 channels with L
non-zero components such that L ≤ en, where en is the error
correction capability of the underlying code C and nr=n is
its CWs length. Let Qa be the set of all measurable channels:

Qa ! {qa ∈ Cnr : |qa
i :qa

i ̸=0| ≤ en} . (17)

Since each measurement combines signals coming from
multiple directions, each element in the channel syndrome
vector is a linear combination of a subset of the available
paths. In other words, each measurement has the possibility
that one or more paths are included in it. This setting is
rather challenging. To understand why, consider a channel that
has two paths with gains α1, α2 ∈ C. Suppose that α1 and

α2 are of equal magnitudes but are out-of-phase (i.e., phase
shift = 180◦). Hence, if signals coming from both paths are
combined in a single measurement, the resultant value is 0
which is similar to the result we get if no paths exist in the
measured directions. Also each channel measurement can be
a result of endless possibilities for the combined path gain
values. So, a natural question to ask is: does this ambiguity
cause measurement errors? The direct answer to this question
is: No. In the sequel we will show that the resulting channel
syndrome, i.e., the combination of all channel measurements,
is sufficient to correctly estimate the channel.

First, recall our discussion in Footnote 5. Then, consider all
single-bit error patterns e(i) of some code C, with maximum
number of correctable errors =en such that

e(i)
k =

{
1, k = i
0, k ̸= i

, (18)

where e(i)
k is the kth component of e(i). Also let s(i)

be the corresponding error syndrome of e(i). Recall that
s(i)=e(i)HT . Hence, we can see that s(i) is exactly the ith

row of HT , i.e., ith column of H . Let EC denote the set of
correctable error patterns of the code C such that

EC !
{
e∈{0, 1}n :e=

n∑

i=1

ϱie
(i), ϱi∈ {0, 1} :|ϱi:ϱi =1|≤en

}
.

(19)

Now, we can write any correctable error pattern e ∈ EC as a
linear combination of all single-bit error patterns over the finite
field GF (2) such that e =

∑n
i=1 ϱie(i), and its corresponding

error syndrome is s =
∑n

i=1 ϱis(i).

Lemma 1: For an error pattern et with number of bit errors
identical to en, its syndrome st is a linear combination of en

linearly independent vectors s(i).

Proof: We are going to prove this lemma by contradiction.
First, assume that st is a linear combination of en linearly
dependent vectors s(i) over GF (2). Therefore, there exists
another error syndrome s∗

t composed of only linear combina-
tion of independent vectors s(i) such that st = s∗

t . Therefore,
there exists another error patter e∗

t with number of errors
strictly less than en such that its syndrome s∗

t = st. Since
e∗

t has a number of errors less than en, then it is a correctable
error pattern, and since all error syndromes of correctable error
patterns are different, then s∗

t should be ̸= st. Hence, we arrive
at a contradiction. "
It is also easy to see that if et1 and et2 are two different
correctable error patterns, then their error syndromes st1 and
st2 are composed of a linear combination of different sets of
single-bit error syndromes s(i).

Lemma 2: Any n−dimensional linearly independent vectors
over GF (2), are also linearly independent over Cn.

Proof: Let v1, . . . ,vm be a set of n−dimensional vectors
defined over GF (2). The vectors vi can be made the columns
of an n×m matrix Ψ. Since all vi’s are linearly independent
over GF (2), then Ψ is a left-invertible matrix. Therefore, there
exists a non-zero (modulo 2) m×m minor of Ψ. Now, suppose
the entries in Ψ are interpreted as real numbers. Therefore, Ψ,
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now taken over R, has an m×m sub-matrix whose determinant
is non-zero, which proves that it is invertible. Therefore,
the vectors vi’s, i.e., columns of Ψ, are linearly independent
over R which, using the same argument, can also be shown
to be linearly independent over C. "

Suppose that entries of H and e(i) are interpreted as real
numbers, then we can write the channel qa as

(qa)T = α1e
(1) + α2e

(2) + · · · + αne(n) (20)

where αi∈C and
∑n

i=1 1{αi ̸=0}≤en. Therefore, each chan-
nel syndrome (ys)

T =(qa)T HT =⇒ ys=Hqa is a linear
combination of independent vectors in Cn−k (columns of
H). Therefore, all possible measurable channels yield unique
channel syndromes which implies that they are sufficient for
the channel estimation problem.

D. Mapping Function ξ()
After showing that each measurable channel can be mapped

to a unique channel syndrome, we need to find this mapping
function, i.e., ξ : ys → q̂a, where q̂a denotes the estimated
channel. We propose two different approaches to find ξ().

1) Look-up Table Method: Similar to hard decision decod-
ing where a look-up table is constructed that maps error syn-
dromes to their corresponding error patterns, we can construct
a look-up table that indicates which channel corresponds to
an obtained channel syndrome. The number of table entries
depend on the employed ADC resolution and are based on
error-free channel syndromes ys. The mapping between the
actual error-corrupted syndrome us and qa is obtained using
l2− norm minimization where ξ() returns the channel whose
corresponding ys has the smallest distance to us. The l2

distance function δ(·, ·) is given by

δ(ys, us) = ∥ys − us∥2 =

√√√√
m−1∑

i=0

|ysi−usi |2. (21)

Further details of the table construction can be found in [34].
2) Search Method: Recall that ys=Hqa (Eq. (14)), and let

the parity check matrix H be represented as:

H =
(
h1 h2 . . . hnr

)
, (22)

where hi is the ith column of H . Thus, we can write ys as:

ys = qa
1h1 + qa

2h2 + · · · + qa
nr

hnr , (23)

where qa
i is the ith component of qa. Note that qa is

L−sparse, i.e., we have no more than L non-zero compo-
nents qa

i . Let the indices of the non-zero components be
x1, x2, . . . , xL, hence, ys can succinctly be written as:

ys = qa
x1

hx1 + qa
x2

hx2 + · · · + qa
xL

hxL . (24)

Then, we can write Eq. (24) in matrix form as:

ys = Cqa
c , where (25)

C !
(
hx1 hx2 . . . hxL

)
(26)

and qa
c =

(
qa
x1

qa
x2

. . . qa
xL

)T
is a shortened version of qa that

only has L dimensions. Also C is an m×L matrix of rank L,

since L<m, and hxi’s are linearly independent columns of C
(recall our discussion in Section V-C). Therefore, C has a left
Moore-Penrose inverse (pseudo inverse), C+ = (CT C)−1CT

where C+C = I of size L×L. Thus, if we have knowledge
of C, we can then find qa

c as:

qa
c = C+ys. (27)

The problem we need to solve is obtaining the matrix C.
We can solve this problem using an exhaustive search method
which can be explained as follows:

(i) Candidate matrices Cj are generated by choosing differ-
ent L combinations of columns of H where 1≤j≤

(nr

L

)
.

(ii) Find qa
cj

=C+
j ys=C+

j Cqa
c . Note that at this step,

we obtain a vector qa
cj

identical to qa
c if and only if

C+
j C=I ⇔ Cj=C.

(iii) Let βj be such that

βj = Cjq
a
cj

= CjC
+
j ys, (28)

Hence, if the correct choice Cj = C is made, then
βj = CjC

+
j Cqa

c = ys. Else, if Cj ̸= C, then6 βj =
CjC

+
j Cqa

c ̸= ys

Hence, if βj∗ = ys, we declare its corresponding matrix
Cj∗ the true matrix C defined in Eq. (26) which satisfies
Eq. (25). Also, we have that qa

c = qa
cj∗ . Since, identifying

C is equivalent to identifying the indexes x1, . . . , xL. Thus,
we found the angular channel qa which is all zeros except -
potentially7 - for the components qa

x1
, . . . , qa

xL
.

The previous discussion dealt with an idealized version of
the measurements (i.e., ys), however, in practice, we observe
us as an error-corrupted version of ys. Define zs to be the
error vector that captures the effect of both channel noise and
quantization error which satisfies

us = ys + zs. (29)

Suppose that we know the matrix C for which we have

us = Cqa
c + zs, (30)

then, we can find C+us (compare to Eq. (27)) as follows

C+us = C+Cqa
c + C+zs = qa

c + C+zs,

to be a noise-corrupted version of qa
c .

Now, to find an estimate q̂a of qa, we follow a very similar
procedure to the one described before as follows:

(i) Matrices Cj are generated similar to the 1st step before.
(ii) Define Ej to be the difference between C and Cj where

C = Cj + Ej . (31)

That is, Ej = 0 (all zero matrix) ⇔ Cj = C.
(iii) Find qa

cj
such that

qa
cj

= C+
j us = qa

c + C+
j (Ejq

a
c + zs). (32)

6Since C+
j is the left pseudo-inverse of Cj , and since Cj is not a square

matrix, then CjC+
j ̸= I = C+

j Cj =⇒ CjC+
j C ̸=C

7This means that if the number of paths is less than L, then some qa
xi

’s
might have zero values as well.
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Unlike the 2nd step of the no-error case, qa
cj

will not be
identical to the true qa

c with probability 1, since zs is
not identical to 0 with probability 1 (zs is the difference
between continuous and discrete quantities).

(iv) Let βj be such that

βj = Cjq
a
cj

= Cj

(
qa

c + C+
j

(
Ejq

a
c + zs

))
(33)

=

{
ys+CjC

+
j zs ,C=Cj

Cjqa
c + CjC

+
j

(
Ejqa

c + zs

)
, C ̸=Cj

(34)

Then find j∗ such that j∗ = argminj

∥∥βj − us

∥∥ ,
where βj − us is given by

βj−us = Cjq
a
c−ys + CjC

+
j Ejq

a
c +

(
CjC

+
j −I

)
zs

(35)

which at C = Cj∗ is further reduced to

βj∗ − us =
(
CjC

+
j −I

)
zs (36)

E. Multiple Transmit and Receive Antennas

So far, we have considered channels with single transmit
antennas and shown how to perform beam discovery at RX.
To extend our approach to a general setting, we consider
channels with nt antennas at TX, and nr antennas at RX.
Thus, instead of the TX just sending signals omnidirectionally,
now it can perform highly directional transmission. Recall
that the RX is able to perform channel measurements using
multi-armed beams. Similarly, the TX can send signals using
multi-armed beams to simultaneously focus on multiple direc-
tions using precoding vectors fj .

The design of precoding vectors can also be obtained
using an LBC approach. Similar to the method of designing
rx-combining vectors wi, we look for an LBC, C2, that has
CWs of length n2=nt and can correct for en=L errors. Let
the parity check matrix of C2 be H2, using which, we will
design the precoding vectors fj . Let beamtx#i denote the ith

TX beam which points to TX direction dirtx #i. Then, just
as before, we envisage H2 as an array whose columns are
associated with resolvable TX directions such that: i) its jth

column corresponds to dirtx#j, and ii) its ith row corresponds
to the ith measurement. We note that no actual measurements
are performed at TX; we use the word measurement to refer
to precoding, consistent with the case of RX. That is, the ith

TX measurement is actually the ith precoder f i. Thereby,
we design the ith precoder as a multi-armed TX beam such
that, only if hi,j , the intersection of the ith row and jth

columns of H2, is = 1, do we include sub-beam beamtx#j
in fi. Each TX measurement provides a component in a
TX channel syndrome vector yT X

s . The total number of
TX measurements (i.e., precoding vectors), denoted by m2,
is equal to the number of parity check bits of the code C2. That
is, m2=n2−k2, where k2 is the length of C2’s information
sequences. To obtain AoDs of strong paths at TX, we define
the function ξ2() as the mapping function between all pos-
sible TX channel syndromes and their corresponding angular

channels denoted by qaT X . Note that, for every dirrx#i, there
exists a corresponding qaT X(i) which represents the ith row
of Qa. Also, since the maximum number of clusters is L,
then, the number of non-zero vectors qaT X(i) is ≤ L.

To see the whole picture, assume that a code C1, with
CWs of length n1=nr, is an LBC code associated with
beam discovery at RX side. Let the number of RX mea-
surements, i.e., the number of rx-combining vectors, be m1

such that m1=n1−k1, where k1 is the length of information
sequences of C1. Also let ξ1() be the mapping function
between RX channel syndromes and its corresponding angular
channel. Under this setting, the beam discovery problem is
performed as follows: i) The TX starts sending its training
sequence using the precoder fj , ∀j ∈ {0, . . . , m2−1}. ii)
The RX performs m1 channel measurements while fj is
being used at TX and obtains a channel syndrome ysj .
iii) Based on ysj , the RX obtains a corresponding channel,
qa(j) with path components {qa

p
(j)}∀p∈{1,...,nr}. Notice that

qa(j)’s do not necessarily represent individual path gains,
but rather, combinations of paths accumulating at a sin-
gle dirrx#. Therefore, there exists a resemblance to channel
syndromes which we exploit. iv) We construct a set of nr

TX channel syndromes, yT X(p)
s where their jth compo-

nent yTX(p)
sj =qa

p
(j), i.e., [yT X(1)

s , yT X(2)
s , . . . ,yT X(nr)

s ] =
[qa(1), qa(2), . . . , qa(m2)]T . v) Finally, we find the angular
TX channel for every dirrx #p, i.e., pth row of Qa, using the
mapping function qaT X(p)=ξ2(yT X(p)

s ). Notice that, since
no more than L ≪ nr clusters exist, and since 0 channels
correspond to 0 channel syndromes, we only need to apply
ξ2() a maximum of L times -unless measurement error occurs.
This whole process is highlighted in Algorithm 1.

Remark (Sufficiency of Syndromes): Recall that finding Qa

from
{
ysj

}
∀j

is done using two stages of unique map-
pings; First: For every ysj we find qa(j) using ξ1(). Sec-
ond: After constructing the vectors

{
yT X(p)

s

}
∀1≤p≤nr

from{
qa(j)

}
∀0≤j≤m1−1

(using a simple matrix transpose oper-
ation), we map yT X(p)

s using ξ2() to qaT X(p) where the
latter constitute the columns of Qa. The sufficiency of the
syndromes

{
ysj

}
∀j

for estimating Qa can be easily proven by
showing that

{
ysj

}
∀j

are sufficient to estimate
{
yT X(p)

s

}
∀p

,
and that

{
yT X(p)

s

}
∀p

are sufficient to estimate
{
qaT X(p)

}
∀p

.
Both of these steps are similar to the single-transmit multiple-
receive antenna scenario discussed in Section V-C.

VI. ERROR CORRECTION

So far, the main focus of this paper has been on beam
discovery using a "small" number of measurements. We have
not evaluated the detection error under noisy observations. In
fact, with no measurement errors, our proposed solution can
estimate the channel matrix perfectly. However, the presence
of channel noise and quantization degrades the beam discovery
performance. The key question we investigate here is whether
increasing the number of channel measurements—by essen-
tially adding redundancy—would improve the beam detection
performance. The answer to this is: Yes. In the sequel we
will present a method that allows for increasing the number



1454 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

Algorithm 1: Beam Discovery of Multiple TX/RX
Antennas

input : {wi}∀i∈{1,...,m1} , {f j},∀j∈{1,...,m2} ,

ξ1() : ys → q̂a , ξ2() : yT X
s → q̂aT X

output: {ysi}∀i∈{1,...,m2}
1 begin
2 j = 0;
3 while j < m2 do
4 i = 0;
5 while i < m1 do
6 // channel measurement
7 ysi,j = wH

i Qf js;
8 i← i + 1;
9 end

10 // construct channel syndrome ysj

11 ysj ← {ysi,j}∀i∈{1,...,m1};
12 /* find corresponding channel

qa(j) = [qa
1
(j), qa

2
(j), . . . , qa

nr

(j)]T */
13 qa(j) ← ξ1(ysj );
14 for p← 1 to nr do
15 /* construct TX channel

syndromes yT X(p)
s , where

yT X(p)
s =

[yTX(p)
s1 , yTX(p)

s2 , . . . , yTX(p)
sm2

]T */

16 yTX(p)
sj ← qa

p
(j)

17 end
18 j ← j + 1;
19 end
20 for p← 1 to nr do
21 qaT X(p) ← ξ2(yT X(p)

s )
22 end
23 Q̂

a
=

(
qaT X(1) qaT X(2) . . . qaT X(nr)

)T

24 end

of measurements and trades it for higher reliability. The
very concept of adding redundant information to combat noisy
observations is the foundation of channel coding. Hence, it is
appealing to use channel coding ideas to achieve more reliable
beam discovery. For simplicity we again present our proposed
solution for the simple setting of one transmit antenna and
multiple receive antennas. The general multiple transmit and
receive antennas setting can be dealt with in the same fashion
described in Section V-E.

Recall that a received symbol us is given by Eq. (12)
as us=[ys + wHn]+ where ys=wHQfs is the error-free
measurement symbol. We write us=ys + zs where zs is
the measurement error (Eq. (29)). Also recall that, for
f=1 (one transmit antenna), and wi, we form the chan-
nel syndrome vector us=[us0 us1 . . . usm−1 ]T such that
usi=wi

Hqs+zsi where q is the nr×1 channel vector. Equiv-
alently, we have that us=Hqa+zs where zs is formed by
stacking {zsi}∀i=0,...,m−1. Recall that this is exactly Eq. (14)
but with the noise terms added.

In fact, we can perceive the channel syndrome ys as raw
information sequence that need to be transmitted over a noisy

channel, and us is the noise-corrupted received sequence. The
syndrome, ys, is a vector that lies in an m−dimensional
vector space. By exploiting channel codes, we can map ys

to longer sequences yν
s (encoded channel syndrome) that lie

in an m−dimensional subspace of an mc−dimensional vector
space. The longer sequences yν

s should have increased dis-
tance which allows for higher resilience against measurement
errors. Hence, us can now be written as us = yν

s + zs. Our
goal is to design yν

s . Once we achieve that, the rest of the
problem can be tackled as discussed in section V.

Towards that end, let us use an error correction code Cc,
with generator matrix Gc and error correction capability ec.
Note that we use the subscript c to refer to correction. The
size of Gc is m×mc. Thus, the encoded channel syndromes
can be represented as yν

s = GT
c ys, where ys and yν

s are of
sizes m×1 and mc×1, respectively. Thus, yν

s can be written
as yν

s = GT
c Hqa. Then, similar to Eqn. (14) we want to

use the matrix GT
c H to design yν

s . However, the problem
here is that this matrix in not necessarily a binary matrix (i.e.,
with elements of ‘1′s and ‘0′s). Hence, let us denote by Hν ,
the matrix GT

c H (mod 2) and use it to design yν
s such that

yν
s = Hνqa. (37)

In other words, Hν=GT
c H is the matrix product over GF (2).

Therefore, instead of designing the channel measurements
based on H , we propose to design them based on Hν with
that being the only difference to the design proposed earlier.

At this point, it remains to show that the new measurements
design still provides a one-to-one mapping to every angular
channel (i.e., if qa

1 ̸= qa
2 , then their corresponding channel

syndromes yν
s1 ̸= yν

s2). Furthermore, we will show that the
new design provides a better resilience to measurement errors.
That is, we will show that if qa

1 ̸= qa
2 , then δ(ys1, ys2) ≤

δ(yν
s1, yν

s2), where δ(·, ·) is defined as in Eq. (21).

A. Sufficient Statistic

We start off by showing that the new measurements provide
a sufficient statistic for beam discovery. We will follow a sim-
ilar approach to that of Section V-C. Specifically, we will first
consider error patterns, matrices, and operators over the finite
field GF (2). Afterwards, we will extend those concepts to the
complex field where all channel matrices and measurements
lie.

Let us consider a code C, with codewords of length n and
error correction capability en. The parity check and generator
matrices of C are given by H and G, respectively. The error
syndromes of C are given by s = rHT = eHT , where r is
the received sequence and e is the error pattern corrupting the
transmitted codeword c (recall Footnote 5). Now suppose we
encode s using another error correction code Cc. The parity
check and generator matrices of Cc are given by Hc and Gc,
respectively. The encoded syndromes sν are given as

sν (a)= sGc
(b)= eHT Gc

(c)= eHνT , (38)

Consider all single bit error patterns e(i) and let the encoded
syndrome that corresponds to e(i) be sν (i) = e(i)HνT . Thus,
sν (i) is exactly the ith row of HνT , i.e., ith column of Hν .
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Lemma 3: For any error sequence et with number of bit
errors identical to en, its encoded syndrome st

ν is a linear
combination of en linearly independent vectors sν (i).

The proof of this lemma is similar to that of Lemma 1, and
hence, is omitted here (see [34] for proof).

Lemma 3 allows us to use the result of Lemma 2 which
states that if we have a collection,

{
sν (i)

}xen

i=x1
, of linearly

independent vectors over GF (2). Then, if their ′1′ and ′0′
entries are interpreted as real numbers, then they are also
linearly independent over C.

Let us interpret the elements of Hν and e(i) as real
numbers. Then, we can write the channel qa as

(qa)T = α1e
(1) + α2e

(2) + · · · + αne(n) (39)

where αi∈C and
∑n

i=1 1{αi ̸=0}≤en. Therefore, each encoded
channel syndrome (yν

s )T =(qa)T HνT =⇒ yν
s =Hνqa is a

linear combination of independent vectors in Cmc (columns of
Hν). Therefore, for all measurable channels qa

1 ̸=qa
2 , we have

that yν
s1 ̸=yν

s2. Therefore, measurements designed based on
Hν are sufficient for beam discovery.

B. Resilience to Errors

We are going to show that the encoded syndromes yν
s are

more tolerant to the occurrence of measurement errors. Since
the mapping functions ξ() finds the correct qa using l2−norm
minimization methods (this is true for both look-up table and
search methods), then it is intuitively beneficial to separate the
channel syndrome vectors, in the l2−norm sense, as much as
possible. Thus, we want to show that if two channel syndromes
ys1 and ys2 (corresponding to channel vectors qa

1 and qa
1 )

have distance δ(ys1 , ys2), then their corresponding encoded
syndromes are such that

δ(yν
s1

, yν
s2

) ≥ δ(ys1 , ys2) (40)

⇐⇒
∥∥yν

s1
− yν

s2

∥∥ ≥ ∥ys1 − ys2∥ (41)

Proposition 4: Let Gc be the generator matrix of some
LBC code C. Then, if Gc is represented in the standard form
and Hν is generated using Gc (as GT

c H (mod 2)), then∥∥yν
s1
− yν

s2

∥∥ ≥ ∥ys1 − ys2∥.

Proposition 4 shows that by using any appropriate system-
atic code, we obtain encoded channel syndromes, yν

s , that
have greater l2−distance than the original syndromes ys.
Hence, we increase the space allowed for the noise-corrupted
measurement vector us to lie in, while still being able to
identify its true corresponding, error-free, channel syndrome.
The proof of Proposition 4 can be found in [34] and is omitted
here due to space limitation.

VII. PERFORMANCE EVALUATION

A. Simulation Setup and Parameters

We consider an nr×nt mm-wave channel with carrier
frequency fc = 73GHz and average path loss µ = 136dB.
A channel path is assumed to exist if its path attenuation
is not higher than 14dB above the average path loss, i.e.
total path loss is at most 150dB. These values are based on

the measurement results carried out in New York City and
published in [2, Table I]. Let L be the maximum number
of (strong) paths that exist between TX and RX.8

Let τ be the time duration of a pilot sequence of one
measurement. For simplicity, let τ=1. Also, recall that SNR
is defined for a single path (see equation (13)), and that P
is the corresponding transmitted power (i.e., per path). Let
the total transmitted power be Pt, where Pt is an integer
multiple of P that depends on the number of combined
transmit and receive directions (recall Fig. 2). Then, the total
energy required for beam discovery is E=mPtτ=mPt, where
m is the total number of measurements.9 Let the normalized
energy be Et ! E

N0
|αmin/µ|2.

To map the channel measurements to their correspond-
ing angular channels, we use the search method presented
in Section V-D.2. Finally, for every simulation scenario,
we obtain the average performance across 105 runs.

B. Performance metrics

To asses the performance of the proposed beam discovery
method, we mainly focus on three basic criteria, namely,
accuracy of beam discovery, number of measurements, and
accuracy of path gain value estimates. To that end, we use
the following performance metrics:

i) Number of measurements: This represents the number
of pilots sent from TX to discover the paths to RX.

ii) Probability of strongest k beams discovery: This
denotes the probability of correctly identifying the direc-
tions of k strong reflectors among L. There are two
cases we consider pertaining to the possibility of the
algorithm identifying exactly k directions or more than
k directions:
1) perfect k beam discovery: where exactly k true paths
are discovered with no incorrect paths among them.
2) all k beam discovery: where k true paths are
discovered with potentially more incorrectly identified
paths.

iii) Number of incorrect beams: Due to the possibility of
obtaining a combination of correct and incorrect paths,
it is important that we have as few incorrect beams as
possible since further refinement would be made easier.

iv) Normalized mean squared error (MSE):
∥Qa−Q

a∥2
F

∥Qa∥2
F

.
Measurement errors occur in the form of 1) imperfect
estimates of path gains and phases, and 2) incorrect
beam discovery. Hence, MSE provides an inclusive
metric for how close the estimated channel matrix is
to the true one.

8Different channel environments are expected to have different values of
L. For instance, in an urban environment (New York City), [2] shows that
a maximum number of 4 paths exist while for indoor environments like
offices/corridors/conference rooms, [33] shows that ≤5 paths exist. Moreover,
if we are only interested in LoS communication (e.g., IEEE 802.11ad), then
we can reasonably assume that L=1 since the path loss of non-LoS (NLoS)
paths is significantly higher than that of LoS paths (≈ 30 dB higher [2]). If
more than L paths exist, our approach will only strive to find the L strongest
paths, with weaker paths having an effect similar to measurement errors.

9This formula for total energy assumes equal Pt for all measurements.
Depending on the employed LBC, this might not always be the case. More
generally, we can find the total energy to be: E = i miPti , where mi is
the number of measurements with total transmit power Pti .
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Fig. 4. Beam detection probability. (a) 15×15 channel with L=1. (b) 8×8 channel with L=2. (c) 32×32 channel with L=3.

Measurement errors mainly occur due to two contributing
factors. The first is measurement noise, and the second is
quantization (recall that we assume the measurements to be
quantized using mid-tread ADC quantizers with 2b+1 levels).
In Sections VII-C and VII-D, we assess the performance of
Beam Discovery approach against only the effect of mea-
surements noise. We do so by assuming a perfect, infinite
resolution ADC. Then, in Section VII-E, we investigate the
system performance at different ADC resolution levels. This
separate investigation of sources of errors allows us to under-
stand how each source affects the performance. Thus, enabling
full realization of potential gains of Beam Discovery approach.

C. Single-path channels

Consider a 15×15 mm-wave channel with L=1 path
between TX and RX. Hence, the parity check matrix of
(15, 11, 3) Hamming code can be used to design both the
precoders, fj , and rx-combiners, wi, i.e., H1 and H2, are
identical. Hence, we need a number of TX measurements
m1, which is identical to the number of RX measurements
m2=15−11=4. Hence, the total number of measurements is
m=16. On the other hand, the exhaustive scanning method
requires 225 measurements to inspect every possible TX-RX
beam combination. Thus, our approach results in ≈92.8%
reduction in the required number of measurements.

We plot the probability of error vs. SNR for: i) Perfect
beam discovery where only the single strongest path (k=1)
is correctly identified, and ii) all beam discovery where the
strongest path is correctly identified among potentially other
misidentified paths. Fig. 4 shows those curves. We observe
that both curves are on top of each other which indicates that
the strongest path is either correctly detected or is completely
missed. Moreover, at all SNR values ≥− 5dB, the probability
of error is lower than 10−5, and hence, is not shown here since
the shown figures are the averages of 105 simulation runs.

In Fig. 5, we plot the normalized mean squared error of the
channel estimate Q̂

a
. The very high values at low signal to

noise ratios indicate that Q̂
a

has large components at truly
zero components in Qa and/or large components in Qa are
not represented in Q̂

a
. Nevertheless, MSE drops steadily fast

as SNR increases; indicating improved channel estimation.
When we talk about the possibility of misidentified beams

for the all beam discovery metric, it is crucial to have a
small number of incorrect beams which would facilitate further
refinement. Interestingly, for this scenario, since the error
performance of perfect and all beam discovery are the same,

Fig. 5. Normalized mean squared error (MSE).

we do not have any misidentified paths besides the correct
one. Nevertheless, this is not always the case as we will see
in further investigated scenarios.

D. Multi-path Channels

First, consider an 8×8 channel with L=2 paths. For this
scenario, we use an (8, 2, 5) code for both H1 and H2. With
this code, a total number, 36, of measurements is needed for
beam discovery. Compared with the 64 measurements needed
for exhaustive scanning, we achieve ≈43.7% reduction in the
number of measurements under this scenario.

Since we investigate a channel that potentially has two
strong paths, we evaluate the probability of error of picking
one correct strong path (k=1) as well as picking two strong
paths (k=2). Fig. 4b depicts the corresponding probability of
error of the perfect and all k beam discovery metrics. Unlike
single-path channels, there exists a wider gap between perfect
and all beam discovery curves for the k=1 metric; which
indicates higher vulnerability to picking incorrect paths. On the
other hand, for k=2, the error performance of the perfect and
all beam discovery metrics are almost on top of each other. In
Fig. 5, similar trend for normalized MSE is obtained where
MSE steadily drops as SNR increases.

Recall that in the 15×15 single-path channel investigation,
no incorrect paths were obtained alongside correctly identified
strong paths. This behavior is not replicated for the 8×8
channel under investigation. For instance, at −10dB we obtain
a maximum of 2 misidentified paths. Further, the probability
of obtaining incorrect paths at −10dB is ≈ 0.04637.

We further consider a larger array with dimensions 32×32
and L=3 paths. We use a (32, 16, 8) Reed-Muller code to
design both H1 and H2. This corresponds to m1=m2=16,
i.e., total number of measurements m=265. This is 75% fewer
measurements needed compared to exhaustive scanning which
requires 1024 measurements for beam discovery.
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Fig. 6. Perfect k=2 beam discovery at different quantization resolution
(8×8 channel with L=2).

The probability of error for perfect and all k=1, 2, 3 beam
discovery are shown in Fig. 4c. We notice a faster decay
rate for the probability of error. This behavior is due to the
higher gain of the TX and RX antenna arrays; which increases
the receive signal to noise ratios compared to small arrays.
The normalized MSE is shown in 5 have similar trend to the
previous investigated scenarios.

E. Effect of Quantization

In this section, both sources of errors are incorporated.
Specifically, we analyze the system performance at different
ADC resolution levels. We will show that very low resolution
ADCs can have detrimental effect on performance. Thus,
a natural question that we try to answer in this study is: How
far should we increase the resolution of quantizers in order
to unlock the full potential of the Beam Discovery approach?

Recall that we use mid-tread ADCs with 2b+1 quantization
levels (b stands for the number of bits required to represent
the ADC output (approximately)). We limit our discussion to
the case of 8×8 channels with L=2 paths since its results are
representative of the other previously investigated scenarios.
For clarity and legibility of figures, we only plot the perfect
k=2 beam discovery for b = 3, 4, 6, 8 bits i.e., the correspond-
ing number of quanization levels is 9, 17, 65, 257, respectively.
We also plot the corresponding probability of error using a
perfect ADC (i.e., b→∞). These curves are shown in Fig. 6.

We find that, at b=3, the probability of error is very high and
does not improve with increasing SNR. Hence, quantization
is the dominant source of errors. Then, as the resolution of
ADCs increase, significant performance improvement can be
achieved. For instance, while b=4 still do not produce very
good probability of error (with increasing SNR), a huge leap in
performance can be obtained using ADCs with only b=6 bits.
Moreover, at b=8, we approach the performance of perfect
ADCs. Recall that only 2 ADCs are required (see Fig. 3).

F. Error Correction

In this section, we investigate the performance of Beam
Discovery with the error correction technique proposed in
SectionVI. Recall that error correction is a channel-coding-like
technique that allows for improving the error performance on
the expense of increased number of measurements.

1) Single-Path Channel: Consider the 15×15 single-path
channel we studied in Section VII-C. Recall that we used
the parity check matrix of (15, 11, 3) Hamming code for

Fig. 7. Beam detection probability (15×15 channel with L=1).

Fig. 8. MSE (15×15 channel with L=1)

both H1 and H2 which resulted in syndromes ys of length
m1=m2=4. Now, we need to encode sequences of length
4 into longer sequences yν

s using a systematic code. Con-
veniently, we can use the (7, 4, 3) Hamming code which
maps sequences of length 4 into sequences of length 7. The
corresponding Hν

1 and Hν
2 matrices are of size 7×15 and

we have that mc1=mc2=7. Hence we have a total number
of measurements for Beam Discovery with error correction
mc=49. This is ≈78.2% fewer measurements compared to
exhaustive scanning. Recall that the number of measurements
without error correction is 16.

The probability of error for perfect k=1 beam discovery is
depicted in Fig. 7. A notable performance improvement over
the m=16 case is obtained. That is, at the same SNR, signifi-
cantly lower probability of error is achieved. This performance
improvement is also reflected in the MSE curves in Fig. 8.

2) Multi-Path Channel: We study 32×32 channels with
L= 3 paths. Recall that, in SectionVII-D, we use a (32, 16, 8)
Reed-Muller code for which the parity check matrices
H1=H2 are of size 16×32. Under this setting we obtain 75%
reduction in the number of channel measurements compared to
exhaustive scanning (256 instead of 1024 measurements). To
add the error correction capability, we encode the channel syn-
dromes using a (21, 16, 3) code (a subcode of the (31, 26, 3)
Hamming code). We obtain Hν

1 =Hν
2 of size 21×32. Thus,

mc1=mc2=21 (mc=441), which gives a reduction of ≈ 57%
in number of measurements compared to exhaustive scanning.

For clarity, we only plot the probability of error for perfect
k=1, 2, 3 beam discovery shown in Fig. 9. Note that at
mc=441, the k=1 perfect beam discovery achieves error
probability below 10−5, hence, it is not shown in Fig. 9. We
notice a huge performance improvement over the m=265 case,
that is, at fixed SNR we obtain at least an order of magnitude
improvement in the probability of error. We also obtain a
corresponding improvement in MSE (figure omitted, see [34]).
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Fig. 9. Beam detection probability (32×32 channel with L=3).

Fig. 10. Perfect k=1 beam discovery. Comparison with Scanning / 802.11ad
(15×15 channel with L=1).

Fig. 11. Normalized MSE. Comparison with Scanning / 802.11ad
(15×15 channel with L=1).

G. Comparison to Exhaustive Scanning and IEEE 802.11ad

We compare the performance of our proposed beam dis-
covery approach against i) the Exhaustive Scanning method,
and ii) the channel estimation of IEEE 802.11ad. In order to
have a fair comparison, we adjust the transmission power
of every scheme such that the total consumed energy for
the measurement phase is identical for all schemes. Note
that at equal transmission power, each one of those three
schemes would operate at a different SNR value. Moreover,
due to the different number of measurements required by each
scheme, the total transmit energy would also be different.
To understand why this happens, recall that each one of
these approaches operate with distinct transmit/receive antenna
beam patterns, with different beam-widths. As the beam-width
becomes wider, the received SNR decreases.10 In other words,
variations in beam-width causes the SNR to change. Since
our proposed approach requires fewer measurements than
Exhaustive scanning, we can increase the transmission power
while still keeping the total transmit energy unchanged. The

10In fact, performing mm-wave channel measurements at low SNR is com-
mon for non-adaptive channel measurement schemes due to the persistent use
of wide antenna beams. This phenomenon is argued in [35] for compressed-
sensing-based methods.

same is true for the IEEE 802.11ad channel estimation. Finally,
we assume that perfect ADCs are used for all schemes.

Due to space limitation, we limit our discussion to only
15×15 single-path channels. In Fig. 10, we plot the probability
of error for perfect k=1 beam discovery for all three schemes.
The range used for the normalized energy, Et, corresponds to
SNR of ≈−5 to 25dB for the Exhaustive Scanning method.
We find that our approach achieves almost the same error
performance as both Scanning and 802.11ad, yet, with 92.8%
and 46.7% fewer measurements, respectively. This is further
illustrated by the MSE curves shown in Fig. 11. In terms
of computational complexity, the Exhaustive Scanning and
802.11ad can both independently process their measurement
results in order to discover the channel’s strongest paths.
Our proposed approach, on the other hand, requires joint
processing of all measurements, which, in turn, requires
heavier computations. Specifically, the number of required
computation steps is m2×

(nr

L

)
+L×

(nt

L

)
(see Algorithm 1).

VIII. CONCLUSION

This work provides a solution for the mm-wave channel
estimation problem by exploiting its sparse nature in the
angular domain. The proposed solution is a beam discovery
technique that is similar to error discovery in channel coding.
We show that our proposed technique can significantly reduce
the number of measurements required for reliable channel
estimation. Our solution takes into account the size of TX/RX
arrays and the sparsity level of the channel. We determine the
number of measurements and the design of each measurement
in a deterministic way; based on parity check matrices of
appropriately selected LBCs. Under no measurement errors,
our solution is guaranteed to find all available beams (paths)
between TX and RX. However, due to the presence of channel
noise and quantization (ADCs), measurement errors occur,
which might cause incorrect beam discovery. Hence, we assess
the performance of the proposed scheme under different levels
of SNR and ADC resolutions. We further provide a technique
for error correction that is also inspired by channel coding.
A special case of uncoded discovery within our general coded
discovery framework is Exhaustive Scanning. We compare our
solution against Scanning and find that we approach its error
performance under the same total energy expenditure.
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