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Abstract—The rapid growth of mobile data traffic is straining
cellular networks. A natural approach to alleviate cellular net-
works congestion is to use, in addition to the cellular interface,
secondary interfaces such as WiFi, Dynamic spectrum and
mmWave to aid cellular networks in handling mobile traffic.
The fundamental question now becomes: How should traffic be
distributed over different interfaces, taking into account different
application QoS requirements and the diverse nature of radio
interfaces. To this end, we propose the Discounted Rate Utility
Maximization (DRUM) framework with interface costs as a
means to quantify application preferences in terms of through-
put, delay, and cost. The flow rate allocation problem can be
formulated as a convex optimization problem. However, solving
this problem requires non-causal knowledge of the time-varying
capacities of all radio interfaces. To this end, we propose an online
predictive algorithm that exploits the predictability of wireless
connectivity for a small look-ahead window w. We show that,
under some mild conditions, the proposed algorithm achieves
a constant competitive ratio independent of the time horizon T .
Furthermore, the competitive ratio approaches 1 as the prediction
window increases. We also propose another predictive algorithm
based on the “Receding Horizon Control” principle from control
theory that performs very well in practice. Numerical simulations
serve to validate our formulation, by showing that under the
DRUM framework: the more delay-tolerant the flow, the less it
uses the cellular network, preferring to transmit in high rate
bursts over the secondary interfaces. Conversely, delay-sensitive
flows consistently transmit irrespective of different interfaces’
availability. Simulations also show that the proposed online
predictive algorithms have a near-optimal performance compared
to the offline prescient solution under all considered scenarios.

I. INTRODUCTION

Cellular networks are witnessing unprecedented growth of

demand on mobile traffic data. This growth is straining cellular

networks, as it is becoming clear that operators cannot increase

capacity to meet the demand by deploying more base stations.

Thus, alternative approaches to capacity increase must be

undertaken to provide users with the bandwidth needed to

support their applications. One such approach is exploiting

alternative Radio Access Technologies (RATs) that may be

available to smart phones such as WiFi, Bluetooth, mmWave,

etc., to aid the cellular network in data transmission [1]. Fur-

thermore, the Dynamic Spectrum Access (DSA) technology
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[2] could also be used to aid the cellular network in data

transfer. DSA is a technology that enables mobile users to

use spectrum that belongs to some other entity, as long as the

spectrum owner does not experience any interference caused

by DSA. For example, users could limit their use of that

spectrum to times when the spectrum owner is absent. We

collectively refer to those alternative RATs (WiFi, Bluetooth,

DSA, etc.) as Secondary Interfaces (SI). An interesting ques-

tion arises from this proposal: How can we best distribute
mobile traffic over heterogeneous RATs, taking into account

the inherent differences between interfaces? Cellular networks

are ubiquitous but have high cost on the operator in terms

of congesting the cellular network, as well as having high

energy consumption that may drain the phone battery. WiFi

networks, if accessible, are usually free, but WiFi coverage

is not always present. Furthermore, it is typical for public

places to throttle WiFi rates. DSA is usually free-of-charge

and has high rates. However, the connection is intermittent

as the user is only allowed to access this spectrum when

the spectrum owner is absent. These heterogeneous properties

necessitate a framework for mobile users to take all these

factors into account and make a decision on traffic allocation

that is optimal in terms of throughput, Quality of Service

(QoS) constraints satisfaction and cost.

In general, two approaches have been employed to address

this question. The first approach is Intelligent Network Selec-
tion by choosing the suitable RAT for each application. This

approach assumes that the user is allowed to use only one

RAT at any given time. The current default policy employed by

Android phones falls into this category: Android default policy

is to choose WiFi over LTE whenever possible with the option

of setting some applications to only use WiFi. This is known as

delayed offloading, where delay tolerant applications are only

allowed to use WiFi. If WiFi is not immediately available,

then these applications will delay their transmissions up to a

deadline or until a WiFi connection is established. This policy

was proposed and analyzed in [3] and [4, 5], respectively.

However, this solution is more suitable for 3G deployments,

where WiFi consistently offers significantly higher rates than

the cellular network. More recently, however, [6] has shown

that this is not the case in LTE deployments. In particular, it

was shown that LTE outperforms WiFi in terms of rate 40%



of the time. One feature that has been used in the literature is

the predictability of wireless connectivity. In particular, it was

shown in [7] that short-term future wireless connectivity can be

forecast accurately. Thus, a slightly delay-tolerant application

can delay a transmission if the connectivity forecast indicates

that preferable network conditions will be available in the near

future. Using this predictive ability, [8] modeled the problem

as a Finite-Horizon Markov Decision Process where the user

follows a network-selection policy that minimizes the expected

energy when uploading a single file before a deadline. In [9],

a Lyapunov drift-plus-penalty approach was taken for network

selection with the aim of minimizing power subject to queue

stability. In [10], the different applications’ QoS needs in

terms of throughput, delay and cellular cost were quantified

as a utility function. Then, each user solves an open-loop

planning problem to choose the best transmission time for

each application according to its QoS and the availability of

WiFi at any given time. Aside from client-controlled solutions,

[11, 12] proposed network-controlled centralized solutions to

the problem, where a single entity has a perfect view of

all RAT states, of all users, and can assign users to RATs

accordingly. The centralized control, however, is not realistic

in today’s settings as different networks are often controlled

by different entities.

The second possible approach to solve the problem is

Simultaneously utilizing all RATs at any given time. This is

sometimes referred to as multihoming. This approach is more

flexible as it gives the user the opportunity to utilize the entire

bandwidth from all available RATs at any given time. Our

problem formulation takes this approach. The current de-facto

solution for utilizing different RATs is the MPTCP protocol

[13]. However, MPTCP suffers from a variety of problems

such as high energy consumption [14] and over-utilization

of the cellular link [15], which might cause an increased

monetary cost to the user. Several other approaches have been

proposed to exploit different RATs: [16] models the scheduling

over different RATs as a Mixed-Linear-Integer-Program and

propose a greedy heuristic to defer delay tolerant flows to later

times. In [17], the problem is considered with flow-interface

assignment constraints. A minimum deficit round-robin policy

is proposed and it is shown that this policy is max-min fair.

However, the result strongly depends on the policy being work-

conserving, which might cause over-utilization of a metered

cellular link. In [15], managing several RATs is studied for

the case of transmission of video chunks. The problem is

formulated as a 0-1 min-knapsack problem that takes into

account different bandwidths, usage costs, and deadlines of

video chunks. A practical online heuristic is proposed and

good performance is established via simulations. In [18], the

authors proposed an integrated transport layer that modifies

SCTP to allow the exploitation of heterogeneous RATs in

vehicular networks. The paper uses a Network Utility Maxi-

mization formulation with link costs. However, the issues of

QoS differentiation per application, application-level fairness

and temporal variation in secondary capacity are not addressed

as implementation details are emphasized.

There are many challenges in solving the problem of

rate-allocation over heterogeneous RATS: 1) Cellular and

Secondary interfaces have different costs. While the cellular

network is usually metered, secondary RATs such as public

WiFi are often free to use. This may cause the optimal

policy in terms of throughput, cost, and QoS to be non-work
conserving which complicates the problem. 2) Secondary

interfaces are inherently intermittent and unreliable. WiFi have

limited coverage and DSA is only allowed to access spectrum

in absence of the spectrum owner. 3) Different applications

have different requirements in terms of delay and throughput.

Thus, a good rate-allocation policy has to incorporate individ-

ual application requirements when allocating rates. However,

all these applications share the same RATs that have limited

capacity. Thus, the allocations of all applications are coupled.

Our contributions can be summarized as follows:

1) We apply the DRUM framework, proposed in [19], in

the context of allocating rates to different cellular users to

exploit temporal diversity, to the problem of application rate

allocation over different RATs. We demonstrate that using

the DRUM framework with a discount tied to application

delay sensitivity results in a fair allocation with desirable

characteristics in terms of balancing the per-application trade-

off between throughput, delay, and cost.

2) We propose two online low complexity algorithms that

exploit limited look-head predictions of future connectivity.

3) We analyze one of those online algorithms and show that:

in the presence of a prediction window of length w time slots,

under some mild conditions, the online algorithm achieves a

reward that is no less than (1 � c
w+1

)Reward(OPT), where c

is a constant and OPT is the prescient offline solution. Thus,

the proposed algorithm is constant-competitive independent of

the time horizon T , and approaches the optimal reward as

the prediction window increases. Simulations show that, in

practice, these proposed algorithms perform much better than

the theoretical bound under all considered scenarios.

Our work relates to [9] by being predictive and QoS-aware.

The difference is that [9] does not offer differentiated service

to flows. The formulation in [18] relates to our formulation

of utility with link costs. However, [18] does not differ-

entiate between flows, nor does it consider time variations

of secondary RAT, and instead, attempts to solve a static

optimization problem every time slot. Perhaps the closest

work to our problem are [10, 16] which considered all three

factors of throughput, delay and cost. [16] considered inelastic

traffic that needs to be served over T time slots, whereas [10]

considered a mixture of inelastic and fixed-time elastic traffic.

However, both of these papers assumed full knowledge (or a

good estimate) on all future connectivity, and used heuristics

to find good solutions for the hard traffic assignment problem.

II. SYSTEM MODEL

We consider a mobile user running N applications, where

each application creates a flow i. At each time slot, the mobile

user can use the cellular network, the secondary network or

both to transmit traffic belonging to flow i. We denote the rate



Fig. 1. System Model

received by flow i over the cellular network at time t as yi[t],

and the rate received by flow i over the secondary network as

xi[t].

A. Channel Model: We consider a smart-phone with two

interfaces as shown in Fig. 1: a cellular interface and a

secondary interface. The extension of the formulation and the

online algorithms to the case of multiple secondary interfaces

is straightforward. The secondary interface has a time varying

capacity c[t] every time slot to capture the effects of inter-

mittence, unreliability, and possible user mobility. We do not

have any statistical assumptions on c[t]. We assume the user

can accurately predict the secondary capacity up to a future

window of w time slots. The predictability assumption has

been used extensively for similar problems [3, 9, 20], and

the feasibility of WiFi prediction was shown in [7, 21]. We

assume that the cellular interface has a constant normalized

capacity equal to 1 every time slot, i.e., we assume that the

cellular operator offers a constant rate to the user throughout

the time-horizon. This captures the effect of ubiquity of the

cellular network in contrast to intermittence of the secondary

network. Although the cellular network is affected by fading,

we assume that the cellular operator can employ scheduling,

resource-block allocation, MIMO, etc., to guarantee that the

client gets a constant rate every time slot over the problem

horizon. The “time-slot” in the system is in the order of a few

seconds, a sufficient time for the state of secondary interface

connectivity to change. In our model, the rates xi[t] and yi[t]

take continuous non-negative values. Finally, we assume that

all queues carrying different flows are infinitely backlogged,

i.e., we assume that the flows are elastic.

B. Flow Utility: We use the Discounted Rate Utility framework

introduced in [19] to capture the utility of flow i

Definition 1. (�-Discounted Rate [19]): For a given � 2
[0, 1], we define the �-discounted rate of flow i at time t � 0

as

R

(�i)

i [t]

�

=

Pt
⌧=0

�

t�⌧
(xi[⌧ ] + yi[⌧ ])Pt

⌧=0

�

t�⌧
(1)

As an illustrative example, we write down the �-discounted

rate for � = 0, � 2 (0, 1) and � = 1 as follows:

R
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i
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>>>>>><

>>>>>>:
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i
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P
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if � 2 (0, 1),

1

t

tX

⌧=0

(x

i

[⌧ ] + y

i

[⌧ ]) if � = 1.

(2)

The �-discounted rate ties the utility of a certain flow to both

the throughput and average delay by adding a weight � to the

history of allocated rates. Closer inspection of (2) shows when

� = 0, the �-discounted rate is equal to the instantaneous rate,

representing maximum delay sensitivity as no weight is given

to the rate allocation history. When � = 1, the �-discounted

rate represents the time-average of allocated rates since time 0.

This is suitable for modeling a flow with no delay sensitivity.

To summarize, an increase in � models less delay sensitivity,

thus, an application with a high value of � can afford to wait

for “favorable” transmission opportunities, whereas lower �

represents a flow that emphasizes importance of delay over

possible cost. Finally, we model the cost of using the cellular

network as a linear coefficient pc. Thus, every flow i has to

pay a cost of pcyi[t] every time slot, in order to transmit at

rate yi[t] on the cellular network. This cost corresponds to

a cellular operator that meters usage of the cellular network.

Furthermore, cellular cost helps as a factor discouraging delay

tolerant applications from using the cellular interface if they

can afford to wait and transmit on the secondary interface.

This encapsulates the idea of delayed offloading. However,

while most existing literature of delayed offloading considers

inelastic traffic that should be transmitted in full, our model

considers elastic traffic that balances the trade-off between

throughput and delay by using � as a control knob.

III. PROBLEM FORMULATION

We formulate the Finite-Horizon Discounted-Rate Utility

Maximization (DRUM) problem. For a horizon of T slots and

N flows, each having its own discount factor �

(i)
we can write

the problem as:

P1 : max

x[1],y[1],...,x[T ],y[T ]

TX

t=1

NX

i=1

w

i

U(R

(�i)

i

[t])� p

c

y

i

[t] (3)

subject to (4)

NX

i=1

x

i

[t]  c[t], t = 1, . . . , T (5)

NX

i=1

y

i

[t]  1, t = 1, . . . , T (6)

x

i

[t], y

i

[t] � 0, i = 1, . . . , N, and t = 1, . . . , T, (7)

where the bold notation in x[t],y[t] refers to the allocation of

all flows (x

1

[t], x

2

[t], . . . , xN [t]) and (y

1

[t], y

2

[t], . . . , yN [t])

at time t, respectively. Also, wi is a positive weight and

U() is a suitable concave non-decreasing utility function that

aims to achieve fairness between different flows. Examples

of utility functions that provide fairness are the ↵-fairness

functions of the form U(r) =

r(1�↵)

1�↵ that were introduced

in [22]. However, the difference between that formulation and

the standard Network Utility Maximization (NUM) framework

is that the utility function is taken over a �-discounted rate that

puts a weight � on the history of rate allocated. Every flow

i is parameterized with the pair (wi,�
(i)
) where wi indicates

a higher priority in rate allocation and a lower �i indicates

higher sensitivity to delay. The constraint (5) ensures that the



sum of the rates allocated on the secondary interface does not

exceed the instantaneous capacity c[t]. Similarly, the constraint

(6) ensures that the sum of rates allocated on the cellular

interface does not exceed the constant normalized cellular

capacity.

The problem P1 is a standard constrained convex optimiza-

tion problem with 2NT decision variables (rate per flow per

time-slot per interface) and 2T + 2NT constraints. Solving

this problem requires non-causal knowledge of secondary

capacities (c[1], c[2], . . . , c[T ]). In the next section, we provide

two predictive online solutions that depend on the knowledge

of capacities up to a window w and have theoretical bounds on

worst-case performance as well as good practical performance.

IV. ONLINE PREDICTIVE RATE ALLOCATION

A. Receding Horizon Control (RHC): RHC, also referred

to in control literature as Model Predictive Control (MPC)

[23, 24], is a feedback control technique that provides an

online solution to the original problem by approximating the

original problem as a sequence of open-loop optimization

problems over the prediction horizon [t, t + w]. After solv-

ing the open-loop problem and obtaining the solution, the

algorithm implements the first step of the solution only, i.e.,

(x[t],y[t]), updates the state, finds the new prediction at time

t + w + 1 and repeats the procedure at time t + 1. We now

give a detailed description of the algorithm.

System State: Since the optimization is over the �-discounted

rate, which is a function of the rates allocated in the past, the

system has to keep a “memory” of past allocations. Since the

equivalent rates in (2) are updated as a discounted sum, it is

sufficient to save a vector R[t� 1] = (R

(�
1

)

1

[t� 1], R

(�
2

)

2

[t�
1], . . . , R

(�N )

N [t � 1]) of the equivalent rates at time t � 1.

Define the control input ✓i[t] = (xi[t], yi[t])
T

where ( )

T
is

the vector transpose notation. It can be shown from (2), that

the �-discounted rate of flow i is updated over time as follows

R
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i

R
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i

[t� 1]

⇣
1� �

t�1

i
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)
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t
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i
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t

i

1

T

✓

i
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i

R
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i

)1

T

✓

i
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To obtain the online rate allocation, we first solve the follow-

ing open-loop RHC optimization problem. Let A = [1, 0]

T

and B = [0, 1]

T
. Also define the vector ⇥(R[t � 1]) =

(✓[t|R[t � 1]], ✓[t + 1|R[t � 1]], . . . , ✓[t + w|R[t � 1]]) as

the 2 ⇥ (w + 1) vector that solves the following open-loop

optimization problem:

P2: max

✓[t],...,✓[t+w]

t+wX

⌧=t

NX

i=1

w

i

U(R

(�i)

i

[⌧ ])� p

c

B

T

✓

i

[⌧ ] (9)

subject to

R

(�i)

i
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i

R
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i

)1

T

✓

i

[⌧ ], (10)

⌧ = t, t+ 1, . . . , t+ w, and i = 1, . . . , N

NX

i=1

A

T

✓

i

[⌧ ]  c[⌧ ], ⌧ = t, t+ 1, . . . , t+ w (11)

NX

i=1

B

T

✓

i

[⌧ ]  1, ⌧ = t, t+ 1, . . . , t+ w (12)

✓

i

[⌧ ] � 0, i = 1, . . . .N, and ⌧ = t, t+ 1, . . . , t+ w

(13)

After solving the RHC optimization problem, the scheduler

implements only the first step of the solution, i.e.,

✓

RHC

[t] = ⇥(R[t� 1])[t] (14)

The state R[t] is then updated according to (8), the new

prediction c[t+w+1] is obtained from the predictor, and the

procedure is repeated to obtain the updated solution.

B. Average Fixed Horizon control (AFHC): The AFHC

algorithm was proposed in [25] and analyzed in [26] for

online convex optimization (where the objective function

is unknown every time slot) with switching costs. AFHC

is more amenable to theoretical analysis and sometimes

outperforms RHC. Similar to RHC, AFHC approximates

the offline problem with a series of open-loop optimization

problems. However unlike RHC, AFHC does not only

implement the first step of the solution and discards the rest

of the solution. Instead, AFHC saves all solutions from all

open-loop approximations and averages them out. Thus, both

algorithms have the same time complexity. However, AFHC

needs 2N space whereas RHC only needs N space. We next

give the algorithm formally.

First, we define the Fixed Horizon Control parametrized by

k where k = 0, 1, . . . , w. FHC

(k)
only solves the problem at

time slots ⌦k = {z : z ⌘ k mod(w + 1)}, i.e., FHC

(k)
solves

the problem P2 every w+1 slots at times k, k+(w+1), k+

2(w+1), . . . etc., and implements the solutions for the entire

horizon. Let ✓

(k)
[t] be the solution obtained by FHC

(k)
for

time t, we have

[✓

(k)

[t], ✓

(k)

[t+1], . . . , ✓

(k)

[t+w]] = ⇥(R[t� 1]), 8t 2 ⌦

k

(15)

For example FHC

(0)

will implement the solution by solving

the problem at 0, w + 1, 2(w + 1), . . . etc., FHC

(1)

will

implement the solution by solving the problem at 1, 1+ (w+

1), 1 + 2(w + 1), . . . etc., and so on up to k = w.

To complete the AFHC solution, at time slot t 2 ⌦k, the

scheduler will first solve FHC

(k)
to obtain the allocation

[✓

(k)
[t], ✓

(k)
[t+ 1], . . . , ✓

(k)
[t+ w]] and then sets

✓

i,AFHC

[t] =

P
w

k=0

✓

(k)

i

[t]

w + 1

, 8i = 1, . . . , N (16)

V. COMPETITIVE RATIO OF AFHC

A natural question to ask is how well does the proposed

algorithm perform under different conditions: number of flows,

(wi,�i) of each flow, length of prediction window, etc. While

it is known that deriving competitive ratios for general online

convex optimization problems is hard [26], under some mild

conditions, we are able to derive a lower bound on the

competitive ratio (the competitive ratio here is w.r.t to reward



rather than cost, so we are looking for lower bounds to the

ratio between rewards achieved by the online algorithm and

offline algorithm, respectively).

Definition 2. (Competitive Ratio): An algorithm ALG is said
to be �-competitive if

inf

c[1],c[2],...,c[T ]

Reward(ALG)

Reward(OPT)
� � (17)

where Reward( ) is the function that computes the objective
function according to (3), and OPT is the offline prescient
solution of P1.

Note that the definition we use here is slightly different

from the definition used in most online algorithms’ litera-

ture. Conventionally, an algorithm is called c-competitive if

Reward(ALG) � 1

c Reward(OPT). We choose to use � =

1

c
in Definition 1, instead of the conventional c-competitive

notation, since it makes our results more intuitive and un-

derstandable.

Theorem 1. Given N flows, all with weights wi = 1 and
� 2 [0, 1). Under the following assumptions:
A1 U(0) = 0 and U(r)� pcr > 0 for all r > 0.
A2 The (sub)-gradient of U( ) is uniformly bounded by G

over the feasible domain.
A3 c[t]  c

max

, 8t 2 1, 2, . . . , T , we take the cellular
capacity to be y[t] = yc, 8t (instead of the normalized
value 1 in the RHS of (6) to derive a more general result.)

then, under AFHC:

Competitive Ratio � 1� 1

w + 1

G�max

D(1� �max)
(18)

where

D = min
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U(y

c
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)� p

c

y

c

y

c

+ c

max

◆
(19)

Before proving the theorem, we discuss the implications

of this result. First, it is clear that the bound improves with

increased prediction window w. This is expected since better

foresight enables the scheduler to make better instantaneous

decisions. Second, the factor

1

1�� implies that an increase in

� worsens the bound. This is also expected since a delay

tolerant flow has more flexibility on when it should be allo-

cated optimally. Thus, prediction window discards important

information about future opportunities to defer delay tolerant

transmissions. Since the competitive ratio bound is valid for all

sequences of secondary capacities (c[1], c[2], . . . , c[T ]), even

cases where an adversary can observe the system state and

controls, then generate future secondary capacities accord-

ingly. The bound is expectedly loose for practical cases, and

the empirical competitive ratio does not increase sharply with

� as suggested by the bound.

In order to prove Theorem 1, three Lemmas are needed. The

proof generally follows the same approach as [25] by bounding

the difference between the reward of OPT and the reward of

FHC

(k)
over a short horizon, and then using Jensen Inequality

to bound the competitive ratio. The difference between our

proof and [25] is that: 1. The formulation in [25] minimizes

a convex function of the current control action only plus

a switching cost that penalizes difference between current

and previous control actions, whereas in our formulation, the

reward is a function of a state that depends on both control

action and previous state. Thus, we need extra steps of using

first-order conditions to bound difference between rewards

(Lemma 2). 2. The way we define the Competitive Ratio in

(17) requires finding a linear underestimator of the reward

function (Lemma 1).

Lemma 1. Given a vector of �-discounted rate vectors
(R[1],R[2], . . . ,R[T ]), the total reward achieved by this
vector according to (3) satisfies the following linear bound
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where D is given by (19).

Proof. Taking 1

T
✓i[t] = xi[t] + yi[t] in (8) we get the

following bound:
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The reward per-flow every time slot can be bounded as

follows
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Setting R[0] = 0 and summing over all flows and over all

time slots, we have the following inequality:

TX

t=1

NX

i=1

U(R

(�i)

i

[t])� p

c

y

i

[t] �
TX

t=1

NX

i=1

U(R

(�i)

i

[t])� p

c

R

(�i)

i

[t].

(23)

By noting that the linear cost at the RHS cannot exceed

pcyc (since the cellular allocation cannot exceed the cellular

capacity), we can refine the bound on the LHS of (23)
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where inequality (a) comes from the fact that the two

summand functions on the LHS are concave in Ri[t], thus,

each of those two one-dimensional functions can be lower

bounded by a straight line connecting points (0, U(yc) �
pcyc), (U(yc)�pcyc, U(yc+c

max

)�pcyc), respectively. Those

two straight lines in turn lie between lines

U(yc)�pcyc

yc
Ri[t] and

U(yc+c
max

)�pcyc

yc+c
max

Ri[t], thus taking the minimum will give us

a lower bound everywhere in the domain.

The next Lemma provides a bound on the difference be-

tween the reward achieved by the offline solution and the

reward achieved by the approximation P2. We first write the

reward achieved in the interval [t, t+w] with a control decision

vector (✓[t], ✓[t+ 1], . . . , ✓[t+w]) as a function of the initial

state at time t� 1 as follows:
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Lemma 2. Denote the offline solution (OPT) of problem
P1 and the resulting states as (✓

⇤
[1], ✓

⇤
[2], . . . , ✓

⇤
[T ]) and

(R

⇤
[1],R

⇤
[2], . . . ,R

⇤
[T ]), respectively. Suppose we were

running the FHC(k) algorithm from time 0 up to time t 2 ⌦k.
Let the system state at time t � 1 be R

(k)
[t � 1] and denote

the online solution at time t of problem P2 given R

(k)
[t� 1]

as ⇥(k)
(R
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[t� 1]]). Under assumptions A1-A3 of
Theorem 1, the following inequality holds:
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where G is the uniform bound of the (sub)-gradient of the
function U( ) over the domain as stated by A2 in Theorem 1.

Proof. By concavity of the function U( ), it is straight-forward

to see that the function g(R[t� 1];⇥(R[t� 1]) is concave in

the variable R[t � 1]. By first order conditions of concavity

in the variable R[t� 1] only (where ⇥(R[t� 1]) are treated

as parameters):
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Where r is the gradient operator w.r.t. R[t � 1]. The first

term in the RHS of (26) can be bounded as follows:
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This is because, given the initial state R

(k)
[t � 1],

⇥

(k)
(R

(k)
[t � 1]) is the maximizing vector of g(R

(k)
[t �

1]; ✓[t], .., ✓[t+ w]) according to the formulation in P2.

To bound the second term in the RHS, we can use the

expression in (24) to explicitly derive the gradient w.r.t. the

vector R[t � 1]. The i

th

term of the gradient vector can be

bounded as follows:
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Where (b) comes from assumption A2 in Theorem 1. Taking

the inner product of the gradient in (28) and (R

⇤
[t � 1] �

R

(k)
[t�1]) and combining the bounds gives the desired result.

The next Lemma bounds the total reward achieved by the

FHC

(k)
algorithm as a function of the total reward achieved

by OPT. With some abuse of the notation, we denote the

reward gained over the horizon of AFHC, FHC

(k)
, and OPT

as g

1:T (✓
AFHC

), g

1:T (✓
(k)

), and g

1:T (✓
⇤
), respectively.

Lemma 3. Given any k = 0, 1, . . . , w, the following holds
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The proof of this Lemma is straight-forward by summing

the expression in (25) over the set ⌦k.

Proof of Theorem 1. The reward obtained over the horizon by

the AFHC control algorithm can be lower bounded as follows
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Where (c) is by Jensen Inequality (averaging property of

AFHC) and (d) is a result of Lemma 3. Dividing both sides

by g

1:T (✓
⇤
) results in the Competitive Ratio (CR) lower bound

CR � 1� 1

w + 1

G�

max

1� �

max

P
T

t=1

P
N

i=1

R

(�i)
⇤

i

[t� 1]

g

1:T

(✓

⇤
)

(30)

Using Lemma 1 to bound g

1:T (✓
⇤
) linearly and noticing that

R[0] = 0 gives the desired result.

VI. NUMERICAL RESULTS

To validate our formulation, we first assume that the sec-

ondary capacity generation process follows the Markov chain

in Fig. 2. We simulate the case when two flows exist, a

delay sensitive flow with � = 0 and a delay tolerant flow
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Fig. 3. Optimal Rate Allocations of heterogeneous flows, U(r) = log(1 +
r), p

c

= 0.75.
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Fig. 4. Competitive Ratios of RHC and AFHC compared to the function

f(w) = 1 � 1

w+1

. U(r) = r

(1�↵)

1�↵

, p

c

= 0.55, � = {0, 0.7, 0.95},↵ =
0.5.

with � = 0.9. Fig. 3 shows the allocation of OPT when the

utility function U(r) = log(1 + r) and the cellular price,

pc = 0.75. We note the following: The delay tolerant flow

cellular usage is almost non-existent (less than 1% of the

total flow rate) whereas the delay sensitive flow uses the

cellular interface whenever the secondary connectivity is weak

or absent. In Fig. 3, the delay sensitive flow transmits 15% of

its traffic over the cellular interface. The delay tolerant flow

transmits in bursts whenever a secondary network is available.

Furthermore, the delay tolerant flow tends to increase its rate

whenever it predicts a period with no secondary connectivity

at the expense of the delay sensitive flow. The burstiness effect

can be captured by noticing the following: the means of total

rate allocated to the delay-tolerant and the delay sensitive flows

are 1.01 and 0.87 respectively, whereas the variance of the total

rate allocated to the delay-tolerant flow is 1.11, more than 4

times that of the delay sensitive flow 0.27.

In Fig. 4, we simulate three flows with � values equal to

{0, 0.7, 0.95}, representing different delay sensitivities for a

horizon T = 500. The secondary capacity evolves as the

0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1
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Markov Chain shown in Fig. 2. We take the utility function as

the ↵-fairness function with ↵ = 0.5. We set pc to be equal to

0.55. We plot the empirical competitive ratio as a function of

w. We see that the RHC performance is slightly superior to

AFHC for all values of prediction window w. Naturally, we

see that the competitive ratio increases with the increase of w.

Interestingly, the empirical rate of increase is very similar to

the growth of the function 1� 1

w+1

, which suggests that our

theoretical lower bound matches the empirical results order-

wise up to a constant factor. However our findings confirm

that the CR converges to 1 as w increases. It is worth noting

that the ↵-fairness functions do not satisfy the assumption

A2 in Theorem 1, since the gradient is unbounded. However,

this can be fixed by modifying the utility functions to be

U(r) =

(✏+r)(1�↵)

(1�↵) � ✏
1�↵ . This will cause the gradient to be

bounded by ✏. A small ✏ approximates ↵-fairness functions

efficiently at the expense of a loose lower bound on the

competitive ratio. Thus, to get a fairly tight bound we have

to either use a larger ✏ or refine the bound in Lemma 2 by

using special properties of the utility function such as strong

concavity.

In Fig. 5, we use the same setup as the previous case

to simulate the empirical performance of three flows with

parameters {0, 0.3,�
max

}, where �

max

is varied between 0.4

and 0.99. We use a small prediction window with w = 3.

Our lower bound have suggested that there might be some

performance degradation of online algorithms as flows become

more delay tolerant. However, while our lower bound suggests

very fast degradation in performance (as

1

1��
max

), simulations

show that degradation happens at a much slower rate, and that

a small window, w = 3 achieves over 85% of the utility of

OPT, even as �

max

is increased to 0.95. In Fig. 6, we plot the

objective function of OPT, AFHC, and RHC under the same

setup. Fig. 6 shows that while Reward(OPT) is guaranteed

to be non-decreasing with increased �

max

, since more delay

tolerance enables flows to defer transmissions until favorable

conditions appear. On the other hand, Reward(AFHC) and

Reward(RHC) are not guaranteed to increase with �

max

.

In Fig. 7, we compare the lower bound derived from Theorem

1 to the empirical lower bound. For this figure we assume that

c[t] is an i.i.d random variable that takes a value uniformly

distributed between 0 and 5. We use a modified ↵-fairness

function as our utility value function. In particular, we use
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Fig. 7. Comparison between theoretical lower bound and simulated compet-

itive ratio, � = {0.2, 0.4, 0.6}, U(r) = (1+r)
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, ↵ = 0.5.

U(r) =

(1+r)(1�↵)

1�↵ � 1

1�↵ , which is concave increasing and

satisfies assumptions A1-A3. The system for this figure has

3 flows with � = {0.2, 0.4, 0.6}. We can see that the lower

bound is loose. This is due to two reasons. First, the lower

bound covers all possible sequences of secondary capacities

including adversarial cases, where an adversary can view the

scheduler’s decision and generate future capacities to minimize

the scheduler’s reward. In Fig. 7, the capacities are sampled

as an i.i.d sequence, which naturally performs much better

than the adversarial worst-case. Second, The approximation

in Lemma 1 is very coarse since it must apply to all possible

utility functions. We can see that up to w = 2, there is

no theoretical guarantee for performance whereas practically,

AFHC achieves over 90% of the utility achieved by OPT.

However, the bound gets tighter as the prediction window

increases.

VII. CONCLUSION

In this paper, we have studied the problem of application

rate allocation over different radio interfaces. We have ad-

dressed the issue of different delay requirements of applica-

tions using the discounted-rate framework. We have proposed

two online predictive algorithms to handle the intermittence

of secondary interface(s). We have shown that for the AFHC

algorithm, the competitive ratio is 1� ⌦(

1

w+1

) when using a

prediction window of length w. We have tested our algorithms

for a number of practical scenarios using different utility

functions. The empirical performance of the proposed online

algorithms are consistently near-optimal using small prediction

windows.

We intend to extend our work in two directions: 1. We plan

to consider systems with arrivals, whereby flows of different

classes arrive randomly. The flows are then served at a rate

determined by the proposed algorithms and exit the system

once they receive a total rate equal to their random size. The

interesting questions include a characterization of the stable

region of the proposed algorithms (in the sense of [27]), as

well as the effect of (wi,�i) on the mean flow response time.

2. We plan on testing our algorithm in realistic scenarios

using real world traces of user mobility and mobile flows that

belong to real applications, which will enable us to compare

the performance of the proposed algorithms to other solutions

in the literature.
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