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Abstract—Massive multi-user multiple-input multiple-output
(MU-MIMO) enables significant gains in spectral efficiency and
link reliability compared to conventional, small-scale MIMO tech-
nology. In addition, linear precoding using zero forcing or Wiener
filter (WF) precoding is sufficient to achieve excellent error-
rate performance in the massive MU-MIMO downlink. However,
these methods typically require centralized processing at the
base-station (BS), which causes (i) excessively high interconnect
and chip input/output data rates, and (ii) high implementation
complexity. We propose two feedforward architectures and corre-
sponding decentralized WF precoders that parallelize precoding
across multiple computing fabrics, effectively mitigating the limi-
tations of centralized approaches. To demonstrate the efficacy of
our decentralized precoders, we provide implementation results
on a multi-GPU system, which show that our solutions achieve
throughputs in the Gbit/s regime while achieving (near-)optimal
error-rate performance in the massive MU-MIMO downlink.

I. INTRODUCTION

Massive multi-user (MU) multiple-input multiple-output
(MIMO) will be among the core technologies of fifth-generation
(5G) cellular wireless systems [1]. The key idea of this
technology is to equip the infrastructure base-stations (BSs)
with hundreds to thousands of antenna elements while serving
tens of user equipments (UEs) at the same time and in the
same frequency band. The fine-grained nature of beamforming
enabled by massive MU-MIMO antenna arrays and coherent
transmission yields significantly improved spectral efficiency,
coverage, and range compared to that of traditional, small-
scale multi-antenna wireless systems [2], [3]. Unfortunately,
the advantages of massive MU-MIMO come at the cost of
significant practical implementation challenges, which must be
solved to realize the gains of this technology in practice.

A. Interconnect Bandwidth and Complexity Bottlenecks

As discussed in [4]–[7], the excessively high amount of data
that must be transferred between the baseband processing unit
and the antenna array is among the most critical challenges.
For example, the raw baseband data rates, from and to the
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Fig. 1. Overview of a centralized baseband processing architecture for
the massive MU-MIMO downlink. One of the most critical implementation
challenges is the excessively high amount of raw baseband data that must be
transferred between the computing fabric and the RF chains (shown in red).

radio-frequency (RF) chains, of a 128 antenna massive MU-
MIMO system with 10 bit digital-to-analog converters (DACs)
for a bandwidth of 40MHz exceed 200Gbit/s, which not
only poses significant challenges for existing interconnect
technology, such as the Common Public Radio Interface
(CPRI) [8], but also for the input/output (I/O) interfaces of
existing computing fabrics, such as application-specific inte-
grated circuits (ASICs), field-programable gate arrays (FPGAs),
or graphics processing units (GPUs). Figure 1 illustrates a
conventional centralized baseband processing architecture for
the massive MU-MIMO downlink (BS transmits to UEs),
which suffers from interconnect bandwidth and complexity
bottlenecks (highlighted with red color). While maximum
ratio transmission (MRT) enables fully distributed channel
estimation (CHEST) and beamforming in the downlink, which
alleviates the bandwidth and I/O bottlenecks, MRT is unable to
fully exploit the spectral-efficiency advantages of massive MU-
MIMO [2]. In contrast, more sophisticated precoding strategies,
such as zero-forcing (ZF) or Wiener filter (WF) precoding [9],
enable near-optimal spectral efficiency. Such methods, however,
require centralized baseband processing, which results in high
interconnect bandwidth, I/O data rates, and complexity [2].

B. Decentralized Baseband Processing

To mitigate the bandwidth and complexity bottlenecks
of centralized baseband processing algorithms, a variety of
solutions have been proposed recently. For example, existing
massive MU-MIMO testbeds parallelize the computations



across orthogonal subcarriers [10], [11]. Parallelization across
subcarriers, however, exhibits dependence between the subcar-
riers and all antenna elements, which prevents its straight-
forward use for arrays with thousands of antennas. More
recently, references [12], [13] proposed decentralized baseband
processing (DBP), an approach that decentralizes the key
computations required for baseband processing in massive
MU-MIMO systems in order to alleviate the bandwidth and
complexity bottlenecks. The idea of DBP is to partition the
antenna array into clusters, each associated with separate RF
circuitry and processing fabrics. Each antenna cluster then
only communicates with the associated processing fabrics that
carry out (de-)modulation, channel estimation, data detection,
and precoding, while only exchanging a small amount of
consensus information among the clusters. However, as it has
been demonstrated with real-world implementations on GPU
clusters in [5], the iterative exchange of consensus information
among the clusters negatively affects the processing latency and
throughput. As an effective remedy, reference [14] proposed
the use of feedforward architectures for equalization the uplink
(UEs transmit to BS). Such architectures have, up to this point,
not been studied for the downlink.

C. Contributions

We propose two new feedforward architectures and corre-
sponding algorithms for decentralized precoding in the massive
MU-MIMO downlink. Both architectures are compatible with
the ones proposed for the uplink in [14] and prevent the
repeated exchange of consensus information to effectively
reduce latency and throughput. For both architectures, we
propose linear precoding algorithms that build upon the WF
precoder that minimizes the mean-square error (MSE) at the
UE side. We show that the WF precoder for the partially
decentralized (PD) architecture achieves the same performance
as the centralized WF precoder; the WF precoder for the fully
decentralized (FD) architecture further reduces the interconnect
bandwidth at a small loss in error-rate performance. We
demonstrate the efficacy of our feedforward architectures
and precoding algorithms using real-world implementations
on a multi graphics processing unit (GPU) system. Our
implementation results reveal that decentralized precoding
with feedforward architectures reaches throughputs in the Gb/s
regime while achieving (near-)optimal error-rate performance.

D. Notation

Lowercase and uppercase boldface letters denote column
vectors and matrices, respectively. The transpose and Hermitian
transpose of the matrix A are dentoed by AT and AH ,
respectively. The M ×M identity matrix is denoted by IM .
We use tr(A) to denote the trace of the matrix A and Ea[·]
to denote expectation with respect to the random vector a.

II. SYSTEM MODEL AND CENTRALIZED PRECODING

We now introduce the system model and discuss the basics
of centralized precoding for massive MU-MIMO systems.

A. Downlink System Model

We focus on the massive MU-MIMO downlink. The
system consists of a base-station (BS) with B antennas
serving U single-antenna user-equipments (UEs) in the same
time-frequency resource. We consider a block-fading and
narrowband1 scenario modeled as follows:

y[k] = Hx[k] + n[k], k = 1, . . . ,K. (1)

Here, the U -dimensional vector y[k] =
[
y1[k], . . . , yU [k]

]T
contains the signals received at all U UEs with yu[k] ∈ C
corresponding to the signal received at UE u in time slot k.
The matrix H ∈ CU×B represents the downlink MIMO channel
and is assumed to remain constant for K time slots. The vector
n[k] ∈ CU models additive noise and is assumed to be i.i.d.
circularly-symmetric complex Gaussian with variance N0 per
complex entry. We assume the channel matrix H and noise
variance N0 to be known perfectly at the BS. The precoded
vector x[k] ∈ CB at time slot k is given by the function

x[k] = P(s[k],H, N0, ρ
2),

which depends on transmit signal vector s[k] ∈ OU , where O is
the constellation set (e.g., 64-QAM), the channel matrix H, the
noise variance N0, and the power constraint ρ2. The precoded
vector is assumed to satisfy the average power constraint

Es

[
‖x[k]‖2

]
≤ ρ2, k = 1, . . . ,K, (2)

and the vector s[k] =
[
s1[k], . . . , sU [k]

]T
contains the infor-

mation symbols su[k] ∈ O to be transmitted to UE u in time
slot k. In what follows, we omit the time-slot index k.

B. Linear Wiener Filter (WF) Precoding

Since the UEs are unable to perform joint signal processing,
the BS has to precode the information symbols with the
goals of mitigating multi-user interference (MUI) and focusing
power towards the UEs. The literature describes numerous
optimization criteria for precoding, such as sum-rate throughput
or error probability [15]. In what follows, we focus on linear
precoders of the form x = Ps that minimize the mean-square
error (MSE) between the estimated symbol vector ŝ and the
transmit signal vector s. Since coherent transmission with a
multi-antenna BS leads to an array gain, we assume that the
UEs are able to scale the received signals yu, u = 1, . . . , U ,
by a precoding factor βu ∈ C, i.e., the UEs compute estimates
of the transmit symbols as follows:

ŝu = βuyu.

While each UE u would able to estimate their own precoding
factor βu, we design precoders that minimize the MSE for a
joint2 precoding factor β ∈ C defined as [9]

MSE = Es,n

[
‖s− ŝ‖2

]
= Es,n

[
‖s− βy‖2

]
1An extension to wideband systems that use orthogonal frequency division

multiplexing (OFDM) is straightforward and considered in Section IV.
2Designing precoders for the case of having individual precoding factors βu,

u = 1, . . . , U , is left for future work.
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(a) Partially decentralized (PD) precoding architecture.
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(b) Fully decentralized (FD) precoding architecture.

Fig. 2. Partially decentralized (PD) and fully decentralized (FD) precoding architectures for the massive MU-MIMO downlink with C clusters. (a) PD performs
decentralized channel estimation (CHEST) in the uplink and averages the partial Gram matrices Gc while feeding them to the centralized whitening unit; the
⊕ operator denotes matrix addition. In the downlink, precoding is performed in two steps: centralized whitening followed by decentralized precoding in each
cluster. (b) FD performs decentralized CHEST in the uplink. In the downlink, precoding is performed locally at each cluster in a fully decentralized manner.

= Es

[
‖s− βHx‖2

]
+ |β|2UN0.

The resulting MSE-optimal linear precoding matrix P ∈ CB×U

can be designed by solving the following optimization problem

{PWF, βWF} =
{

minimize
P,β

Es

[
‖s− βHPs‖2

]
+ β2UN0

subject to Es

[
‖Ps‖2

]
≤ ρ2. (3)

The solution to this optimization problem is known as the
Wiener filter (WF) precoder [9] and is summarized by the
following result; a short proof is given in Appendix A.

Theorem 1. The Wiener filter (WF) precoding matrix PWF is
given by PWF = 1

βWF Q
WF, where we define the matrix

QWF =
(
HHH+ κWFIB

)−1
HH . (4)

The associated regularization parameter κWF and precoding
factor βWF are defined as

κWF =
UN0

ρ2
and βWF =

√
tr
(
(QWF)HQWF

)
Es

ρ2
. (5)

A straightforward computation of the precoding factor βWF

in (5) involves the inversion of a B × B matrix followed
by a number of matrix-matrix multiplications. We propose a
computationally-efficient alternative that can be implemented
efficiently given the U × U whitening matrix A−1 has been
precomputed; a short proof is given in Appendix B.

Lemma 2. The precoding factor βWF of the WF precoder
in (5) can be computed efficiently as follows:

βWF =

√
Es
ρ2

(tr (A−1)− κWF‖A−1‖2F ). (6)

III. DECENTRALIZED PRECODING

We next propose two decentralized precoding schemes that
rely on feedforward architectures and linear WF precoding.

A. System Model for Decentralized Precoding

We extend the feedforward architecture put forward in [14]
for the uplink by the capability to perform downlink precoding.
In contrast to the centralized processing architecture shown
in Figure 1, we partition the BS antenna array into C ≥ 1
clusters. This decentralized architecture alleviates the chip-I/O
bottlenecks, as shown in Figure 2. Each cluster is associated
with Bc = wcB ∈ N+ BS antennas so that wc ∈ (0, 1] and∑C

c=1 wc = 1, and contains local RF circuitry and requires
access to only local channel state information (CSI) acquired
in the uplink via reciprocity. By omitting the time-slot index
k, we can rewrite the downlink system model in (1) as

y =
C∑
c=1

Hcxc + n, (7)

where H =
[
H1, . . . ,HC

]
with Hc = CU×Bc and xT =[

xT1 , . . . ,x
T
C

]
with xc ∈ CBc , we see that each cluster c =

1, . . . , C has to generate a precoding vector xc with information
of the per-cluster channel matrix Hc, the noise variance N0,
the power constraint ρ2, and the transmit symbol vector s, i.e.,
the precoding functions are as follows:

xc = Pc(s,Hc, N0, ρ
2), c = 1, . . . , C. (8)

Since each of these functions only depends on local CSI
contained in Hc, the exchange of CSI is reduced significantly—
the vector s is the only signal that must be broadcast to all
clusters. We now present two distinct feedforward architectures
that perform decentralized precoding, differing in the amount
of CSI that must be exchanged during the training phase.

B. Partially-Decentralized WF Precoding

The first feedforward architecture is illustrated in Fig. 2(a)
and called partially decentralized WF (PD-WF) architecture.
The operating principle can be derived directly from (16),
which results in the precoding rule

x =
1

βWF H
HA−1s.



The idea of PD-WF precoding is to first whiten the transmit
vector s at a centralized whitening node as follows:

z =
1

βWF A
−1s.

The whitened transmit vector z is then transmitted to each
cluster, which independently compute xc = HH

c z.
Clearly, this PD-WF architecture requires the whitening

matrix A−1 as well as the precoding factor βWF to be calculated
at the centralized whitening node—both of these quantities
require the computation of the Gram matrix G. To compute
this matrix in an decentralized architecture, we follow the
approach for PD equalization put forward in [9], where each
cluster c = 1, . . . , C , first computes the local Gram matrix
Gc = HcH

H
c after estimating the channel in the uplink phase,

followed by computing the (centralized) Gram matrix G =∑C
c=1 Gc in a feedforward adder tree; see the blue feedback

path in Fig. 2(a). The centralized whitening node then computes
the whitening matrix A−1 and the precoding factor βWF as
detailed in Section II-B. Since we have that

C∑
c=1

Hcxc =
C∑
c=1

HcH
H
c A−1s = GA−1s = HPWFs,

the PD-WF architecture implements exactly the centralized
WF precoder from Theorem 1 but in a decentralized fashion.

C. Fully-Decentralized WF Precoding

The second feedforward architecture, called fully decentral-
ized WF (FD-WF) architecture, is illustrated in Fig. 2(b) and
avoids transmitting partial Gram matrices to the centralized
whitening node. The key idea of this architecture is to first
broadcast the transmit vector s to each cluster, and then
compute the local precoding vector as follows xc = Pcs.
In order to adhere to the (total) power constraint in (2), we
have to define a per-cluster power constraint E

[
‖xc‖2

]
≤ ρ2c

for which
∑C
c=1 ρ

2
c = ρ2. In what follows, we allocate the

same amount of power3 to each cluster, i.e., ρ2c = ρ2/C, which
results in the following precoder carried out at each cluster

xc =

√
ρ2c

tr(QH
c Qc)Es

Qcs.

The remaining piece is to identify a suitable choice of the
regularization parameters κc that are used to calculate the
matrices Qc. A straightforward way would be to assume that
each cluster operates independently and to set the regularization
parameter to UN0/ρ

2
c . In practice, however, it turns out that

this choice of the regularization parameter is overly pessimistic.
Since computing an optimal set of regularization parameters
is difficult in the decentralized scenario, we simply set

κc = τc
UN0

ρ2c
, c = 1, . . . , C, (9)

3We investigated a number of strategies that allocate different power levels to
each cluster. Such methods did not provide significant performance advantages
in massive MU-MIMO, but may, for example, be critical for cell-free massive
MU-MIMO systems in which the clusters are spread over a large area [16].

and tune the parameters τc ∈ [0,∞) for best error-rate
performance via numerical simulations. Specifically, we use

Qc =

{ (
HH
c Hc + κcIBc

)−1
HH
c if Bc < U

HH
c

(
HcH

H
c + κcIU

)−1
if Bc ≥ U,

which further reduces the computational complexity depending
on the number of antennas per cluster.

D. Simulation Results

We now show uncoded bit error-rate (BER) simulation
results for a Rayleigh fading massive MU-MIMO system with
64-QAM. Figs. 3 (a), (b), (c) show the BER for B = 256
BS antennas, with varying cluster sizes Bc = 128, 64, 32,
and number of clusters C = 2, 4, 8. Figs. 3 (d), (e), (f)
show the BER for a fixed cluster size Bc = 32, with
a varying number of BS antennas B = 64, 128, 256, and
number of clusters C = 2, 4, 8. For each antenna configuration,
we compare the performance of the proposed decentralized
solutions PD-WF and FD-WF, as well as existing methods
including centralized WF precoding, fully-distributed MRT, and
the fully-decentralized ADMM-based WF precoder from [5].

Evidently, PD-WF achieves the same BER as the centralized
WF precoder for all antenna configurations. In contrast, FD-
WF suffers a moderate BER loss if Bc is small. To minimize
the performance loss of FD-WF precoding, we have tuned
the parameter τc in (9). Concretely, we found that τc = 0.125
performs well for a broad range of antenna and cluster config-
urations; a corresponding theoretical analysis is left for future
work. In addition, we see that the fully decentralized ADMM-
based WF precoder proposed in [5] is able to outperform
FD-WF precoding but requires multiple iterations of consensus
exchange (we use two ADMM iterations) that dramatically
reduces the throughput due to the typically high interconnect
latency between computing fabrics; see [5] for the details.

IV. MULTI-GPU IMPLEMENTATION

As a proof-of-concept, we now present a multi-GPU im-
plementation of PD-WF and FD-WF precoding, and show
corresponding throughput and latency results.

A. System Architecture

We implemented PD-WF and FD-WF precoding on an
Nvidia DGX-1 multi-GPU system [17], as illustrated in Fig. 4.
The architecture consists of two 20-core Intel Xeon E5-2698
v4 CPUs and eight Tesla V100 Volta GPUs with 300GB/s
bi-directional NvLink GPU-to-GPU communication links. Each
Tesla V100 GPU contains 5120 CUDA cores with 16 GB high
bandwidth memory (HBM). For PD-WF and FD-WF precoding,
we use the message passing interface (MPI) library OpenMPI to
generate a total of C processes in the multi-GPU system, where
each process controls a GPU for accelerating the decentralized
local workload using CUDA [18] with CUDA v9.1. While FD-
WF only requires broadcasting of transmit signals s[k] across
GPUs prior to the precoding computations, PD-WF necessitates
gathering of the local Gram matrices from all GPUs via sum
reduction at the centralized whitening unit (in the master GPU
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Fig. 3. Uncoded bit error-rate, latency, and throughput results for decentralized baseband processing with U = 16 users. Top row: fixed number of BS
antennas B = 256, varying cluster size Bc and number of clusters C. Bottom row: fixed cluster size Bc = 32, varying number of BS antennas B and number
of clusters C. PD-WF achieves the same error-rate performance as centralized precoding; FD-WF achieves near-WF performance for cluster sizes Bc ≥ 32;
the ADMM-based WF method outperforms FD-WF but requires iterative exchange of consensus information resulting in high latency.

as shown in Fig. 4), and broadcasting of the whitened vectors
z[k]. These message passing operations are implemented using
the NVIDIA Collective Communications Library (NCCL) [19]
v2.1 that builds on MPI for high efficiency over NvLink.

B. Implementation Details

To increase the throughput on the multi-GPU system, we
need to feed the GPU a sufficient amount of workloads to
fully exploit the available resources. In what follows, we
assume the downlink transmission with orthogonal frequency
division multiplexing (OFDM) with Nsc subcarriers. Each
OFDM subcarrier corresponds to an independent narrowband
block-fading downlink system as in (1), where we assume that
the channel remains constant across K OFDM symbols. The
vector sw[k] indicates the transmit vector s[k] on subcarrier w
in time slot k. In our implementations, we aggregate the
precoding workloads for K OFDM symbols, each including Nsc
subcarriers, and process them together in parallel to improve
the GPU occupancy and throughput. In what follows, we omit
the superscript w as well as the OFDM symbol index k.

1) PD-WF Implementation: For PD-WF, we invoke C
MPI processes that control C GPUs, and each process
initializes computation of the local Gram matrix Gc us-
ing the local channel Hc on a certain GPU. Within each
GPU, we calculate Nsc such Gc matrices to achieve high
throughput. These matrix multiplications can be efficiently
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Fig. 4. Overview of the experimental platform with up to eight Tesla Volta
GPUs and high speed NvLink GPU-to-GPU interconnect [17]. The uppermost
GPU is the master GPU that collects results from other GPUs, performs
centralized computations for PD-WF, and broadcasts the transmit vectors s[k]
for FD-WF or the whitened vectors z[k] for PD-WF to other GPUs.

implemented using the cuBLAS [20] library; specifically, we
use the cublasCgemmBatched function for complex-valued
floating-point arithmetic. Once all local Gc matrices have
been computed, we gather Gc from all C GPUs to a reduced
sum (resulting in the global Gram matrix G) at the master
GPU using the NCCL ncclReduce function. The NCCL
library leverages CUDA-aware MPI [21] for direct GPU-to-
GPU memory copy over high-speed NvLink interconnect.

We compute A = G + κWFIU for Nsc subcarriers
(corresponding to a given OFDM symbol k) at the mas-



ter GPU in parallel. We then invert this matrix using the
cuBLAS cublasCgetrfBatched Cholesky decomposition,
followed by cublasCgetriBatched that implements for-
ward and backward substitution operations to obtain A−1.
Since the local channel matrix Hc is assumed to remain
constant for K OFDM symbols, we store A−1 for a given
OFDM symbol k, and reuse this matrix for all K OFDM
symbols. To compute the whitened vector z = 1

βWF A
−1s,

we first multiply the transmit vector s with the matrix
A−1 using the cublasCgemmBatched function for a total
of Nsc × K subcarriers. We then calculate the precoding
factor βWF. As shown in (6), βWF depends on tr(A−1) and
‖A−1‖2F , which involve sum reduction operations across the
diagonal entries or all entries of matrix A−1. To resolve such
data dependencies efficiently, we design a customized kernel
function to calculate βWF, where we take advantage of fast local
registers and shared memories for inter-thread communications.
Specifically, we invoke this kernel with Nsc thread-blocks to
calculate Nsc different βWF values in parallel. In each thread-
block, we generate U × U threads to access each entry of the
U × U matrix A−1, and perform inter-thread shuffle of local
register values within a warp using warp shuffle [22], and inter-
thread communication across different warps within this thread-
block using shared memory, to realize the sum reductions
required to compute tr(A−1) and ‖A−1‖2F . Analogously to
the computations for A−1, we can reuse the parameter βWF

across K OFDM symbols, and compute the whitened vector
z. For PD-WF, whitening happens at the master GPU in a
centralized manner, and therefore we need to broadcast the
whitened vector z to all GPUs using NCCL ncclBcast.
We finally compute the local precoding vector xc = HH

c z by
cublasCgemmBatched function for all Nsc×K subcarriers
at each GPU in a decentralized fashion.

2) FD-WF Implementation: For FD-WF, we use cuBLAS
and customized kernels as for PD-WF in order to implement the
local WF precoder corresponding to Bc BS antennas with the
power constraint ρ2c =

ρ2

C . To invoke the FD-WF precoder, we
broadcast the transmit vectors s to the C MPI processes, each
running a local WF precoder on a separate GPU to compute
the local precoding vectors xc in parallel.

C. Implementation Results

Fig. 3 shows the latency and throughput results of PD-WF
and FD-WF measured on the multi-GPU system for various BS
antenna configurations and U = 16 UEs. For all configurations,
we set Nsc = 1200, K = 7 corresponding to a slot-frame of
20 MHz LTE signal with OFDM and 64-QAM transmission.

In the top row of Fig. 3 , we fix the number of BS antennas to
B = 256, and increase the number of clusters C = 2, 4, 8 (and,
hence, the number of used GPUs) while decreasing the cluster
size Bc = 128, 64, 32. By decreasing Bc, the throughput of
PD-WF and FD-WF precoding increases as less local workload
is processed in parallel. FD-WF achieves higher data rate than
PD-WF, since FD-WF only requires to broadcast the transmit
vector s which scales with Nsc×K×U , while PD-WF requires a
higher amount of message passing, which includes (i) gathering

of local Gram matrices Gc (scaling with Nsc×U ×U ) and (ii)
broadcasting of whitened vector z (scaling with Nsc×K ×U ).

In the bottom row of Fig. 3, we fix the number of antennas
per cluster to Bc = 32, and increase B = 64, 128, 256 by
scaling the number of clusters C = 2, 4, 8. We observe that
the throughput only degrades slightly with increasing B and
C for both PD-WF and FD-WF, indicating that the message-
passing latency remains nearly constant; this is a result of the
direct GPU-to-GPU gathering/broadcasting communications
realized by NCCL. This observation also implies that we can
increase the number of BS antennas with only a small loss
in throughput using the proposed decentralized feedforward
architecture. For all configurations show in Fig. 3, our designs
achieve throughputs in the Gb/s regime with latencies below
1ms. We also see that FD-WF outperforms PD-WF in terms
of throughput due to the reduced amount of message passing,
while PD-WF achieves superior error-rate performance.

V. CONCLUSIONS

We have proposed two novel feedforward architectures and
corresponding decentralized precoding algorithms based on
the linear Wiener filter (WF) precoder. We have demonstrated
that the partially-decentralized (PD) WF precoder achieves the
error-rate performance of the centralized WF precoder, while
significantly reducing the interconnect and chip input/output
bandwidths. To further reduce the interconnect bandwidth, we
have proposed a fully-decentralized (FD) WF precoder that
incurs only a small error-rate performance loss compared to the
PD-WF precoder. To showcase the efficiency and scalability
of PD-WF and FD-WF to large antenna arrays, we have
presented implementations on a multi-GPU system. Our results
demonstrate that throughputs in the Gb/s regime at latencies
below 1ms are achievable. These results indicate that the
proposed decentralized precoding are a solution to combat
the interconnect and complexity bottlenecks while being able
to fully exploit the spectral efficiency and link reliability
advantages provided by massive MU-MIMO systems.

There are many avenues for future work. A theoretical
analysis of the optimal regularization parameter τc for FD-
WF precoding in (9) is an open research question. Combining
decentralized feedforward precoding with data detection as
in [14] may further reduce the processing latency and increase
the throughput as a large number of quantities can be re-
used between the uplink and downlink. The development and
analysis of feedforward architectures for cell-free massive MU-
MIMO as put forward in [16] is part of ongoing work.

APPENDIX A
PROOF OF THEOREM 1

The precoder resulting from Section 3 is known as the
Wiener filter (WF) precoder [9] and can be derived as follows.
Let us first form the Lagrangian

L(P, β, λ) = Es

[
‖s− βHPs‖2

]
+ β2UN0

+ λ(Es

[
‖x‖2

]
− ρ2).



We can now formulate the optimality conditions for P and β
by using the Wirtinger derivative as follows. For the precoding
matrix P, we have the following optimality condition:

δ

δPH
L(P, β, λ) = 0 =⇒ β2HHHP+ λP = βHH . (10)

For the precoding factor β, we compute δ
δβ∗L(P, β, λ) = 0

and obtain the following optimality condition:

β tr(PHHHHP) + β
UN0

Es
= tr(HHPH). (11)

From the power constraint, it follows that

Es

[
‖x‖2

]
= ρ2 =⇒ tr(PHP) =

ρ2

Es
. (12)

To derive the optimal value for the Lagrange multiplier λ, we
apply the following steps the optimality condition in (10):

β2HHHP+ λP = βHH

β2HHHPPH + λPPH = βHHPH

β2 tr(HHHPPH) + λ tr(PPH) = β tr(HHPH)

β2 tr(PHHHHP) + λ
ρ2

Es
= β tr(HHPH), (13)

where the last step results from (12). We now multiply both
sides of the optimality condition in (11) with β to obtain

β tr(PHHHHP)Es + βUN0 = tr(HHPH)Es

β2 tr(PHHHHP) + β2UN0

Es
= β tr(HHPH). (14)

Subtracting (14) from (13) yields the Lagrange multiplier

λ =
UN0

ρ2
. (15)

From (10) and (15), it follows that the WF precoding matrix
is given by PWF = 1

βWF Q with the matrix

Q =

(
HHH+

UN0

ρ2
I

)−1

HH .

The remaining piece is to identify the WF precoding factor
βWF. To this end, we plug PWF into (12), which leads to

1

β2
tr(QHQ) =

ρ2

Es
=⇒ 1

βWF =
ρ√

tr(QHQ)Es
.

APPENDIX B
PROOF OF LEMMA 2

To reduce the complexity of computing βWF in (5), we first
use the matrix inversion lemma [23] to arrive at an equivalent
expression of (4) given by

QWF = HH
(
HHH + κWFIU

)−1
,

which requires the inversion of an U × U matrix. By precom-
puting the U × U Gram matrix G = HHH and inverting the
regularized Gram matrix defined as A = G+κWFIU , we have

QWF = HHA−1 (16)

and consequently, tr(QHQ) = tr
(
A−1GA−1

)
. A direct

evaluation of this expression still requires two matrix-matrix
multiplications of dimension U × U . We can further reduce
complexity by noting that the following equivalence holds

tr
(
A−1GA−1

)
= tr

(
A−1

)
− κWF‖A−1‖2F ,

where we used a Searle-type identity [24] and a matrix version
of partial fraction expansion to finally arrive at (6).
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