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Abstract—Noninterference is a definition of security for secret
values provided to a procedure, which informally is met when
attacker-observable outputs are insensitive to the value of the
secret inputs or, in other words, the secret inputs do not “inter-
fere” with those outputs. This paper describes a static analysis
method to measure interference in software. In this approach,
interference is assessed using the extent to which different secret
inputs are consistent with different attacker-controlled inputs
and attacker-observable outputs, which can be measured using
a technique called model counting. Leveraging this insight, we
develop a flexible interference assessment technique for which the
assessment accuracy quantifiably grows with the computational
effort invested in the analysis. This paper demonstrates the
effectiveness of this technique through application to several
case studies, including leakage of: search-engine queries through
auto-complete response sizes; secrets subjected to compression
together with attacker-controlled inputs; and TCP sequence
numbers from shared counters.

Index Terms—information flow; noninterference; approximate
model counting

I. INTRODUCTION

Information leakage about secrets in software is a core
concern for computer security, and has been for decades
(e.g., [1]). Leakage can in principle be detected by tracking
information flow from secret objects to attacker-observable
ones, and considerable progress has been made on static-
analysis tools for detecting leakage vulnerabilities in software
(see Sec. II for a discussion of related work). Still, however,
assessing the significance of detected leaks continues to be
a difficulty that plagues static-analysis tools, particularly for
ones that track implicit information flows (e.g., [2]).

In this paper we propose a static-analysis method to assess
leakage vulnerabilities, even those that leverage implicit flows.
The intuition of our design draws from noninterference [3],
which informally is achieved when the attacker-controlled
inputs and attacker-observable outputs are unchanged by the
value of a secret input that should not “interfere” with what the
attacker can observe. In practice, noninterference is extremely
unlikely to hold for most real-world programs, since a degree
of leakage is often necessary. As such, a more quantitative
measurement of (non)interference should be more useful in
assessing leakage. In principle, if all possible pairs of attacker-
controlled inputs and attacker-observable outputs could be
enumerated for any given value of the secret input, then
differences in the pairs possible for different secrets would
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reveal interference between the secret value and the pairs that
remain possible, and hence an estimate for potential leakage.
Unfortunately, enumerating these pairs for all possible secret
values is often impractical for complex procedures, and so
previous explorations based on similar principles have been
limited (again, see Sec. II).

Within this framework, we explore the assessment of leak-
age vulnerabilities by randomly sampling a space of secret
values and then limiting our search for pairs of attacker-
controlled inputs and attacker-observable outputs to only those
that are consistent with some secret in that space. By leverag-
ing techniques from approximate model counting [4], we show
how to scalably estimate the number of such pairs to a desired
accuracy and confidence and—perhaps more to the point—the
number of such pairs that are consistent with one or both of
two disjoint spaces of secret values. Finding two spaces of
secret values for which these counts suggest pairs consistent
with one but not both then reveals interference. Moreover, we
will demonstrate the need to examine samples of secrets of
varying sizes, and show how small samples can provide a more
reliable indication of the number of secret values about which
information leaks, while larger samples provide more insight
into the amount of leakage of secret values. In doing so, we
develop a powerful framework for interference detection and
assessment with the following strengths:

o The error in our assessment of a reported interference can
be reduced, arbitrarily close to zero in the limit, through
greater computational investment. Specifically, by increasing
the accuracy and confidence with which the number of
pairs of attacker-controlled inputs and attacker-observable
outputs consistent with sampled secrets are estimated, and
by increasing the number and variety of samples tested, the
interference assessment quantifiably improves.

Our framework supports the derivation of values from its
estimates that can separately provide insight into the number
of secret values about which information leaks, and the
amount of leakage about those secrets. Within the context of
particular applications, one type of leakage might be more
important than the other.

Even for nondeterministic applications, our framework pro-
vides a robust assessment of noninterference, by accounting
for the nondeterministic factors (e.g., procedure inputs other
than the secrets or attacker-controlled values).
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We detail our approach and its implementation in a tool. Our
tool takes as input a procedure; a specification of which of its
inputs are attacker-controlled, which are secrets, and which
outputs are attacker-observable; and parameters to drive the
secret-sampling strategy to reach a desired confidence in its
leakage assessment.

We demonstrate our tool through its application in numerous
scenarios. We first apply it to selected, artificially small ex-
amples (microbenchmarks) to demonstrate its features. Then,
we apply it to assess leakage in several real-world examples.
o We apply our tool to detect leakage of web search query

strings submitted to the Sphinx web server on the basis
of auto-complete response sizes returned to the client (i.e.,
even if the query and response contents themselves are en-
crypted) [5]. We also leverage our tool to evaluate the impact
of various mitigation strategies on this leak, e.g., showing
that based on the contents of the searchable database, some
seemingly stronger defenses offer little additional protection
over seemingly weaker ones.

o We use our tool to demonstrate the vulnerability leveraged
in CRIME attacks [6], specifically that adaptive compression
algorithms provide opportunities for an attacker to test
guesses about secrets that he cannot observe, if he can
instead observe the length of compressed strings containing
both the secret and his guess. This case study demonstrates
the ability of our technique to effectively account for
attacker-controlled inputs, in contrast to many prior tech-
niques (see Sec. II). Specifically, we apply our tool to both
Gzip and the fixed-dictionary compression library Smaz
to illustrate that they both leak information about secrets to
the adversary, but that Gzip leaks more information as the
number of adversary-controlled executions grows.

o We apply our tool to illustrate the tendency of Linux to leak
TCP-session sequence numbers to an off-path attacker [7],
[8]. This is perhaps the most complex of the examples
we consider, and again illustrates the power of accounting
for attacker-controlled variables. Moreover, we evaluate two
plausible defenses against this attack, one a hypothetical
patch to Linux that we propose, and another being simply
to disable use of information that is central to the leak.
This paper is structured as follows. We discuss related work

in Sec. I and then present our methodology for interference

measurement in Sec. III. The implementation of our tool is
described in Sec. IV. We use microbenchmarks in Sec. V to
demonstrate features of our approach, and then apply our tool
to real-world codebases in Sec. VI. Some limitations of our
approach are discussed in Sec. VII. We conclude in Sec. VIIIL.

II. RELATED WORK

Our work can be viewed as a form of static information-
flow analysis, an area with a long history of prior work (e.g.,
see [9]-[13] and the references therein). A central challenge
(e.g., [2]) in this space is how to assess detected leaks, as some
might be insufficiently consequential to warrant attention. One
strategy that is often adopted is to simply ignore implicit flows
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(e.g., [14]). In contrast, our analysis encompasses both implicit
and explicit flows.

A second approach to assess leaks, often termed quantitative
information flow (QIF, e.g., [15]-[22]), is to compute the
amount of information leaked about the secret (e.g., in terms
of some type of entropy), conditioned on the output values
observable by the attacker. In the context of static analysis,
QIF has already been used to estimate leakage for cache side-
channel attacks based on an abstract cache model (e.g., [23],
[24]) and leakage from network traffic of web applications
(e.g., [5], [25]-[27]), for example. To our knowledge, our
work improves on prior work in QIF along one or more
of the following dimensions. First, computing the measures
in these works often involves computing outputs induced by
possible secret values, which sometimes leverages application-
specific restrictions to be tractable (e.g., [25]). Our frame-
work, in contrast, does not require such application-specific
restrictions. Second, exploiting leakage vulnerabilities often
requires attackers not only to observe outputs but also to inject
inputs, and many applications incorporate other inputs, as
well. These QIF calculations are not possible without knowing
the distributions from which these values are drawn (e.g.,
[28]), and so some works (e.g., [29], [30]) heuristically assign
specific values to these unknown inputs, potentially hiding
the leakage from other assignments. Our analysis computes
conditionals in a different “direction,” i.e., counting possi-
ble combinations of attacker-controlled inputs, other inputs,
and attacker-observable outputs conditioned on sets of secret
values. In doing so, our technique accommodates attacker-
controlled inputs but does not presume knowledge of the
attacker’s strategy or the distributions of these or other inputs.
Third, some QIF frameworks work only for deterministic
procedures (e.g., [31], [32]), whereas ours accommodates
nondeterministic ones, as well.

The tractability of our design derives in part from results in
model counting (or #SAT) [33]. Previous QIF-related works
leveraging model counting either support only convex con-
straints (e.g., [31], [34]) and so therefore do not capture
all constraints of realistic applications, or use exact counts
(e.g., [27]) and so cannot scale to complex applications. In
contrast, we leverage principled sampling-based methods for
approximate model counting, which we show can be used to
expose leaks in real codebases. Our work also demonstrates a
new approach for using model counting to estimate informa-
tion leakage, again deriving from our strategy of counting pairs
of attacker-controlled inputs and attacker-observable outputs
conditioned on secret-value sets of different sizes.

More distantly related to our work are several that sim-
ply detect interference (or interference meeting certain con-
straints), versus measure it (e.g., [35]-[41]). With few ex-
ceptions (e.g., [41]), most such works are applied on an
abstract model of a program, rather than working from off-
the-shelf programs used in practice, as we do. Moreover, only
detecting interference is arguably less useful when interference
is necessitated by the program’s goals but extraneous leakage
should be otherwise measured and minimized.



III. INTERFERENCE ASSESSMENT

Our technique seeks to measure information leakage from a
procedure proc. The set Varso is the set of attacker-observable
formal output parameters of proc; after completion, proc
outputs a value O(owvar) for each formal output parameter
ovar € Varsg. Outputs from proc that the attacker cannot
observe are not modeled. The formal input parameters to proc
are divided into three disjoint sets, namely Varsc, Vars), and
Varss, having the following properties.

Each formal parameter cvar € Varsc takes on a value
C(cwvar) controlled by the attacker.

Each formal parameter iwar € Vars takes on a value
I (ivar) that is not controlled by the attacker.

Each formal parameter svar € Varss takes on a value
S(svar) that is not controlled by the attacker and moreover,
represents a secret for which we are specifically concerned
with detecting leakage via the outputs O.

So, for our purposes, we consider proc to be of the form

O « proc(C,1,S)

with O, C, |, and S assigning values to the formal parameters
of proc as described above.

Execution of proc ensures a logical postcondition II,,,.,. that
constrains how the variables represented in O, C, I, and S
relate to one another. We denote this predicate instantiated
with particular input and output values by II C,0,1,S),
which is either true or false.

To simplify discussion, we assume in this paper that there
is only one secret formal parameter ‘secret’ (i.e., Varss =
{‘secret’}), though our framework naturally extends to more.
We assume that the value of ‘secret’ is chosen from a set
S, which the attacker knows. To measure the leakage about
‘secret” from O, under the adversary’s chosen C, we consider
the set Y; of pairs (C,O) that are consistent with S(‘secret’):

X, ={(C,0,1) | I,,,,.(C,0,1,S) A S(‘secret’) = 5 }
Y, ={(C,0) | 3:(C,0,l) e X;}

proc(

In these definitions, the sets Varsc, Vars), and Varspo (and
Varss) are assumed to be fixed. For example, if (C,0) €
Y, and (C',0’) € Y5, then while C and C’ (respectively, O
and Q') can differ in the values they assign to variables (e.g.,
C(cvar) # C'(cvar) for some cvar), they cannot differ on
the variables to which they assign values.

The reason for considering Y is that it is an indicator of how
s influences the possible view of the adversary, in terms of the
variables it controls (C) and the variables it observes (O). For
example, if O is independent of ‘secret” and so leaks nothing
about the value of ‘secret’, regardless of how the adversary
chooses C, then Y; = Y/ for any s, s’ € S. To generalize from
this example, let Yg = Use 5 Y and then consider the Jaccard
distance of Yg and Yy for any two disjoint sets S, S’ C S:

|(Ys\ Ys) U (Ysr \ Ys)|

1 |YS NYs
}YsLJYS/

!YS UYy

J(8,8") =

)]
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(By convention, J(5,5") = 0 if Y = Y = 0.) On the
one hand, J(S,S’) = 0 implies that Y5 = Yg or, in other
words, that an attacker cannot distinguish whether the secret
S(‘secret’) is in S or S’. On the other hand, J(S,5’) > 0
implies there is some (C,0) € (Ys\Ys/)U(Ys \ Ys), and so
the attacker can potentially distinguish between ‘secret’ having
a value in S and the case in which it has a value in S’.
Unfortunately, it is generally infeasible to compute J(S, S")
for every disjoint pair S,S” C S, or even when S, S’ are
restricted to being singleton sets. We can, however, estimate

Jp = avg J(S,5") (2)
S,8" S| =8| =n
ASNS =0

to a high level of confidence by sampling disjoint sets S, S’ of
size n (or of expected size n, as we will discuss in Sec. IV-A)
at random and computing J(S, S’) for each.

A. The need to vary n

Consider an idealized situation in which a procedure leaks
the equivalence class into which S(‘secret’) falls, among a
set of ¢ “small” equivalence classes Cy,...C, of equal size
w. If C = U;le C;, then the remaining elements Cy = S\
C form another, “large” equivalence class (w < |Cgl). Let
C¥" C {Cy,...,C.} denote the small equivalence classes of
which S contains elements and Clgg C {Cy} indicate whether
S contains representatives of Cy (in which case C'Sg ={Co})
or not (in which case CE’ = {}). For simplicity, we assume
below that |Yg,| is the same for each i € {0,1,...,c}.

For the rest of this discussion, we treat the selection of s € S
and s € S’ as the selection, with replacement, of C; > s.!

w

Then,E(|C’§m|) :c(lf ( )71)72 and so
2n
5))

)_c@_c_
)-s(i--3))

(5
)=2(-(&))

S|
In reality, each C; can be selected only w times in the drawing of S
and S’, since S and S’ do not intersect. This dependence should not affect
our estimates much, however, provided that w is not too small or n is small
enough.

_w
IS]

E (’cgm ucsn

)=5 s,

E(jcgm| + |cgr

Similarly,

cw

E (‘C'Sg ucs,

E(‘C'g‘ n ’C'g,

2let X; = 1 if class C; € CF" and X; = 0 otherwise. Then,
P(X;=0)=1—-w/|S)*andso P(X; =1)=1— (1 —w/[S|)™. So,

_w
L=

B(

Cng =Y EX) =Y P(X;=1) :c(1 _ (

))



and so

E (}Cs U Csr )
w 2n cw 2n
=cl1-(1- = +1—<—) 3)
(g ) e
E (|ICs|+|Cs])
w " cw "
(e -(og) ) o-(5)) @
IS| S|
CsNCy/ Cs|+|Cgs
Since J,, = 1 — ‘S# = 2 — % we estimate
|csucs, [osucs,
E(lcsl+|cs )
E(J,) ~ 2 — W, using (4) and (3) for the
numerator and denominator, respectively.
« First suppose n is small or, specifically, that 2|7§IU < 1. Then,

we can apply the binomial approximation (1 - |—‘§") ~1-—

2n
%I} to (4) and (1 - ﬁ) ~1-— 2‘%” to (3) to conclude
2ncw + 29 (@)n
E(J,)~2— K 5
( n) - 2ncw cw n ( )
g+ 1- (%)

Thus, when n is small, E (.J,,) is sensitive to the number of
secrets cw = |C| about which there is substantial leakage,
but is insensitive to ¢ and w individually, i.e., to the amount
of leakage about those secrets. As such, small n yields a
measure J,, that best indicates the number of secrets about
which information leaks.

« Now suppose n is large, such that (ﬂ

2(c(1—(1

n
) =~ 0. Then,

—%Izn)‘Fl)
c(l—(l—%) n>+1

That is, J, is sensitive to ¢ and w individually when n is
large. In this sense, we say that .J,, for large n is a better
indicator for the amount of leakage about secrets.

Again, the above model is idealized; leakage from real
procedures can be far more complex. Still, this discussion
provides insight into the utility of .J,, and how it should be
used. When n is small, (5) grows as cw = |C| grows, and for
any threshold ¢ € [0,1] indicating “substantial” leakage, the
smallest n for which .J, > t shrinks. This smallest n is thus
a reflection of |C|, i.e., of the number of secrets about which
information leaks. When n is large and for a fixed cw, (6)
grows as w shrinks,? and for any threshold ¢ € [0, 1] indicating
“substantial” leakage, the largest n for which .J,, > ¢ grows.
This largest n is thus a reflection of w, i.e., of the amount of
leakage about those secrets. It is therefore natural to examine
both min{n|.J,, > t} and max{n|J,, > t}. To define measures

E(J,)~2— ©)

n
3For example, (1 - %I) < % is sufficient to ensure this.
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= log, (|S| /n™™) —% mutual entropy -5 log, (|S| /7™") —%- mutual entropy
-&-_log, (S| /™) —< min-entrc -o-_log, (S| /n™*) =< min-entrop;

é T E 32 .

& =16

o0 a0

E =

= : =0

0 8 16 24 32 0 8 16 24 32
log, |C| log, &

(a) Varying L(C| with fixed w = 2* (b) Varying w with fixed |C| =
and |S| = 277 2?8 and |S| = 2%

Fig. 1: Relating n™" and 7™ to min-entropy and mutual en-
tropy, for the idealized model of leakage explored in Sec. III-A

using these values that fall within [0, 1] and for which larger
values indicate more leakage (as with J,,), we define

mn__ J O if £ > Jm¥&
T 1/ min{n | J, >t} otherwise

R if ¢ > gmax
e = m max{n | J, > t} otherwise

Here, J™® = max, s J,/, and so the ¢t > J™** cases accom-
modate ¢ values larger than .J,, ever reaches. Finally, rather
than select a ¢ to define “substantial” leakage, we simply take

the average values of 7" and 7" over ¢ € [0, 1] as our final
measures:
nmm — / n?llndt nmax — / n?axdt (7)
0 0

The numbers we report in this paper are discrete approxima-
tions to these values via numerical integration with a fixed
subinterval width of 0.01.

Roughly speaking, a larger value for n™" suggests that
information leaks from the procedure for more secret values,
and a larger value for n™** suggests that more information
leaks from the procedure about secret values.* To relate these
measures to another used previously in the QIF literature,
namely min-entropy (e.g., [42], [43]), in Fig. 1 we show n™
and ™ in comparison to the min-entropy of S(‘secret’), for
our idealized setting above. Fig. 1(a) shows that n™ reflects
the growth of |C| just as min-entropy can, and similarly,
Fig. 1(b) shows that n™* reflects changes in w like min-
entropy can. However, min-entropy does not distinguish be-
tween these types of leakage. Mutual entropy (e.g., [19], [22],
[29]) also reflects increasing leakage as |C| grows in Fig. 1(a)
and as w shrinks in Fig. 1(b), though its sensitivity to these
effects is limited, particularly that of increasing |C|, until |C|
becomes quite large (Fig. 1(a)).

min

4While these rules of thumb are accurate when .J,, has no valley, they are
less reliable when it does. In such cases, a more reliable understanding can
be obtained by examining the graph of J,, directly, or at least by computing a
separate ™™ and 7™ for each valley-free segment of J,,. Here, by “valley”
we mean values n, n’ where n < n', Jn > Jny1, Jpr < Juryq, and
Jprr = Jpiryq for each n”” € [n+ 1,n' — 1]. We have not encountered J,
curves with valleys in practice, and so do not discuss them further here.



B. Procedures with other inputs
The measures .J,,, ™", and ™ are appropriate when proc
is deterministic and leverages no inputs in |. When either of
these restrictions are lifted, our approach described so far can
be unreliable. We illustrate this in Sec. III-B1 and then provide
an alternative measure in Sec. III-B2 that is more robust.

1) Limitations of J,,: First consider a randomized password
checker that receives a secret password S(‘secret’) and a
candidate password C(‘test’) and, for some constant M >
0, outputs a random value in [0, M — 1] if the candidate
password is equal to the secret password and random value
in [M,M + 16] otherwise. Intuitively, the leakage of this
procedure should be the same as a deterministic password
checker and independent of the value of M. However, as
shown in Fig. 2, the use of randomness here results in an
unintuitive result, since J,, (Fig. 2(b)) is sensitive to the value
of M. As such, while our detector does accurately detect
leakage in this case, it provides less help in comparing the
leakage of two randomized implementations.

Another problem may arise when other inputs are allowed
in |. Consider the example

proc (C, I, S)
O(‘result’) «— ((S(‘secret’) > C(‘test’)) ? 1 : 0)
@ ((I(‘other’) <0) ?1 : 0)
return O

Here, the expression “cond 7 1 : 0” evaluates to 1 if cond
is true and 0 otherwise, and “@®” represents XOR. This
procedure indicates that S(‘secret’) > C(‘test’) by returning 0
if I(‘other’) < 0 or by returning 1 if I(‘other’) > 0. Because
our technique allows for any value of | (‘other’) consistent with
II,,,,. when estimating [Ys], it will compute J,, = 0 for any
n, suggesting no leakage. However, the only condition under
which proc in fact leaks no information is if I(‘other’) is non-
positive or positive with equal probability from the adversary’s
perspective.

2) An alternative measure: To overcome the limitations
of J, as illustrated above, in this section we propose a
leakage measure that is more robust for procedures that
employ randomness or inputs in |. For convenience, here
we treat all values generated at random within the procedure
instead as inputs represented in I; e.g., the first invocation of
rand () within the procedure is replaced with a reference to,
say, |(‘rand[1]’), the second with I(‘rand[2]’), and so forth.
Intuitively, our measure employs an alternative definition for
Ys that also includes these additional inputs. Specifically,
consider the set

XS,S’ = {(C,O,|> ’ <C7O7I> € Xs A <C7O> €Ys ﬂYS/}

of (C,0,1) triples such that not only is (C,0) € Ys N Yy
(c.f., the definition of J(S,S’) in (1)), but also the triple
is consistent with some s € S (ie., (C,0,l) € Xg where
Xs = Uses Xs). By counting such (C,0,1) triples, the
various random values (represented in |) become exposed in
X 5,5 and the number of these values for a given (C, O) pair
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act as the “weight” of that pair. We adjust the denominator
similarly, resulting in the measure

. Xs,s7
J(s,§)=1- 1
|XS UXS!
Jn = avg J(s,5") ®)
S,8":8|=|8"|=n
ASNS =0

Note that if Varsy = (), then jn = J, since in this case,
(C,0) € Yg if and only if (C,0,0) € Xs.

The benefit of .J,, is that it is far less susceptible to the
variability that was demonstrated in Sec. III-B1. For example,
Fig. 2(c) shows that this measure is stable, independent of
M. As we will see in subsequent sections, however, it is also
considerably costlier to estimate.

When we use jn in place of J,,, we will annotate measures
derived from it using similar notation. For example, /™"
denotes ™" computed using J, in place of .J,,, and similarly
for ™.

IV. IMPLEMENTATION

In this section, we discuss our implementation for com-
puting the measures discussed in the previous section. Fig. 3
shows the overall workflow for doing so. At the core of our
implementation is a hash-based model counting technique that
is discussed in Sec. IV-A-IV-C. In Sec. IV-D, we present an
adaptation for generating logical postconditions for multiple
rounds of procedure executions. In Appendix A, we discuss
the use of symbolic execution (e.g., [44], [45]) for generating
postconditions, with a focus on a particular optimization that
proved useful for our case studies in Sec. VI.

A. Hash-based model counting for J,

To calculate J,, we need to estimate !YSQYS/ and
‘YS UYs/| for randomly selected, disjoint sets S and S’ of
size n. Since

|Y5 NYs
‘Ys UYs

and

=|Ys|+ |Yo| - |[Ys U Yy ©
) (10)

= |Ysus:

to estimate J,, it suffices to estimate |YS~ for specified sets
S” (Ge.,S8"=8,8"=5orS"=SUS). In this section,
we provide two optimizations for producing such estimates.
1) Estimating |Ys|: Our first optimization is an adapta-
tion of the approximate model counting technique due to
Chakraborty et al. [4], which leverages a family of 3-wise
independent hash functions to estimate the number #F’ of sat-
isfying assignments of a conjunctive-normal-form proposition
F' of v variables and that runs in fully polynomial time with
respect to a SAT oracle. At a high level, this algorithm itera-
tively selects a random hash function H” : {0,1}* — {0,1}°
from the family (where b changes per iteration) and a random
p € {0,1}", and computes the satisfying assignments for F
for which the hash of the assignment (a string in {0, 1}") is p.
(Intuitively, this number should be about a # F/2°.) Through




os % M=1 -a M=16 /“’+
proc (C, I, S) S B M i4 - M :6;10
if (S(‘secret’) = C(‘test’)) 06l S M=8 S M=2 /r //
O(‘result’) + rand() mod M o4 7IZ %fh
else ’
O(‘result’) «— M + (rand() mod 16) 0.2 J/ /[//}2
return O Omﬂﬂﬂﬂég%
0 4 8 16 20 24 28 32 0 4 8 12 16 20 24 28 32
logy 1 logy 1

(a) Procedure

(b) J,, for various n and M

(©) Jn, for various n and M

Fig. 2: An example showing limitations of J on procedures with randomness and improvements offered by J (see Sec. I1I-B)

—_—— o = = =~ T~ 1— B8

- —1=2| 72
o n . _I ] Iteratec iount;ngsfor:S/ 1 | Compute J,,

. - e Mult1 execution (Sec. IV- ample > an —> 7" and nmdx
Iy Symbolic Exccution | Composition . s (Sec. IV-A2) : (ec. TMLA)
pp (Sec. IV-D) | Hash-based Counting 1
........ C (Sec. IV-Al) _—
cl1S

Fig. 3: Workflow of evaluating leakage, from left to right: label the different types of inputs and outputs; generate postconditions
I1,,,. using symbolic execution; optionally, compose multi-execution constraints; perform model counting for different sizes

of n; and generate our leakage measures

judicious management of this iterative process, the algorithm
arrives at an estimate #F' for #I" that satisfies

P+ #FP<HF<(1+6)-#F) 20

where error ¢, 0 < ¢ < 1, and confidence 6, 0 < § < 1,
are parameters and the probability is taken with respect to the
random choices of the algorithm.

We estimate |Yg| similarly, i.e., by iteratively selecting H?
and p € {0,1}" at random, but apply the hash function only
to the C and O values of a satisfying assignment for II
More specifically, we compute the set

Zs, ={(C,0) | (C,0) e Ys AH"((C,0)) =p}

That is, Zg » C Ys contains the elements of Yg whose hash
is p. Intumvely, this yields an estimate

Ys| ~2°-|Zg,| (11)

To reach an estimate of confidence J, we generate a number
of (b, p,p) triples such that

proc*

|Zs,| <aand |Zg ;| > (12)

where p € {0,1}%, p € {0,1}*71, and « is derived from
€ [4]. Each such triple individually provides an estimate that
is within error ¢ with confidence at least 0.78 [4, Lemma 1],
and the median of the estimates for all such triples is within
error ¢ with confidence that can be increased arbitrarily with
more (b, p, p) such triples. As a special case, if |Zg | < a at
b =0, then ’Zs’p’ is an exact count of |Ys| since Zg , = Ys.

2) Sampling S, S’ of Expected Size n: A second expense of
calculating Ys and Yg explicitly is in enumerating S and S’
themselves, especially if n is large. We can leverage hashing
similarly to the method above to avoid enumerating S and

S’ directly for n = S| /2% for some b > 0. Specifically, to
estimate .J,, for n = |S| /2%, we select H® and p € {0,1}"~!
at random and, for each such selection, define
X)={(C,0,l) | 35:11,,,.(C,0,1,S) A H"(S)
. b
= {{(C,0,1) ‘ 3S :1L,,.(C,O,1,S) A H”(S)
={(c,0,l) | 35:11,,,.(C,0,1,S) A H""'(S)

=pll0}
=pll1}

=p}

where H?~! denotes the function H® but dropping the right-
most bit from the output. Then, we use the sets

proc

= {(C,O) ‘ al:(C,0,1I) GXS}
= {(C,O) ‘ 3l:(C,0,I) GX;}
Y, ={(C,0) | 31:(C,0,l) e X, }
in place of Yg, Ys/, and Ygug/, respectively, to perform

the calculations (9)—(10). And, of course, the optimization in
Sec. IV-Al can be used in conjunction with this approach,
e.g., computing

20, = {<c,0> ‘ (C,0) € YO A HP((C,0)) :p} (13)

for a different, random hash function H*® and random prefix

p € {0,1}°. We then use the algorithm summarized in

Sec. IV-Al to estimate ’Yp(”

Two more points about this algorithm warrant emphasis:

« Because our algorithm explicitly enumerates the contents of
each ZO and Z; P when leakage is detected (i.e., J, > 0
for some n) these sets can be used to identify (C,O) pairs
that are in V) \ Y,! or Y} \ Y;. These examples can guide
developers in understanding the reason for the leakage and
in mitigating the problem.

« Because the number of secrets with a random length-b hash
prefix p is only of expected size n = |S| /2P, for the rest of
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the paper we use a definition of J,, as in (2) but weakened
so that |S| and |S’| equal n in expectation.

B. Hash-based model counting for Jn

The calculations of the previous section require some mod-
ifications when we are instead computing .J,, for n = [S| /2°.
Similar to the previous section, we can use Xp for p €
{0,1}*71 in place of X5 U X5 = Xsus. However, to

estimate ‘X s,s/| for a random S and S’, we need a different

approach. Specifically, we calculate ‘f( 5,5/ | by estimating the

size of
35,5, 10,,,.(C,0,1,S) A
. I .(C,0,lI''S) A
— proc
XP <C707|> Hb(S) =p||0 A
HA(S") = pll1

since (C,0, 1) € X,, iff (C,0,1) € XJ and (C,0) € Y,)NY,.
This method does come at considerably greater computational
cost, however, due to the duplication of the constraints IL,, .
in the specification of this set. We will demonstrate this in our
case studies in Sec. VL.

C. Parameter settings for computing J, and Jn

In the hash-based model counting described above, we
use the 3-wise independent hash functions suggested by
Chakraborty et al. [4], and due to the large number of
XOR clauses in the resulting hash constraints, we use
CryptoMiniSAT 5.0 [46] to enumerate the elements of
each Z, ;. To reduce the complexity of the hash constraints,
we concretize their constant bits to minimize the independent
support [47] before generating XOR clauses. Multiple esti-
mates of the form in (11), for various values of b (in (11),
or respectively bin (13)), as prescribed by Chakraborty et al.,
are used to estimate |Y,|. We parameterized this algorithm
with error € = 0.45 and confidence either 6 = 0.99 in Sec. V
or § = 0.92 in Sec. VI, for which 50 or 5 (b,p,) triples
satisfying (12) sufficed, respectively.

We estimate .J,, as the sample mean of J(S, S") for sampled
pairs S, S’ of expected size n (i.e., defined by a p € {0,1}*1
for n = |S| /2°). For each n we computed J,, using a number
of sampled pairs S, S’ equal to the larger of 100 and the
minimum needed so that the standard error was within 5% of
the sample mean. In addition, since .J,, is only an estimate
and so is subject to error and since that error is influential
in the calculation of 7™ or n™" especially when 7 is small,
we round any J, < 0.025 down to zero when calculating the
measures. J,, is computed similarly.

D. Logical Postconditions for Multiple Procedure Executions

In some scenarios it is insightful to observe the behavior of
Jy, for a procedure proc when it is executed multiple times.
That is, consider a scenario in which proc is executed r times,

5The error bound of Chakroborty et al. is conservative; e.g., the results
for 95 benchmarks showed less than 5% error in practice even when using
€= 0.75 [4].
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possibly with relationships among the outputs of one execution
and the inputs of another, or simply among the inputs to
different executions. Suppose these executions are denoted

O1 ¢ proc(Cy, 11, 51)
02 < p’f‘OC(CQ7 |2,52)

O, « proc(Cy, 1, S;)

and that the postcondition of the j-th invocation in isolation is
denoted IT/, . (i.e., 117 . is simply II,, . over the variables
represented in Cj, 1;, S;, and O;). Then the relationships
among inputs and outputs can be described using additional,
manually constructed constraints Fllj;:(;z. For example, if the
secret input to each execution of proc is the same, then
leo;jp: would include the statement that ‘secret’ has the same
value in each execution (i.e., Sy(‘secret’) = Sy(‘secret’) =
... =S, (‘secret’)). Repeating our analysis for the “procedure”

represented by the postcondition

T
J
A\ Do
Jj=1

can reveal leakage that increases as the procedure is executed
multiple times. We will see an example in Sec. VL.

/\Fl...r

proc

V. MICROBENCHMARK EVALUATION

In this section we evaluate our methodology on artificially
small examples to illustrate its features.

A. Leaking more about secret values vs. leaking about more
secret values

In Sec. III-A, we showed through an idealized example how
a small n is more useful for evaluating the number of secrets
about which information leaks, whereas a large n is more
useful for evaluating the amount of information leaked about
these secrets. Now we will use two simple procedures with
a controllable constant )M/ to quantitatively demonstrate the
necessity of varying n and the correct usage of 7™" and 7™,

The first procedure, shown in Fig. 4(a), returns the secret
value if it is divisible by a constant M and returns zero
otherwise, where both S(‘secret’) and M are 32-bit integers.
This procedure leaks the same amount of information (the
whole secret) about a larger number of secret values if M is
decreased. The behavior of .J,, shown in Fig. 4(b) is consistent
with this observation. Specifically, different values of M
induce curves for J, that differ primarily in the minimum
value of n where .J,, is large. This behavior is also seen in the
value of ™™ in Fig. 4(c), where ™™ ranges from ™" ~ 0 at
M=2"tonp"" =1at M =1.

Contrast this case with the procedure shown in Fig. 5(a),
which returns the residue class of the secret value modulo
a constant value M. As such, as M is increased, more
information about each secret is leaked. This is demonstrated
in Fig. 5(b), where the curves for different values of M
differ in primarily in the maximum value n at which J, is



max

logy ™™ logyn

proc (C, 1, S) Do
if (S(‘secret’) mod M = 0) 0.8 1 0 0
O(‘result’) < S(‘secret’) 0.6 4 —-0.74 0
else s 64 —4.8 0
O(‘result’) + 0 =04 f 910 _88 0
turn O )
return 0.2 ‘ 216 —15 0
0 1690 94 28 32 22t 30 —0.67
logy n

(a) Procedure

(b) J,, for different n and M

(c) n™™ and 5™ for different M

Fig. 4: A procedure that leaks the same amount of information about more secrets as M is decreased (see Sec. V-A)

* M =1 - M=64 - M =26 oin ax
I d o M =210 o ) =23 M logyn log, 1
et 1
08 nan nan
el AN X 4 —0.6 -30.1
proc (C, 1,'S) = 64 —0.0 —25.5
O(‘result’) + S(‘secret’) mod M * 04 910 0.0 21.8
return O 0.2 s i
- 216 —0.0 —15.6
0 231 0.0 —0.8

(a) Procedure

(b) J,, for different n and M

“nan” denotes “not a number,” i.e., n™" = 0

or ™ =0

(¢) n™ and 5™ for different M

Fig. 5: A procedure that leaks more information about the same secret values as M is increased (see Sec. V-A)

* M=2 o M=8 - M=20< M =23

& M=1 & M=61— M =2 M log, ™" log, n™

r=1r=2r=4r=6r=1r=2r=4r==6
proc (C, 1, S) /

if (S(‘secret’) mod M 0-4g 2 -12 -11 -1.2 -1.1-31.4-31.3-31.2 -31.3
= C(‘test’)) &@ Vz 4 —1.7 =09 —0.6 —0.4-31.0-30.2-29.4 —29.0
O(‘result’) + 1 5 8§ —28 —1.7 —0.9 —0.6-30.6-29.3 —28.8 —28.3
else 0.2 e 7[ \ 64 —7.1 —54 -39 —-2.9-27.1-259-25.2-25.1
O(‘result’) + 0 : 210 —11.1 9.5 —8.2 —7.5-22.8-22.0-21.5-21.1
return O il 2% -29.0 —28.9 -27.1 -26.5 —3.4 —2.7 —2.1 —1.9

(a) Procedure

(b) J,, for different n

231 _31.0-30.2—-28.8—-282 —1.2 —0.7 —0.4 —0.2

(c) ™™ and n™ for different M

Fig. 6: Leakage of procedure that checks a guess of secret’s residue class modulo M (see Sec. V-A-V-B)

max

large. Similarly, n™* ranges from n™ = 0 at M = 1 to
M x 2798 % 0.57 at M = 231,

An example that blends these the previous two examples
is show in in Fig. 6(a); here the procedure returns 1 if
S(‘secret’) mod M = C(‘test’) and O otherwise, where M is a
32-bit constant. As such, this procedure leaks a lot about a few
secret values when M is large, and a little about many secret
values when M is small. As shown in the » = 1 columns of
Fig. 6(c), n™" and n™* monotonically decreases and increase,
respectively, as M grows.

B. Leaking more over multiple rounds

A second way to view the example in Fig. 6 is to con-
sider r procedure executions using the same S(‘secret’) (i.e.,
Si(‘secret’) = So(‘secret’) = ... = S,(‘secret’)). Our intu-
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ition suggests that after » = M —1 executions of the procedure,
a smart attacker will have learned everything about S(‘secret’)
that it can from proc; e.g., by setting C;(‘test’) = j, the
attacker either will have observed some O;(‘result’) 1,
in which case it knows S(‘secret’) mod M = j, or else it
knows S(‘secret’) mod M = 0. Consistent with that intuition,
in Fig. 6(c), both ™" and 7™ remain steady for M = 2 as r
increases, since no new information is available to the attacker
after r = 1. Similarly, for M = 4, ™" and ™ both increase
precipitously (by > 74%) from r = 1 to r = 2 and then
begin to flatten out (albeit imperfectly—both are estimated
values, after all), which is consistent with this intuition that
the attacker should learn no new information past r = 3.
For M > 4, each additional procedure execution provides
additional information to the attacker about all secrets and



* M=1 o M=4 - M :21(1’ :
1 - M =2 A& M =64 > M =2 M log, ™™ log, 7™
proc (C,1,S)
if (I(‘rand’) mod M = 0) 08 L T e 1 0.0 0.0
O(‘result’) — S(‘secret’) 0.6@&7J RESEEEEEEROEEEOEC00E0E0 2 -0.9 —0.5
else = 04 5@& Al 4 -1.8 -0.8
O(‘result’) «+ I(‘rand’) ' 64 —6.5 —-1.1
return O 0.2 f f 2<>2< 910 107 1
0 31 _ _
0 4 8 1 0 24 28 32 2 31.8 1.9

(a) Procedure

log, n
(b) Jn, for different n and M

(c) A™™ and /™ for different M

Fig. 7: An example illustrating leakage dependent on randomness (see Sec. V-C)

much more about some (namely those for which it learns the
residue class mod M). Correspondingly, both ™" and n™**
increase monotonically along each of these rows.

C. Leaking the secret conditioned on randomness

We now illustrate the ability of our technique to measure
leakage from a different randomized procedure from that
discussed in Fig. 2. The procedure, shown in Fig. 7(a), returns
the secret if a random value is divisible by a constant M
and returns that random value otherwise. Clearly, a larger M
implies that fewer secret values leak, but those that leak do
so completely. This behavior is illustrated by the J,, measure
shown in Fig. 7(b); the leakage is consistently higher for lower
values of M. Similarly, while 7™ remains high for all values
of M (never dropping below %), /™" ranges from ™" = 1
when all secrets are leaked (M = 1) to ™" ~ 0 when few
secrets are leaked (M = 231).

VI. CASE STUDIES

In this section, we illustrate our methodology by applying
it to real-world codebases susceptible to the inference of
search queries via packet-size observations, inference of secret
values due to compression results, and inference of TCP
sequence numbers. We claim no novelty in identifying these
attacks; all are known and explored in other papers, though
not in the particular codebases (or codebase versions) that we
examine here and typically only through application-specific
analysis. Our contribution lies in showing the applications of
our methodology to measuring interference in an application-
agnostic way and the impact of alternatives for mitigating that
interference.

A. Traffic analysis on web applications

Packet sizes are a known side channel for reverse engi-
neering search queries and other web content returned from
a server, and defenses against this side channel have been
studied using various methods of QIF (e.g., [5], [25], [48]).
Specifically, a network attacker can often distinguish between
two queries to a web search engine because the response traffic
length is dependent on the query. Even packet padding may
not hide all secret information [49].

In this section, we use our methodology to analyze the
auto-complete feature of search engines to demonstrate our
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ability to detect the leakage of the user’s query from the
network packet sizes. Furthermore, we repeat our analysis after
applying mitigations suggested in previous work [49]. This
allows us to compare the effectiveness of these mitigations to
the original implementation.

We evaluated a C++ web server called Sphinx (http:
//sphinxsearch.com/), which provides PHP APIs for a client
to send a query string to the server. The auto-complete feature
then returns a list of keywords that best match the query
string. To generate the postcondition that characterizes the
auto-complete feature, we marked the query string as the
secret (i.e., S(‘secret’) is the query string) and the final
application response length as the observable (i.e., Varso =
{‘response_length’}), by injecting only two lines into the
server’s code. In this application, there was no attacker-
controlled input and no other input (i.e., Varsc = Vars; = ().

Since the auto-complete results depend on the contents of
the server database, we simply instantiated the database with
an example containing six keywords and 35 query trigrams
(see Fig. 8(a)). When provided an input query string of at
least three characters, Sphinx returns (content containing)
the two keywords with the highest “score” based on matching
trigrams in the query string to each keyword’s associated
trigrams. We also limited queries to three characters drawn
from {‘a’,..., 2’} ({97,...,122} in ASCI), yielding 26> ~
214 possible queries. Note that instantiating the server with
a specific database and limiting the query characters and
length as described cannot induce our analysis to provide false
positives, though it can contribute false negatives.

We experimented with two types of mitigation strategies.
Random padding is motivated by protocols like SSH that
obfuscate traffic lengths by adding a random amount of
padding up to some maximum limit to the application response
payload. We experimented with padding lengths of up to 2
bytes (‘rand.2’), 16 bytes (‘rand.16’), 64 bytes (‘rand.64’),
and 128 bytes (‘rand.128’). Padding to a fixed length is a
second strategy, which increases the length of the application
response payload to the nearest multiple of a fixed length.
We experimented with padding to a multiple of 64 bytes
(‘fixed.64’) or a multiple of 256 bytes (‘fixed.256’). We
“implemented” both of these padding strategies by modifying

the postcondition IIg . ;.. to reflect them (vs. modifying the



*¥ rand.2 © rand.16 < rand.64 < rand.128

Mitigation log, ™" log, #™>

Keyword Trigrams 0 G-E- fix.64 A fix.256 -+ nopadding
class _c _clclalas ass ss_s__ ?;r?;gdmg :gi :}3
code _c_cocod ode de_e__ can d.l 6 78'5 72'3
div _d _didiviv_v__ rand.64 78-5 72'3
the _t_ththehe_e rand.128 _9'0 _2'5
and _a_anand nd_d__ fix 6'4 -~ 8- 5 _ 3' 3
title _t_ titititltlele_e__ fix.256 nan nan
“nan” denotes “not a number,” i.e.,
AU Z 0 or AT — 0

(a) Small database for Sphinx

(b) J,, for different n

Amin

© 7

and 7™ for different mitigations

Fig. 8: Analysis of auto-complete feature of Sphinx and mitigation strategies (see Sec. VI-A)

Sphinx code directly).

Fig. 8(b) shows J,, for the random padding strategies and
J,, (which is equivalent to jn since Vars, = () for the original,
‘fixed.64’, and ‘fixed.256’ strategies. Here, ‘nopadding’ is the
result for original auto-complete in Sphinx. In addition,
Fig. 8(c) shows the measure /™" and 7™ for each strategy.
Only ‘fixed.256’ reaches zero leakage, indicated by ‘nan’ (‘not
a number’), since any result from Sphinx populated with
the database in Fig. 8(a) fit within 256 bytes and so resulted
in a padded payload of that length. Comparing different
padding mechanisms, our measures /™" and /™ show results
consistent with the intuitive order of the different mitigation
strategies in terms of their effectiveness in preventing leakage.
Our results suggest that ‘nopadding’ leaks the most, followed
by ‘rand.2.” The configuration ‘rand.16’ was only very slightly
worse than ‘rand.64’, and ‘fix.64’, which provided similar pro-
tection for this setup, and ‘rand.128’ provided better protection
than all others except ‘fixed.256." These results demonstrate
the power of our methodology for enabling comparisons of the
benefits of different amounts of padding for this database. For
example, our analysis shows that for this database, ‘rand.64’
provides little security benefit compared to ‘rand.16’, despite
adding 3x more padding in expectation.

B. CRIME attacks

Our methodology is powerful in accounting for attacker-
controlled inputs, and in this section we demonstrate the
benefits of this capability by applying it to detect CRIME
attacks [6], [50]. A CRIME vulnerability arises when a web
client applies “unsafe” compression prior to transmitting a
request over TLS. HTTP requests can carry information (e.g.,
the URL parameters) that an attacker can induce; e.g., if the
client visits an attacker-controlled website, then the attacker
can induce requests from the client to another, target website
with URL parameters that the attacker sets. By observing the
lengths of compressed requests to the target website, the at-
tacker can deduce whether the attacker-controlled input shares
a substring with a secret contained in the request (e.g., the
client’s cookie for the target website) that the attacker is unable
to observe directly. To be concrete, if the attacker-induced re-
quest to the target website is http://target.com?username=name
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then the request will compress better if name is a prefix of the
client’s cookie for target.com.

CRIME attacks utilize the property of an adaptive compres-
sion algorithm that the encoding dictionary is dependent on
both the secret and attacker-controlled variables. As suggested
by Alawatugoda et al. [50], a possible mitigation is to separate
the compression for the secret and the other parts of the plain-
text or to use a fixed-dictionary compression algorithm such
as Smaz [51]. The latter mitigation, though an improvement,
removes the influence of the attacker-controlled input only on
the compression dictionary. Consider a two-byte plaintext ab
whose first character is secret. If a is ‘a’, then this two-byte
word will be compressed if b is ‘t’ and will be left unchanged
if bis ‘y’, assuming ‘at’ is in the dictionary but ‘ay’ is not.
Thus, the leakage should not be zero even if a fixed-dictionary
algorithm is used.

To analyze this scenario in our framework, we modeled the
input for Gzip and Smaz to be of the form

‘http://target.com/? secret="+ S(‘secret’) + |(‘suffix’)
+ ‘,username=secret="+ C(‘input’)

where ‘+’ denotes concatenation. Here, S(‘secret’) and
C(‘input’) were each one byte, |(‘suffix’) was two bytes,
and the attacker-observable variable was the length of the
compressed string. Each byte was allowed to range over ‘a’,
. ‘27 and ‘0’,...,°9’. The S(‘secret’) byte after the first
‘secret=’ plays an analogous role to the client cookie in a
CRIME attack, i.e., as the secret to be guessed by the attacker,
and the ‘secret=" immediately following ‘username=’
serves as a prefix to match the first instance of ‘secret=’
We applied our tool to analyze the leakage susceptibility of
Gzip-1.2.4 and Smaz in this configuration, executed up to
three times (r € {1,2,3}) with the same secret. Our results
are shown in Fig. 9. Our results show that for one execution
(r =1), Smaz is no better than Gzip. That is, n™* and n™*
in Fig. 9(b) suggests that Smaz leaks less information about
some secrets but some information about more secret values
versus Gz ip; as mentioned above, Smaz can leak information
about a secret value if it composes a word in its dictionary, as
well. However, the strength of Smaz is revealed as r grows,
since its leakage remains unchanged. In contrast, the leakage
of Gzip grows with r, essentially matching that of Smaz



X Gzip-r=1 -© Gzip-r=2 < Gzip-r=3

10g2 ﬁmin 10g2 ﬁmax
Procedure r=1 r=2 r=3 r=1 r=2 r=3
Gzip —-204 -122 -085 —-1.00 —-0.58 —0.43
Smaz —-1.58 —1.55 —1.54 —-3.73 —4.02 —-3.95

(b) ™ and ™™ for different r
C(‘input’) O(‘length’) S (‘secret’) I(‘suffix’)
Gzip ‘c’ 66 ‘c’ ‘00’
Smaz T’ 36 ‘f’ ‘or’

(c) Examples from Ys \ Y for samples S, S’ (r = 1)

Fig. 9: Leakage from Gzip and Smaz (see Sec. VI-B)

= Smaz-r=1 -4 Smaz-r=2 ->¢ Smaz-r=3
0.8
0.6 %D
o3 04 o7 T
(a) J, for different n and r
at » = 2 and surpassing it at » = 3 (in terms of n™").

This occurs because in each execution of Gzip, the attacker
has the latitude to select a different value for C(‘input’) and
then observe that selection’s impact on the length of the
compressed string (which in general will change). In contrast,
the leakage of Smaz is independent of the adversary’s choice
for C(‘input’), and so additional executions do not leak any
additional information.

As discussed at the end of Sec. IV-A, a side effect of our
methodology is identifying some example (C,O) pairs that
lie in Ys \ Ys or Yg \ Ys for samples S, S’ of secrets,
which can help in diagnosing a leak. For example in Fig. 9(c),
for Gzip in the r = 1 case, our tool identified the (C,O)
pair with C(‘input’) = ‘¢’ and O(‘length’) = 66 as being in
Y5\ Yy for a sampled S, S’ where S 5 ‘¢’ = S(‘secret’) and
I(‘suffix’) = ‘00°.% As such, the developer now knows that this
(C,O) pair is consistent with no secret in S’. Similarly, for
Smaz our tool identified the pair (C, O) with C(‘input’) = ‘r’
and O(‘length’) = 36 as being in Ys \ Yg for a sampled S,
S" where S 5 ‘f” = S(‘secret’) and I(‘suffix’) = ‘or’.

C. Linux TCP sequence number leakage

Known side channels in some TCP implementations leak
TCP sequence and acknowledgment numbers [7], [8]. In some
cases, these side channels can be used by off-path attackers
to terminate or inject malicious payload into connections [8],
[52]. The origin of these attacks is shared network counters
(e.g., linux_mib and tcp_mib) that are used to record
connection statistics across different connections in the same
network namespace.

These counters have been implicated in numerous side
channels since version 2.0 of the Linux kernel [53].
For example, the code snippet (without the patch in
Lines 6-12) in Fig. 10 leaks the secret tp->rcv_nxt
in Linux-3.18 TCP. Here, the attacker controls the
skb input and so the value TCP_SKB_CB (skb)->seq
that is compared to tp->rcv_nxt on Line 5. Based
on this comparison, the NET_INC_STATS_BH procedure

%The output length of 66 exceeds the length of the input string because
Gzip adds a header to the output. Smaz attaches no such header.
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1 void tcp_send_dupack (struct sock =xsk,

2 const struct sk_buff xskb) {

3 struct tcp_sock *tp = tcp_sk(sk);

4 if (TCP_SKB_CB (skb) ->end_seq != TCP_SKB_CB(skb)->seq
5 && before (TCP_SKB_CB (skb)->seq, tp->rcv_nxt)) {
6 + if (before (TCP_SKB_CB (skb) —>ack_seq,

7 + tp->snd_una - tp->max_window)

8 + || after (TCP_SKB_CB (skb)->ack_seq,

9 + tp->snd_nxt)) {

10 + tcp_send_ack (sk);

11 + return;

12 +

13 NET_INC_STATS_BH (sock_net (sk),

14 LINUX_MIB_DELAYEDACKLOST) ;

15

16 3

17 tcp_send_ack (sk);

18 }

Fig. 10: A code snippet vulnerable to leaking the TCP se-
quence number in linux 3.18; lines marked ‘4’ indicate a hy-
pothetical patch with which we experimented (see Sec. VI-C)

increments an attacker-observable counter indicated by
LINUX_MIB_DELAYEDACKLOST (Lines 13-14). If the at-
tacker can repeatedly cause the procedure in Fig. 10 to be
invoked with inputs skb of its choice, it can use binary search
to infer tp—>rcv_nxt within 32 executions [8].

The most straightforward mitigation for this leakage is
to disable the public counters. This will stop the leakage,
but will disable some mechanisms such as audit logging.
Another potential mitigation is to increase the difficulty of
increasing the public counter, by adding additional checking
related to more secret variables. For example, before increas-
ing the LINUX_MIB_DELAYEDACKLOST counter, the pro-
cedure could also check for correct acknowledgment numbers
(TCP_SKB_CB (skb) ->ack_seqg and tp->snd_nxt), as
shown in the patch in Lines 6-12. As far as we know, our
study is the first to compare these potential mitigations for
TCP sequence and acknowledgment number leakage.

To analyze the information leakage in this example, we
compiled a user-mode Linux kernel [54] as a library. Our target
procedure for analysis was tcp_rcv_established, which
is of the form



void tcp_rcv_established(struct sock =xsk,
struct sk_buff =xskb,
const struct tcphdr *th,
unsigned int len) {
struct tcp_sockx tp

(struct tcp_sockx) sk;

}

The inputs for tcp_rcv_established have many con-

straints among them when passed in, for instance

TCP_SKB_CB (skb) ->seqg < TCP_SKB_CB (skb) ->end_seq
tp->rcv_wnd < MAX_TCP_WINDOW
tp->snd_wnd < MAX_TCP_WINDOW

To generate  constraints  for  the  inputs  to
tcp_rcv_established, we applied symbolic execution
to the procedures £i1ll packet and tcp_init_sock.
Symbolic buffers to represent these inputs and their associated
constraints were then assembled within a testing program
that called tcp_rcv_established. We also stubbed out
several procedure calls” within tcp_rcv_established,
causing each to simply return a symbolic buffer so as to
avoid symbolically executing it, since doing so introduced
problems for KLEE (e.g., dereferencing symbolic pointers).

After generating the postcondition for the procedure
tcp_rcv_established, we defined the attacker-
controlled inputs to be

Varsc = {TCP_SKB_CB (skb) —>seq,
TCP_SKB_CB (skb) —>end_seq,
TCP_SKB_CB (skb) —>ack_seq,
tcp_flag_word(th)}

(each four bytes) and the attacker-observable variables to
be Varso {linux_mib, tcp_mib}. All fields of
constrained input structures (e.g., tp->snd_una and
tp->max_window) not covered by Varsc and Varsg
were added to Vars;, with the secret variables® being
tp->rcv_nxt and tp->snd_nxt (each four bytes).
We conducted single-execution (r 1, denoted ‘v3.18-
Irun’), two-execution (r = 2, denoted ‘v3.18-2run’) and
three-execution (r 3, denoted ‘v3.18-3run’) leakage
analysis. In the multi-execution analysis, we assumed
xsk to be the same in multiple executions (l;(‘xsk’)
l2(‘xsk’) . = I.(“xsk’)) since its fields used in
tcp_rcv_established would be unchanged or, if
changed, would be changed predictably.

The results from this analysis are shown in Fig. 11. The
inset graph in Fig. 11(a) is a magnification of the portion of the
curve in the interval [0, 8] on the horizontal axis. Specifically,
the highest leakage resulted from ‘v3.18-3run’, followed by
‘v3.18-2run’ and ‘v3.18-1run’, as indicated by the jn curves in
Fig. 11(a) and the /™" and 7™ measures in Fig. 11(b). This

7Specifically, we stubbed out get_seconds,
current_thread_info, tcp_options_write, tcp_sendmsg,
prandom_bytes, current_thread_info, tcp_parse_options,
and tcp_checksum_complete_user.

8Though we have described our framework so far using one secret variable,
it extends trivially to more.
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¥ v3.18-1run
0 S-E- v3.18-patched
. T T

© v3.182run < v3.18-3run
-4 v3.18-rmCounter
T T T

(a) JIn per n and version of tcp_rcv_established

Version log, ™" log, 7™
v3.18-1run —-1.6 —63.0
v3.18-patched —-2.1 —64.1
v3.18-rmCounter  —4.0 —65.6
v3.18-2run —-1.0 —62.1
v3.18-3run —-0.7 —61.6

(b) ﬁmi“ and ™ for versions of tcp_rcv_established

Fig. 11: TCP sequence-number leakage (see Sec. VI-C)

shows the potential for the attacker to extract more information
about the secrets tp—->rcv_nxt and tp->snd_nxt using
multiple executions. This is consistent with the observation
that a smart attacker could utilize this side channel to infer
one bit per execution [8].

To alleviate this leak, we applied a hypothetical
patch shown in Fig. 10 that checks another secret value
tp->snd_nxt Dbefore incrementing the counter for
LINUX_MIB_DELAYEDACKLOST. Our analysis results (for
r = 1 execution, denoted ‘v3.18-patched’) in Fig. 11 shows
that the patch alleviated the leakage somewhat. We also
tried just deleting Line 5-14 from the original (unpatched)
code in Fig. 10. As shown in Fig. 11, this version (denoted
‘v3.18-rmCounter’) evidently has lower leakage than ‘v3.18-
patched’. In considering these mitigations, we stress that our
patch addressed only the leakage arising from Line 5, and not
all sources that leak information about tp->rcv_nxt or
tp->snd_nxt (which are numerous, see Chen et al. [12]).
Our results suggest, however, that our methodology could
guide developers in mitigating leaks in their code.

D. Performance

Performance of our tool involves two major components,
namely the time to compute the postcondition IL,,. via
symbolic execution, and the time to calculate J,, or jn for
different n starting from II,,, . Postcondition generation is
not a topic in which we innovate, and so we defer discussion
of its costs in our case studies to Appendix A. Here we focus
on the costs of calculating J,, or jn for different n starting
from 11

proc*
Starting from II,,,., the computation of J,, or J, can be

parallelized almost arbitrarily. Not only can J,, or J,, for each



Sec. Procedure J(S,8") J(S,8) Jn Jn
VI-A Auto-complete (nopadding) 34ms 56ms Sm 7m
VI-A Auto-complete (fix.64) 48ms 65ms 6m 8m
VI-A Auto-complete (fix.256) 43ms 57Tms 6m 7m
VI-A Auto-complete (rand.64) 1.2s 15m
VI-B Gzip 26s 4h
VI-B Smaz 40s 10h
VI-C v3.18-1run 73s 20h
VI-C v3.18-patched 67s 20h
VI-C v3.18-rmCounter 50s 19h

Fig. 12: Average time per estimate (J(S, S’) or J(S,5")) and
most expensive overall time (J,, or J,) for case studies

n be computed independently, but even for a single value of
n, the estimation of .J(S, S’) or J(S,S’) can be computed for
each pair of sampled sets S, S’ and each estimation iteration
independently. In Fig. 12, we report the average estimation
time per sample pair, which indicates that all case studies could
finish one estimation in (11) for one sample pair within about
one minute. As such, the speed of calculating final pair 5™
and 7™ is limited primarily by the number of processors
available for the computation.

In our experiments, performed on a DELL PowerEdge
R815 server with 2.3GHz AMD Opteron 6376 processors and
128 GB memory, we computed J,, or jn per value of n on its
own core. As reported in the last two columns of Fig. 12, the
time to do so for the most expensive value of n ranged from
roughly 15m for the auto-complete procedure of Sec. VI-A to
about 20h for the Linux TCP implementations of Sec. VI-C.
For several of our case studies (see Fig. 12), we experimented
with calculating j" even when J, was sufficient, and found
its estimation to cost < 2x that of estimating .J,,, due to the
duplication of IL,,,. in Xp

To place the above numbers in some context, the ~ 20h (for
the worst n, without parallelization) dedicated to computing
a value of J,, in the Linux TCP case study of Sec. VI-C
involved a procedure proc of which 165 bytes of its inputs
were somehow used in the procedure. A naive alternative to
our design in which all possible inputs are enumerated and run
through the procedure to compute its outputs (and interference
measured from these input-output pairs, perhaps as we do)
would therefore involve enumerating 21320 possible inputs,
which is obviously impractical.

In this light, our technique that performs interference anal-
ysis for real codebases in the timeframe of minutes-to-hours
(and far faster with parallelization) is a dramatic improvement.
Moreover, these results are likely to only improve with ad-
vances in symbolic execution and model counting. Even our
experimentation with various optimizations for postcondition
generation and model counting was not exhaustive. That said,
the results above suggest that the costs of our approach are
likely to remain sufficiently high for real codebases to preclude
its use for interactive analysis by human programmers. Rather,
we expect that our analysis could be run as a diagnostic
technique overnight, for example.
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VII. DISCUSSION AND LIMITATIONS

Our methodology builds from two tasks that are recognized,
difficult challenges in computer science. The first is the
construction of a logical postcondition 1I,,,,,. for a procedure
proc, for which we leverage symbolic execution. As such, our
technique inherits the limitations of existing symbolic execu-
tion tools and those incumbent on generating postconditions,
more generally. For example, symbolic execution is difficult to
scale to some procedures, and challenges involving symbolic
pointers and unbounded loops can require workarounds, as
they did in our TCP case study (Sec. VI-C). The second
challenge problem underpinning our methodology is model
counting, which is #P-complete. We are optimistic that future
improvements in these areas will be amenable to adoption
within our methodology.

Our approach is powerful in that it can be applied to
scenarios in which the distributions of inputs—whether they
be attacker controlled or other—are unknown, and this is often
the case in practice. In some cases, the input distributions
are unknowable, especially for Varsc. In others, they may be
knowable but require considerable empirical data to estimate
(e.g., the distributions of user-input search terms, in a context
like that of Sec. VI-A). That said, because it is insensitive
to these distributions, it does not offer an immediate way
to accommodate these distributions if they are known. Still,
our methodology allows these inputs to be accounted for in a
principled way, in contrast to others that either disallow them
or assign them heuristically.

VIII. CONCLUSION

In this paper we have suggested a new method for as-
sessing interference and attempts to mitigate it. Informally,
noninterference is achieved when the output produced by a
procedure in response to an adversary’s input is unaffected by
secret values that the adversary is not authorized to observe.
Following this intuition, we have developed a method to
estimate the number of pairs of attacker-controlled inputs and
attacker-observable outputs that are possible, conditioned on
the secret being limited to a particular sample. The discovery
of such pairs that are possible for one sample but not another
reveals interference.

We clarified the effectiveness of our strategy both on
artificial examples (Sec. V) and on real-world codebases
(Sec. VI). Specifically, we evaluated leakage in the Sphinx
auto-complete feature of its search interface due to its re-
sponse sizes, and the effectiveness of a variety of mitigations
(Sec. VI-A); the CRIME vulnerabilities of adaptive compres-
sion in Gzip and fixed-dictionary compression in Smaz
(Sec. VI-B); and leakage of TCP sequence numbers in Linux
and the effectiveness of two mitigations of our own design
(Sec. VI-C). Within these contexts we also explored leakage
over a single procedure execution and over many, and showed
that our framework allowed for a useful comparison of how
procedures leaked data as the number of executions grows.

Central to our methodology’s ability to scale to real code-
bases is our expression of leakage assessment within a frame-



work that permits the use of approximate model counting (and
specifically hash-based model counting). While the resulting
tool is not yet quick enough to support interactive use, it is
positioned to benefit from advances in symbolic execution and
approximate model counting, both active areas of research.
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APPENDIX
A. From Procedure to Logical Postcondition

As mentioned in Sec. III, the logical postcondition 1L,
represents the relationship between inputs and outputs induced
by procedure proc. To extract II,,,. from proc, we apply
symbolic execution to proc. After marking each input variable
(i.e., each parameter in Varsc, Vars 2 and Varss) symbolic
before the user-defined entry point, we utilize KLEE [44]
or S2E [45] to explore all feasible execution paths through
proc that reach a return. On each path through proc, the
symbolic execution engine accumulates a set of constraints
among symbolic variables implied by the branches taken
and assignments computed along that path. These constraints
coupled with the assignments for Varsp defined by our API
make_observable, as accumulated through the return
instruction, form the postcondition for the path, and then Hproc
is simply the disjunction of the path conditions generated for
each execution path.

Symbolic execution can suffer from state explosion, and
so we leveraged an optimization in our work to manage
this explosion. Specifically, we implemented a searcher to
perform state merging [55] frequently, wherein the constraints
accumulated along two or more execution prefixes ending
at the same instruction are disjoined and then simplified
to the extent possible (using an SMT solver); execution is
then continued from their last instruction, accumulating more

9To model the random input generated from random number generator
rand() in symbolic execution, we created a symbolic variable per rand()
function call as its returned value.
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KLEE KLEE KLEE S2E
Sec. Procedure %1 x16 x1, merging x16
VI-A Auto-complete 2d 12h
VI-B Gzip 3d 21h 8h
VI-B Smaz 2d 18h 6h
VI-C v3.18 7d 4d 17m
VI-C v3.18-patched 18m
VI-C v3.18-rmCounter 17m

Fig. 13: Postcondition generation times for case studies

constraints into their now-combined constraints. In doing so,
these two execution prefixes need only be extended once,
versus each being extended separately if no merging occurred.

This optimization dramatically reduced the number of sym-
bolic states managed in one of our case studies in Sec. VI-C,
improving the speed of extracting IL,,,. by more than 600x.
For this case study, we forced state merging to occur whenever
a symbolic state was forked at a symbolic branch. To reduce
the complexity of the merged path constraint, however, we
avoided merging two path constraints when their expressions
for the outputs in O differed or when two path constraints (in
conjunctive normal form) had less than half of their conjuncts
in common.

A well-known limitation of symbolic execution is how to
manage unbounded loops, since these can prevent symbolic
execution from terminating. In the case studies of Sec. VI we
bounded all inputs, which was enough in these case studies to
ensure that symbolic execution terminated. Provided that we
bound the input parameters sufficiently loosely to encompass
all values they can take on in practice, this bounding does not
impact the assessment provided by our measures in practice.

Postcondition generation costs are summarized in Fig. 13.
These computations were performed on a DELL PowerEdge
R710 server equipped with two 2.67GHz Intel Xeon 5550
processors and 128 GB memory. Each processor includes 4
physical cores and had hyperthreading enabled. As indicated
in Fig. 13, we experimented with both KLEE and S2E to
generate postconditions, depending on the procedure. In the
column headings, a ‘x1’ or ‘x16’ indicates the number
of processes across which the computation was divided. To
enable multi-process support in KLEE (i.e., ‘x16’), we made
a small modification in KLEE’s execution engine, to cause
it to explore only execution paths starting from a predefined
branching prefix. The designation ‘merging’ indicates the use
of the KLEE optimization summarized above; as indicated
in Fig. 13, this optimization was remarkably effective on the
Linux TCP implementations discussed in Sec. VI-C. S2E was
configured to utilize its concolic execution capabilities.



