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ABSTRACT

In this paper, we propose a novel and SAT-resistant logic-locking
technique, denoted as Full-Lock, to obfuscate and protect the hardware
against threats including IP-piracy and reverse-engineering. The Full-
Lock is constructed using a set of small-size fully Programmable Logic
and Routing block (PLR) networks. The PLRs are SAT-hard instances
with reasonable power, performance and area overheads which are
used to obfuscate (1) the routing of a group of selected wires and
(2) the logic of the gates leading and proceeding the selected wires.
The Full-Lock resists removal attacks and breaks a SAT attack by
significantly increasing the complexity of each SAT iteration.
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1 INTRODUCTION AND BACKGROUND

To reduce the cost of manufacturing a new chip, to take advantage of
new technology nodes, or to meet the market demand, the manufac-
turing supply chain of Integrated Chips (IC) is globalized, distributing
steps of IC manufacturing over different facilities in different coun-
tries [32]. This is when the lack of trust and monitoring mechanisms
has raised concerns over manufacturing supply chain security threats
such as overproduction, Trojan insertion, reverse engineering, IP
theft, and counterfeiting [20]. To combat these threats, logic locking
has been introduced as a technique that obfuscates and conceals the
functionality of IC/IP using additional key inputs that are driven by
an on-chip tamper-proof memory [26]. When using logic locking, an
attacker in the manufacturing supply chain cannot re-generate the
correct functionality of an IC/IP without the correct key. After the
chip is fabricated, it is then programmed in a trusted facility. Consid-
ering a large number of key possibilities (e.g. 220 possibilities with
only 20 keys), a brute force attack on logic locking faces a runtime
that is on average exponentially related to the number of key values.

Shortly after introducing the primitive logic locking solutions [9,
18, 19, 21], a very strong Boolean attack, the Satisfiability (SAT) attack,
was proposed [14]. In this attack model, the attacker has access to the
obfuscated, but reverse engineered netlist. In addition, the attacker
is able to obtain a functional/unlocked IC, apply a desired input and
observe its output (oracle-based attack). The SAT attack can extract
the functionality of locked circuit by applying and testing only a few
smartly selected input queries. It was shown that the SAT attack could
break all previously proposed primitive locking mechanisms in almost
polynomial time.

To thwart the strength of SAT attack, researchers have investigated
two main directions (1) formulating locking solutions that signifi-
cantly increase the number of required SAT iterations (inputs to be
tested), (2) formulating the locking solutions such that it is not trans-
latable to a SAT problem. The first approach in which formulating
obfuscation and locking solutions significantly increase the number
of SAT iterations was assumed to be a perfect anti-SAT solution, such
as SARLock, Anti-SAT, SFLL, and LUT-Lock [4, 11, 27, 30]. In extreme

case, using these techniques, each tested input (each iteration) inval-
idate a single key combination. Hence, by using these techniques,
a SAT attack, similar to a brute force attack, faces an exponential
runtime. However, further investigations demonstrated that some
of these locking techniques are vulnerable to other types of attacks
such as Signal Probability Skew (SPS) attack [13], removal attack [12],
approximate-based attack(s) [6, 22], bypass attack [29], and Satisfia-
bility Module Theories (SMT) attack [8]. In addition, these techniques
suffer from very low output corruption. Hence, an unactivated IC
behaves almost identical to an unlocked IC with exception of one or
few inputs.

The second approach investigated by researchers was formulating
obfuscation and locking mechanisms that were not translatable to
SAT problems. Example of such techniques includes the use of cyclic
Boolean logic for locking [16] or behavioral locking of the logic [28].
The cyclic obfuscation creates combinational cycles in the design.
This invalidates the Directed Acyclic Graph (DAG) nature of logic
and forces a SAT attack to either be trapped in an infinite loop or to
generate an incorrect key upon termination [16]. Alternatively, in [28]
a behavioral (non-Boolean) locking scheme was introduced where the
locking mechanism targeted the setup and hold properties (timing
properties) of the circuit. However, shortly after the introduction
of these obfuscation techniques, researchers revealed stronger and
more advanced modeling and attack solutions such as cycSAT [5], and
Satisfiability Module Theories (SMT) attack [8] that were able to model
the cyclic or behavioral locking into a SAT or SAT+theory solvable
logic problems.

A new (and third) direction for building SAT-hard solutions, which
is thoroughly discussed in this paper, is to significantly increase the
run-time of each iteration of the SAT solver. The only existing solution
that somewhat fits this category is the Cross-lock [7], in which a one-
time programmable interconnect mesh is used to obfuscate the routing
of a netlist, and the resulting obfuscated netlist substantially increase
the runtime of each iteration of the SAT attack. However, we will
illustrate that obfuscation solution in [7], although a step in the right
direction, is not a strong solution in this space, and by following the
principles and design guidelines discussed in this paper, it is possible
to construct obfuscated circuits that translate into far harder SAT
circuits than Cross-lock.

In this paper, we explore the characteristics and principles of de-
signing this new category of SAT-hard obfuscation solutions, where
the goal is to exponentially increase the time required for each iter-
ation of the SAT attack. As a strong representative member of this
class of obfuscation techniques, we introduce Full-Lock. The Full-Lock
is constructed using a set of cascaded fully programmable logic and
routing blocks (PLR) networks that replace parts of the logic and rout-
ing in the desired netlist. The PLRs are SAT-hard instances designed
to construct a desired ratio between the number of clauses and the
number of variables with PLRs are translated to their Conjunctive
Normal Form (CNF). The cascaded and non-blocking design of PLR
pushes the SAT solver’s algorithm to build a very deep decision tree
and to spend significant time in hopeless regions of the decision tree,
causing a significant increase in each iteration of SAT attack.



2 A NEW PERSPECTIVE OF SAT HARDNESS

A SAT attack, in each of its iterations, finds a Discriminating Input
Patterns and rules out one or more incorrect key value(s). Hence, many
SAT-resilient locking schemes tried to weaken the pruning power
of one DIPs, making sure each DIP can only rule out one incorrect
key. This forces the number of needed iterations to exponentially
increase with respect to the number of keys as a mean of exponentially
increasing the required execution time of the SAT attack, although,
the execution time of each iteration of SAT solver could be quite short.

The strength of SAT solvers come from their Conflict-Driven Clause
Learning (CDCL) ability. In each iteration of the SAT attack, a new SAT
problem is defined. The goal of the SAT solver is to finds a satisfying
value for all its literals. The literal values are either assigned or derived.
Each assignment of value to a literal pushes the solver down into one
of the branches of its decision tree implemented using a recursive
call. During this recursive procedure, if the solver reaches a state
where the derived value of a literal is different from its previously
derived or assigned value, a conflict is detected. This is when the
solver investigates how the conflict was driven, identifies a set of
literal assignments that cause the conflict, and generates a clause that
prevents the identified literal assignment. The newly learned conflict-
clause is then added to the original problem set, aiding the solver to
prune its decision tree and to avoid reaching the same conflict in the
future. Then, the decision tree is backtracked a safe point prior to the
conflict.

Davis-Putnam-Logemann-Loveland (DPLL) algorithm (or one of its
derivatives), which is used to perform CDCL, is illustrated in Algo-
rithm 1. Each SAT iteration invokes the DPLL function. In addition,
DPLL may also call itself. As it can be seen in line 12 and 16, new
recursive call adds a new variable, I or [, to ®. Hence, an increase in
the number of recursive calls (line 12 and 16) increases the complexity
of the next DPLL call. So, the number and complexity of recursive
DPLL calls could be a dominant factor for each invocation of SAT
solver (a SAT Attack iteration).

Algorithm 1 DPLL Algorithm Pseudo-code

1: function DPLL(P)

2 if @ has an empty clause then

3 return "UNSAT";

4: if @ is [] then > @ is empty
5: SATgssign < Current Assignment;

6: return "SAT";

7 if ® contains a unit clause [ then > Unit Propagation
8: @ «— @ - all clauses with [; B

9: @ « & with eliminating all [;
10: return DPLL(D);
11: if ® contains a pure literal / then > Purification
12: return DPLL(® U [);
13: if DPLL(® U [) is SAT then > Branching
14: return "SAT";
15: else B
16: return DPLL(® U [); > (One more level in Tree)

The runtime of a SAT attack could be obtain from:
N

N
Tattack = )T = ) (t + Tpp1i(®) M
i=1 i=1

A difficult problem requires a very large runtime. The first solution
is weakening the DIP and increasing the number of iteration (N)
to a very large number [4, 11, 27, 30, 31]. In spite of very shallow
DPLL recursive tree, and for having a very large N these solution
exhibit resistance against SAT attack. However, this type of defense, as
suggested previously is prone to SPS [27], Approximate-based [6, 22],
bypass [29], and possibly removal attack [12].

Based on the discussion on DPLL, an alternative solution is smaller
N but larger recursive trees. Hence, as illustrated in equation 2, the
attack time could also increase beyond acceptable if the number of
recursive calls (M) grows to a very large number.

N N M
A A
Tattack = » (t+TppLr(®) = D" S U(THp? ) = MNXT, 7 (2)
i=1 i=1 j=1

~

The very strong aspect of this form of building SAT-hard solutions
is that (1) the problems posed at each iteration of SAT attack is a SAT-
hard problem, (2) the output corruption of this methods is significantly
higher than obfuscating solution relying on increasing the N, (3) it is
not susceptible to SPS, removal or approximate attack.

Motivated from this discussion, in this paper we present the Full-
Lock. Full-Lock is able to considerably and exponentially increase the

number (M) and computational complexity (Tg;g 1) of recursive calls
in DPLL function via replacing some of the logic and routing in the
circuit by one or more SAT-hard obfuscation instance(s) in the circuit.

3 FULL-LOCK

Many SAT-hard problems (instances) are introduced annually in SAT
competition. These problems aim to trap Davis-Putnam-Logemann-
Loveland (DPLL) or generate extremely complex and time-consuming
computational models for this algorithm. Although, none of them
is directly convertible to a logic circuit, feature and tricks used in
these SAT-hard problems could be used in designing SAT-hard circuit
(SATC) obfuscation problems.

In [17], the SAT hardness of formulas produced using fixed-length
clause generator was investigated. This work concluded that "For
formulas that are either relatively short, in which the number of clauses
per variable is less than 3, or relatively long, in which the number of
clauses per variable is larger than 6, DPLL finishes quickly, but the
formulas of medium length, between 3 to 6, take significantly longer".
This is because formulas that have few clauses are under-constrained,
and have several satisfying assignments. Providing under constrained
clauses to the algorithm 1 increases the chances of one satisfying
assignment to be found early in the search using unit propagation or
purification. Note that these two steps of DPLL algorithm are used to
simplify the size of formula before branching, while branching assigns
a value to an unassigned variable, making the DPLL tree one level
deeper. Formulas that have many clauses on the other hand are over-
constrained. In over-constrained clauses, the contradictions are found
easier and the search is quickly concluded.

SAT hardness of medium length formulas is higher than under
or over-constrained formulas. This is because they only have rel-
atively few (if any) satisfying assignments. Hence, throughout the
search and after assigning values to many variables, many empty
clauses will be generated. This results in a deep DPLL recursive tree
for testing each assumption [1]. Fig. 1 demonstrates the number of
recursive calls made by DPLL for solving the formula for fixed-length
3-SAT formulas, where the ratio of clauses to variables is varied from
2 to 8. As illustrated, the ratio from 3 to 6 provides much higher
DPLL calls, and 4.3 clauses per variable is the best ratio, generating
the most computational challenging SAT instances with the high-
est number of DPLL calls. For example, a 100-variable 300-clause
instance (clause/variable = 3 "under-constrained"), or a 100-variable
5000-clause instance (clause/variable = 50 "over-constrained") is easily
solvable within few seconds. However, the SAT solver takes a very
long time solving a 3-SAT instance which is constructed with 100
variables and 450 clauses. From this discussion, an obfuscated circuit
is SAT-hard when its Conjunctive Normal Form (CNF) has medium-
length clauses with a ratio of clauses to variables between 3 to 6 (best
if close to 4)

3.1 Logarithmic Networks for SAT-Hardness

Table 1 lists the Tseytin transformation [25] of various logic gates into
their respective CNF expression. From this table, only XOR/XNOR
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Figure 1: Median Number of Recursive DPLL Tree Pruning/Backtracking for
Random 3-SAT Formulas, based-on the Ratio of Clauses to Variables [17].

Table 1: Tseytin Transformation of Basic Logic Gates.

Gate Operation CNF (sub-expression)

(AVBVC)A(AVC)A(BVC)
(AVBVC)A(AVC)A(BVC)
(AVBVC)A(AVC)A(BVC)
(AVBVC)A(AVC)A(BVC)
(AVC)A(AV Q)
(AVC)A(AVCO)

C=AND(A,B) C=A.B
C=NAND(A,B) C=A.B
C-OR(AB) C=A+B
C=NOR(AB) C=A+B
C=BUFF(AB) C=A

C=NOT(AB) C=A

C=XOR(AB) C=A®B (AVBVC)A(AVBVC)A(AVBVC)A(AVBVC)
C=XNOR(A,B) C=A®B (AVBVC)A(AVBVC)A(AVBVC)A(AVBVC)
C =MUX(S,AB)C=A.S+B.S (SVAVC)A(SVAVC)A(SVBVC)A(SVBVC)

5 Logic 2 = 1
1 Logic 3 =t —1

Figure 2: N-by-M switch-boxes for Building Hard Satisfiable Instances [2].

Logic 1 Logic 4

and MUX have 4 clauses per gate. This is when the clauses to variables
ratio is 1 and 4/3 in MUX and XOR/XNOR respectively. In spite of
the observation that for a single gate the XOR/XNOR has a larger
clause to variables ratio, MUXes provides a better building block for
constructing SAT-hard circuits. This is because: (1) with no unit prop-
agation and purification, for having four variables, a MUX can make
the recursive DPLL tree one level deeper, (2) unit propagation and
purification steps in DPLL algorithm provide more simplified and
smaller formula using enhanced Gaussian elimination while the con-
tribution of XOR/XNOR gates are much higher [10]. Hence, MUXes
needs more DPLL recursive tree prunings/backtrackings compared
to XORs/XNORs. Moreover, since unit propagation and purification
satisfy less formula, the clause to variable ratio will increase while
MUZXes have more contribution.

The next step for building a SAT hard problem, and to push the
clause to variable ratio to the desired range of 3 to 6 (4.3 as the
best), is preventing the propagation and purification from simplifying
the circuit before branching into recursive DPLL tree. This could be
achieved by building a switching network using MUXes, where none
of the variable related to a given MUX in a switching network could be
resolved, unless their cascaded variables (related to cascaded MUXes
in the original circuit) are resolved, a requirement that is recursively
continued. This would prevent purification and simplification prior
to reaching the leaves of the decision tree, as each variable in an
intermediate layer of switching network is cascaded, while pushing up
the clause to variable ratio to the desired range. This is consistent with
the finding in the [3], in which investigating Boolean formulations
of global detailed interconnect constraints, authors concluded that
the CNF of symmetric switching networks is a hard problem for SAT
solvers. In addition, using N-by-M switch-boxes, with back-to-back
interconnection, illustrated in Fig. 2 creates hard satisfiable instances
that trap even the best solvers in hopeless regions of their solution
space for a long time before a satisfying solution can be found [2].
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Figure 3: Shuffle-based Blocking CLN with N = 8.

In Full-Lock we achieve this by constructing a key-configurable
logarithmic-based network (CLN) for obfuscation of routes. For this
purpose, we create small and lightweight switch-boxes (SwB) that are
implemented easily using only MUXes. These small and lightweight
SwBs allow us to create large logarithmic switching (logaN) network
to (1) increase the clauses to variables ratio using MUXes that are
independently interconnected back-to-back (cascaded) to each other,
and (2) benefit from the hardness of switch-boxes while the power,
performance, and area overhead remains reasonable.

Across all switching networks, a set of self-routing logarithmic net-
works, loga N networks, provides configurable interconnection with
less overhead compared to conventional networks such as mesh or
crossbar. There are numerous self-routing networks in this category,
such as banyan, baseline, shuffle, etc. Fig. 3 demonstrates a simple
implementation of a 8 X8 CLN using the blocking shuffle network [24].
This CLN is constructed using small SwBs, where each SwB is built us-
ing MUXes. In each SwB the outputs can be an arbitrary permutation
of the inputs. In addition, as shown, we add key-configurable inverters
for each wire, allowing an output to be shuffled and negated based
on the key value. The CLN has N inputs, and due to its structure N is
a power of 2. Numbers of SwBs in a CLN depends on the number of
inputs as well as the model of loga N networks. In all aforementioned
blocking CLN, the number of SwBs is the same, i.e. N/2 % logN, and
the only difference between them is the topology of SwBs intercon-
nections.

The previously discussed self-routing logarithmic networks are
blocking networks as they cannot propagate all permutations of their
inputs to the outputs. In the result section of this paper, we illustrate
that the blocking feature of these networks, eliminate a large number
of permutations and significantly reduce the SAT hardness of these
networks. This could change by building a non-blocking network.

According to [23], a non-blocking logarithmic network is char-
acterized by LOGN, pm, p- In this equations N denotes the number of
inputs/outputs, M is the number of extra (cascaded) stages, and P indi-
cates there are P — 1 additional copies vertically cascaded. Exploration
on N, M, and P shows that the minimum feasible values of P and M,
which makes the network strictly non-blocking, results in construct-
ing a much larger network than a blocking CLN. As an instance, for
N = 64, these values are M = 3 and P = 6. It means that a LOGN, um, p,
with N = 64, has more than 5X area overhead compared to a blocking
CLN with the same input size, i.e. N = 64.

To substantially increase the permutations possibilities without
incurring large area overhead, we used the near non-blocking logarith-
mic network suggested in [23] for constructing a key-Configurable
Logarithmic-based Network (CLN). This network is able to generate
not all, but almost all permutations, while it could be implemented us-
ing a LOGN, 1og,(N)-2,1 configuration, meaning it has only log2(N)—2
extra stages and no additional copy. Fig. 4, demonstrates an example
of such an almost non-blocking CLN with N = 8. As it can be seen,
the topology of SwBs interconnections is different with shuffle-based,
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shown in Fig. 3. This topology is a banyan-based interconnection that
matches with our proposed LOGN, jog,(N)-2,1-

Since an almost non-blocking CLN has only logz(N)—2 extra stages,
its area and power overhead is roughly 2x compared to a blocking
CLN with the same N. However, this almost non-blocking CLN is far
more resistant against SAT attack compared to a blocking network.
For example, an N=64 input non-blocking CLN allow only 5 iterations
of SAT attack to be completed within 2x10° seconds, while the same
size blocking network resist the SAT attack for only ~17 Seconds, or a
much larger blocking network of N = 512 inputs (4 times the number
of inputs, 16 times the area) complete 6 iterations of SAT attack in
2x10° seconds.

3.2 Strongly Twisted CLN into LUT/Logic

CLN provides an interconnect locking scheme that is able to generate
a SAT-hard instance which significantly increases the execution time
for each SAT iteration. However, in order to enhance this strength,
and especially resist against other types of attacks, such as removal at-
tack, we try to twist CLN into the logic of the gates around it. For this
purpose, we suggest two methods. First, as was mentioned, we add
key-configurable inverters within CLN. These inverters allow us to
combine the CLN with the logic of the gates leading its inputs. In fact,
both logic and interconnect locking is embedded into the CLN. For
instance, suppose that one of the inputs of CLN is derived using an OR
gate. So, we can change it to NOR, and configure the CLN to generate
its negate on its corresponding output. These key-configurable invert-
ers within CLN allow us to change the logic of the gates leading it. So,
even removing CLN and finding the correct permutation provided by
CLN will not generate correct functionality. In addition, since adding
these inverters has no impact on simplification steps in DPLL, i.e. unit
propagation and purification, the clause to variable ratio generated
by CLN will not change.

Second, we replace the gates preceding the CLN with small Spin
Transfer Torque- (STT)-based LUTs with the same input. Combining
CLN with LUTs provide a fully Programmable Logic and Routing blocks
(PLRs) that bears a resemblance to FPGA architecture. From SAT
attack perspective, since each LUT will be translated to MUXes, for
a LUT with R inputs, it adds up to R level to recursive DPLL tree.
Moreover, since LUTs are directly connected to the output of CLN,
these extra R level will be added to the large recursive DPLL tree of
CLN. Hence, by massively increasing the size of recursive DPLL tree
of CLN using small LUTs, PLR boosts the security of Full-Lock against
SAT.

It should be noted that we use STT-based LUTs that are similar in
functionality to FPGAs, however, they provide significantly higher
speed running at GHz frequency, near zero leakage power, high ther-
mal stability, and highly integrative with CMOS [4]. Since, each gate,
located at the output of CLN, will be replaced with a LUT with the
same input size, investigation on sizes of gates in different bench-
marks such as ISCAS-85 and MCNC, shows that the maximum fan-in
size is 5. It means that the largest required LUT has 5 inputs. Hence,
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Figure 5: Power, Delay, and Area of STT-LUT and Standard Cells in 28nm CMOS.

using STT-based LUTs with a maximum size of 5 relatively has no
delay overhead compared to CMOS-based basic gates. In addition,
the power and area overhead is considerably low in these LUTs with
size less than 5. As shown in Fig. 5, LUTs with size 2, 3, 4, and 5,
have negligible overhead compared to CMOS-based basic gates. In
addition, the size of all gates leading the CLN can be decreased to be
2. For instance, an AND3 gate can be changed to two AND2 while
the outputs of one of them is an input for the second one. Hence, the
overhead of STT-LUT can be even lower while only LUTs with size 2
is required.

3.3 Inserting SAT-hard PLRs into Design

Using these PLRs provides a big advantage compared to other lock-
ing schemes. Since inserting a PLR in a circuit provides a SAT-hard
instance in the circuit, it is not required to employ a specific insertion
to enhance the strength of PLRs. However, due to the topological
structure of circuits it may be beneficial to have an insertion policy.
But, we demonstrate that even using random insertion/replacement
strategy for these PLRs creates extremely large recursive DPLL tree
that makes the circuit resilient against SAT.

Additionally, in comparison with Cross-lock [7] that is a layout-
based interconnect locking scheme, Full-Lock has no restriction on
selection of wires and logic gates to replace them with PLRs. In Cross-
lock, since they used high-density cone-based selection strategies,
such as k-cut and wire-cut, to decrease the possibility of using removal
attack, it has a restriction in selecting the wires to insert the crossbar.
However, since we strongly twisted the CLN into the logic of the
gates leading and preceding the selected wires, even removing the
CLN using removal attack does not generate correct functionality.
Hence, there is no limitation for wire selection in Full-Lock.

Fig. 6 demonstrates two simple examples that how Full-Lock inserts
PLRs in the circuit. As shown in Fig. 6(a) and (b), the selected gates
are highlighted in red, i.e. g14, 915, 916, and g17. Since these gates have
no impact on each other, replacing them with PLR, including CLN and
LUTs, does not generate any cycle in the design. However, Fig. 6(a)
and (c) show that replacing the gates, which are highlighted in blue,
i.e. g2, g5, g7, and go, generates cycle in the circuit. Additionally, some
of the leading gates of CLN is changed (negated), all highlighted in
purple, i.e. g5, g12, gnew in Fig. 6(b), and g1, ge in Fig. 6(c), which shows
that how twisting leading gates into CLN is working. For instance, g5
in Fig. 6(a), an XOR, has been replaced with g5 in Fig. 6(b), an XNOR.
In this case, CLN will recover the functionality of this gate using
key-configurable inverters that are embedded into CLN.

4 EXPERIMENTAL RESULTS

To show the efficiency of Full-lock, it is evaluated using different SAT-
based attacks, including SAT for acyclic [14, 15], cycSAT for cyclic
[5], and AppSAT for approximate-based [6, 22], all implemented in
C++, and were run on a Dell PowerEdge R620 equipped with Intel
Xeon E5-2670 2.50GHz and 64GB of RAM.
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Table 2: SAT Execution Time on shuffle-based Blocking CLN for Different Sizes.

CLN Size (N) 4 8 16 32 64 128 256 512
Shuffle-based Blocking CLN

SAT Iterations 7 8 9 13 15 27 28 TO

SAT Execution Time (seconds) 0.01 0.04 022 122 174 1547 23293 TO
Almost non-Blocking CLN

SAT Iterations 14 18 25 32 TO TO TO TO

SAT Execution Time (seconds) 0.01 0.15 235 79.18 TO TO TO TO

TO: Timeout = 2 X 10° Seconds

4.1 Blocking vs. almost non-Blocking CLN

As was mentioned previously, Since not all but almost all permutations
can be generated using non-blocking CLN, LOGN;, jo4,(N)-2,1, it is far
more resistant against SAT attack compared to a blocking network,
especially with less power/performance/area overhead. We evaluate
a shuffle-based CLN and an almost non-blocking with different sizes
using SAT. As it can be seen in Table 2, increasing the CLN size,
exponentially increases SAT execution time for either blocking or
almost non-blocking. However, the SAT execution time is at least one
order of magnitude higher in almost non-blocking. In addition, SAT
is not able to break almost non-blocking CLN with a size larger than
N = 64, however, for blocking CLN,; it is easily broken for all sizes
less than N = 512.

Since CLNs is the main part of PLRs as a SAT-hard instance that
have medium length clauses while translated to CNF, the execution
time of each iteration is significantly high, particularly for large sizes
that cannot be broken using SAT. For blocking CLN with size N = 512
and non-blocking with size N = 64, after 2x10° Seconds, the number
of completed iterations in SAT is only 7 and 5, respectively. It means
that, on average, each iteration at least takes 2.8 X 10° Seconds in
blocking and 4 x 10° in almost non-blocking CLNSs.

Table 3 demonstrates power/area/delay of blocking and almost
non-blocking CLNs for different sizes using Synopsys generic 32nm
educational libraries. As it can be seen, the incurred overhead by the
smallest almost non-blocking CLN, which is resilient against SAT
(N = 64), is approximately one-third of the smallest SAT-resilient
blocking CLN (N = 512) in terms of power consumption. Additionally,
the overhead imposed by CLN is significantly low compared to area
and power of even small-scale benchmark circuits.

4.2 Full-Lock Security Against Various Attacks

As was mentioned previously, in Full-Lock, the gates and their driving
wires will be selected randomly to be replaced with PLRs. After select-
ing the required wires and their leading gates, Full-lock replaces them
with PLR. Furthermore, the logic of some gates leading the selected
wires will be negated. One or few PLR(s) can be added into the design
based on the design criteria in terms of power/area/delay or security.

4.2.1 Security Against SAT-based Attack. Since random inser-
tion is implemented for inserting PLRs in Full-Lock, it may generate

(b)
Figure 6: PLR Insertion Example: (a) Gate-level of Original Circuit. (b) Adding PLR and Negating leading Gates with (b) Acyclic Structure, (c) Cyclic Structure.

Table 3: Power/Area/Delay and SAT-based Resiliency of Blocking and almost
non-Blocking CLNs for Different Sizes.

CLN Area (um?) Power (nW) Delay (ns) SAT-Resilient
Shuffle (N = 32) 10.1 448.1 0.82 X
LOGsy, 31 17.8 2137.5 0.98 X
Shuffle (N = 64) 22.8 1071.1 0.89 X
LOGgy4,1 38.6 8451.4 1.06 v
Shuffle (N = 128) 50.8 2503.6 0.93 X
Shuffle (N = 256) 113.6 5791.4 0.99 X
Shuffle (N = 512) 2543 2308 1.04 v

Table 4: Execution Time of SAT Attack on Full-Lock with Different Sizes of PLRs.

Circuit 16X16 32X32
1 2 3 4 1 2 3

c432 28.8 1506.8 TO TO TO TO TO
c499 40.7 786.2 TO TO TO TO TO
830 34.1 847.6 TO TO TO TO TO
c1355 64.9 1158.3 TO TO TO TO TO
c1908 45.5 1022.6 TO TO TO TO TO
c2670 79.8 1766.2 11791.5 184993.6 TO TO TO
€3540 67.2 429.6 7924.7 TO TO TO TO
¢5315 66.8 887.2 5748.1 TO TO TO TO
c7552 90.3 1109.4 7638.6 66808.2 273367.4 TO TO
apex2 38.4 633.1 TO TO TO TO TO
apex4 40.1 348.9 3670.9 18539.1 58467.6 380449.5 TO
i4 55.8 1604.8 TO TO TO TO TO
i7 84.6 1330.8 TO TO TO TO TO

TO: Timeout = 2 X 10° Seconds

Table 5: PLRs Size in SAT-resilient Full-Lock compared to Cross-Lock.

Circuit # Gates #1/Os Full-Lock Cross-Lock [7]
c432 160 36/7 2X16X16 + 1X8X8 1X32X36
c499 202 41/32 2X16X16 + 1X8X8 1X32X36
c880 386 60/26 2X16X16 + 1X8X8 1X32X36
c1355 546 41/32 2X16X16 + 1X8X8 2X32X36
c1908 880 33/25 3X16X16 2X32X36
c2670 1193 157/64 1X32X32 3X32X36
c3540 1669 50/22 3X16X16 + 1X8X8 3X32X36
c5315 2307 178/123 3X16X16 + 2X8X8 3X32X36
c7552 3512 206/107 1X32X32 + 1X16X16 3X32X36
apex2 610 39/3 2X16X16 + 1X8X8 2X32X36
apex4 5360 10/19 2X32X32 + 1X8X8 11X32X36
i4 338 192/6 2X16X16 + 1X8X8 1X32X36
i7 1315 199/67 2X16X16 + 2X8X8 3X32X36

cycle into the design. So, cycSAT has been used instead of SAT to
support having potential cycles in locked circuits. In addition, to check
resiliency against approximate-based attack, the cycSAT is enabled us-
ing AppSAT to extract the approximate key and corresponding error
rate. Table 4 shows cycSAT execution time while different numbers
of PLRs with different sizes have been inserted into ISCAS-85 and
MCNC benchmark circuits. As it can be seen, for all circuits, having
three PLRs contain 32x32 CLNs makes all locked circuit resistant
against SAT. However, for each benchmark circuit, even smaller PLRs
can break cycSAT.
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Figure 7: Average Clauses to Variables Ratio for Different Logic Locking
Schemes.

In order to show the SAT-hardness of PLRs, we explore differ-
ent sizes/numbers of PLRs to find the smallest size and the smallest
number of PLRs (the lowest power/area overhead) that is required
to provide resiliency against SAT. Table 5 shows the best solution of
Full-Lock in terms of area/power/delay for each benchmark circuits.
As shown, in all benchmark circuits, Full-Lock needs smaller/fewer
PLRs compared to the required numbers of crossbar in Cross-Lock.
As an instance, in apex4, only having two PLRs with a 32x32 CLN
and another PLR with a 8x8 CLN can break SAT while its timeout
is set to 2x10° Seconds. However, for the same circuit, Cross-Lock
inserts 11 32X36 crossbars to make it resilient against SAT.

In addition, in order to show that PLRs are SAT-hard instances that
significantly increase the number (M) and computational complexity
(TS;{ 1) of DPLL calls in each SAT iteration, we calculate the average
clauses to variables ratio using MiniSAT for different logic locking
schemes during deobfuscation. As it can be seen in Fig. 7, clauses to
variables ratio in Full-Lock is 3.77. However, for all other methods this
value is much lower. Across all logic locking schemes, LUT-Lock and
Cross-Lock have higher clauses to variables ratio. Since LUT-Lock
uses key-programmable LUTs for obfuscation, the translated CNF is
MUX-based. However, since they have no back-to-back connection,
the depth of MUX tree is low, which results in reducing the value of
this ratio. The only technique with a close clauses to variables ratio
is Cross-Lock, which is an interconnect locking with a tree of MUX.
However, this ratio is almost 4 (3.77) in Full-Lock.

4.2.2 Security Against Removal Attack. As was mentioned pre-
viously, Cross-lock [7] as a layout-based interconnect locking scheme,
used high-density cone-based selection strategies, such as k-cut and
wire-cut, to decrease the possibility of using removal attack, which
restricts in selecting the wires to insert the crossbar. However, since
the logic of the gates leading each CLN can be negated, even having
the possibility of removing CLN, and finding the functionality of LUTs
does not produce correct functionality, which shows that Full-Lock
has no vulnerability against removal attacks.

4.2.3 Security Against Algebraic Attack. CLN can be expressed
as an affine transformation function of the data input X, of the form
y =A-X + B, where Ais an N X N matrix and B is an N X 1 vector,
with all elements dependent on the key input. Although recovering
A and B is not equivalent to finding the key input, it may enable the
successful deobfuscation of CLN. Since Full-Lock replaces the the
preceding gates of selected wires with LUTs, it cannot be transformed
to an affine function. So, it is safe against SAT-based algebraic attacks.

5 CONCLUSIONS

In this paper, we proposed Full-Lock as a SAT-resistant logic locking
solutions. Full-Lock creates a SAT-hard obfuscated netlist by replacing
parts of logic and routing in the design with one or more sets of fully
programmable logic and routing blocks (PLRs). The PLRs are designed
to push the clauses to variables ratio in their CNF representation
close to 4 to create insanely hard circuit SAT problems. With this
mechanism, Full-lock SAT resistance comes from forcing the number
of required recursive DPLL calls in each iteration of the SAT solver to
a very large number, forcing each iteration to take a very long time

to complete. Unlike previously SAT-hard solutions, Full-Lock exhibit
high output corruption if a wrong key is used for activation. Finally,
Since logic locking is twisted into interconnect locking in Full-Lock,
it is resilient against removal and algebraic attacks.
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