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ABSTRACT
To reduce the cost of ICs and to meet the market’s demand, a con-

siderable portion of manufacturing supply chain, including silicon

fabrication, packaging and testing may be pushed offshore. Uti-

lizing a global IC manufacturing supply chain, and inclusion of

non-trusted parties in the supply chain has raised concerns over

security and trust related challenges including those of overproduc-

tion, counterfeiting, IP piracy, and Hardware Trojans to name a few.

To reduce the risk of IC manufacturing in an untrusted and globally

distributed supply chain, the researchers have proposed various

locking and obfuscation mechanisms for hiding the functionality

of the ICs during the manufacturing, that requires the activation of

the IP after fabrication using the key value(s) that is only known to

the IP/IC owner. At the same time, many such proposed obfusca-

tion and locking mechanisms are broken with attacks that exploit

the inherent vulnerabilities in such solutions. The past decade of

research in this area, has resulted in many such defense and attack

solutions. In this paper, we review a decade of research on hardware

obfuscation from an attacker perspective, elaborate on attack and

defense lessons learned, and discuss future directions that could be

exploited for building stronger defenses.
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1 INTRODUCTION
The increasing cost of IC manufacturing has pushed several stages

of the semiconductor device’s manufacturing supply chain offshore

[33]. However, many of these offshore facilities are identified as

untrusted entities. Processing and fabrication of ICs in an untrusted

supply chain poses a number of challenging security threats such

as IP piracy and IC overproduction [14]. To counter these threats,

various hardware design-for-trust techniques have been proposed.

The term logic locking, a.k.a. hardware obfuscation, surfaced in 2008
by EPIC [6], in which a limited programmability was introduced

into a netlist by means of inserting additional key programmable

gates (KG)s at design time. After fabrication, the functionality of

the IC is programmed by loading the correct key values. The key

inputs could be stored in, and loaded from, an on-chip tamper-

proof memory [21]. The purpose of inserting KGs is to hide the

IC’s functionality from untrusted foundries. Since the functionality

of a design is locked with a secret key, the attacker cannot learn

the functionality of the locked netlist after reverse engineering.

Insertion of n KGs hides the ICs functionality between 2
n
different

circuit possibilities, each generated by a different key. The correct

functionality will be recovered when the loaded n-bit key is correct.
EPIC, however did not end the threat against IP piracy (or other

related concerns), as this solution and many other obfuscation so-

lutions that were proposed over the last decade were broken using

various carefully crafted attacks. A decade of research in this area,

has resulted in a wide range of defense [1, 3, 4, 7, 8, 10, 13, 15, 16, 19,

23, 24, 28, 32] and attack solutions [2, 5, 7, 9, 12, 17, 18, 20, 22, 25–

27, 29–31]. In this paper, we review many of these obfuscation

solutions, explain and reviewing most notable attack mechanisms,

summarize and compare the effectiveness of obfuscation solutions
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Figure 1: Categorization of attacks against logic locking schemes.

against these attacks, and describe the strength and weaknesses of

various obfuscation and attack solutions. As illustrated in Fig. 1,

the defense and attack solutions related to hardware obfuscation,

based on functionality, capability, effectiveness and time-line are

categorized into four categories: (1) Test-Inspired Attacks that were
mostly inspired from test concepts and attempted to discover the

obfuscation key value based on the location of KGs, described in

Section 2. (2) SAT Attack, formulation and revelation of which sig-

nificantly affected the direction and presumed assumptions of the

hardware obfuscation research community, explained in Section

3. (3) Post-SAT Attacks where the focus of hardware security re-

searchers changed to the design of an attack against obfuscation

solutions that resist the SAT attack, explained in 4. And (4) SMT

Attack as a universal attack platform capable of instantiating many

theory solvers to act as pre- post- or co- processors to the SAT

solver, described in Section 5. We conclude the paper in Section 6

by summarizing the effectiveness of attacks discussed in this paper

and provide a short discussion on new opportunities related to

designing secure logic locking solutions.

2 STAGE 1: TEST-BASED ATTACKS
2.1 Brute Force Attack
The brute force attack is the most intuitive attack against obfuscated

circuits. This attack exhaustively search for the correct key by test-

ing all key and input values. For instance, assuming that adversary

has access to the reverse-engineered netlist, and considering that

the circuit has four PIs ( i0..4) and two KIs (k0..1), an exhaustive

search may result in applying of 2
2+4 = 64 test patterns (in the

worst case) and checking the output against an activated (function-

ally correct) chip to verify correctness. Based on the number of

primary inputs (|PI |) and the number of key bits (|KI |), the number

of possible test patterns is (2
|P I |+ |KI |

). Hence, the search space

for a brute force attack is extremely large, making the attack even

for small circuits and small number of keys unfeasible in a reason-

able amount of time. For example, a small circuit with 20 input

pins, which is obfuscated with 80 key gates poses 2
100

possible test

pattern. An attacker can reduce the number of test patterns using

functional test or random test, in which the exponential impact

of |PI |s will be eliminated, and only 2
|KI | × (f unc_test_patterns)

is required for brute force attack. But even with this change, the

attack time is exponential with respect to the number of key gates.

EPIC [6] used a random KG insertion policy referred to as random

logic locking (RLL). Using RLL, EPIC reasoned that by replacing a

small percentage of gates (or insertion of KGs), the obfuscation can

resist brute force attacks.



Table 1: Classification of KGs in Sensitization Attack.

Term Description Strategy used by attacker
Runs of KGs Back-to-Back KGs Replacing by a Single KG

Isolated KGs No Path between KGs
Finding Unique Pattern per

KG (Golden Pattern (GP))

Dominating KGs k1 is on Every Path Muting k0,
between k0 and PO s Sensitizing k1

Concurrently Mutable Convergent at a Third Gate Muting k0/k1,
Convergent KGs Both can be Propagated to PO s Sensitizing k1/k0
Sequentially Mutable Convergent at a Third Gate Determining k1 by GP,

Convergent KGs One can be Propagated to PO s Update the Netlist, Target k0
Non-Mutable Convergent at a Third Gate

Brute Force AttackConvergent KGs None can be Propagated to PO s

2.2 Sensitization Attack
After introducing EPIC [6], Rajendran et al. [7] proposed a sensitiza-
tion attack, which determines individual key values, in a time linear

to the |KI|, by applying patterns that sensitize key values to the

output. As its name implies, sensitization of an internal wire (key

bit) L to an outputOmeans that the value of L can be propagated to

O and thus any change on L is observable on O. After determining

an input pattern that propagates the value of the key-bit to the

output, the attacker applies the input pattern to a functional IC (An

IC activated and programmed with the correct key that could be

obtained from market). The correct key value will be propagated to

an output by applying this pattern to the functional IC. The attacker

observe and record this output as the value of the sensitized key-bit.

The propagation of a key-bit to the output is heavily depending

on the location of the KGs, hence, they classify KGs based on their

location and discuss corresponding attack strategies for each case.

The summary of strategies and techniques used in the sensitization

attack is reflected in Table 1. To prevent sensitization attack they

proposed SLL, in which the KGs are inserted in locations with max-

imum mutual interference. In SLL the attacker cannot sensitize the

key-bit values to a primary output. Similar to SLL, several prior-art

methods in the literature, including fault-analysis (FLL), LUT-based

locking, etc. [1, 3, 7, 8, 24], tried to maximize the complexity of

obfuscation using different KGs replacement strategies.

2.3 Random-based Hill-Climbing Attack
Plaza et al. [29] developed a new algorithmic attack that uses test

patterns and observe responses. Unlike sensitization attack [7], their

proposed approach does not require netlist access. They propose a

randomized local key-searching algorithm to search the key that

can satisfy a subset of correct input/output patterns. The algorithm

proposed in [29] is iterative in nature. At first, it selects random

value for key bits and then at each iteration, the key bits, which

are selected randomly, are toggled one by one. The target is to

minimize the frequency of differences between the observed and

expected responses. Hence, a random key candidate is gradually

improved based on observed test responses. If no solution is found

in one iteration, the algorithm resets the key to a new random key

value. However, the complexity of this attack quickly increases with

increasing number of KGs.

3 STAGE 2: SAT ATTACK
In 2015, Subramanyan et al. [20] proposed a new and powerful

attack using Boolean satisfiability (SAT) solver, called SAT attack,

that effectively and quickly broke all previously proposed logic lock-

ing techniques. As an "oracle-guided" attack, SAT attack requires

a reverse-engineered but locked netlist (CL), and a functionally

activated chip (CO ). A circuit view of steps taken in a SAT attack

is shown in Fig. 2. For this attack, the attacker first replicate the

obfuscated circuit and builds a double circuit which is used for

finding an input (Xd [i]) that for two different key values generates

two different outputs. Such input is referred to as Discriminating

Input Pattern(DIP). Each Xd [i] is used to create a DI validation

circuit (DIVC). The validation circuit, as shown in Fig. 2 assures

that for a previously found Xd [i], two different keys generate the
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Figure 2: SAT Attack Iterative Flow.
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Figure 3: Flipping Structure of SARLock and Anti-SAT.
same output value. Each iteration of the SAT attack finds a new

(Xd [i]), and add a new DI validation circuit. The DIVCs are ANDed

together to form a Set of Correct Key Validation Circuit (SCKVC).

In each iteration, the SAT solver try to find a new Xd [i] and two

key values that satisfy the double circuit (KDC) and the Validation

Circuit (SCKVC). The key values and the Xd [i], as illustrated in

Alg. 1 (line 5), is found by a SAT query. This means the new key

generate two different values for the new Xd [i], but generate the
same value for all previously found Xd s for both key values. This

process continues until the SAT solver cannot find a new Xd [i]
(line 4). At this point any key that generates the correct output for

the set of found Xd s is the correct key (line 9).

Algorithm 1 SAT-based Attack Algorithm [20]

1: function SAT_Attack(Circuit CL , Circuit CO )

2: i← 0; F0 ← CL (X, K1 , Y1) ∧ CL (X, K2 , Y2);
3: while SAT (Fi ∧ (Y1 , Y2)) do
4: Xd [i]← sat_assignment (Fi∧(Y1 ,Y2)); Yd [i]← CO (Xd [i]);
5: Fi+1 ← Fi ∧ CL (Xd [i], K1 , Yd [i]) ∧ CL (Xd [i], K2 , Yd [i]); i← i+1;
6: K∗ ← sat_assignmentK

1
(Fi );

For all prior obfuscation schemes, even those resistant to sen-

sitization attack, the SAT attack was able to rule out a significant

number of key values at each iterations (by finding eachDIP). Hence,

In order to thwart SAT attack, the first attempted approach was to

weaken the strength of the DIPs to reduce its pruning power. SAR-

Lock [15] and Anti-SAT [32] were the first prior-art methods that

accomplished this. Both SARLock and Anti-SAT engaged one-point

flipping function, demonstrated in Fig. 3. Using this obfuscation

scheme, each DIP is able to rule out only one incorrect key. Hence,

the SAT attack requires to apply all 2
|KI |

to retrieve the correct

functionality. However, this method results in obfuscation circuits

that for all but one output work as the original circuit, and the

output corruption upon application of a wrong key is quite low.

4 STAGE 3: POST-SAT ATTACKS
As discussed, the proposed SAT-resilient solutions suffered from

low output corruption. This however could have been addressed

by combining a SAT-hard solution with a traditional obfuscation

solution, such as RLL or SLL, that exhibits high level of output

corruption. Although SAT-resilient logic locking schemes provided

a defense against SAT attack, researchers found new vulnerabilities

associated with this class of obfuscation techniques resulting in the

development of many new attacks on the presumed SAT-hard logic

locking schemes described in this section.

4.1 Removal Attack
As shown in Fig 3, in bare implementation of one-point flipping

circuit, the locking circuitry is completely decoupled from the orig-

inal circuit. A removal attack identifies and removes/bypasses the



locking circuitry to retrieve the original circuit and to remove de-

pendence on key values [17]. The removal attack, presented in [17],

was used to detect and remove SARLock [15]. In presence of re-

moval attack, researchers investigated SAT-hard solutions that are

hard to detect (preventing removal by pure structural analysis), an

example of which was Anti-SAT [32].

4.2 Signal Probability Skew (SPS) Attack
The Signal Probability Skew (SPS) attack [18] leverages the struc-

tural traces in Anti-SAT block to identify and isolate the Anti-SAT

block [32]. Signal probability skew (SPS) of a signal x is defined

as s = Pr [x = 1] − 0.5, where Pr [x = 1] indicates the probability

that signal x is 1. The range of s is [−0.5, 0.5]. If the SPS of signal
x is closer to zero, an attacker have lower chance of guessing the

signal value by random. For a 2-input gate, the signal probability

skew is the difference between the signal probability of its input

wires. The flipping-circuit in the Anti-SAT is constructed using

two complementary circuits, д and д, in which the number of input

vectors that make the function д equal to 1 (p) is either close to 1 or
2
n −1. These two complementary circuits converge at an AND gate

G. Considering this structure, the absolute difference of the signal
probability skew (ADS) of the inputs of gateG is quite large, noting

that the SAT resilience is ensured by this skewed p. Algorithm 2

shows the SPS attack, which identifies the Anti-SAT block’s output

by computing signal probabilities and searching for the skew(s) of

arriving signals to a gate in a given netlist.

Algorithm 2 SPS Attack Algorithm [18]

1: function SPS_Attack(Circuit CL )
2: ADSarr ← {};
3: for each gate ∈ CL do
4: ADSarr (gatei )← Compute_ADS(CL , gatei );
5: G ← Find_Maximum(ADSarr );
6: Y ← Find_value_from_skew(G ); ▷ Correct value of Anti_SAT output

7: CLock ← remove_TFI(CL ,G , Y ); ▷ Transitive FanIn of the gateG
8: return CLock ▷ CLock : CL after removing Anti_SAT block

4.3 Bypass Attack
Although SARLock and Anti-SAT break the SAT attack, their re-

spective output corruptibility is very low if they are not mixed with

traditional logic locking, such as SLL. Observing and relying on the

very low level of output corruption in such SAT-hard solutions, the

bypass attack [25] was introduced. The bypass attack instantiates

two copies of the obfuscated netlist using two randomly selected

keys, and build a miter circuit that evaluates to 1 only when the

output of two circuits is different. The miter circuit is then fed to

a SAT solver looking for such inputs. The SAT returns with mini-

mum of two inputs for which the outputs are different. These input

patterns are tested using an activated IC (golden IC) validating

the correct output. Then a bypass circuit is constructed using a

comparator that is stitched to the primary output of the netlist

which is unlocked using the selected random key, to retrieve the

correct functionality if that input pattern is applied. The Bypass

attack works well when the SAT-hard solution is not mixed with

traditional logic locking mechanism since its overhead increases

very quickly as output corruption of logic locking increases. This

observation motivated researchers to look at possibilities of approx-

imate attacks to retrieve the key values associated to non SAT-hard

obfuscation solutions that are mixed with SAT-hard solutions.

4.4 AppSAT Attack
So far, defences solution to mitigate the SAT attack, are based on

the assumption that the attacker needs an exact attack on logic

locking. However, Shamsi et al. [9] proposed a new attack (App-

SAT), which relax this constraint. AppSAT shown in Algorithm 3,

is an approximate attack on logic locking based on the SAT attack

and random testing. The authors use probably-approximate-correct
(PAC) model for formulating approximate learning problem. The

exact SAT attack continues to find DIPs until no more DIPs can be

found. However, the AppSAT will be terminated in any early step

in which the error falls below the certain limit. If this condition

happens, the key value will be considered as an approximate key

with specified error rate; otherwise, the random sampling that re-

sulted in a disagreement will be added to a SAT formula as a new

constraint. In AppSAT, heuristic methods for estimating the error

is used for large functions, to avoid any computation complexity.

4.5 Double-DIP Attack
Double-DIP [30] is another approximate attack, shown in Algorithm

4. Double-DIP is an extension of SAT attack in which during each

iteration, the discriminating input should eliminate at least two

wrong keys. To illustrate its effectiveness, researchers used double-

DIP to target SARLock+SSL, representing a compound of SAT-hard

and high output corruption obfuscation. When the double-DIP

attack terminates, the key of the traditional logic locking (SSL) is

guaranteed to be correct. As a result, the compound logic locking

will be reduced to a single SAT attack resilient technique, that could

then be attacked using bypass attack.

Algorithm 3 AppSAT Attack Algorithm [9]

1: function AppSAT_Attack(Circuit CL , Circuit CO )

2: i← 0; F0 ← CL (X, K1 , Y1) ∧ CL (X, K2 , Y2);
3: while SAT (Fi ∧ (Y1 , Y2)) do
4: Xd [i]← sat_assignment (Fi∧(Y1 ,Y2)); Yd [i]← CO (Xd [i]);
5: Fi+1 ← Fi ∧ CL (Xd [i], K1 , Yd [i]) ∧ CL (Xd [i], K2 , Yd [i]); i← i+1;
6: every n rounds do

7: for each (x ∈ Random Patterns) do
8: if CL (X, K1 , Y) , CO (X) then
9: FailedPatterns← FailedPatterns + 1;

10: Fi+1 ← Fi+1 ∧ (CL (X, K1 , Y) = CO (X)); i← i+1;
11: if error < ErrorThreshold then
12: return K1 as an approximate key

13: K∗ ← sat_assignmentK
1
(Fi );

Algorithm 4 Double-DIP Attack Algorithm [30]

1: function DoubleDIP_Attack(Circuit CL , Circuit CO )

2: i← 0; F0 ← CL (X, K1 , Y1) ∧ CL (X, K2 , Y2) ∧ CL (X, K3 , Y1) ∧ CL (X, K4 , Y2) ;
3: while SAT (Fi ∧ (Y1 , Y2)) ∧ (K1 , K3)) ∧ (K2 , K4)) do
4: Xd [i]← sat_assignment (Fi∧(Y1 ,Y2)) ∧ (K1 , K3)) ∧ (K2 , K4));

5: Yd [i]← CO (Xd [i]);

6: Fi+1 ← Fi
∧

4

j=1 CL (Xd [i], Kj , Yd [i]); i← i+1;

7: K∗ ← sat_assignmentK
1
(Fi );

4.6 Bit-Flipping Attack
The Bit-flipping attack [26] is yet another attack against compound

logic locking schemes in which a SAT-hard solution such as SAR-

Lock is combined with a traditional logic locking to guarantee

both high error rates and resilience to the SAT-based attack. In Bit-

flipping attack, the keys are first separated into two groups (k1 and
k2) by counting DIPs for two keys with hamming distance equal to

one. The attack is motivated from the observation that in traditional

logic locking, wrong key causes substantial wrong input-output

pattern. However, the error rate of bit-flipping function is usually

very small. As shown in Algorithm 5, after separation of keys, this

attack fixes SAT-resilient keys, k2, as a random number, and uses a

SAT solver to find the correct key values for k1. After finding k1,
the bypass attack is applied to retrieve the original circuit.4.7 AppSAT Guided Removal Attack
AppSAT Guided Removal (AGR) attack targets compound logic

locking, particularly Anti-SAT + traditional logic locking [17]. This

attack integrates AppSAT with a simple structural analysis of the



Algorithm 5 Bit-flipping Attack Algorithm [26]

1: function BitFlipping_Attack(Circuit CL , Circuit CO )

2: for each j < Fixed-iteration do
3: KA ← a random key;

4: for each bit b ∈ KA do
5: KB ← KA while bit b flipped;

6: i← 0; F0 ← CL (X, KA , YA ) ∧ CL (X, KB , YB );

7: while SAT (Fi ∧ (YA , YB )) do
8: Xd [i]← sat_assignment (Fi∧(YA ,YB ));

9: Fi+1 ← Fi ∧ (X , Xd [i]); i← i+1;
10: if i > Threshold then
11: b is in K1 ,

12: break;
j ← j + 1;

13: K2 ← all key bits / K1 ; ▷ Seperation is Done. Then, fix K2 as a random number.

14: K1 ← SAT_ATTACK (CL , CO ); ▷ Find Traditional Keys using SAT.

15: C
∗
L ← update_netlist(CL | K1)

16: return (BYPASS_ATTACK(C
∗
L );

locked netlist (a post-processing steps). Unlike AppSAT, the AGR

attack recovers the correct key. In this attack, first the AppSAT is

used to find the key of the traditional obfuscation scheme (used as

a part of compound lock). Then, AGR targets the remaining key

bits belong to the SAT-resilient logic locking, such as Anti-SAT

block, through a simple structural analysis. As shown in Algorithm

6, in the post-processing steps, AGR finds the gate (G) at which
most of the Anti-SAT key bits converge. AGR findsG by tracing the

transitive fanout of the Anti-SAT key inputs, where all the Anti-SAT

key bits converge. The ratio of key bits converging at each of the

inputs of the gateG , are close to 0.5, which is shown as the selected
property in line 7 of Algorithm 6. AGR identifies the candidates for

gate G by checking this property for all gates in the circuit, and

then sort these candidate based on the number of key inputs that

converge at a gate and pick the gate G from all candidates, which

has the most number of key inputs converge to that gate. Then the

attacker re-synthesize the design with the constant value for the

output of G gate and retrieving the correct functionality.

Algorithm 6 AGR Attack Algorithm [17]

1: function AGR_Attack(Circuit CL , Circuit CO )

2: #Cand← num_gates(CL )
3: while (#Cand > 1 and !Timeout) do
4: AppSAT_Attack(); ▷ 4 times

5: Candidates← {};
6: for each gate ∈ CL do
7: if gatei has the selected property then
8: Candidates← Candidates + 1;

9: G ← Find_Max_key_count(Candidates);
10: CLock ← remove_TFI(CL ,G ); ▷ remove Transitive FanIn of the gateG
11: return CLock ; ▷ CLock : CL after removing Anti_SAT block

4.8 Sensitization Guided SAT Attack
While the one-point flipping circuit in Anti-SAT and SARLock

are completely decoupled from the original netlist, Li et al. [13]
proposed the AND-tree Insertion (ATI), as a SAT-resilient logic

locking, which embeds AND trees inside the original netlist. It not

only makes all aforementioned attack less effective, it also decreases

the implementation overhead. Additionally, the input of AND-tree

are camouflaged by inserting INV/BUF camouflaged gates, which

can be replaced with the XOR/XNOR gates in order to lock the

AND-tree. However, this defense was broken by a new attack that

was coined as Sensitization Guided SAT (SGS) attack [17]. The SGS

attack is carried out in two stages: (1) sensitization that exploits bias
in input patterns which allows an attacker to apply only a subset

of DIPs, i.e., those that bring unique values to the AND-tree inputs.

(2) SAT attack using the patterns discovered in the first stage.
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Figure 4: SFLL-HD while h = 0.

4.9 Functional Analysis Attack
Aiming to provide a defense that resists all previously formulated

attacks led to the introduction of Stripped-Functionality Logic Lock-

ing (SFLL) [16]. In SFLL the original circuit is modified for at-least

one input pattern (cube) using a cube stripping unit, demonstrated in

Fig. 4. As shown, Yf s is the output of the stripped circuit, in which

the output corresponding to at-least one input pattern is flipped.

The restore unit not only generates the flip signal for one input

pattern per each wrong key, it also restores the stripped output, (e.g.

IN = 4 in Fig. 4) to recover the correct functionality on Y . Note that
applying removal attack on restore unit recovers Yf s , which is not

the correct functionality. In addition, SFLL-HD is able to protect(k
h
)
input patterns that are of Hamming Distance (HD) h from the

k-bit secret key, and accordingly uses Hamming Distance checker

as a restore unit (e.g. h = 0 in Fig. 4 is also called TTLock [19]).

Although SFLL was resilient against all previously formulated

attacks, it was exploited using a newly formulated attack, called

Functional Analysis on Logic Locking (FALL) attack [31]. In this

attack model, the adversary is assumed to be a malicious foundry

that knows the locking algorithm and its parameters, e.g. h in SFLL-

HD. A FALL attack is carried out in three main stages and relies

on structural and functional analyses to determine potential key

values of a locked circuit. First, FALL attack tries to find all nodes

which are the results of comparing an input value with a key input.

It is done by a comparator identification. Such nodes (nodesRU ),

which contains these particular comparators, are very likely to be

part of the functionality restoration unit. The set of all inputs that

appear in these comparators, should be in the fan-in cone of the

cube stripping unit. Then, it finds a set of all gates whose fan-in-

cone is identical to the members of nodesRU . This set of gates must

contain the output of the cube stripping unit. Second, the attacker

applies functional analysis on the candidate nodes suggested by

and collected from the first stage to identify suspected key values.

Broadly speaking, the attacker uses functional properties of the

cube stripping function used in SFLL, to determines the values of

the keys. Based on the author’s view, this function has three specific

properties. So, they have proposed three attacks algorithms on SFLL,

which exploit unateness and Hamming distance properties of the

cube stripping functions. The input of these algorithm is circuit

node c , that computed from the first stage, and the algorithm checks

if c behaves as a Hamming distance calculator in the cube stripping

unit of SFLL-HD. If the attack is successful, the return value is

the protected cube. Third, they have proposed a SAT-based key

confirmation algorithm using a list of suspected key values and I/O

oracle access, that verifies whether one of the suspected key values

computed from the second stage, is correct.

4.10 CycSAT Attack
Considering the strength of all previously formulated attacks, some

of the researchers started seeking solutions that fundamentally

violated the assumptions of these attacks with respect to the nature

of locked circuits. One of such attempts was the introduction of

cyclic logic locking [10][23], was first proposed in [10]. In this ob-

fuscation technique each deliberately established cycle is designed

to have more than one way to open. The requirement for having



more than one way to open each cycle assures that even if the

original netlist has no cycle by itself, the cycles remains irreducible

by means of structural analysis. The cyclic obfuscation resulted in

an obfuscation with high level of output corruption, while it was

able to break the SAT attack either by 1) trapping it in an infinite

loop, or 2) forcing it to exit with a wrong key depending on weather

the introduced cycles make the circuit stateful or oscillating.

The promise of secure cyclic obfuscation was shortly after bro-

ken by CycSAT attack [5]. In CycSAT, the key combinations that

result in formation of cycles are found in a pre-processing step.

These conditions are then translated into problem augmenting CNF

formulas, denoted as cycle avoidance clauses, satisfaction of which

guarantee no cycle in the netlist. The cycle avoidance clauses are

then added to the original SAT circuit CNF and the SAT attack

is executed. The validity of this attack, however, was challenged

in [23], as researchers illustrated that the pre-processing time for

CycSAT attack is linearly dependent on the number of cycles in

the netlist. Hence, by building an exponential relation between the

number of feedback, and the number of cycles in the design, the

pre-processing step of CycSAT will face exponential runtime.

4.11 Behavioral SAT (BeSAT) Attack
Inability to analyze all cycles in the prepossessing step of CycSAT

results in missing cycles in the pre-processing step of CycSAT, lead-

ing to building a statefull or oscillating circuit, trapping the SAT

stage of the CycSAT attack. BeSAT [27] remedies this shortcoming

by augmenting the CycSAT attack with a run-time behavioral anal-

ysis. As shown in Algorithm 7, by performing behavioral analysis

at each SAT iteration, BeSAT detects repeated DIPs when the SAT

is trapped in an infinite loop. Also, when SAT cannot find any new

DIP, a ternary-based SAT is used to verify the returned key as a

correct one, preventing the SAT from exiting with an invalid key.

Algorithm 7 BeSAT Attack on Cyclic Locked Circuits [27]

1: function BeSAT_Attack(Circuit CL , Circuit CO )

2: W = (w0, w1, ...wm ) ← FindFeedback(CL );
3: for each (wi ∈W ) do
4: F (wi , w ′i ) ← no_ structural_ path(wi );
5: i← 0; NC (K)=∧mi=0F (wi , w

′
i )

6: C
∗
L (X, K, Y)← CL (X, K, Y) ∧ NC (K); F0 ← C

∗
L (X, K1 , Y1) ∧ C

∗
L (X, K2 , Y2);

7: while SAT (Fi ∧ (Y1 , Y2)) do
8: Xd [i]← sat_assignment (Fi∧(Y1 ,Y2)); Yd [i]← CO (Xd [i]);
9: Fi+1 ← Fi ∧ CL (Xd [i], K1 , Yd [i]) ∧ CL (Xd [i], K2 , Yd [i]);
10: if (Xd [i] in DIP) and (CL (Xd [i], K1) , Yd [i])) then
11: Fi+1 ← Fi+1 ∧ (K1 , K̂1) ∧ (K2 , K̂1);

12: else if (Xd [i] in DIP) and (CL (Xd [i], K2) , Yd [i]) then
13: Fi+1 ← Fi+1 ∧ (K1 , K̂2) ∧ (K2 , K̂2);

14: i← i+1;
15: while SATK

1
(Fi ) do ▷ Correct Key: K̂c

16: if Ternary_SAT(Fi , Kc ) then
17: Fi ← Fi ∧ (K1 , K̂c )
18: else
19: K∗ ← K̂c ; break;

5 STAGE 4: SMT ATTACK
As discussed previously, many of the attacks proposed at post-SAT

attack stage were formulated by adding a pre-processing step to

the original SAT attack, and/or extending the SAT attack to co-

process and check additional features in each iteration. In other

terms, to break many of the post-SAT era obfuscation techniques,

attackers relied on compound attacks by combining SAT solvers by

pre-processors (e.g. in CycSAT) and co-processors (e.g. in BeSAT)

to extend its modeling reach. Motivated by this trend, the need

for having pre- co- and post- processors along with a SAT solver

in an attack was realized and addressed in [12] and a new and

extremely powerful attack, coined as Satisfiability Module Theory

(SMT) attack was introduced. The strength of SMT attack, as the

superset of SAT attack, comes from its ability to combine SAT

and Theory solvers. The SMT attack could be invoked with any

number and combination of theory solvers, and a SAT solver, which

allow the attacker to express constraints that are difficult or even

impossible to express using CNF, including timing, delay, power,

arithmetic, graph and many other first-order theories in general.

To showcase the modeling capability of SMT attack, the authors

used the SMT attack 1) to break a new breed of obfuscation that

relied on locking the delay information in netlist (by generating

setup and hold violations), 2) to formulate an accelerated attack (to

reduce the attack time) with means of approximate exit (if trapped

with SAT hard solutions).

In pursuit of obfuscation schemes that could not be attacked

by SAT motivated attackers, some researchers tried to extend the

locking mechanism to aspects of a circuit’s function that cannot be

translated to CNF. For example, Xie et al. proposed a timing obfus-

cation scheme, denoted as delay logic locking (DLL), in [28]. The

Goal of DLL obfuscation scheme is introducing setup and hold vio-

lation if the correct key is not applied. In this case, the obfuscation

attempts to change both logical and behavioral (timing) properties.

A functionally-correct but timing-incorrect key will result in tim-

ing violations, leading to circuit malfunctions. Considering that

timing is not translatable to CNF, the SAT solver remains oblivious

to the keys used for timing obfuscation. Authors in [12], however,

illustrated that the SMT attack could easily deploy a graph theory

solver, provide timing constraints to the theory solver (in terms

of required min and max delay to meet the hold and setup time),

and use the theory solver in parallel with the internal SAT solver

to break both logic and delay obfuscation. They additionally show

that the theory solver could be initiated as a pre-processor (Eager

SMT approach) or as a co-processor (Lazy SMT approach) to break

the same problem, showcasing the strength of SMT attack. The lazy
mode of this attack is illustrated in Algorithm 8. Although at about

the same time Chakraborty proposed TimingSAT to attack the DLL

[2], similar to many prior SAT-based attack, it was by deploying a

pre-processor for analysis of graph timing, and generating helper

clauses for the subsequent call to the SAT attack.

Algorithm 8 SMT Attack on DLL (Lazy Approach) [12]

1: function SMTLazy_Attack(Circuit CL , Circuit CO )

2: C
∗
L ← toBOOLEAN(CL ); ▷ Replace TDK with Buffer

3: i← 0; F ← C
∗
L (X, K1 , Y1) ∧ C

∗
L (X, K2 , Y2);

4: G
∗
L ← toGRAPH(CL ); ▷ Wires = Edges, Gates = Vertices

5: FT ← GenTCE(G
∗
L ) ▷ Theory Learned Clauses

6: FSMT ← F ∧ FT ; ▷ SMT Clauses

7: while SMT (FSMT ) do ▷ Xd [i], K1 , K2 , CC
8: Yd [i]← CO (Xd [i]); F ← F ∧ C

∗
L (Xd [i], K1 , Yd [i]) ∧ C

∗
L (Xd [i], K2 , Yd [i]);

9: FSMT ← F ∧ CC; i← i+1;
10: K∗ ← smt_assignmentK

1
(FSMT );

1: function GenTCE(Graph G
∗
L )

2: Inputs← find_start_points(G
∗
L ); Outputs← find_end_points(G

∗
L ); TCE (K ) ← [];

3: for each ((Sp, Ep) ∈ (Inputs, outputs) do
4: Upper(Sp,Ep)(K)← !(distance_leq(Sp, Ep, tcd )); ▷ Hold Violation

5: Lower(Sp,Ep)(K)← distance_leq(Sp, Ep, tp ); ▷ Setup Violation

6: Range(Sp,Ep)(K)← Lower(Sp,Ep)(K) ∧ Upper(Sp,Ep)(K);

7: TCE (K ) ← TCE (K ) ∪ Range(Sp,Ep)(K);
8: return TCE (K )

The ability of SMT solver to instantiate and integrate different

theory solver makes it a suitable attack platform for modeling and

formulating very strong attacks. As an example of the strength

of SMT attack, the authors in [12] formulated and presented an

accelerated SMT attack with ability of detecting the presence of

SAT-hard obfuscation and switching to an accelerated approximate

attack. As shown in Algorithm 9, this was done by invoking a

BitVector theory solver to constrain the SMT solver for finding keys



that result in highest output corruption first. This could be done by

constraining the required HD between the output of double circuit

when two different keys for the same discriminating input is being

tested. The required HD starts from a large value, and every time

that the SMT solver return UNSAT, the constraint is relaxed until

HD of 1 is reached. This leads to the guaranteed discovery of keys

for traditional logic locking first. After N tries (Rep in Algorithm 9)

for HD of 1, the SMT attack exits, notes that there exist a SAT-hard

obfuscation, which now could be addressed by the Bypass attack.

Algorithm 9 Accelerated SMT Attack on Compound Locking [12]

1: function AccSMT_Attack(Circuit CL , Circuit CO )

2: i← 0; HDh ← sizeof (output); HDl ← HDh - 1;

3: TimeOut← 20; Rep← 20; HDR ← 1; Rcnt ← 0;

4: C
∗
L ← toBOOLEAN(CL ); ▷ Everything is Boolean.

5: F ← C
∗
L (X, K1 , Y1) ∧ C

∗
L (X, K2 , Y2);

6: BV
∗
L ← toBITVECTOR(CL ); ▷ Define BITVECTOR on output.

7: BVs
∗
L (X, K1 , K2)← ONEs(BV

∗
L (X, K1) ⊕ BV

∗
L (X, K2));

8: FT ← (BVs
∗
L (X, K1 , K2) ⩾ HDl ) ∧ (BVs

∗
L (X, K1 , K2) ⩽ HDh );

9: FSMT ← F ∧ FT ; ▷ SMT Clauses

10: while HDl ⩾ 1 do
11: while SMT (FSMT | TimeOut) do ▷ Xd [i], K1 , K2 , CC
12: Yd [i]← CO (Xd [i]);
13: F ← F ∧ C

∗
L (Xd [i], K1 , Yd [i]) ∧ C

∗
L (Xd [i], K2 , Yd [i]); FSMT ← F ∧ CC;

14: if HDl ⩽ HDR then
15: if Rcnt == Rep then
16: break;
17: Rcnt ++;

HDl --;
18: K∗ ← smt_assignmentK

1
(FSMT );

6 DISCUSSION & OPPORTUNITIES
Table 2 compares the effectiveness of the attacks discussed in this

paper against most notable obfuscation schemes. As illustrated the

combination of FALL, Bypass and SMT attack can break all existing

solutions, pointing us to a need for a new direction for generat-

ing non-bypassable SMT hard obfuscation solutions. The dilemma

is that SAT-hard solutions have extremely low output corruption,

and are prone to Bypass, FALL, Removal and SPS attack. On the

other hand, the traditional logic locking schemes have high output

corruption, but could be easily broken with SAT/SMT attack. The

compound logic locking solutions that combine the SAT-hard so-

lutions for resistance against SAT and SMT attack, and traditional

logic locking for resistance against Bypass, FALL, Removal and SPS

attack are also prone to approximate SAT and SMT attacks. What is

really desired, is a SMT-hard logic locking scheme with high degree

of output corruption. As a step in this direction, few very recent

research papers have focused on increasing the execution time of

each SAT/SMT iteration rather than the total execution time [4, 11].

The Full-Lock in [4] is argued that the strength of SAT/SMT solvers

come from their Conflict-Driven Clause Learning (CDCL) ability,

which is resulted by recursively calling Davis-Putnam-Logemann-
Loveland (DPLL) algorithm. Hence, the Full-Lock creates an obfus-

cation method that results in very deep recursive call trees. They

argue that the SAT/SMT attack execution time can be expresses by

formula 1, in which N denotes the number of iterations (DIPs) of

the SAT/SMT attack, TDPLL(Φ) is the execution time of recursive

calls for DPLL algorithm on CNF Φ, and t is the execution time of

the remaining book keeping code executed at each iteration.

TAttack =
N∑
i=1

T (i) =
N∑
i=1
(t +TDPLL (Φ)) =

N∑
i=1

M∑
j=1
(TAvдDPLL ) ≃ MN ×TAvдDPLL (1)

Authors argue that M in formula 1 denotes the number of re-

cursive DPLL calls. Accordingly, the execution time of SAT attack

could also become unfeasible by building an exponential relation

between the percentage gate inserted (area overhead) and M. The

Table 2: Comparison of proposed attacks/defenses.

Attacks

Defenses . . RLL FLL SLL Anti-SAT SARLock Compound SFLL Cyclic SRCLock DLL
[6] [8] [7] [32] [15] [15] [16] [10] [23] [28]

Brute Force ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Sensitization[7] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Hill-Climbing[29] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SAT[20] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SPS+Removal[17][18] ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Bypass[25] ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗
AppSAT[9] ✓ ✓ ✓ ✗ ✗ P ✗ ✗ ✗ ✗
Double-DIP[30] ✓ ✓ ✓ ✗ ✗ P ✗ ✗ ✗ ✗
Bit-Flipping[26] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
AGR[17] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
FALL[31] ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
CycSAT[5] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗
BeSAT[27] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗
TimingSAT[2] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓
SMT[12] ✓ ✓ ✓ ✗ ✗ P ✗ ✓ ✓ ✓

✓: Attack Success, ✗: Fail to Attack, P: Only removes the key to the traditional locking in Compound Defense.

strong aspect of this alternative solution is that (1) the problems

posed at each iteration of SAT/SMT attack is a SAT-hard problem,

(2) the output corruption of this methods is significantly higher

than obfuscating solution relying on increasing the N , (3) it is not

susceptible to SPS, removal, bypass, approximate attack, to name

a few. The hardness of SAT/SMT attack in the solution posed by

Full-Lock cannot be assessed/formulated similar to that of SFLL.

Moving towards this new direction for generating SAT-hard prob-

lems with high level of output corruption can be generalized more,

where an obfuscation solution in this direction can engineer the

number of recursive calls, pushing the number of recursive call to

be an exponential function of added gates counts (area overhead).

REFERENCES
[1] A. Baumgarten et al. 2010. Preventing IC piracy using reconfigurable logic barriers. IEEE

Design & Test of Computers 27, 1 (2010), 66–75.
[2] A. Chakraborty et al. 2018. TimingSAT: timing profile embedded SAT attack. In ICCAD. 6.
[3] H. M. Kamali et al. 2018. LUT-lock: A novel LUT-based logic obfuscation for FPGA-bitstream

and ASIC-hardware protection. In ISVLSI. 405–410.
[4] H. M. Kamali et al. 2019. Full-Lock: Hard Distributions of SAT Instances for Obfuscating

Circuits using Fully Configurable Logic and Routing Blocks. In DAC. 6.
[5] H. Zhou et al. 2017. CycSAT: SAT-based attack on cyclic logic encryptions. In ICCAD. 49–56.
[6] J. Roy et al. 2010. Ending piracy of integrated circuits. Computer 43, 10 (2010), 30–38.
[7] J. Rajendran et al. 2012. Security analysis of logic obfuscation. In DAC. 83–89.
[8] J. Rajendran et al. 2015. Fault analysis-based logic encryption. IEEE Trans. on Comp. 64, 2

(2015), 410–424.

[9] K. Shamsi et al. 2017. AppSAT: Approximately deobfuscating integrated circuits. In HOST.
95–100.

[10] K. Shamsi et al. 2017. Cyclic obfuscation for creating sat-unresolvable circuits. In GLSVLSI.
173–178.

[11] K. Shamsi et al. 2018. Cross-Lock: Dense Layout-Level Interconnect Locking using Cross-bar

Architectures. In GLSVLSI. 147–152.
[12] K. Z. Azar et al. 2019. SMT Attack: Next Generation Attack on Obfuscated Circuits with

Capabilities and Performance Beyond the SAT Attacks. IACR Trans. on CHES (TCHES) (2019),
97–122.

[13] M. Li et al. 2017. Provably secure camouflaging strategy for IC protection. IEEE Trans. on CAD
(TCAD) (2017).

[14] M. Rostami et al. 2014. A primer on hardware security: Models, methods, and metrics. Proc.
IEEE 102, 8 (2014), 1283–1295.

[15] M. Yasin et al. 2016. SARLock: SAT Attack Resistant Logic Locking. In HOST. 236–241.
[16] M. Yasin et. al. 2017. Provably-secure logic locking: From theory to practice. In ACM-CCS.

1601–1618.

[17] M. Yasin et al. 2017. Removal attacks on logic locking and camouflaging techniques. IEEE
Trans. on Emerging Topics in Computing 1 (2017), 1–1.

[18] M. Yasin et al. 2017. Security analysis of anti-sat. In ASP-DAC. 342–347.
[19] M. Yasin et al. 2017. What to lock?: Functional and parametric locking. In GLSVLSI. 351–356.
[20] P. Subramanyan et al. 2015. Evaluating the security of logic encryption algorithms. In HOST.

137–143.

[21] P. Tuyls et al. 2006. Read-proof hardware from protective coatings. In CHES. 369–383.
[22] S. Roshanisefat et al. 2018. Benchmarking the capabilities and limitations of SAT solvers in

defeating obfuscation schemes. In IOLTS. 275–280.
[23] S. Roshanisefat et al. 2018. SRCLock: SAT-Resistant Cyclic Logic Locking for Protecting the

Hardware. In GLSVLSI. 153–158.
[24] T. Winograd et al. 2016. Hybrid STT-CMOS designs for reverse-engineering prevention. In

DAC. 6.
[25] X. Xu et al. 2017. Novel bypass attack and BDD-based tradeoff analysis against all known logic

locking attacks. In CHES. 189–210.
[26] Y. Shen et al. 2018. SAT-based bit-flipping attack on logic encryptions. In DATE. 629–632.
[27] Y. Shen et al. 2019. BeSAT: behavioral SAT-based attack on cyclic logic encryption. InASP-DAC.

ACM, 657–662.

[28] Y. Xie et al. 2017. Delay locking: Security enhancement of logic locking against ic counterfeit-

ing and overproduction. In DAC. 9.
[29] S. M. Plaza and I. L. Markov. 2015. Solving the third-shift problem in IC piracy with test-aware

logic locking. IEEE Trans. on CAD (TCAD) 34, 6 (2015), 961–971.
[30] Y. Shen and H. Zhou. 2017. Double dip: Re-evaluating security of logic encryption algorithms.

In GLSVLSI. 179–184.
[31] D. Sirone and P. Subramanyan. 2018. Functional Analysis Attacks on Logic Locking. arXiv

preprint arXiv:1811.12088 (2018).
[32] Y. Xie and A. Srivastava. 2016. Mitigating sat attack on logic locking. In CHES. 127–146.
[33] A. yeh. 2012. Trends in the global IC design service market. DIGITIMES research (2012).


	Abstract
	1 Introduction
	2 Stage 1: Test-Based Attacks
	2.1 Brute Force Attack
	2.2 Sensitization Attack
	2.3 Random-based Hill-Climbing Attack

	3 Stage 2: SAT Attack
	4 Stage 3: Post-SAT Attacks
	4.1 Removal Attack
	4.2 Signal Probability Skew (SPS) Attack
	4.3 Bypass Attack
	4.4 AppSAT Attack
	4.5 Double-DIP Attack
	4.6 Bit-Flipping Attack
	4.7 AppSAT Guided Removal Attack
	4.8 Sensitization Guided SAT Attack
	4.9 Functional Analysis Attack
	4.10 CycSAT Attack
	4.11 Behavioral SAT (BeSAT) Attack

	5 Stage 4: SMT Attack
	6 Discussion & Opportunities
	References

