Threats on Logic Locking: A Decade Later

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, Avesta Sasan
George Mason University, Fairfax, VA, USA
{kzamiria,hmardani,hhomayou,asasan}@gmu.edu

ABSTRACT

To reduce the cost of ICs and to meet the market’s demand, a con-
siderable portion of manufacturing supply chain, including silicon
fabrication, packaging and testing may be pushed offshore. Uti-
lizing a global IC manufacturing supply chain, and inclusion of
non-trusted parties in the supply chain has raised concerns over
security and trust related challenges including those of overproduc-
tion, counterfeiting, IP piracy, and Hardware Trojans to name a few.
To reduce the risk of IC manufacturing in an untrusted and globally
distributed supply chain, the researchers have proposed various
locking and obfuscation mechanisms for hiding the functionality
of the ICs during the manufacturing, that requires the activation of
the IP after fabrication using the key value(s) that is only known to
the IP/IC owner. At the same time, many such proposed obfusca-
tion and locking mechanisms are broken with attacks that exploit
the inherent vulnerabilities in such solutions. The past decade of
research in this area, has resulted in many such defense and attack
solutions. In this paper, we review a decade of research on hardware
obfuscation from an attacker perspective, elaborate on attack and
defense lessons learned, and discuss future directions that could be
exploited for building stronger defenses.

KEYWORDS
Reverse Engineering, Logic Locking, SAT Attack, SMT Attack

1 INTRODUCTION

The increasing cost of IC manufacturing has pushed several stages
of the semiconductor device’s manufacturing supply chain offshore
[33]. However, many of these offshore facilities are identified as
untrusted entities. Processing and fabrication of ICs in an untrusted
supply chain poses a number of challenging security threats such
as IP piracy and IC overproduction [14]. To counter these threats,
various hardware design-for-trust techniques have been proposed.
The term logic locking, a.k.a. hardware obfuscation, surfaced in 2008
by EPIC [6], in which a limited programmability was introduced
into a netlist by means of inserting additional key programmable
gates (KG)s at design time. After fabrication, the functionality of
the IC is programmed by loading the correct key values. The key
inputs could be stored in, and loaded from, an on-chip tamper-
proof memory [21]. The purpose of inserting KGs is to hide the
IC’s functionality from untrusted foundries. Since the functionality
of a design is locked with a secret key, the attacker cannot learn
the functionality of the locked netlist after reverse engineering.
Insertion of n KGs hides the ICs functionality between 2" different
circuit possibilities, each generated by a different key. The correct
functionality will be recovered when the loaded n-bit key is correct.

EPIC, however did not end the threat against IP piracy (or other
related concerns), as this solution and many other obfuscation so-
lutions that were proposed over the last decade were broken using
various carefully crafted attacks. A decade of research in this area,
has resulted in a wide range of defense [1, 3, 4, 7, 8, 10, 13, 15, 16, 19,
23, 24, 28, 32] and attack solutions [2, 5, 7, 9, 12, 17, 18, 20, 22, 25—
27, 29-31]. In this paper, we review many of these obfuscation
solutions, explain and reviewing most notable attack mechanisms,
summarize and compare the effectiveness of obfuscation solutions

Brute Force [SAT Attackizo 1] [Remova][7l App@AT[g] AGR SGS[- SMT Attack
Sensitization(7] SPS[8] DDIP|301 [7l CycSAT 51 FALL[; | =
Hill-Climbing|zo) BYPaSS[zs] Bit-| Fllppmg[m\ [BeSATm)

2008-2015 2015 2017 2019 2019
Stage 2
Stage1 g Stage 3 SFage_ 4
Threats Boolean Post.SAT Satisfiability
before SAT Satisfiability Modulo Theory

Threats

attack (SAT) Attack (SMT) Attack

Figure 1: Categorization of attacks against logic locking schemes.

against these attacks, and describe the strength and weaknesses of
various obfuscation and attack solutions. As illustrated in Fig. 1,
the defense and attack solutions related to hardware obfuscation,
based on functionality, capability, effectiveness and time-line are
categorized into four categories: (1) Test-Inspired Attacks that were
mostly inspired from test concepts and attempted to discover the
obfuscation key value based on the location of KGs, described in
Section 2. (2) SAT Attack, formulation and revelation of which sig-
nificantly affected the direction and presumed assumptions of the
hardware obfuscation research community, explained in Section
3. (3) Post-SAT Attacks where the focus of hardware security re-
searchers changed to the design of an attack against obfuscation
solutions that resist the SAT attack, explained in 4. And (4) SMT
Attack as a universal attack platform capable of instantiating many
theory solvers to act as pre- post- or co- processors to the SAT
solver, described in Section 5. We conclude the paper in Section 6
by summarizing the effectiveness of attacks discussed in this paper
and provide a short discussion on new opportunities related to
designing secure logic locking solutions.

2 STAGE 1: TEST-BASED ATTACKS
2.1 Brute Force Attack

The brute force attack is the most intuitive attack against obfuscated
circuits. This attack exhaustively search for the correct key by test-
ing all key and input values. For instance, assuming that adversary
has access to the reverse-engineered netlist, and considering that
the circuit has four PIs (ip..4) and two KIs (ko..1), an exhaustive
search may result in applying of 227 = 64 test patterns (in the
worst case) and checking the output against an activated (function-
ally correct) chip to verify correctness. Based on the number of
primary inputs (|PI|) and the number of key bits (|KI|), the number
of possible test patterns is (2!PTI+IKI) Hence, the search space
for a brute force attack is extremely large, making the attack even
for small circuits and small number of keys unfeasible in a reason-
able amount of time. For example, a small circuit with 20 input
pins, which is obfuscated with 80 key gates poses 210 possible test
pattern. An attacker can reduce the number of test patterns using
functional test or random test, in which the exponential impact
of |PI|s will be eliminated, and only 2IKI1 % (func_test_patterns)
is required for brute force attack. But even with this change, the
attack time is exponential with respect to the number of key gates.
EPIC [6] used a random KG insertion policy referred to as random
logic locking (RLL). Using RLL, EPIC reasoned that by replacing a
small percentage of gates (or insertion of KGs), the obfuscation can
resist brute force attacks.

Table 1: Classification of KGs in Sensitization Attack.

Term Description
Runs of KGs Back-to-Back KGs

Strategy used by attacker
Replacing by a Single KG
Finding Unique Pattern per
KG (Golden Pattern (GP))
Muting k0,

Sensitizing k1

Muting k0/KT,

Sensitizing k1/k0
Determining k1 by GP,
Update the Netlist, Target k0

Isolated KGs No Path between KGs

KT is on Every Path

between k0 and POs
Convergent at a Third Gate

Both can be Propagated to POs
Convergent at a Third Gate

One can be Propagated to POs
Convergent at a Third Gate
None can be Propagated to POs

Dominating KGs

Concurrently Mutable
Convergent KGs
Sequentially Mutable
Convergent KGs
Non-Mutable
Convergent KGs

2.2 Sensitization Attack

After introducing EPIC [6], Rajendran et al. [7] proposed a sensitiza-
tion attack, which determines individual key values, in a time linear
to the [KI|, by applying patterns that sensitize key values to the
output. As its name implies, sensitization of an internal wire (key
bit) L to an output O means that the value of L can be propagated to
O and thus any change on L is observable on O. After determining
an input pattern that propagates the value of the key-bit to the
output, the attacker applies the input pattern to a functional IC (An
IC activated and programmed with the correct key that could be
obtained from market). The correct key value will be propagated to
an output by applying this pattern to the functional IC. The attacker
observe and record this output as the value of the sensitized key-bit.
The propagation of a key-bit to the output is heavily depending
on the location of the KGs, hence, they classify KGs based on their
location and discuss corresponding attack strategies for each case.
The summary of strategies and techniques used in the sensitization
attack is reflected in Table 1. To prevent sensitization attack they
proposed SLL, in which the KGs are inserted in locations with max-
imum mutual interference. In SLL the attacker cannot sensitize the
key-bit values to a primary output. Similar to SLL, several prior-art
methods in the literature, including fault-analysis (FLL), LUT-based
locking, etc. [1, 3, 7, 8, 24], tried to maximize the complexity of
obfuscation using different KGs replacement strategies.

2.3 Random-based Hill-Climbing Attack

Plaza et al. [29] developed a new algorithmic attack that uses test
patterns and observe responses. Unlike sensitization attack [7], their
proposed approach does not require netlist access. They propose a
randomized local key-searching algorithm to search the key that
can satisfy a subset of correct input/output patterns. The algorithm
proposed in [29] is iterative in nature. At first, it selects random
value for key bits and then at each iteration, the key bits, which
are selected randomly, are toggled one by one. The target is to
minimize the frequency of differences between the observed and
expected responses. Hence, a random key candidate is gradually
improved based on observed test responses. If no solution is found
in one iteration, the algorithm resets the key to a new random key
value. However, the complexity of this attack quickly increases with
increasing number of KGs.

3 STAGE 2: SAT ATTACK

In 2015, Subramanyan et al. [20] proposed a new and powerful
attack using Boolean satisfiability (SAT) solver, called SAT attack,
that effectively and quickly broke all previously proposed logic lock-
ing techniques. As an "oracle-guided" attack, SAT attack requires
a reverse-engineered but locked netlist (Cr), and a functionally
activated chip (Cp). A circuit view of steps taken in a SAT attack
is shown in Fig. 2. For this attack, the attacker first replicate the
obfuscated circuit and builds a double circuit which is used for
finding an input (X;[i]) that for two different key values generates
two different outputs. Such input is referred to as Discriminating
Input Pattern(DIP). Each X;[i] is used to create a DI validation
circuit (DIVC). The validation circuit, as shown in Fig. 2 assures
that for a previously found X;[i], two different keys generate the

Brute Force Attack

Key-Differentiating H DI Validation Validation Circuit SAT Circuit
Circuit (KDC) |] Circuit (DIVC) [} 7] (SCKVC) [y (SATC)
CRKYIACKKY) | '~k 1 Xz

K, A(Y,I=Y,) X DIVC X;{‘_‘ SCKVC
Nl i
Cy \Y, di - | H LK
N f x4+ DIYC Kz‘ KDC
K [K, 13 DIVC X Learned
2| Y. det
- 2 Y, X Clauses
Figure 2: SAT Attack Iterative Flow.
Kl 5o Yo IN k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7
Locked Y A A A S
_iN Circuit D R T A
S Vo2 Vv VX v v v
S| [Anti-SAT v I O A A S
= - [S
3—>{One-Point I O A A
Kz |Flipping v 6 v v v v v Vv / X
Circuit v 7 v v VvV X VvV /S VS

Figure 3: Flipping Structure of SARLock and Anti-SAT.

same output value. Each iteration of the SAT attack finds a new
(X4[i]), and add a new DI validation circuit. The DIVCs are ANDed
together to form a Set of Correct Key Validation Circuit (SCKVC).
In each iteration, the SAT solver try to find a new X [i] and two
key values that satisfy the double circuit (KDC) and the Validation
Circuit (SCKVC). The key values and the X;[i], as illustrated in
Alg. 1 (line 5), is found by a SAT query. This means the new key
generate two different values for the new X;[i], but generate the
same value for all previously found X s for both key values. This
process continues until the SAT solver cannot find a new X/[i]
(line 4). At this point any key that generates the correct output for
the set of found Xs is the correct key (line 9).

Algorithm 1 SAT-based Attack Algorithm [20]

1: function SAT_AtTtAck(Circuit Cp,, Circuit Co)

2 i 0;Fp < Cr(X,Ky,Y1) ACL(X, K2, Y2);

3 while SAT(F; A (Y1 #Y2)) do

4: Xgli] < sat_assignment (F; A(Y1] #Y2)); Yq[i] < Co(Xgli]):

5: Fit1 < Fi ACL(Xgli]. K1, Yg[i]) A CL(Xg], Ko, Yg[il); i = i+1;
6 K* « sat_assignment (Fi);

For all prior obfuscation schemes, even those resistant to sen-
sitization attack, the SAT attack was able to rule out a significant
number of key values at each iterations (by finding each DIP). Hence,
In order to thwart SAT attack, the first attempted approach was to
weaken the strength of the DIPs to reduce its pruning power. SAR-
Lock [15] and Anti-SAT [32] were the first prior-art methods that
accomplished this. Both SARLock and Anti-SAT engaged one-point
flipping function, demonstrated in Fig. 3. Using this obfuscation
scheme, each DIP is able to rule out only one incorrect key. Hence,
the SAT attack requires to apply all 2IK1 to retrieve the correct
functionality. However, this method results in obfuscation circuits
that for all but one output work as the original circuit, and the
output corruption upon application of a wrong key is quite low.

4 STAGE 3: POST-SAT ATTACKS

As discussed, the proposed SAT-resilient solutions suffered from
low output corruption. This however could have been addressed
by combining a SAT-hard solution with a traditional obfuscation
solution, such as RLL or SLL, that exhibits high level of output
corruption. Although SAT-resilient logic locking schemes provided
a defense against SAT attack, researchers found new vulnerabilities
associated with this class of obfuscation techniques resulting in the
development of many new attacks on the presumed SAT-hard logic
locking schemes described in this section.

4.1 Removal Attack

As shown in Fig 3, in bare implementation of one-point flipping
circuit, the locking circuitry is completely decoupled from the orig-
inal circuit. A removal attack identifies and removes/bypasses the

locking circuitry to retrieve the original circuit and to remove de-
pendence on key values [17]. The removal attack, presented in [17],
was used to detect and remove SARLock [15]. In presence of re-
moval attack, researchers investigated SAT-hard solutions that are
hard to detect (preventing removal by pure structural analysis), an
example of which was Anti-SAT [32].

4.2 Signal Probability Skew (SPS) Attack

The Signal Probability Skew (SPS) attack [18] leverages the struc-
tural traces in Anti-SAT block to identify and isolate the Anti-SAT
block [32]. Signal probability skew (SPS) of a signal x is defined
as s = P.[x = 1] — 0.5, where P,[x = 1] indicates the probability
that signal x is 1. The range of s is [-0.5, 0.5]. If the SPS of signal
x is closer to zero, an attacker have lower chance of guessing the
signal value by random. For a 2-input gate, the signal probability
skew is the difference between the signal probability of its input
wires. The flipping-circuit in the Anti-SAT is constructed using
two complementary circuits, g and g, in which the number of input
vectors that make the function g equal to 1 (p) is either close to 1 or
2™ — 1. These two complementary circuits converge at an AND gate
G. Considering this structure, the absolute difference of the signal
probability skew (ADS) of the inputs of gate G is quite large, noting
that the SAT resilience is ensured by this skewed p. Algorithm 2
shows the SPS attack, which identifies the Anti-SAT block’s output
by computing signal probabilities and searching for the skew(s) of
arriving signals to a gate in a given netlist.

Algorithm 2 SPS Attack Algorithm [18]

function SPS_AtTAcK(Circuit Cf)
ADSarr < {}
for each gate € Cy, do

ADSqrr(gate;) < Compute_ADS(Cy , gate;);

G « Find_Maximum(ADS g7 r);
Y « Find_value_from_skew(G);
Crock < remove_TFI(Cp, G, Y);
return Cy ;.5

> Correct value of Anti_SAT output
> Transitive FanIn of the gate G

1:
2
3
4:
5:
6
7
8 > Cr ock: CL after removing Anti_SAT block

4.3 Bypass Attack

Although SARLock and Anti-SAT break the SAT attack, their re-
spective output corruptibility is very low if they are not mixed with
traditional logic locking, such as SLL. Observing and relying on the
very low level of output corruption in such SAT-hard solutions, the
bypass attack [25] was introduced. The bypass attack instantiates
two copies of the obfuscated netlist using two randomly selected
keys, and build a miter circuit that evaluates to 1 only when the
output of two circuits is different. The miter circuit is then fed to
a SAT solver looking for such inputs. The SAT returns with mini-
mum of two inputs for which the outputs are different. These input
patterns are tested using an activated IC (golden IC) validating
the correct output. Then a bypass circuit is constructed using a
comparator that is stitched to the primary output of the netlist
which is unlocked using the selected random key, to retrieve the
correct functionality if that input pattern is applied. The Bypass
attack works well when the SAT-hard solution is not mixed with
traditional logic locking mechanism since its overhead increases
very quickly as output corruption of logic locking increases. This
observation motivated researchers to look at possibilities of approx-
imate attacks to retrieve the key values associated to non SAT-hard
obfuscation solutions that are mixed with SAT-hard solutions.

4.4 AppSAT Attack

So far, defences solution to mitigate the SAT attack, are based on
the assumption that the attacker needs an exact attack on logic

locking. However, Shamsi et al. [9] proposed a new attack (App-
SAT), which relax this constraint. AppSAT shown in Algorithm 3,
is an approximate attack on logic locking based on the SAT attack
and random testing. The authors use probably-approximate-correct
(PAC) model for formulating approximate learning problem. The
exact SAT attack continues to find DIPs until no more DIPs can be
found. However, the AppSAT will be terminated in any early step
in which the error falls below the certain limit. If this condition
happens, the key value will be considered as an approximate key
with specified error rate; otherwise, the random sampling that re-
sulted in a disagreement will be added to a SAT formula as a new
constraint. In AppSAT, heuristic methods for estimating the error
is used for large functions, to avoid any computation complexity.

4.5 Double-DIP Attack

Double-DIP [30] is another approximate attack, shown in Algorithm
4. Double-DIP is an extension of SAT attack in which during each
iteration, the discriminating input should eliminate at least two
wrong keys. To illustrate its effectiveness, researchers used double-
DIP to target SARLock+SSL, representing a compound of SAT-hard
and high output corruption obfuscation. When the double-DIP
attack terminates, the key of the traditional logic locking (SSL) is
guaranteed to be correct. As a result, the compound logic locking
will be reduced to a single SAT attack resilient technique, that could
then be attacked using bypass attack.

Algorithm 3 AppSAT Attack Algorithm [9]

1: function ApPSAT_AtTAck(Circuit Cy,, Circuit Co)

2 i 0;Fp « Cp(X,K1,Y1) ACL(X, K2, Y2);

3 while SAT(F; A (Y1 # Y3)) do

4: Xq[i] < sat_assignment (F; A(Y1 #Y2)); Yg[i] < Co(Xq[il):

5: Fiv1 < Fi ACL(Xglil, K1, Yq[il) A CL(Xg[i], K2, Yg[i]); i & i+1;
6:
7
8

every n rounds do
for each (x € Random Patterns) do
if Cp (X, K1, Y) # Co(X) then

9: FailedPatterns < FailedPatterns + 1;
10: Fiy1 < Fizx1 A(CLX K1, Y) =CoX)): i — i+1;
11: if error < ErrorThreshold then
12: return K as an approximate key
13: K* « sat_assignment g, (Fj);

Algorithm 4 Double-DIP Attack Algorithm [30]

1: function DouBLEDIP_ATTACK(Circuit Cy,, Circuit Co)

2 i 0;Fp < Cr(X,K1,Y1) ACL(X,K2,Y2) ACL(X,K3,Y1) ACL(X, Ky, Y2) ;
3 while SAT(F; A (Y1 #Y2)) A (K1 #K3)) A (K2 #Ky)) do

4: Xgi] < sat_assignment (F; A(Y] #Y2)) A (K # K3)) A (K2 # Ky));

5 Yqli] « Co(XqliD;

6 Fis1 < Fi Ny CLXglil Ky Yglil): i e ivg;

7 K* « sat_assignment g, (F;):

4.6 Bit-Flipping Attack

The Bit-flipping attack [26] is yet another attack against compound
logic locking schemes in which a SAT-hard solution such as SAR-
Lock is combined with a traditional logic locking to guarantee
both high error rates and resilience to the SAT-based attack. In Bit-
flipping attack, the keys are first separated into two groups (k; and
k2) by counting DIPs for two keys with hamming distance equal to
one. The attack is motivated from the observation that in traditional
logic locking, wrong key causes substantial wrong input-output
pattern. However, the error rate of bit-flipping function is usually
very small. As shown in Algorithm 5, after separation of keys, this
attack fixes SAT-resilient keys, ks, as a random number, and uses a
SAT solver to find the correct key values for k;. After finding k1,
hI by AppSATiGuptdett RemovalcAtkiek circuit.

AppSAT Guided Removal (AGR) attack targets compound logic
locking, particularly Anti-SAT + traditional logic locking [17]. This
attack integrates AppSAT with a simple structural analysis of the

Algorithm 5 Bit-flipping Attack Algorithm [26]

1: function BrrFLipPING_ATTACK(Circuit C,, Circuit Co)

2 for each j < Fixed-iteration do

3 K4 < arandom key;

4: for each bitb € K4 do

5: Kp < K4 while bit b flipped;

6: i 0;F — CL(X,Ka,Yq) ACL(X. KB, YB):
7 while SAT(F; A (Y4 # YR)) do

8: Xgli] < sat_assignment (F; A(Y 4 #YB)):
9: Fip1 «— F; NX#Xgli]); i i+1;

10: if i > Threshold then

11: bisinKj,

12: break;
JeJj+

13: Ky « all key bits / Ky;

14: K, « SAT_ATTACK (Cp, Co):
15: C} « update_netlist(Cr, | K1)
16: return (BYPASSiATTACK(Cz);

> Seperation is Done. Then, fix K3 as a random number.
> Find Traditional Keys using SAT.

locked netlist (a post-processing steps). Unlike AppSAT, the AGR
attack recovers the correct key. In this attack, first the AppSAT is
used to find the key of the traditional obfuscation scheme (used as
a part of compound lock). Then, AGR targets the remaining key
bits belong to the SAT-resilient logic locking, such as Anti-SAT
block, through a simple structural analysis. As shown in Algorithm
6, in the post-processing steps, AGR finds the gate (G) at which
most of the Anti-SAT key bits converge. AGR finds G by tracing the
transitive fanout of the Anti-SAT key inputs, where all the Anti-SAT
key bits converge. The ratio of key bits converging at each of the
inputs of the gate G, are close to 0.5, which is shown as the selected
property in line 7 of Algorithm 6. AGR identifies the candidates for
gate G by checking this property for all gates in the circuit, and
then sort these candidate based on the number of key inputs that
converge at a gate and pick the gate G from all candidates, which
has the most number of key inputs converge to that gate. Then the
attacker re-synthesize the design with the constant value for the
output of G gate and retrieving the correct functionality.

Algorithm 6 AGR Attack Algorithm [17]

1: function AGR_AtTACK(Circuit C,, Circuit Co)

2 #Cand < num_gates(Cy)

3 while (#Cand > 1 and ! Timeout) do

4 AppSAT_Attack(); > 4 times
5: Candidates — {};

6: for each gate € C, do

7: if gate; has the selected property then

8 Candidates < Candidates + 1;
9 G « Find_Max_key_count(Candidates);
0. CLock < remove_TFI(Cy,, G);

1 return Cy ¢k

> remove Transitive FanIn of the gate G

10:
11: > Cr ock: CL after removing Anti_SAT block

4.8 Sensitization Guided SAT Attack

While the one-point flipping circuit in Anti-SAT and SARLock
are completely decoupled from the original netlist, Li et al. [13]
proposed the AND-tree Insertion (ATI), as a SAT-resilient logic
locking, which embeds AND trees inside the original netlist. It not
only makes all aforementioned attack less effective, it also decreases
the implementation overhead. Additionally, the input of AND-tree
are camouflaged by inserting INV/BUF camouflaged gates, which
can be replaced with the XOR/XNOR gates in order to lock the
AND-tree. However, this defense was broken by a new attack that
was coined as Sensitization Guided SAT (SGS) attack [17]. The SGS
attack is carried out in two stages: (1) sensitization that exploits bias
in input patterns which allows an attacker to apply only a subset
of DIPs, i.e., those that bring unique values to the AND-tree inputs.
(2) SAT attack using the patterns discovered in the first stage.

=
;
Z

k=0

w‘
i

k=2

T
&
~
i

L
~
T

&
~
i

&
~
d

4

4

NSNS XSNSNASN
SASXNNxN
AR NN NN NN
RN R N NN
AN N N
A N NN
NAX X NSNS
N> Nx N8N

v
X
v
X
v
v
v
Figure 4: SFLL-HD while h

4.9 Functional Analysis Attack

Aiming to provide a defense that resists all previously formulated
attacks led to the introduction of Stripped-Functionality Logic Lock-
ing (SFLL) [16]. In SFLL the original circuit is modified for at-least
one input pattern (cube) using a cube stripping unit, demonstrated in
Fig. 4. As shown, Y is the output of the stripped circuit, in which
the output corresponding to at-least one input pattern is flipped.
The restore unit not only generates the flip signal for one input
pattern per each wrong key, it also restores the stripped output, (e.g.
IN = 4 in Fig. 4) to recover the correct functionality on Y. Note that
applying removal attack on restore unit recovers Yr, which is not
the correct functionality. In addition, SFLL-HD is able to protect

Il
=]

(,];) input patterns that are of Hamming Distance (HD) h from the
k-bit secret key, and accordingly uses Hamming Distance checker
as a restore unit (e.g. h = 0 in Fig. 4 is also called TTLock [19]).

Although SFLL was resilient against all previously formulated
attacks, it was exploited using a newly formulated attack, called
Functional Analysis on Logic Locking (FALL) attack [31]. In this
attack model, the adversary is assumed to be a malicious foundry
that knows the locking algorithm and its parameters, e.g. h in SFLL-
HD. A FALL attack is carried out in three main stages and relies
on structural and functional analyses to determine potential key
values of a locked circuit. First, FALL attack tries to find all nodes
which are the results of comparing an input value with a key input.
It is done by a comparator identification. Such nodes (nodesgy),
which contains these particular comparators, are very likely to be
part of the functionality restoration unit. The set of all inputs that
appear in these comparators, should be in the fan-in cone of the
cube stripping unit. Then, it finds a set of all gates whose fan-in-
cone is identical to the members of nodesgy . This set of gates must
contain the output of the cube stripping unit. Second, the attacker
applies functional analysis on the candidate nodes suggested by
and collected from the first stage to identify suspected key values.
Broadly speaking, the attacker uses functional properties of the
cube stripping function used in SFLL, to determines the values of
the keys. Based on the author’s view, this function has three specific
properties. So, they have proposed three attacks algorithms on SFLL,
which exploit unateness and Hamming distance properties of the
cube stripping functions. The input of these algorithm is circuit
node c, that computed from the first stage, and the algorithm checks
if ¢ behaves as a Hamming distance calculator in the cube stripping
unit of SFLL-HD. If the attack is successful, the return value is
the protected cube. Third, they have proposed a SAT-based key
confirmation algorithm using a list of suspected key values and I/O
oracle access, that verifies whether one of the suspected key values
computed from the second stage, is correct.

4.10 CycSAT Attack

Considering the strength of all previously formulated attacks, some
of the researchers started seeking solutions that fundamentally
violated the assumptions of these attacks with respect to the nature
of locked circuits. One of such attempts was the introduction of
cyclic logic locking [10][23], was first proposed in [10]. In this ob-
fuscation technique each deliberately established cycle is designed
to have more than one way to open. The requirement for having

more than one way to open each cycle assures that even if the
original netlist has no cycle by itself, the cycles remains irreducible
by means of structural analysis. The cyclic obfuscation resulted in
an obfuscation with high level of output corruption, while it was
able to break the SAT attack either by 1) trapping it in an infinite
loop, or 2) forcing it to exit with a wrong key depending on weather
the introduced cycles make the circuit stateful or oscillating.

The promise of secure cyclic obfuscation was shortly after bro-
ken by CycSAT attack [5]. In CycSAT, the key combinations that
result in formation of cycles are found in a pre-processing step.
These conditions are then translated into problem augmenting CNF
formulas, denoted as cycle avoidance clauses, satisfaction of which
guarantee no cycle in the netlist. The cycle avoidance clauses are
then added to the original SAT circuit CNF and the SAT attack
is executed. The validity of this attack, however, was challenged
in [23], as researchers illustrated that the pre-processing time for
CycSAT attack is linearly dependent on the number of cycles in
the netlist. Hence, by building an exponential relation between the
number of feedback, and the number of cycles in the design, the
pre-processing step of CycSAT will face exponential runtime.

4.11 Behavioral SAT (BeSAT) Attack

Inability to analyze all cycles in the prepossessing step of CycSAT
results in missing cycles in the pre-processing step of CycSAT, lead-
ing to building a statefull or oscillating circuit, trapping the SAT
stage of the CycSAT attack. BeSAT [27] remedies this shortcoming
by augmenting the CycSAT attack with a run-time behavioral anal-
ysis. As shown in Algorithm 7, by performing behavioral analysis
at each SAT iteration, BeSAT detects repeated DIPs when the SAT
is trapped in an infinite loop. Also, when SAT cannot find any new
DIP, a ternary-based SAT is used to verify the returned key as a
correct one, preventing the SAT from exiting with an invalid key.

Algorithm 7 BeSAT Attack on Cyclic Locked Circuits [27]

1: function BESAT_AtTtack(Circuit Cp,, Circuit Co)

2: W = (wg, Wi, ...wp) < FindFeedback(Cy);

3 for each (w; € W) do

4: F(wi, w;) « no_ structural_ path(w;);

5: i 0; NC(K)=AZ F(wi, w})

6 CLXKY) e CLX K Y) A NCK): Fo — C; (X, Ky, Y1) A C} (X, Kz, Yo):
7 while SAT(F; A (Y1 # Y2)) do

8: Xg[i] ¢ sat_assignment (F; A(Y1 #Y2)); Yq[i] < Co(X4[i]):

9: Fiy1 < Fi ACL(Xglil. K1, Yg[i]) A CL(Xg[il, K2, Yq[il);

10: if (X4[i] in DIP) and (C, (X4 [i], K1) # Y 4[i])) then

11: Fiy1 < Fip1 A Ky #Kp) A (K #Kyp);

12: else if (X 4[i] in DIP) and (C,(Xz[i]. K2) # Y4[i]) then

13: Fit1 < Fit1 A (Kp #Kp) A (K #Kp);

14: i i+l; .
15: while SAT i, (F;) do > Correct Key: K¢
16: if Ternary_SAT(F;, K¢) then

17: F; «F; A(K; #K¢)

18: else R

19: K* « K¢; break;

5 STAGE 4: SMT ATTACK

As discussed previously, many of the attacks proposed at post-SAT
attack stage were formulated by adding a pre-processing step to
the original SAT attack, and/or extending the SAT attack to co-
process and check additional features in each iteration. In other
terms, to break many of the post-SAT era obfuscation techniques,
attackers relied on compound attacks by combining SAT solvers by
pre-processors (e.g. in CycSAT) and co-processors (e.g. in BeSAT)
to extend its modeling reach. Motivated by this trend, the need
for having pre- co- and post- processors along with a SAT solver
in an attack was realized and addressed in [12] and a new and
extremely powerful attack, coined as Satisfiability Module Theory
(SMT) attack was introduced. The strength of SMT attack, as the

superset of SAT attack, comes from its ability to combine SAT
and Theory solvers. The SMT attack could be invoked with any
number and combination of theory solvers, and a SAT solver, which
allow the attacker to express constraints that are difficult or even
impossible to express using CNF, including timing, delay, power,
arithmetic, graph and many other first-order theories in general.
To showcase the modeling capability of SMT attack, the authors
used the SMT attack 1) to break a new breed of obfuscation that
relied on locking the delay information in netlist (by generating
setup and hold violations), 2) to formulate an accelerated attack (to
reduce the attack time) with means of approximate exit (if trapped
with SAT hard solutions).

In pursuit of obfuscation schemes that could not be attacked
by SAT motivated attackers, some researchers tried to extend the
locking mechanism to aspects of a circuit’s function that cannot be
translated to CNF. For example, Xie et al. proposed a timing obfus-
cation scheme, denoted as delay logic locking (DLL), in [28]. The
Goal of DLL obfuscation scheme is introducing setup and hold vio-
lation if the correct key is not applied. In this case, the obfuscation
attempts to change both logical and behavioral (timing) properties.
A functionally-correct but timing-incorrect key will result in tim-
ing violations, leading to circuit malfunctions. Considering that
timing is not translatable to CNF, the SAT solver remains oblivious
to the keys used for timing obfuscation. Authors in [12], however,
illustrated that the SMT attack could easily deploy a graph theory
solver, provide timing constraints to the theory solver (in terms
of required min and max delay to meet the hold and setup time),
and use the theory solver in parallel with the internal SAT solver
to break both logic and delay obfuscation. They additionally show
that the theory solver could be initiated as a pre-processor (Eager
SMT approach) or as a co-processor (Lazy SMT approach) to break
the same problem, showcasing the strength of SMT attack. The lazy
mode of this attack is illustrated in Algorithm 8. Although at about
the same time Chakraborty proposed TimingSAT to attack the DLL
[2], similar to many prior SAT-based attack, it was by deploying a
pre-processor for analysis of graph timing, and generating helper
clauses for the subsequent call to the SAT attack.

Algorithm 8 SMT Attack on DLL (Lazy Approach) [12]

1: function SMTLAzy_AtTAcK(Circuit Cy, Circuit Co)

2: C}i «— toBOOLEAN(C); > Replace TDK with Buffer
3 iHO;FHC*L(X, K1,Y1)/\C2(X, K2, Y2);

4 G*L < toGRAPH(Cy); > Wires = Edges, Gates = Vertices
5 Fr « GenTCE(Gz) > Theory Learned Clauses
6: FsymT < FAFrs > SMT Clauses
7: while SMT(FsprT) do > X 4[], K1, Kz, CC
8 Yqli] = CoXgli): F — F A C] (Xglil. K1, Ygli]) A Cp (Xglil, Kz, Yg[i)):

9 FspmT < FACC; i i+];

0 K* « smt_assignment g, (FsmT);

—_

function GENTCE(Graph Gz)

Inputs ﬁndﬁstartfpoints(Gz); Outputs «— ﬁndﬁendfpoints(Gz); Tce(K) « [J;

for each ((Sp, Ep) € (Inputs, outputs) do
Upper(Sp.Ep)(K) < !(distance_leq(Sp, Ep, t.4)):
Lower(Sp.Ep)(K) «— distance_leq(Sp, Ep, tp);
Range(Sp,Ep)(K) < Lower(Sp,Ep)(K) A Upper(Sp,Ep)(K);
Tcg(K) « Tep(K) U Range(Sp.Ep)(K);

return Top(K)

> Hold Violation
> Setup Violation

0N URW N =

The ability of SMT solver to instantiate and integrate different
theory solver makes it a suitable attack platform for modeling and
formulating very strong attacks. As an example of the strength
of SMT attack, the authors in [12] formulated and presented an
accelerated SMT attack with ability of detecting the presence of
SAT-hard obfuscation and switching to an accelerated approximate
attack. As shown in Algorithm 9, this was done by invoking a
BitVector theory solver to constrain the SMT solver for finding keys

that result in highest output corruption first. This could be done by
constraining the required HD between the output of double circuit
when two different keys for the same discriminating input is being
tested. The required HD starts from a large value, and every time
that the SMT solver return UNSAT, the constraint is relaxed until
HD of 1 is reached. This leads to the guaranteed discovery of keys
for traditional logic locking first. After N tries (Rep in Algorithm 9)
for HD of 1, the SMT attack exits, notes that there exist a SAT-hard
obfuscation, which now could be addressed by the Bypass attack.

Algorithm 9 Accelerated SMT Attack on Compound Locking [12]

1: function AccSMT_AtTACK(Circuit Cp, Circuit Co)
2. i < 0; HDy, « sizeof (output); HD; <= HDp, - 1;
3 TimeOut < 20; Rep «— 20; HDR < 1; Rcnt < 0;
4: Cz «— toBOOLEAN(Cy); > Everything is Boolean.
5: F e C} (X, Ky, Y1) A Cp (X, Kg, Yo);

6: BV} « toBITVECTOR(CL);

7 BVs] (X, K1, Kp) — ONEs(BV’, (X, K1) ® BV}, (X, Ky));

8 Fr — (BVS} (X, K1, Kg) > HDp) A (BVS}, (X, Ky, Kp) < HDp,);

> Define BITVECTOR on output.

9: Fspr <« FAFrs

> SMT Clauses
10: while HD; > 1 do
11: while SMT(Fs pr7 | TimeOut) do > Xqli], K1, Kz, CC
12: Y4li] « CoXglil):
13: FFACy (Xqlil. K1, YgliD) A C} (Xgli), Kz, Yg[il): FsmT — F A CC;
14: if HD; < HDR then
15: if Rent == Rep then
16: break;
17: Rent++;
HDl--; cnt
18: K* smt_assignment g, (FSpT);

6 DISCUSSION & OPPORTUNITIES

Table 2 compares the effectiveness of the attacks discussed in this
paper against most notable obfuscation schemes. As illustrated the
combination of FALL, Bypass and SMT attack can break all existing
solutions, pointing us to a need for a new direction for generat-
ing non-bypassable SMT hard obfuscation solutions. The dilemma
is that SAT-hard solutions have extremely low output corruption,
and are prone to Bypass, FALL, Removal and SPS attack. On the
other hand, the traditional logic locking schemes have high output
corruption, but could be easily broken with SAT/SMT attack. The
compound logic locking solutions that combine the SAT-hard so-
lutions for resistance against SAT and SMT attack, and traditional
logic locking for resistance against Bypass, FALL, Removal and SPS
attack are also prone to approximate SAT and SMT attacks. What is
really desired, is a SMT-hard logic locking scheme with high degree
of output corruption. As a step in this direction, few very recent
research papers have focused on increasing the execution time of
each SAT/SMT iteration rather than the total execution time [4, 11].
The Full-Lock in [4] is argued that the strength of SAT/SMT solvers
come from their Conflict-Driven Clause Learning (CDCL) ability,
which is resulted by recursively calling Davis-Putnam-Logemann-
Loveland (DPLL) algorithm. Hence, the Full-Lock creates an obfus-
cation method that results in very deep recursive call trees. They
argue that the SAT/SMT attack execution time can be expresses by
formula 1, in which N denotes the number of iterations (DIPs) of
the SAT/SMT attack, Tppr 1 (®) is the execution time of recursive
calls for DPLL algorithm on CNF @, and ¢ is the execution time of
the remaining book keeping code executed at each iteration.

N N N M
Tartack = 9. T() = Y (t+ TpprLr@) = Y. Y (THed)= MN TR, ()

i=1 i=1 i=1j=1
Authors argue that M in formula 1 denotes the number of re-
cursive DPLL calls. Accordingly, the execution time of SAT attack
could also become unfeasible by building an exponential relation
between the percentage gate inserted (area overhead) and M. The

Table 2: Comparison of proposed attacks/defenses.

Defenses RLL FLL SLL Anti-SAT SARLock Compound SFLL Cyclic SRCLock DLL
Attacks] 81 [[32] [15] (5] [6 [10] [23] [28]
Brute Force X x x X X X X X X X
Sensitization[7] vovox X X X X X x
Hill-Climbing[29] ovox X X X X X X X
SAT[20] oo X X x XX X X
SPS+Removal[17][18] X X X v v X XX X X
Bypass[25] X X X v v X XX X X
AppSAT[9] o X X P XX X X
Double-DIP[30] o X X P XX X X
Bit-Flipping[26] v v v v v X X X X
AGR[17] oo v v v X X X X
FALL[31] X X X X X X vooX X X
CycSAT[5] oo X X X X v X X
BeSAT[27] vovov X X X X v X X
TimingSAT(2] v vV X X X X X X v
SMT[12] o/ X X P X v v v

v+ Attack Success, X: Fail to Attack, P: Only removes the key to the traditional locking in Compound Defense.
strong aspect of this alternative solution is that (1) the problems
posed at each iteration of SAT/SMT attack is a SAT-hard problem,
(2) the output corruption of this methods is significantly higher
than obfuscating solution relying on increasing the N, (3) it is not
susceptible to SPS, removal, bypass, approximate attack, to name
a few. The hardness of SAT/SMT attack in the solution posed by
Full-Lock cannot be assessed/formulated similar to that of SFLL.
Moving towards this new direction for generating SAT-hard prob-
lems with high level of output corruption can be generalized more,
where an obfuscation solution in this direction can engineer the
number of recursive calls, pushing the number of recursive call to
be an exponential function of added gates counts (area overhead).

REFERENCES

[1] A. Baumgarten et al. 2010. Preventing IC piracy using reconfigurable logic barriers. IEEE
Design & Test of Computers 27, 1 (2010), 66-75.

[2] A. Chakraborty et al. 2018. TimingSAT: timing profile embedded SAT attack. In ICCAD. 6.

[3] H. M. Kamali et al. 2018. LUT-lock: A novel LUT-based logic obfuscation for FPGA-bitstream
and ASIC-hardware protection. In ISVLSL 405-410.

[4] H. M. Kamali et al. 2019. Full-Lock: Hard Distributions of SAT Instances for Obfuscating
Circuits using Fully Configurable Logic and Routing Blocks. In DAC. 6.

[5] H. Zhou et al. 2017. CycSAT: SAT-based attack on cyclic logic encryptions. In ICCAD. 49-56.

[6] J.Roy et al. 2010. Ending piracy of integrated circuits. Computer 43, 10 (2010), 30-38.

[7] J.Rajendran et al. 2012. Security analysis of logic obfuscation. In DAC. 83-89.

[8] J. Rajendran et al 2015. Fault analysis-based logic encryption. IEEE Trans. on Comp. 64, 2
(2015), 410-424.

[9] K. Shamsi et al. 2017. AppSAT: Approximately deobfuscating integrated circuits. In HOST.
95-100.

[10] K. Shamsi et al. 2017. Cyclic obfuscation for creating sat-unresolvable circuits. In GLSVLSIL.
173-178.

[11] K. Shamsi et al. 2018. Cross-Lock: Dense Layout-Level Interconnect Locking using Cross-bar
Architectures. In GLSVLSI. 147-152.

[12] K. Z. Azar et al. 2019. SMT Attack: Next Generation Attack on Obfuscated Circuits with
Capabilities and Performance Beyond the SAT Attacks. IACR Trans. on CHES (TCHES) (2019),
97-122.

[13] M. Li et al. 2017. Provably secure camouflaging strategy for IC protection. IEEE Trans. on CAD
(TCAD) (2017).

[14] M. Rostami et al. 2014. A primer on hardware security: Models, methods, and metrics. Proc.
IEEE 102, 8 (2014), 1283-1295.

[15] M. Yasin et al. 2016. SARLock: SAT Attack Resistant Logic Locking. In HOST. 236-241.

[16] M. Yasin et. al. 2017. Provably-secure logic locking: From theory to practice. In ACM-CCS.
1601-1618.

[17] M. Yasin et al. 2017. Removal attacks on logic locking and camouflaging techniques. [EEE
Trans. on Emerging Topics in Computing 1 (2017), 1-1.

[18] M. Yasin et al. 2017. Security analysis of anti-sat. In ASP-DAC. 342-347.

[19] M. Yasin et al. 2017. What to lock?: Functional and parametric locking. In GLSVLSL. 351-356.

[20] P. Subramanyan et al. 2015. Evaluating the security of logic encryption algorithms. In HOST.
137-143.

[21] P. Tuyls et al. 2006. Read-proof hardware from protective coatings. In CHES. 369-383.

[22] S. Roshanisefat et al. 2018. Benchmarking the capabilities and limitations of SAT solvers in
defeating obfuscation schemes. In IOLTS. 275-280.

[23] S. Roshanisefat et al. 2018. SRCLock: SAT-Resistant Cyclic Logic Locking for Protecting the
Hardware. In GLSVLSI. 153-158.

[24] T. Winograd et al. 2016. Hybrid STT-CMOS designs for reverse-engineering prevention. In
DAC. 6.

[25] X.Xu etal 2017. Novel bypass attack and BDD-based tradeoff analysis against all known logic
locking attacks. In CHES. 189-210.

[26] Y. Shen et al. 2018. SAT-based bit-flipping attack on logic encryptions. In DATE. 629-632.

[27] Y.Shen et al. 2019. BeSAT: behavioral SAT-based attack on cyclic logic encryption. In ASP-DAC.
ACM, 657-662.

[28] Y. Xie et al. 2017. Delay locking: Security enhancement of logic locking against ic counterfeit-
ing and overproduction. In DAC. 9.

[29] S.M.Plaza and I. L. Markov. 2015. Solving the third-shift problem in IC piracy with test-aware
logic locking. IEEE Trans. on CAD (TCAD) 34, 6 (2015), 961-971.

[30] Y. Shen and H. Zhou. 2017. Double dip: Re-evaluating security of logic encryption algorithms.
In GLSVLSI. 179-184.

[31] D. Sirone and P. Subramanyan. 2018. Functional Analysis Attacks on Logic Locking. arXiv
preprint arXiv:1811.12088 (2018).

[32] Y. Xie and A. Srivastava. 2016. Mitigating sat attack on logic locking. In CHES. 127-146.

[33] A.yeh. 2012. Trends in the global IC design service market. DIGITIMES research (2012).

	Abstract
	1 Introduction
	2 Stage 1: Test-Based Attacks
	2.1 Brute Force Attack
	2.2 Sensitization Attack
	2.3 Random-based Hill-Climbing Attack

	3 Stage 2: SAT Attack
	4 Stage 3: Post-SAT Attacks
	4.1 Removal Attack
	4.2 Signal Probability Skew (SPS) Attack
	4.3 Bypass Attack
	4.4 AppSAT Attack
	4.5 Double-DIP Attack
	4.6 Bit-Flipping Attack
	4.7 AppSAT Guided Removal Attack
	4.8 Sensitization Guided SAT Attack
	4.9 Functional Analysis Attack
	4.10 CycSAT Attack
	4.11 Behavioral SAT (BeSAT) Attack

	5 Stage 4: SMT Attack
	6 Discussion & Opportunities
	References

