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Abstract
Wepropose a quantum repeater protocol and architecture thatmitigates decoherence of the entangled
states by optimizing the quantummemory buffer time. The protocolmaximizes the rate of distillable
entanglement in the average accessed state at all nesting levels. The achievable rate is higher by orders
ofmagnitude in comparison to a canonical protocol that does not optimize the buffer time. The
advantage of the proposed design is observed for all nesting levels of the repeater for technologically
feasiblememory quality, entanglement generation and swapping success probabilities.

1. Introduction

Spatially distributed entanglement is a valuable resource for quantum communication, computing and sensing
[1]. Quantum repeaters (QR) follow a nested divide and conquer strategy to distribute entanglement across large
distances [2, 3]. At each nesting level,first, entangled states are generated probabilistically over smaller segments
and stored in quantummemories at repeater stations. Second, a swapping operation on thememories doubles
the physical range of the entangled state. As statesmake their way up the levels they spend some time, the
memory buffer time, in the decohering quantummemories before being discarded or accessed for use by the
next level. A larger buffer time at any nesting level increases the probability to obtain an entanglement length-
doubled state but decreases the entanglement quality of the average obtained state due to decoherence. These
competing factors determine the entanglement generation rate (EGR)which is the product of the rate of
obtaining entanglement length-doubled states and the entanglement of the average obtained state. An optimal
buffer timemaximizes the EGR.However,most protocols for repeater operation [4] ignore the optimality of
buffer time arising due to the interplay of entanglement generation probability and quantummemory
decoherence [5].

In practice, it is crucial to include quantummemory decoherence forQR that rely on two-way
communication over long distances as shown in [6]. The same reference suggests using decoherence free
subspaces or local encoding and repeater operation in blind-mode to suppressmemory errors. Other interesting
ideas to address this challenge, e.g. addition ofmore physical resources such asmultiplexed quantummemory to
reducememorywaiting time [7]; ormore complicated operations such as quantum error correction to actively
suppress all errors [8–10] are promising in the long term but still very challengingwith current experimental
capability. Besides asking formore physical resources or complicated operations, it is also important to optimize
the parameters ofQRprotocols. For example, dynamic programming has been introduced to explore the huge
parameter space ofQRprotocols, which can successfully identify efficient protocols with significantly boosted
performance in the absence ofmemory decoherence [11]. So far, there is no efficientmethod that can include
quantummemory decoherence and systematically optimize the design parameters ofQRprotocols.

Here, we propose an optimized buffer time protocol (OBP) and architecture thatmaximizes the EGRusing
hierarchically optimized buffer times for all nesting levels. The optimal buffer time depends on the parameters of
quantummemory quality,β, the entanglement generation probability, p, and the swapping success probability,
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pS. Theminimal parametrization chosen in terms of (p,β, pS) subsumes implementation-specific details such
as source-station geometry, coupling and conversion efficiences or the use ofmultiplexedmemories etc
(Entanglement generation probability p, for example, can include source-fiber coupling, wavelength conversion
andmemory read-in efficiency.Memory read-outmay be included in p or swapping success probability pS.)
Wecompare theOBP to a canonical repeater protocol (CP) that does not optimize the buffer time and show
that theOBP improves the EGRby several orders ofmagnitude in the technologically relevant parameter
region.Moreover, we show that the relative improvement due to theOBP increases with the nesting level for
technologically feasible swapping success probability. The protocol works forfinite-lifetime quantummemories
used to store entangled states inQRwhich utilize two-way classical communication between its nodes to verify
entanglement generation before entanglement swapping is performed.

The layout of the paper is as follows. Section 2first describes the central idea of the optimizedmemory buffer
time protocol in section 2.1 followed by the definition of optimalmemory buffer time in section 2.2 and
comparisonwith a canonical protocol in section 2.3. Section 3 presents aQR architecture compatible with
hierarchical optimization of buffer times in section 3.1. Section 3.2 then describes an algorithm that can be used
for the hierarchical optimization. Further, section 3.3 shows the comparison of the EGRs for theOBP compared
to theCP for all nesting levels. Section 4 concludes the paper with a discussion of the typical advantage onemay
expect usingOBPwhen usedwith state of art parameters.

2.QRprotocol with optimizedmemory buffer time

In this sectionwe describe the optimizedmemory buffer time protocol by focusing on the first nesting level, in
section 2.1, of a potentiallymulti-level QRnetwork.While quantummemoriesmay also suffer from
decoherence due to depolarization and loss, we consider dephasing as the onlymode ofmemory decoherence.
This highlights the central physical ideawhile keeping the discussionmathematically simple. The optimal buffer
time is described in section 2.2. A comparison of EGRs of the optimized and canonical protocols is presented in
section 2.3.

We term a repeater protocol that does not optimize its quantummemory buffer time as a canonical protocol,
for example, those in [5] and [6]. Aswith the optimized protocol, in canonical protocols entanglement
generation and swapping occur probabilistically. For comparisonwith the optimized protocol, the distinctive
feature of canonical protocols is that the quantummemories canwait for arbitrarily long times for successful
entanglement generation. The rate of entanglement generation in such protocols is inversely proportional to the
expected number of entanglement generation attempts needed for success, as shown in appendix A. Subsequent
to entanglement generation, for both the canonical and optimized protocols, purification of the generated
entangled pairsmay be performed ifmultiple quantummemories at a given nesting level are available at the
repeater nodes. In this paper, we compare the protocols without considering purification of entangled states on a
finite number of quantummemories. Thus, we compare the two protocols on a single-copy basis and use the
distillable entanglement of the average state in the respective protocols as ameasure of the entanglement quality.

2.1.Optimizedmemory buffer time protocol at thefirst nesting level
Operationally, the optimizedmemory buffer time protocol can be understood by considering the entanglement
swapping of states across two elementary segments at thefirst nesting level in aQR,figure 1. Sources S12 and S34
supply entangled states with probability, p, to the decohering quantummemory pairs (1, 2) and (3, 4). The
memory lifetime is denoted by τM. Entanglement swapping at the repeater station,C, is performed via informed
Bell-statemeasurements.C checks the two pairs ofmemories verifyingwhether they are chargedwhich requires
waiting for one unit of one-way classical communication time, τC=L0/c, with c the speed of light in the fiber
and L0 the length of the segment. If both pairs are charged,C performs a swapping operation on thememories 2
and 3with success probability, pS, producing an entangled state across the remotememories 1 and 4.

Figure 1.Aquantum repeater with two segments at nesting level 1.Quantummemory pairs 1, 2 and 3, 4 store entangled states
produced by sources S12 and S34 for entanglement swapping, green rectangle, at repeater stationC.
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Information about the success or failure of the swapping operation is then communicated to the remote
memories taking an additional time τC. In caseCfinds thememory pairs uncharged (one or both) it classically
communicates the need to continue entanglement generation attempt in the segment(s) to the remotememories
which also requires τC amount of time. TheOBP limits the number of such entanglement generation attempts to
a number nopt(p,β, pS), determined by the operating parameters, after which the state from the remote
memories is accessed. Subsequently all fourmemories are refreshed and the entanglement generation process
starts over. TheCP on the other hand places no limit on the number of entanglement generation attempts which
continue till a state is obtained in both segments.

By limiting the buffer time, theOBP provides an average remote entangled state with a highmeasure of
entanglement since the time formemory decoherence is limited. The entanglement generation in the two
segments can succeed at step numbers,  k k n1 ,1 2 , where n is themaximumnumber of attempts and the
probability distribution of successful entanglement generation is  = - + -( ) ( )k k p p, 1 k k

1 2
2 21 2 .Without loss of

generality, we assume that thememory pairs in the two segments offigure 1 are supplied with the state,
r y y= ñá- - -∣ ∣, where, y ñ = ñ  ñ∣ (∣ ∣ )01 10 2 . Storing the ρ− state in a pair of quantummemories with
lifetime τM for time t results in the state, r r r= + + -t t- - + -( ) ( ) ( )t 1 e 2 1 e 2t t2 2M M , where
r y y= ñá+ + +∣ ∣. The remote state obtained after a successful swap and communication to the remotememories
1 and 4 is

r b r b r= + + -D + - D + +( ) ( ) ( ) ( )∣ ∣ ∣ ∣k k,
1

2
1

1

2
1 , 1S k k

1 2
2 2

where b = t t-e 2 C M is thememory quality parameter that quantifies the decoherence in a pair of quantum
memories during one round of one-way classical communication, andΔk=(k2−k1). ρ

S(k1, k2) approaches the
totallymixed state exponentially fast withΔk. Thus, the states for largeΔk contribute little to the entanglement
of the average state. The state in equation (1) further decoheres in the remotememories for a time, t=2τC(n−
max(k1, k2)), before being accessed, and leads to the state r r b= + +- D + + -( ) ( )∣ ∣ ( )k k, 1 2n

S k n k k
1 2

2 max ,1 2

r b-+ D + + -( )∣ ∣ ( )1 2k n k k2 max ,1 2 . The average remote entangled state is the probabilistically weighted sumof such
states,  r r= å-

= = ( ) ( )k k k k, ,O
k k
n n

n
S1

1, 1
,

1 2 1 21 2
, where  = - -( ( ) )p1 1 n 2 is the total probability of obtaining

a remote entangled state across the two segments in n attempts. The average remote entangled state can be
expressed in a compactmanner as (see appendix A),

r g b r g b r= + + -- +( ( )) ( ( )) ( )p n p n
1

2
1 , ,

1

2
1 , , , 2O O O

which has afidelity of b r r g b= = +-( ) { } ( ( ))F p n p n, , tr 1 , ,O O O1

2
and is obtained once every tn2 C period

of time. The function γO(p,β, n)ä[0, 1] can be physically interpreted as the degradation infidelity of the
average state due tomemory decoherence during the buffer time. For perfect quantummemories,β=1, and
γO(p,β, n)=1.

2.2.Optimalmemory buffer time
As an entanglementmeasure for themixed state, ρO, we use the upper bound on its distillable entanglement,

= + -⎡⎣ ⎤⎦[ ] ( ( ))E F H F F1O O O1

2
.5 for  >F1 0.5O andE[FO]=0 for  F.5 0O , where

= - - - -[ ] ( ) ( ) ( )H x x x x xlog 1 log 1 is the binary entropy function. E[FO] expresses the number of pure
Bell states that the best distillation protocol can achieve in the limit of asymptotic number of copies. For ρO the
bound can be achieved using the hashing protocol [12]. The EGR is thus given by the rate of distillable
entanglement

b
t

b=
- -

( )
( ( ) )

( )
[ ( )] ( )R p n

p p

n
E F p n, ,

1 1

2
, , . 3O S

n

C

O
DE

2

The optimal buffer time, nopt, maximizes this rate for given p andβ values, i.e.

b b=( ) [ ( )] ( )n p R p n, ArgMax , , . 4n
O

opt DE

with the obvious condition that b( )n p, 1opt . Note that the optimal buffer time found using (4) is obtained in
units of the two-way classical communication time 2τC. The behavior of the optimal buffer time, nopt(p,β), in
different regions of the (p,β) parameter space is described in appendix B.While the optimal buffer time at the
first nesting level depends only on the entanglement generation probability p and thememory quality parameter
β, for higher nesting levels it depends also on the swapping success probability of the previous level pS. In this
paper, for simplicity, we assume that the parameters p,β, pS remain constant for all nesting levels. However,
our analysis outlined in section 3 can be used to address various distributions of the parameters. In case of
multiplexed quantummemories [7], expression (4) can be used to determine the optimal buffer time by using
the effective entanglement generation probability between the nodes. Also, note that the asymptotic value of the
fidelity, b g b= +( ) ( ( ))F p n p n, , 1 , ,O O1

2
, is at least 0.5 when dephasing is the onlymode of decoherence.
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Indeed, dephasing is the dominantmode of decoherence for repeater-relevant timescales in quantummemories
basedonnuclear spins in diamondNVcenters and thehyperfine electron levels in ion traps [13].However, when
loss anddepolarization are also considered, the asymptoticfidelity can fall below thedistillable entanglement
threshold ofFO>0.5. The optimizedmemory buffer time protocolworks in this general case aswell but now the
maximummemory buffer time,nmax, is limited by the threshold condition,FO(p,β,nmax)>0.5.

2.3. EGR comparison of the optimized and canonical protocols
To compare the EGRs of the optimized and canonical protocols we next obtain the average remote entangled
state of the canonical protocol. The average remote entangled state in the canonical protocol has a lowmeasure
of entanglement since it is an average over states that have decohered in thememories for arbitrarily long times.
The average state, r r= å = =

¥ ¥ ( ) ( )k k k k, ,C
k k

S
1, 1
,

1 2 1 21 2
, again takes a compact form (see appendix A)

r g b r g b r= + + -- +( ( )) ( ( )) ( )p p
1

2
1 ,

1

2
1 , . 5C C C

Such states offidelity b r r g b= +-( ) ≔ { } ( ( ))F p p, tr 1 ,C C C1

2
are obtained at the rate of the inverse of the

waiting time á ñ = - -( ) ( )k p p p3 2 2 [14]. The EGR in the canonical protocol is

b
t

b=
á ñ

( )
( )

[ ( )] ( )R p
p

k
E F p,

2
, . 6C S

C

C
DE

The optimized buffer time protocol providesmanifold increase of EGRs inmost of the (p,β)-parameter
space, even at thefirst nesting level, as shown infigure 2. In particular, for the low p,β-region the ratio,
h b b b= ~( ) ( ) ( )p n R p n R p p, , , , , 1O C

opt DE opt DE (see appendix C). Only forβ∼1, i.e. for near-perfect
quantummemories, does the canonical protocol provide better rates. The optimal buffer time, nopt, depends on
the operating point in parameter space. For short-lived quantummemories,β= 1, it is numerically found that
nopt=1. For long-lived quantummemories,β→1, and low entanglement generation probability, p→0, the
optimal buffer time scales as, b t t~ =- -( ) ( )( )n p plog 1 1 2M Copt

1 1 .

3.Hierarchical buffer time optimization-compliant repeater architecture

Wenowpresent a repeater architecture which can operate all its nesting levels based on the optimizedmemory
buffer time protocol in section 3.1. This is followed by a description of the algorithm to hierarchically optimize
the buffer time in section 3.2. The section ends by presenting a comparison of the EGRs of the optimized and
canonical protocols for all nesting levels in section 3.3.

3.1.Optimization-compliant architecture for all nesting levels
AQRarchitecture capable of supporting hierarchical optimization of buffer times requires a new set of quantum
memories at each nesting level as shown infigure 3. The average remote entangled state output by nesting level i
is transferred to the newquantummemories at level (i+1) for i=1, 2,K, (Nm−1), whereNm is the

Figure 2. Logarithm (base 10) of the ratio of entanglement generation rate in the optimizedmemory buffer time protocol, RO
DE, to that

in the canonical protocol, RC
DE, at thefirst nesting level. Dottedwhite lines are contours with h =[ ]log 2, 1, 0 from left to right.
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maximumnesting level. This transfer can be achieved by using a two-qubit quantumSWAP gate [15]. Infigure 3
the quantummemories are labeled by the nesting level as superscript and the node label as subscript, for
example, ( )mE

1
1
denotes quantummemory number 1 at thefirst nesting level of node E. Thememories at any level

follow theOBPwith an optimal buffer time that is determined by the effective probability withwhich it receives
entangled states andmemory quality parameter relative to its classical communication time. All levels follow the
informedBell-statemeasurement procedure followed by communication to the remotememories just as in the
first nesting level described earlier. The state output by a nesting level is therefore the probabilistically weighted
sumof the average state received from the previous level. Periodic SWAPoperations between two quantum
memories at a node, for example, between  ( ) ( ) ( )m m mE E E

1 2 3
1 1 1

infigure 3, are used to feed forward the average

state to the quantummemories of the higher nesting level.
The nesting levels in such an architecture can bemodeled as a sequence of self-similar input-output systems,

Î ¼{ } { }( )S i N, 1, 2, ,i
i m , as shown infigure 4. Each system is characterized by its classical communication time

t t= -( ) 2C
i i

C
1 andmemory quality parameter b b= -( )i 2i 1

. Further, for each system S( i) the input-cycle time ( )n i
in

specifies the number of two-way classical communication cycles overwhich it receives one average state from
the previous systemwith probability ( )p i

in
. This takes t( ) ( )n 2i C

i
in amount of time. The output-cycle time ( )n i

out is the
buffer time for system S( i) in terms of the number of input-cycles for system S( i), i.e. one average state is output
by the system in t( ) ( ) ( )n n 2i i

C
i

out in amount of timewith probability ( )p i
out. Any system S( i) is able to receive or output an

average state only at the end of a time period that is amultiple of its two-way classical communication cycle time.
Two adjacent systems S( i) and S( i+1) are synchronized if the physical times at which the i’th systemoutputs its
average state corresponds to the physical times at which the (i+1)’th system can receive the state. Therefore,
successive input-cycle times and output-cycle times have to obey the condition for synchronization of the

Figure 3.Quantum repeater architecture based on the optimized buffer time protocol. Shown are three nesting levels (i=1, 2, 3) and
9 repeater nodes (A−I). A new set of quantummemories (blue ovals) are required at each nesting level. Green rectangles represent
entanglement swapping operations. Entanglement length-doubled states obtained at any level are transferred to the quantum
memories of the next level using coherent operations (red arrows).

Figure 4.Organization of nesting levels in a quantum repeater architecture as a sequence of self-similar systems. Each system S( i) is
characterized by the one-way classical communication time t( )

C
i and itsmemory quality parameterβ( i). S( i) receives a state r( )i

in with
probability ( )p i

in
every t( ) ( )n i

C
i

in amount of time from the preceding system S( i−1). S( i) outputs a state r( )i
out with probability

( )p i
out every

( )n i
out

of its input cycles.
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systems, t t= + +( ) ( ) ( ) ( ) ( )n n n2 2i i
C
i i

C
i

out in in
1 1 , which implies

=+ ( )( ) ( ) ( )n n n 2, 7i i i
in

1
out in

for i=1,K,Nm−1, so that ( )n i
in,out are positive integers, and =( )n 1in

1 . The output probability of system S( i) is

related to its input probability as = - -[ ( ) ]( ) ( ) ( )
p p p1 1i

s
i n

out in
2i

out with =( )p pin
1 .While the input probability of

system S( i) is related to the output probability of system S( i−1) as = -( ) ( )p p pi
T

i
in out

1 , where pT is the probability to

successfully transfer states from thememories of one nesting level to the next, and =( )p pout
0 tomaintain

consistency.
The average remote entangled state ρO, ( i) obtained in theOBP based architecture at any nesting level i

depends on the parameter values for the preceding levels, i.e. on t b{ }( ) ( ) ( )n, ,C
j

C
j j

in for  j i1 . In addition, it
depends on the initial entanglement generation probability, p, the swapping success probability, pS, and the
transfer success probability, pT. This state

 
r

g
r

g
r=

+
+

-
= - = +

- -[ ] [ ]
( )( )

( ) ( )1

2

1

2
, 8O i j

i O j
j

i O j

, 1
, 2

1
, 2i j i j

is obtained once every t( ) ( ) ( )n n 2i i
C
i

in out amount of time. γO, ( j) as a function of the relevant parameters can be found
in the supplementarymaterial. Physically, g ( ) 1O j, can be understood as the degradation of thefidelity during
the buffer time at nesting level j. ρO, ( i) has afidelity r r g= = + -

=
-{ } ( [ ] )( ) ( ) ( )F tr 1O i O i

j
i O j, ,

1
, 2i j

/2. This

fidelity approaches the distillation threshold of 1/2 as (1/2) g =
-[ ]( )

j
i O j

1
, 2i j

, which accounts for the degradation
in all nesting levels prior to i. Therefore, the EGRof system S( i) is


t

g
=

+
=

-⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

[ ]
( )( )

( )

( ) ( ) ( )

( )

R
p

n n
E

2

1

2
. 9O i

i

i i
C
i

j

i O j

DE
, out

in out

1
, 2i j

3.2.Hierarchical optimization ofmemory buffer time at every nesting level
In a repeater withNm levels the final EGR can bemaximized by hierarchically optimizing buffer times of all
nesting levels.We search over the set of positive integers { }( ) ( )n n,i i

in out , subject to synchronization condition
constraints, equation (7). The optimization proceeds bymaximizing the EGR sequentially starting fromnesting
level 1. If at any nesting level, i, the optimal value for = [ ]( ) ( )( )n RArgMaxi

n
O i

out,opt DE
,

i
out

does not satisfy the

synchronization condition one of the neighboring values, Î - +˜ { }( ) ( ) ( )n n n1, 1i i i
out,opt out,opt out,opt whichever

provides a higher ( )RO i
DE
, , is chosen and used for calculating +( )n i

in
1 and +( )p i

in
1 . This procedure is followed for all

nesting levels upto i=Nm and produces an approximately-optimal synchronized sequence of ( )n i
in and ( )n i

out. A
repeater operating its nesting levels based on the sequence of approximately-optimal buffer times still
givesmanifold increase of EGR as shown by the logarithmof the ratio of the rates at nesting level i,

h b b b=[ ( )] [ ( ) ( )]( ) ( ) ( )p n R p n R plog , , log , , ,i O i C i
DE
,

DE
, , infigure 5.

Figure 5. Logarithm (base 10) of the ratio of entanglement generation rate for the optimized buffer time protocol and the canonical
protocol at different nesting levels for p=0.02,β=0.2, pT=1 and two different values of pS=0.75 (blue dots) and pS=0.5 (red
triangles). The buffer times of the nesting levels were approximately optimal in both cases.
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3.3. Comparison of optimized versus canonical protocol at any nesting level
In the canonical protocol all nesting levels operate on the same set of quantummemories and successive levels do
not use new set ofmemories. An average remote entangled state at any level is obtained after thewaiting time
for that level. The next level receives the average state from the previous level as soon as it is obtained, i.e. no
synchronization conditions are used. The average remote entangled state in the canonical protocol obtained at
any nesting level i is given by an expression identical to equation (A.7)with g ( )C j, replacing γO, ( j). Physically,
γC, ( j) can be understood as the degradation in thefidelity due to thewaiting time at nesting level j. The EGR in
the canonical protocol is given by (see appendix A)




t

g
=

á ñ

+

=

=
-⎡

⎣
⎢⎢

⎤

⎦
⎥⎥( )

[ ]
( )( )

( )

R
p

k
E

2

1

2
, 10C i S

j

i
j C

j

i C j

DE
,

1

1
, 2i j

where á ñ = - -( ) ( )k p p p3 2 21 is thewaiting time at thefirst nesting level due to the initial entanglement
generation probability, and á ñ = - - "( ) ( )k p p p j3 2 2 2j S S S is thewaiting time due to the swapping success
probability at the second nesting level and higher.

Themanifold increase in the EGR in the optimized buffer time protocol compared to canonical protocol is
seen at all nesting levels if the swapping success probability pS is low,figure 5.On the other hand, if pS is high then
the canonical protocol can yield better rates for higher nesting levels. InOBP the probability factor on the right
hand side of equation (9) scales as, ~ ( ) ( )( )p p pi

S
i

out
2i, for p=1, whereas the time to obtain a state goes as,

t t= +( ) ( ) ( )n n 2 2i i
C
i i

Cin out
1 , for =( )n 2i

out taken as an example. This implies a low probability of obtaining a remote
entangled state per unit time. In theCP, the probability factor pS in the RHS of equation (10) is constant.
However, the time to obtain a state, t t á ñ = á ñ á ñ=

-( ) ( )k k k2 2j
i

j C
i

C1 1 2
1 , can divergemuch faster than that in the

OBP, 2i+1τC in our example. This happens if thewaiting time due to the swapping success probability,
 á ñ "k j2 2j , which implies p 0.64S . In this case, the probability to obtain a remote entangled state per

unit time in theCP can be even lower than that in theOBP.Moreover, the degradation in the fidelity,
g =

-[ ]( )
j
i X j

1
, 2i j

, forX=O,C in the two cases hasmaximum contribution from initial nesting levels. As
discussed earlier theOBP yields a 1/p-factor increase of EGR at thefirst nesting level itself. Therefore the
advantage due toOBPpersists for thefirst few nesting levels till a crossover nesting level even if pS is high. At the
crossover nesting level, the EGRof the optimized buffer time protocol becomes equal to or less than that of the
canonical protocol. If pS is low then the logarithmof the ratio of rates in the two protocols diverges with the
nesting level. In practice, one can use the explicit expressions for the rates provided in equation (9) and (10) to
numerically evaluate the performance of the protocols at each nesting level.

The advantage of the optimized buffer time protocol can be observed by plotting the logarithmof the ratio of
EGRs, h b[ ( )]( ) p nlog , ,i

opt , versus the distance between repeater nodes at the first nesting level as shown in
figure 6. The repeater is placedmidway, at a distance of L0 from either end node, figure 1.We assume that the
entanglement generation probability varies with the distance as = -p e L La0 with the attenuation length La=
20 kms. Thememory quality parameter then varies as b = t-( )( )e L L L ca a M0 where the speed of light infiber is
taken to be c=2×108ms−1.We choose two differentmemory lifetimeswith values of τM=100μs (green
curve) and τM=1ms (blue curve). The latter shows that a hundred fold improvement in EGRs is obtainedwith

Figure 6. Logarithm (base 10) of the ratio of entanglement generation rate for the optimized buffer time protocol and the canonical
protocol versus the distance between the repeater nodes, L0, at thefirst nesting level. The green curve is obtained formemory lifetime
τM=100μs and the blue curve for τM=1ms.
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1ms quantummemories when the repeater is at a distance of 100 kmswhereas the increase is even higher in the
former case.

4.Discussion and conclusion

Wepresented aQR architecture and protocol thatmitigates quantummemory decoherence. The protocol
optimizes the buffer time of the quantummemories based on the operating point in parameter space.We
showed the hierarchical optimization of the buffer time at all nesting levels. The resulting increase of EGRs by
many orders ofmagnitudewas demonstrated. Crucially, the improvement was achievedwith state of art physical
resources. For example, with current technology, entanglement generation probability of p;10−4

–10−5,
memory lifetime of τM;10−1ms, swapping success probability pS;0.5 and transfer probability pT;1 are
feasible [15–17]. If repeater stations are spaced at intervals of L0=20 km, corresponding to the attenuation
length in optical fibers, the one-way classical communication time τC=L0/(2×105 km s−1)=10−1ms
equals thememory lifetime. Thememory quality parameter then isβ=0.135. In this region of parameter space
the optimized buffer time protocol yields (104–105) increase in the EGR. The proposed optimized buffer time
protocol performs particularly well in the technologically feasible parameter regions and could facilitate broad
applications in the future development of quantumnetworks such as for interferometry [18] and secret
sharing [19].
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AppendixA.Derivation of the average state in the optimized buffer-time protocol and the
Canonical protocol

The decoherence in a pair of identical quantummemories with a lifetime τM, due to dephasing, occurs at the
rate 2/τM.Wewill denote the phase decoherence superoperator byDt. Thus for an initial stored state,
r y y= ñá- -∣ ∣0 , we have

r r r r= = +- + + -( ) ( ) ( ) ( ) ( )t D P t P t , A.1t 0

with  t -≔ ( )P 1 e 2t2 M .
We assume that our heralded scheme of entanglement swapping succeedswith a probability pS. Under the

swapping operation Ŝ for a pair of 2-qubit states ρ(t1) and ρ(t2) stored in the two pairs ofmemories for times t1
and t2 we have the output state conditioned on heralding to be

r r r r r r

r r r r

r r r r
r r

r r

= + +

= +

+ +
= + + +
= + + +

- + + - - + + -

- - + + - + + -

+ - - + + + - -

- - + + - + - - + +

+ - - +

ˆ [ ( ) ( )] ˆ [( ( ) ( ) )( ( ) ( ) )]
( ) ( ) ˆ [ ] ( ) ( ) ˆ [ ]

( ) ( ) ˆ [ ] ( ) ( ) ˆ [ ]
( ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( ))

( ) ( ) ( )

S t t S P t P t P t P t

P t P t S P t P t S

P t P t S P t P t S

P t P t P t P t P t P t P t P t

P t t P t t

,

, ,

, ,

, A.2

1 2 1 1 2 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

wherewe have used the linearity of the swap operation in the second line and the equalities r r =+ +ˆ [ ]S ,
r r r=- - -ˆ [ ]S , , r r r r r= =+ - - + +ˆ [ ] ˆ [ ]S S, , .
The probabilistic process of charging a pair ofmemories with the state y ñ-∣ succeeds at some step number k.

This can happen for possibly different step numbers k1, k2 for the two pairs ofmemories shown infigure 1 of the
main text. Assuming k k1 2, the latter pair ofmemories still stores the state for a time t2=τC, i.e. for one
classical communication time. The earlier charged pair stores the state for a time t1=(k2−k1)2τC+τC.
Therefore, the correspondence of storage times to step numbers is

t t
t

 - +


( )
( )

t k k
t

2
. A.3

C C

C

1 2 1

2

Thus, t+  - +( ) (∣ ∣ )t t k k 1 2 C1 2 2 1 for all k1, k2.
In theOBP the average accessed state ρO is a probabilistically weighted sumof states obtained after

swapping, the states that have been stored in the two pairs of quantummemories, subject to the condition on the
charging step numbers -∣ ∣k k n2 1 . The probability distribution of successful entanglement generation has
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the form  = - + -( ) ( )k k p p, 1 k k
1 2

2 21 2 . The formof the remote entangled state ρ S(k1, k2) after the swap is given
by equation (A.2)with t+  - +( ) (∣ ∣ )t t k k 1 2 C1 2 2 1 for all k1, k2. One also needs to account for the
decoherence suffered in the two remotememories after a swapped state is obtained untill thememories are
refreshed after n cycle times. This state obtained after the swap, equation (A.2), further decoheres in the remote
quantummemories at the two ends for a time, tn={2(n−max(k1, k2))+1}τC, and leads to the state
r r=( ) ( ( ))k k D k k, ,n
S

t
S

1 2 1 2n
. Thus the average state in the optimized protocol is given by

å
r

r g b
r

g b
r=

- -
=

+
+

-= = - +
( ) ( )

( ( ) )
( ) ( ) ( )

k k k k

p

p n p n, ,

1 1

1 , ,

2

1 , ,

2
, A.4O k k

n n
n
S

n

O O
1, 1

,
1 2 1 2

2
1 2

where γO(p,β, n) is given by

g b b
b

b b
=

- - - -
( )

( ( ) )
( )

( )( )
( )p n

p

p

f p n

q q
, ,

1 1

, ,
, A.5O

n
3

2 2 2 2

with b b b b b b b= + - - + - + - + -+( ) ( ( )) ( ( ))f p n q q q q q q q, , 1 2 2 1n n n n2 2 2 2 2 2 2 2 2 , q=(1−p),
and b = t t-e 2 C M . Note that the function f (p,β,n)has q=β,β2 as roots and thus the factors in the denominator
of equation (A.5)donot cause any singular behavior. For perfect quantummemoriesβ=1 so thatγO(p,β,n)=0.
Forp=1,γO(p,β,n)=β2n+1which ismaximumforn=1 andβ<1.

The state in equation (A.4) is the output of the first nesting level and is denoted as ρO, (1). Second nesting level
receives the average output state from the first nesting level and outputs a probabilistically weighted average state
with the probability defined by the input probability for the second level. The probability distribution at any
nesting level, i, is given by

 = + -( ) ( ) ( ) ( )( ) ( ) ( )k k p q, A.6O i i i k k,
1 2 in

2
in

21 2

with = -(( ) ( )q p1i i
in in

). The average state obtained in the optimistic protocol at any nesting level depends

on the sequence of values of the parameter sets t t t t= ¼¯ { }( ) ( ) ( ), , ,C C C C
i1 2 , b b b b= ¼¯ { }( ) ( ) ( ), , , i1 2 ,

= ¼¯ { }( ) ( ) ( )n n n n, , , i
in in

1
in
2

in , the initial charging success probability p, the swapping success probability pS, and
the transfer success probability pT. This state is obtained by iterating the process of averaging over the states
received from the previous nesting level and normalizing by the appropriate probability normalization factor
resulting in

 
r

g
r

g
r=

+
+

-
= - = +

- -[ ] [ ]
( )( )

( ) ( )1

2

1

2
. A.7O i j

i O j
j

i O j

out
, 1

, 2
1

, 2i j i j

In the above expression the explicit dependence of γO, ( j) on the relevant parameter values are suppressed for
brevity. The actual expression forwhich is

 åg b= -

=

- + +( )[ ] ( )( ) ( ) ( ) { ( ) }

( )

( ) ( )
k k, , A.8O j

k k

n
O j j n n k, 1

, 1

,
1 2

2 2 1

j

j j

1 2

out

in out 1

where  = å = ( )( )( )
k k,k k

n j
, 1 1 2

j

1 2

out .

In theCP, the average obtained state is a probabilistically weighted sumof states over all possible storage
times in the two pairs ofmemories. The state obtained after the swap operation is given by equation (A.2)with

t+  - +( ) (∣ ∣ )t t k k 1 2 C1 2 2 1 for all k1, k2. The obtained swapped state decoheres during time τC in the two
remotememories resulting in the state, r r= t( ) ( ( ))k k D k k, ,r

S S
1 2 1 2C

, since the results of the swap operation have
to be communicated to the end nodes. Therefore, theCP average state is

år r
g b

r
g b

r= =
+

+
-

= =

¥ ¥
- +( ) ( ) ( ) ( ) ( )k k k k

p p
, ,

1 ,

2

1 ,

2
, A.9C

k k
r
S

C C

1, 1

,

1 2 1 2

1 2

where the function γC(p,β) is given by

g b b
b b

b
=

- +
- -

( ) ( )
( )( )

( )p p
q q

q q
,

1 2

1 1
A.10C 3 2

2 2

2 2

with b = t t-e 2 C M and q=1−p. Again, forβ=1, γC(p,β)=1 and for p=1, γC(p,β)=β3. The expected
number of steps to obtain an entangled state in both involved segments is given by

å å åá ñ = + =
-
-=

¥
-

=

¥
-

= +

¥

( ) ( )
( )

( )( )k kp q p q k q
p

p p
2

3 2

2
. A.11

k

k

k

k

k k

k

1

2 2 1

1

2 2

1
2

1

1

2 1

2

The average state after any nesting level in theCP is obtained by iterating the averaging procedure at every
nesting level. The probability distribution at the first nesting level is determined by the entanglement generation
probability. For the second and higher nesting levels the probability distribution is determined by the swapping
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success probability. Thus

 = =+ - + -( ) ( ) ( )( ) ( )k k p q k k p q, , , . A.12C k k C i
S S

k k, 1
1 2

2 2 ,
1 2

2 21 2 1 2

By iterating the averaging procedure at each nesting level using the above probability distributions we get the
formof the average state for any nesting level

 
r

g
r

g
r=

+
+

-
= - = +

- -[ ] [ ]
( )( )

( ) ( )1

2

1

2
, A.13C i j

i C j
j

i C j

out
, 1

, 2
1

, 2i j i j

where

åg b b= 
=

¥ ¥
á ñ -=

-
( )[ ] [ ] ( )( ) ( ) ( ) ( ) ( )( )
k k, , A.14C j

k k

C j j k k k,

, 1

,
,

1 2
3 1 2

l

j
l

1 2

0

1
2 1

with á ñ =k 10 , á ñ = - -( ) ( )k p p p3 2 21 , á ñ = - -( ) ( )k p p p3 2 2l S S S for l 2.
In both theOBP andCP, if the initial entangled state across the elementary segments has afidelity of f, i.e.

ρ0=fρ−+(1−f )ρ+, then the output states equation (A.7) and equation (A.13) include thefidelity factor f in
their coefficients. Thus for theOBP γO, (1)→fγO, (1), while for theCP γC, (1)→fγC, (1). Our results reman
unchanged for any value of the initial fidelity.

For a repeater withNmnesting levels, OBP requires -+( )2 2 2N 2m memories whereas CP requires +2N 2m

quantummemories. Thus, theOBP requires atmost twice asmany quantummemories as theCP. The EGRper
memory used is still higher by orders ofmagnitude in theOBP in the relevant regions of parameter space.

Appendix B. Ratio of rates and optimalwait-window size

TheOBPprovides higher EGRs than theCP formost regions of the b( )p, -parameter space, as shown infigure 2
of themain text. The size of the optimal wait-window in terms of cycle time depends on the operating point in
the (p,β)parameter space, figure (B1).

We identify several regions:

• Long-lived quantummemories, low entanglement generation probabilities ( b p 0, 1). In this region,
figure (B2) suggests the scaling of nopt∼1/p.

• Short-lived quantummemories, high entanglement generation probabilities (p→1,β→0). In this region,
the best schedule of course is the rapid reset strategy with nopt=1.

• Short-livedmemories, low entanglement generation probabilities (p→0,β→0). In this region, figure (B3)
suggests that rapid resettingwith nopt=1 constitutes the best schedule.

• Long-lived quantummemories, high entanglement generation probabilities (p→1,β→1). In this region,
the best schedule also turns out to be the rapid reset strategy nopt=1. Forβ;1 theCP provides better EGRs
than theOBP.

Figure B1.The optimal wait-window size in the optimized buffer time protocol depends on the location in parameter space. Shown
here is the ratio of entanglement generation rates for b( )p, =(0.1, 0.9) in blue, (0.1, 0.4) in green and (0.05, 0.8) in red. The
sequences of blue, red and green dots have itsmaximumat nopt=3, 2, 1 respectively.
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AppendixC. Ratio of EGRs for nesting levelN= 1

TheOBP and theCP can be comparedwith respect to the EGRwhich is themaximum rate of distillable
entanglement. Herewe compare the distillable EGRs in the two protocols at the first nesting level, i=1, in the
p→0,β→0 region.Wefind approximations for the rates

b
t

b

b
t

b

=
-

-

=
- -

( ) ( ) [ ( )]

( ) ( ( ) ) [ ( )] ( )

R p
p p p

p
H x p

R p n
p p
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H x p n

,
2

3 2
, ,

, ,
1 1

, , , C.1

C S

C

O S

C

n

DE 1

DE

2

2

where g b= + -( ( ( )) )x p n1 1 , , 2O
2

2 , and g b= + -( ( ( )) )x p1 1 , 2C
1

2 . In the p→0,β→0
region both g g , 1C O so that b g b» -( ) ( ( ))x p p, 1 , 4C

1
2 , b g b» -( ) ( ( ))x p n p n, , 1 , , 4O

2
2 ,

γC(p,β)≈β3p/2, γO(p,β, n)≈β3/n2.We nowuse the property of binary entropy that, - =( )H x1
 ( )H x x, 0 1and a small x approximation, » ( ) ( )H x x e x xlog , 02 . Further, we approximate p

(2−p)/3−2p≈2p/3 and - - »( ( ) )p n np1 1 n 2 2.We also know fromour numerical investigations (and
analytical results) that in this region nopt=1. Putting all this togetherwe get

h b
b

b
b
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= =
=

»
-
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( )
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( ) ( )
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R p n
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, , 1
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log 16 6log 2log
. C.2

O
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DE opt
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2 2

2 2 2

For p,β values of technological relevance the above ratio is well approximated as 1/p, shown infigure (C1).

Figure B2. Scaling of the optimal wait-window size nopt (blue dots)with the charging success probability p for a fixed value of
β=0.99. A scaling of nopt∼1/p is observed as p→0while nopt=1 for p>.5.

Figure B3. Scaling of the optimal wait-window size nopt (blue dots)with thememory parameterβ for a fixed value of p=0.01. A
scaling of b~ - ( )n 1 logopt is observed asβ→1while nopt=1 for b .7.
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