
3D Capsule Networks for Object Classification
from 3D Model Data

Ayesha Ahmad, Burak Kakillioglu and Senem Velipasalar
Electrical Enginnering and Computer Science Department

Syracuse University
Syracuse, NY, USA

{aahmad,bkakilli,svelipas}@syr.edu

Abstract—Many of the existing object classification methods
today rely on convolutional neural networks (CNNs), which are
very successful in extracting features from the data. However,
CNNs cannot sufficiently address the spatial relationship between
features and require large amounts of data for training. In this
paper, a new architecture is proposed for 3D object classification,
which is an extension of the Capsule Networks (CapsNets) to
3D data. Our proposed 3D CapsNet architecture preserves the
orientation and spatial relationship of the extracted features,
and thus requires less data to train the network. We compare
our approach with a ShapeNet inspired model, and show that
our method provides performance improvement especially when
training data size gets smaller. We also compare and evaluate
several different versions of the 3D Capsnet architecture.

Index Terms—Capsule networks, 3D, object classification.

I. INTRODUCTION

Object recognition is a process for identifying an object in
a digital image, 3D space or video. Object recognition algo-
rithms typically rely on matching, learning, or pattern recog-
nition algorithms using appearance-based or feature-based
techniques. Object recognition comprises a deeply rooted and
ubiquitous component of modern intelligent systems. The
application of the technology related to 3D object recognition
and analysis is increasing day-by-day. Moreover, the effec-
tiveness of 3D object recognition is increasing as researchers
are developing and implementing new algorithms, models and
approaches. Application areas for which 3D object recognition
is used include manufacturing industry, video surveillance,
autonomous driving, urban planning, safety and control, and
augmented reality.

Many of the existing 2D and 3D classification methods
rely on convolutional neural networks (CNNs), which are
very successful in extracting features from the data. However,
CNNs cannot sufficiently address the spatial relationship be-
tween features due to the max-pooling layers, and they require
large amounts of data for training. Deficiency of data is a
pronounced concern while training using a pure CNN-based
architecture. The problem becomes even more pronounced
when it comes to 3D data. There is a dearth of annotated

The information, data, or work presented herein was funded in part
by National Science Foundation (NSF) under Grant 1739748 and by the
Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of
Energy, under Award Number DE-AR0000940. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

datasets available for 3D data to train models, with even fewer
training data. Despite the advent of 3D sensors, the number
of 3D datasets for classification is low. Most commonly used
datasets contain artificial data created from Computer Aided
Design (CAD) models. 3D CAD has several benefits, since
it allows visualization and optimization of designs, avoids
unnecessary costs due to human error, and provides repro-
ducibility of the experiments under various conditions such as
different viewpoints, different sizes etc. One such dataset is
ModelNet [1].

It is indeed a challenge to be able to use the data collected
from 3D scanners by first constructing 3D models and then
recognizing objects in these models. There has been sev-
eral CNN-based approaches for object classification from 3D
data. However, CNN-based approaches require larger datasets.
Capsule Networks (CapsNets) [2] have been introduced re-
cently and has been tested on the MNIST [3], CIFAR [4]
and Small NORB [5] datasets, which are 2D datasets with
images. Capsules have encoding for poses and orientations
of the object, i.e. neural activities are different for same
objects with different poses. Results in [2] show that Capsule
Networks are better at identifying multiple objects and also
at generalizing among viewpoints than CNNs. The motivation
behind development of capsules is close depiction of neurons
arrangement in the brain.

In this paper, we propose a 3D CapsNet architecture,
extended for 3D data, to address the problem of 3D object
classification from 3D volumetric data. We also compare and
evaluate several different architectures. The results show that
3D CapsNet provides promising results, which are better than
a CNN-based approach, especially when smaller size training
dataset is used.

II. RELATED WORK

Despite its 2D structure, a depth image contains spatial
information in 3D world. With the advent of 3D sensing
devices, depth image understanding became popular in the
literature. The intensity values in a depth image represent
the distance of the object from a viewpoint. You can color
code these to visually represent the close and far objects
efficiently. Although depth images contain spatial information
about the object or environment and are used for many 3D
vision tasks, depth image-based methods are often regarded

�����������	�
������������	�
������������� �������������

as 2.5D approaches. Different from this, 3D voxel grid-
based approaches were presented in the literature. One of
the first examples of voxel grid-based 3D classification works
is ShapeNet [1], wherein point clouds of CAD objects are
voxelized into 30×30×30 grids, and a CNN architecture, with
3D convolutional and 3D max pooling layers, is presented.
Similar to 2D CNNs, it has stacked fully-connected layers after
convolutional layers for object class prediction. VoxNet [6]
approach also voxelizes every object from 12 viewpoints into
32×32×32 voxel grids. Different from [1], they define three
different encoding schemes for occupancy grid generation.

In addition to depth image-based and 3D voxel grid-based
approaches, there are other methods for 3D object classifica-
tion. PointNet [7] proposes a CNN that accepts raw point cloud
data, and thus does not require voxelization. They sub-sample
2048 points from each point cloud, and give them as input
object to CNN. They predict an affine transformation matrix
by a mini-network and directly apply this transformation to the
coordinates of input points. Another approach, MVCNN [8],
uses 2D rendered images of 3D point clouds from many differ-
ent viewpoints around gravitational axis. They train 2D CNNs
to classify each render and train another CNN for aggregating
multiple views better. Panorama [9], extracts panoramic view
of 3D objects and defines a CNN architecture for predicting
the classes of objects from their panoramic representations.

III. CAPSULE NETWORKS

A. Capsules

A capsule is a group of neurons, which together perform
internal computations on inputs, and encapsulate the output
into a small vector, which is capable of representing different
properties of the same entity. In [2], the deficiencies of
previous object classification methods, such as CNNs and
Scale Invariant Feature Transform (SIFT) [10], are discussed.

CNNs, in general, are invariant to features but not equivari-
ant. Equivariance is the detection of objects that can transform
to each other. For instance, if an object is rotated at an angle,
then by the property of equivariance, capsules can recognize
that the object is rotated at that angle, without necessitating
training with that variation of image. This is a unique quality of
capsules over its predecessor, CNNs, which required training
with all variations of the object such as orientation, pixel
intensities, scale etc.

Capsules have two primary components. One is the locally
invariant probability that an entity is present. Second is the set
of the instantiation parameters, also known as pose, that are
equivariant. It is important to have these two constituents be-
cause they help in recognizing the whole object by recognizing
their parts.

B. Squashing Function

The squashing function is applied to output of capsule to
normalize the length of capsule vectors. It is a non-linearity
function just like ReLU, Sigmoid, etc. However, unlike ReLU,
which works well with scalars, squashing function has proven
to work better with vectors which are the output of capsules.

The function squashes capsules, which are essentially vectors
of activations, to 0 if the output is a short vector and tries
to constrain the output vector to 1 if the vector is long. The
squashing function is defined in equation (1).

υj =
‖ sj ‖2

1+ ‖ sj ‖2
‖ sj ‖
‖ sj ‖2 (1)

C. Dynamic Routing Algorithm

A routing algorithm is used to resolve which capsule gets
activated for the incoming data. Dynamic routing is a very im-
portant networking technique that helps select a path according
to the real-time layout changes. Dynamic routing algorithm is
employed between the primary and class capsule layers and is
used to achieve an agreement between the primary and class
capsule layers. Dynamic routing helps to strengthen prediction
value by using an agreement protocol. The lower level capsule
sends its input to the higher level, which agrees with its input.
Weight matrices are updated using this agreement between
the two levels of capsules. The routing algorithm performs
a similar function as the max pooling layer. However, while
the max pooling layer chooses the most prominent features
eliminating the non-prominent ones, the routing algorithm
does not eliminate the features, but routes to the right feature
instead.

D. Decoder

The decoder takes the output of the class capsules and
reconstructs the object from it. Main purpose of having a
decoder after final capsule layer is to enhance the encoding
ability of the capsule network and better represent the object
in the smaller domain. Therefore, a weighted reconstruction
loss term is added to the overall loss that penalizes inaccurate
reconstructions of an object so that network optimizes itself
to better represent the objects in the final capsule layer.

LR =
1

30× 30× 30

∑

i∈voxelgrid

(Xi − Ri)
2 (2)

is the loss for single object where X ∈ G3 is the given object
and R ∈ G3 is reconstruction where G = {0, 1}.

In [2], authors use two fully connected layers to reconstruct
digits from the digit (class) capsules. Besides, by default,
they used true class label in the reconstruction rather than
the predicted one.

E. Loss Function

Sabour et al. [2] introduced margin loss to optimize the
training of Capsule Networks. The margin loss for each
capsule is defined as follows [2]:

Lk = Tkmax(0,m+−||vk||)2+λ(1−Tk)max(0, ||vk||−m−)2

(3)
where k denotes the class capsule index, and Tk is 1 for true
class. As in [2], we set m− = 0.1, m+ = 0.9 and λ = 0.5.
Therefore, for C-many classes, overall loss function for batch
size of N is defined as:

���

loss =
1

N

N∑

i=0

C∑

k=0

Li
k + γLi

R (4)

where γ is scale-down factor, set to 0.4, for reconstruction loss
term.

Reconstruction loss is used as regularization to learn a
global linear manifold between a whole object and the pose of
the object as a matrix of weights via unsupervised learning. As
such, the translation invariance is encapsulated in the matrix
of weights, and not in the neural activity, making the neural
network translation equivariant.

IV. PROPOSED METHOD

Our method is an extension of Capsule Networks [2] to
3D volumetric data, and will henceforth be referred to as 3D
CapsNets.

A. 3D Capsule Networks

Our 3D CapsNet consists of several layers. Fig. 1 shows
an example 3D CapsNet architecture. The Convolution layer
extracts the basic features in the 3D data to create activities for
these features. 3D convolutions involve filters of 3 dimensions
(x, y and z), and thus are also known as spatial convolutions.
This filter is moved in the three dimensions producing 3D
output. In our implementation, a batch normalization [11]
is used after convolutional layers. Primary capsule helps in
implementing inverse graphics. We used Leaky ReLU activa-
tion in convolutional layers and in the primary capsule layer.
Hierarchy of parts is a concept used, which explains that
a higher level visual entity is present if several lower level
visual entities can agree on their predictions for its pose. In
the concept of capsules, lower level capsule helps the higher
level predict if an entity is present. Primary capsules are
thus bottommost level of the multi-dimensional objects. Class
capsule has 16D output per object class. Dynamic routing
algorithm is employed between the primary and class capsule
layers to achieve an agreement. A non-linear squash function
is used within the routing algorithm in order to change the
length of vector to less than one, yet preserving the direction

Fig. 1. 3D Capsule Network (Architecture-1)

Fig. 2. Base Model architecture with two 3D convolutional layers, each
followed by a max-pooling layer and ReLU activation, and 2 fully-connected
layers.

of the vector, thereby representing the weights as probabilities
with direction.

A decoder mechanism is also added in our model in order
to reconstruct the object to calculate reconstruction loss during
training. There are three fully connected layers in our model’s
decoder. Fully connected layers use ReLU activation except
the last one which uses Sigmoid activation.

V. EXPERIMENTAL RESULTS

A. ModelNet Dataset and Benchmark

Princeton ModelNet project [1] provides a comprehensive
collection of 3D CAD models of objects covering most com-
mon object categories. In this work, we have used the 40-class
subset as well as the 10-class subset of the full dataset. The
object classes in the 10-class subset are bathtub, bed, chair,
desk, dresser, monitor, nightstand, sofa, table, and toilet. 40-
class subset has additional 30 object categories. Number of
samples in 10-class subset and 40-class subset are 4900 and
147,732, respectively.

B. Base Model

In our experiments, we used a base model architecture,
similar to the 3D CNN architecture in ShapeNet [1], to
compare with our model. We used this base model to show
that the integration of capsule layers will boost the 3D object
classification performance, even with smaller training data.
The base model, shown in Fig 2, has two convolutional layers,
max pooling layers, and two fully connected layers instead of
capsule layers. It employs 3D maxpooling layers for dimension
reduction and rotational/translational invariance.

C. Different 3D CapsNet Configurations

We have defined four unique architectures to measure the
effects of different configurations of convolutional and capsule
layers. Each configuration is given in Table I. 3D convolu-
tional layers (Conv) have various kernel sizes with stride 1
in different architectures. Primary capsule layers (P.C.) have
7×7×7 kernel with stride 1. First fully connected layers (FC)
in decoder part of 3D CapsNets have length 512 and second
fully connected layers, if any, have length 1024. Last FC layers
have dimension of 30× 30× 30 for the reconstructed object.
Each 3D CapsNet architecture and base model is trained on

����

Architecture 2

Architecture 3

Architecture 4
Fig. 3. Different 3D CapsNet Architectures.

TABLE I
3D CAPSNET CONFIGURATIONS

Arch L1 L2 L3 L4 L5 L6 L7

Base Conv MP Conv MP FC FC

1 Conv P.Caps Caps FC FC FC

2 Conv Conv P.Caps Caps FC FC FC

3 Conv P.Caps Caps FC FC

4 Conv P.Caps P.Caps Caps FC FC

the same training set which contains 40% of the ModelNet-10
dataset. Accuracy results are given in Table II.

D. Discussion of Experiments

We have made an extensive set of experiments with four
different 3D CapsNet architectures with different number of
layers and configurations. These architectures are summarized

in I and illustared in Fig. 3. We trained our models on both
ModelNet10 and ModelNet40 with varying training/test size
ratios. In our analysis, we observed that the best overall
performance is achieved by Architecture-3, which has the
most shallow structure. It is because capsule layers are very
successful at capturing better representations.

TABLE II
PERFORMANCE COMPARISON WITH 40% TRAINING DATA

ModelNet-10 ModelNet-40

Base Model 88.30% 85.60%

Arch 1 90.75% 88.70%

Arch 2 90.63% 87.28%

Arch 3 91.37% 89.66%

Arch 4 91.30% 87.38%

VI. CONCLUSION

In this paper, we have proposed 3D Capsule Network
solutions to perform object classification from 3D data, which
is present in the form of 3D binary occupancy grids. We
have proposed shallow architectures that can recognize objects
better than shallow architectures based on pure convolutional
neural networks. We have used 3D convolutional layers to
extract the features and proposed capsule architectures to
capture the spatial relationships in the 3D data better. It is
claimed that Capsule Networks require less training data.
We have been able to prove this to be true for 3D data as
well in our experiments. We have compared our approach
with ShapeNet on the ModelNet dataset, and showed that our
method provides performance improvement especially when
training data size gets smaller. With only 40% training data, we
have been able to achieve 91.37% accuracy for ModelNet10
and 89.66% for ModelNet40.

REFERENCES

[1] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1912–1920.

[2] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Advances in Neural Information Processing Systems, 2017,
pp. 3856–3866.

[3] Y. LeCun, “The mnist database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/, 1998.

[4] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[5] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” in Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, vol. 2. IEEE, 2004, pp.
II–104.

[6] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network
for real-time object recognition,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015,
pp. 922–928.

[7] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, vol. 1, no. 2, p. 4, 2017.

����

Fig. 4. Examples of three correct prediction (left) and three false prediction (right)

[8] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp. 945–
953.

[9] K. Sfikas, T. Theoharis, and I. Pratikakis, “Exploiting the PANORAMA
Representation for Convolutional Neural Network Classification and Re-
trieval,” in Eurographics Workshop on 3D Object Retrieval, I. Pratikakis,
F. Dupont, and M. Ovsjanikov, Eds. The Eurographics Association,
2017.

[10] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Computer vision, 1999. The proceedings of the seventh IEEE interna-
tional conference on, vol. 2. Ieee, 1999, pp. 1150–1157.

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

����

