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Abstract—Cloud providers continue to expand and diversify
their collection of leasable resources to meet the needs of an
increasingly wide range of applications. While this flexibility is
a key benefit of the cloud, it also creates a complex landscape
in which users are faced with many resource choices for a given
application. Suboptimal selections can both degrade performance
and increase costs. Given the rapidly evolving pool of resources,
it is infeasible for users alone to select instance types; instead,
automated methods are needed to simplify and guide resource
provisioning. Here we present a method for the automatic predic-
tion of application performance on arbitrary cloud instances. We
combine offline and online profiling approaches, using historical
data gathered from non-cloud environments and targeted profil-
ing runs on cloud environments to create a composite application
model that can predict run times on a given cloud instance type
for a given input data size. We demonstrate average error of
17.2% across nine applications used in production bioinformatics
workflows. Finally, we evaluate an experiment design approach
to explore the trade-off between the cost of profiling and the
accuracy of our models. Using this approach, with no prior
knowledge, we show that using 4 selectively chosen experiments
we can achieve performance within 30% of a model trained using
all instance types.

Keywords—Cloud profiling, performance prediction, instance
selection, transfer learning

I. INTRODUCTION

The pervasiveness of on-demand, pay-as-you-go cyber-
infrastructure now makes it possible to acquire appropriate
resources for most applications at the click of a button. The
enormous and ever-growing selection of resources provided by
cloud platforms is a key reason for this success. For example,
Amazon Web Services (AWS) alone now provides over 100
distinct instance types, each a virtual computer with specific
resource capabilities (e.g., CPU, memory, disk, and network).
However, without expert knowledge of both the inner workings
of an application and the capabilities of all available instance
types, it is difficult to select the best (from the perspectives,
for example, of cost, performance, or reliability) instance type
for a given application. Moreover, selecting the wrong instance
type can greatly reduce application performance or be unneces-
sarily expensive [1], [2]. Thus, the need for expert knowledge
is a significant obstacle to effective cloud computing.

While prior work has focused on the related problem
of predicting application performance in homogeneous [3],

[4] and heterogeneous [5], [6] environments, there has been
relatively little prior research focused on the extremely hetero-
geneous cloud computing environments. Given the enormous
search space—a near infinite combination of applications,
configurations, and instance types—it is infeasible for users
to estimate how an application might perform on a given
instance type or with a particular configuration. Instead, new
automated methods are needed to predict performance given
features describing the application and available instance types.

Here we focus on predicting the execution performance
of various genomics applications when deployed on arbitrary
cloud instance types and with different input datasets. We
explore a set of nine genomics applications used in two pro-
duction workflows to elucidate a range of different execution
characteristics. We explore and then combine two different
approaches for measuring and predicting performance: the first
without any prior knowledge of an application and the second
when prior execution history is available from a non-cloud
environment. To address the needs of the first case, we present
an automated, parallel profiling system that can adaptively
conduct experiments to explore the search space. In the sec-
ond, we develop a composite function to merge two distinct
models and apply a transfer learning approach to calibrate this
model in a cloud environment. This reuse of external histories
allows us to bootstrap our prediction models without requiring
extensive experimentation on cloud instances. Collectively, our
models obtain a mean absolute percent error (MAPE) across 9
genomics applications of 17.2%. Finally, given the potentially
high cost of exhaustive profiling experiments, we explore
an experiment design-based approach to selectively choose
instance types on which to profile performance. Our results
show that with as few as 4 experiments we can achieve within
30% MAPE of the best accuracy when conducting experiments
on every instance type.

The remainder of this paper is organized as follows. In
Section II we motivate our work by describing two real-world
bioinformatics workflows and a set of nine bioinformatics
applications. We outline our profiling approach in Section III.
In Section IV we summarize our profiling datasets before pre-
senting and evaluating our predictive models in Section V. In
Section VI we explore active experiment design to investigate
the trade-off between profiling accuracy and profiling costs.
Finally, we discuss related work in Section VII and summarize
our contributions in Section VIII.



II. BACKGROUND

The last several years have seen remarkable advances in
bioinformatics and genomics, with data-intensive and com-
putational methods leading to new discoveries [7]. As a by-
product of these new approaches, combined with increasing
sample sizes, modern bioinformatics is no longer possible on a
personal laptop. Instead, significant computing resources, such
as those offered by compute clusters and cloud providers, are
required for most analyses. However, the dynamic and murky
bioinformatics software landscape can lead some researchers
to make ill-advised decisions concerning scientific objectives,
computational needs, and in turn, budget. Beyond simply
selecting the right application for a task, many applications
perform quite differently on heterogeneous resources due to
inherent bottlenecks and complex configuration options.

Computational genomics research is often conducted using
scientific workflows that comprise many distinct applications.
Each of these applications may perform widely different tasks,
from computationally intensive variant calling to memory in-
tensive sorting, and for each task there are myriad comparable
applications, each with different performance, accuracy, and
associated costs. The performance of an application is primar-
ily related to its configuration and input dataset combined with
its ability to make use of available resources. In many cases the
time required to execute a workflow can vary by several orders
of magnitude. For example, the same genotyping workflow
when used to analyze a relatively small exome (tens of GBs) on
modest resources (16 CPUs, 32 GB RAM) takes approximately
4 hours, however when applied to an entire human genome
(hundreds of GBs) this time increases to more than 24 hours.

We focus on genomics workflows, as they are commonly
executed on cloud platforms and the individual applications
exhibit vastly different characteristics. Specifically, we seek to
model application performance on instance types with vastly
different capabilities and when using various input datasets.
The aim of our work is to predict performance such that it
can be used to optimize and automate resource selection as
well as understand trade-offs between execution time and cost.
To explore this space, we focus on two production genotyping
workflows that analyze NGS Illumina sequencing data through
the SwiftSeq framework [8].

A. SwiftSeq

SwiftSeq is a computational framework for developing
highly parallel and efficient processing workflows of DNA
sequencing data. It is implemented as a polyglot program
in Python and uses either the parallel scripting language
Swift [9] or the parallel scripting library Parsl [10] for ex-
ecution. SwiftSeq is designed for usability with a focus on
sleek interfaces that expose bioinformatics processes while
abstracting the complexities of parallel programming. SwiftSeq
allows researchers to compose arbitrary workflows using a
suite of best practice applications. It codifies these workflows
in a simple JSON format which can be easily modified to tune
performance, switch algorithms, and change parameters. Swift-
Seq provides a library of best practice workflows. These are
highly optimized workflow definitions for both germline and
tumor-normal pair analyses. SwiftSeq’s parallel engines mean
that there is no difference to the user between analyzing one

or one thousand samples. SwiftSeq tasks are both reliable and
robust, providing built-in fault tolerance through fine-grained
failure detection and the ability to restart workflows. These
advantages are some of the many reason why SwiftSeq is
rapidly becoming a common tool in bioinformatics. It has been
used to analyze many thousands of genomes across dozens
of sites. In one example, SwiftSeq was used on Beagle2,
a supercomputer at the University of Chicago, to uniformly
align and call genetic variants on over 11,000 exome and
500 genome sequencing samples, a once Herculean under-
taking that required large consortia [11]. These harmonized
datasets have allowed researchers to better understand clinical
disparities in Nigerian breast cancer patients [12] as well as to
show that the high burden of inherited, deleterious mutations
is associated with earlier cancer diagnoses [13].

B. Genotyping workflows

A common use of SwiftSeq is for genotyping, the process
of discovering genetic differences between individuals and
reference sequences. Standard genotyping workflows include
multiple applications with quite different resource require-
ments, from long-lived, memory intensive applications to oth-
ers that are short and CPU intensive. SwiftSeq is designed to be
flexible and therefore different genotyping workflows can be
easily defined by swapping alternative implementations of the
same function. For example, researchers often use different, or
multiple, variant callers, such as Platypus and HaplotypeCaller.
These workflows can be used to analyze both exomes and
genomes. In the remainder of the paper we primarily focus
on the analysis of a single ∼10 GB exome dataset, using two
common variants of the genotyping workflow (Platypus and
HaplotypeCaller). The genotyping workflows are comprised
of the following nine applications with each implementing
distinct bioinformatics tools.

• BwaMem [14]: Uses BWA MEM to map low-
divergent sequences against large reference genomes.

• RgMergeSort: Groups of aligned reads are combined
via mergesort (Sambamba [15]) and output is split into
contig (chromosomal) BAM files with BamUtil.

• PicardMarkDuplicates [16]: Uses Picard Tool’s
MarkDuplicates utility to remove duplicate reads from
each contig BAM file.

• IndexBam: Indexes a BAM file using Samtools [17]
to improve search efficiency.

• PlatypusGerm [18]: Calls germline variants with
Platypus.

• HaplotypeCaller [19]: Calls germline variants with
HaplotypeCaller.

• ContigMergeSort: Performs a Sambamba mergesort to
combine contigs.

• SamtoolsFlagStat: Extracts alignment metrics via
Samtools [17] Flatstat.

• ConcatVcf: Concatenates multiple VCF (Variant Call
File) files into a single output VCF file.



III. PROFILING

The ability to create, and tune, machine learning models
is dependent on sufficient training data. To obtain this training
data we explore two possible approaches. The first relies on
exploiting information obtained from executions on external
resources (e.g., a local cluster or supercomputer); the second
uses an automated profiling approach to conduct experiments
to measure performance on different instance types, with
different configurations, and different input data.

A. Profiling using external histories

Scientific workflows are often developed and executed in a
variety of environments before transitioning to the cloud. This
prior execution information can be used to develop predictive
models that can later be mapped to cloud environments using
transfer learning. In the case of SwiftSeq we have obtained
nearly one million task executions on Beagle2, a Cray XE6 su-
percomputer. Specifically, we have collected detailed execution
traces and input metadata for variant calling workflows used to
process tumor-normal pairs for over 2,100 exome sequencing
samples. The input exome datasets range in size between 2 GB
and 40 GB and have between 1 and 12 distinct readgroups.
This dataset provides a basis to investigate how the applications
behave when processing different input data. This workflow is
subtly different from the genotyping workflows presented in
Section II-A as it replaces the two variant callers, Haplotype-
Caller and Platypus, with two somatic variant callers, specific
to tumors, called Mutect and Strelker. However, we ignore
these applications when building and evaluating our models so
as to retain models only on the applications that are consistent
across both sets of data.

B. Profiling using automated experiments

In the absence of prior executions and to gather cloud-
specific execution data we also explore proactive experiments
to collect execution information. To do so, we have developed
a parallel profiling system that is able to provision arbitrary
cloud instances and then parameterize, execute, and monitor
executions on those instances. We build upon our prior work
creating an automated profiling service [20], [21] to develop a
simplified parallel profiling system.

Our parallel profiling system is built using Parsl, a paral-
lel scripting library for Python. Parsl allows for the simple
construction of parallel scripts that are comprised of both
Python and external command line applications. Parsl manages
the execution of the script on arbitrary execution environ-
ments including laptops, supercomputers, and clouds. We use
Parsl to construct simple scripts to execute a given SwiftSeq
application on a set of cloud instances using various input
datasets and settings. Using Parsl’s AWS executor, we define
the set of instance types and a preconfigured Amazon Machine
Image (AMI) with all applications preinstalled. Parsl uses these
settings to provision cloud instances from the spot market.
When the spot request is granted, Parsl deploys an IPyParallel
engine on the instance. This engine connects back to the Parsl
executor and begins accepting profiling jobs. Our profiling
system then dispatches jobs in the form of Python scripts
to the instance. Each Python script, dynamically configures
the execution environment by first downloading the input data

from S3, installing the Python Resmon tool to record resource
usage, configuring the execution environment, and customizing
the SwiftSeq execution script. This process enables us to
dynamically set execution parameters, such as the memory
allocated to a specific application or the number of SwiftSeq
processes to deploy. We customize these values for each
instance type to reflect its capabilities and available resources.

Immediately prior to invoking the SwiftSeq workflow the
profiling script installs Resmon to capture resource statistics
and utilization counters for CPU, memory, disk, and network
utilization. Resmon is configured to run as a daemon, collect-
ing data every second and appending it to a local file. Once
the SwiftSeq workflow completes the profiling script renames
both the SwiftSeq and Resmon logs and publishes them to an
S3 bucket.
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Fig. 1: The execution profile of a Platypus genotyping work-
flow executed on an m4.4xlarge instance. The starting time
of each application is denoted by a vertical dotted line.

We have used the profiling system to execute the genotyp-
ing workflows on 14 distinct AWS EC2 instance types with
varying resource capabilities. We focus specifically on the M4,
R4, and C5 instance families, ranging from 2 to 72 vCPUs and
from 2 GB to 488 GB of memory. The CPU and Memory
utilization from one execution of the Platypus genotyping
workflow is shown in Fig. 1. The figure highlights the distinct
applications that comprise the workflow and exemplifies their
different execution characteristics.

IV. MEASURING APPLICATION PERFORMANCE

The performance of a bioinformatics application can de-
pend on a wide range of features, from input data size to
the application’s ability to take advantage of multiple cores.
In this section we briefly review the performance of our
nine genomics applications when executed on the Beagle2
supercomputer and on EC2.

A. Application performance on cloud instances

We used the profiling system described in Section III-B
to deploy and monitor the two genotyping workflows across
14 different instance types from three instance families. Each
experiment was repeated at least three times. The profiling
system captures both Resmon resource utilization counter
values and, via the SwiftSeq execution log, the start and
end time for each process executed by a workflow. As some
applications are parallelized and start multiple processes, we



aggregate processes by name to compute the total execution
time of a given application.

Fig. 2 shows the range of execution times for each applica-
tion across the 14 instance types. Execution times range from
less than five seconds (ConcatVcf) to more than nine hours
(HaplotypeCaller). We see that some applications are more
sensitive to instance type than others. For example, IndexBam
has a maximum-to-minimum execution time ratio of 19.4 (i.e.,
the longest execution time was 19.4 times more than the
shortest), whereas SamtoolsFlagstat’s ratio is only 1.23.

Fig. 3 illustrates the relationship between execution time,
CPU, and memory for several applications, highlighting the
different instance families. We note several observations. First,
while some applications are CPU and/or memory bound (e.g,
BwaMem, ConcatVcf), some display constant performance
irrespective of resources (e.g., RgMergeSort), and others seem
to be unrelated to available resources (e.g., PlatypusGerm).
Second, scaling relationships are most obvious within an
instance family and performance is often proportional to
the price of the instance (e.g., as shown in Fig. 4 for the
HaplotypeCaller genotyping workflow). And third, there are
significant performance differences between instance families
as evidenced by different execution times when using instance
types with relatively similar resources.

Fig. 5 shows how the total workflow performance differs
across instance types and instance families as a result of the
cumulative application performance in the workflow, in this
case Platypus. We see that performance typically increases
within an instance family up until a point at which additional
resources do not improve performance. Note also that the
workflow performs best on the compute-optimized (C5) family
of instances. It is these relationships that we aim to capture in
the models presented in Section V.

B. Application performance on a supercomputer

We have analyzed the SwiftSeq execution logs from over
2,100 exome tumor-normal variant calling workflows, con-
sisting of over 900,000 successfully executed tasks on ho-
mogenous resources. We have aggregated the execution data
to extract each application’s execution history and combined
these with the workflow metadata to associate information
regarding the input data size.

Fig. 6 shows the relationship between execution time and
input data size for several applications. These figures highlight
the highly variable performance irrespective of input data size.
While we expected to see some differences, the observed
results differ by several orders of magnitude in some cases. It
is possible that resource contention affected performance. For
example, execution of thousands of concurrent applications,
many of which that have not been designed for parallel execu-
tion and that access shared reference genomes or inefficiently
access files stored on a shared file system is one potential rea-
son for this contention. Furthermore, Beagle2 is a production,
multi-tenant supercomputer, and therefore execution may be
affected not only from contention among SwiftSeq workflows,
but also from external, unknown usage.

V. PREDICTIVE MODELS

Based on the data collected in the previous section we
now develop models to predict execution time given instance
type and input data size. We present three distinct models:
first, using data generated by the profiling system we create
a model to predict application execution time on a given
instance type; second, we use execution traces from the
Beagle2 supercomputer to model the execution time of an
application given different input data size; finally, we combine
these two models to construct a composite model to predict
execution time given arbitrary input data size and instance type.
The respective model parameters are reinitialized and then
fitted with unique values in every run to ensure independence
between evaluations. We evaluate these models by using the
deviation of the actual execution time from the predicted value
from the respective regressions. We then calculate the mean
absolute percent error (MAPE) for each model respectively.

A. Instance type model

We see in Fig. 3 that some applications scale well with
respect to resources, while others do not. Of those that do scale
well, they tend to scale well within instance families, where
the amount of memory per core is constant between instance
types. Based on the observations in the previous section, we
developed a regression-based model to predict execution time
for each application and instance type.

To profile each of these applications, we implemented a
regression using SciPy’s curvefit function which uses nonlinear
least squares. Based on the observed nature of how these
applications scale, we selected the formula below to capture
and fit scaling from both available memory and vCPUs.

f(vCPUs,RAM) =
1

a ∗ vCPUs+ b ∗RAM
+ c

Regressing this equation using parameters a, b, and c over our
data, we can represent the portion and magnitude of the scaling
that is dependent on vCPUs and memory, respectively. The
structure of this regression also allows us to create composite
functions, as discussed in Section V-C. Finally, fitting only
three parameters allows initial fitting with limited quantities
of data, as well as a fitting process that can be performed in
milliseconds on a commodity laptop.

Evaluation of our model on the two genotyping work-
flows, containing nine individual applications, we were able
to achieve a fit with a mean absolute percent error (MAPE)
of 17.2%. Individual accuracy for each of the applications
is reported in Tables I and II for the Platypus and Haplo-
typeCaller workflows, respectively. In these tables, we also
provide a baseline MAPE that is calculated in reference to
the application’s mean performance. We use this as a baseline
as it functions as a random selection analogue given that the
expected performance of a randomly selected instance will be
the mean performance. An example of how our model fits the
BwaMem application is shown in Fig. 7. Most applications
achieve a mean validation error of less than 20% and those that
do not achieve such accuracy exhibit the highest dependence
on instance family qualities, like compute optimization and
memory per core. Such a fit shows that the execution of these
workflows on AWS is both dependable and predictable and
that our model is suitable for providing accurate performance



Fig. 2: Average application performance across instance types.

(a) BwaMem (b) ConcatVcf

(c) PlatypusGerm (d) RgMergeSort

Fig. 3: Execution time for four genomics applications with identical input data, on instance types with varying numbers of vCPUs
and varying amounts of memory.

TABLE I: Model accuracy for Platypus workflow

Application MAPE SD Baseline MAPE
BwaMem 8.0 6.8 33.7
RgMergeSort 10.6 6.3 10.6
PicardMarkDuplicates 10.3 7.9 68.2
IndexBam 34.7 21.3 57.5
PlatypusGerm 33.3 26.2 76.0
ContigMergeSort 13.5 16.1 56.5
ConcatVcf 30.5 34.9 51.2
SamtoolsFlagStat 8.8 3.2 9.4

predictions across a diverse range of applications and instance
types.

TABLE II: Model accuracy for HaplotypeCaller workflow

Application MAPE SD Baseline MAPE
BwaMem 12.0 16.1 40.8
RgMergeSort 8.4 6.6 8.4
PicardMarkDuplicates 11.8 9.9 64.9
IndexBam 44.0 50.0 142.4
ContigMergeSort 26.1 21.9 31.0
ConcatVcf 8.2 5.8 10.4
SamtoolsFlagStat 9.8 8.5 14.5
HaplotypeCaller 5.7 4.8 144.1

B. Data size model

Given the varied performance measurements from exe-
cution on Beagle2 we choose to model execution behavior
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Fig. 4: The performance and cost of performing the entire
HaplotypeCaller genotyping workflow when using different
AWS instance types.

Fig. 5: Execution time for the Platypus workflow across
instance type, grouped by instance family.

based on only the highest performance executions. This is
appropriate as the highest performance successful executions
can be assumed to be those with the least contention and
thus the most representative of an execution performed on a
dedicated resource. We thus fitted a lower bound to capture
the “best case” runs (as shown in Fig. 6).

We use a similar regression model to that defined above,
but with an additional variable exponent, l, in the denominator
because larger input data sizes typically take longer to run (i.e.,
this is a growth model) and different applications scale with
different computational complexities:

g(size) =
k

sizel
+m

= k × size−l +m

To fit the lower bound, we binned the data and retained
the smallest values within each bin. The exact number of
bins and values retained were calculated dynamically on an
application by application basis to maximize accuracy. To
avoid overfitting, a condition was added that we needed to

TABLE III: Model accuracy for lower bound fit

Application MAPE SD
BwaMem 5.4 5.1
RgMergeSort 1.4 1.0
PicardMarkDuplicates 8.0 5.4
IndexBam 14.5 8.7
ContigMergeSort 4.3 4.0
SamtoolsFlagStat 12.6 10.0

retain at least twice the number of observations as we have
parameters in our model. This quantity was selected as it
forced binning optimization away from selecting increasingly
larger bins while being low enough to allow the data binning
process to still include data from each bin, thereby ensuring a
level of representativeness. Due to the much larger quantity of
data and the increased complexity of the regression equation,
the mean fitting time for this model was 0.032 seconds running
on a commodity laptop.

Using this model, we were able to achieve relatively good
lower bound fits. Table III shows the accuracy for each of
the applications. Note: we include only applications executed
before the variant callers as these workflows used alternative
variant calling algorithms. In each case, the mean absolute
percent error is below 15% and in two cases (RgMergeSort
and ContigMergeSort) is below 5%. We believe this represents
an adequate lower bound fit and, as such, allows for fair
representation of optimal runtime.

C. Combining performance models

We developed the two models f and g defined above by
using manual profiling on cloud instances and historical data
from Beagle2, respectively. We now seek to combine these
models so that we can use them to predict performance on
arbitrary instance types given arbitrary input data sizes. To do
so, we apply a transfer learning approach in which we first
define a composite function such that the input for one model
is the output from another and then transfer the data size model
to the cloud by training on a single observation (i.e., instance
type). While this approach requires the addition of an internal
regularization constant (within the exterior function to allow us
to fit the models at the point of known overlap), the composite
function allows us to easily relate scaling factors resonating
from both of the respective models:

G(size, vCPUs,RAM) = f(vCPUs,RAM)× g(size)× r

To create this three-dimensional model, we retain the
crucial scaling parameters from both models and solve for r,
which is our new regularization factor. This is possible as we
used a single 10 GB input file to train our function f(). The new
regularization factor can be trained using only one additional
runtime observation. We selected one instance at a time from
our validation set and trained for r using that observation while
keeping all other parameters constant. Iterating through all
possible instance types from our validation set allows us to find
the expected value for model error (MAPE) had we selected
a single instance type from the set randomly. We validated
our model using the BwaMem application and found a mean
MAPE of 38% and a minimum of 22.9%. Our combined
model performs best for small and compute optimized instance



(a) BwaMem (b) ContigMergeSort (c) IndexBam

(d) PicardMarkDuplicates (e) RgMergeSort (f) SamtoolsFlagstat

Fig. 6: Execution time vs. input data size for six common applications executed on Beagle2. Each dot indicates an execution of
the application. The line shows a fitted lower bound.

Fig. 7: The fit for the BwaMem application given different
resource capabilities.

types, with only 16xlarge or larger instance types having a
MAPE greater than 32%. This shows that we can successfully
use the data type model (trained on executions in a non-
cloud environment) by adding a single observation from cloud
execution to construct a multi-dimensional model with useful
accuracy. An example of the combined model for the BwaMem
application is shown in Fig. 8.

VI. EXPERIMENT DESIGN

Our profiling approaches to this point assumes significant
knowledge of application performance. However, gaining this
knowledge can be expensive in the case of an unknown

Fig. 8: Combining both the predictive models.

application. Ideally, we would like to obtain just a few mea-
surements for a new application, for example by considering
only some representative instance types. Such information
could then be used to guide additional profiling, or potentially
as part of an online scheduling tool that could explore the
search space by selectively assigning tasks to instance types
and learning from execution performance. To minimize the
number of instance types required to generate an application
profile we explore an active experiment design approach [22].

In order to intelligently select the “best” instance types
(i.e., those that would provide the highest marginal reduction
in error across the model search space), we have implemented a
simple approach that calculates where the search space has the



least knowledge—where density of observations is the least.
By selecting computational resources strategically to increase
our knowledge of the solution space, we can then achieve
a better model fit not only for that space with little prior
information but also for the rest of the model as this new
observation can act as a new “anchor” to help validate and
improve the model.

Fig. 9: An example of the experiment selection algorithm
at work, showing the first four instance types selected as it
explores the search space.

Figure 9 shows how instance types are selected for a new
application. The algorithm is simple—it first selects the most
central instance type and then progressively selects instance
types in the most remote part of the search space (calculated
using a distance measure). More specifically, given a set of
existing data points (given by prior history), we will then
launch the application on an instance type that is the most
remote in terms of instance CPU and memory. As there are few
(relatively speaking) instance types, we can compute relative
remoteness by calculating the distance between each instance
type for which we have data and for which we do not. Though
this is inefficient, the small scale of this problem makes it
relatively inconsequential. Other methods such as dynamic
programming and prior state retention could be explored to
improve performance.

Fig. 10: Validation of the active experiment design approach.

We have applied our experiment design approach to model
each of the applications in the Haplotype genotyping work-
flow. We assume no prior knowledge of the applications and

TABLE IV: Difference in MAPE for models trained with
varying numbers of observations from the MAPE obtained by
the model trained with all observations.

Observations Difference
3 79.3
4 29.9
5 19.8
6 2.3
7 1.9
8 0.9
9 0.6
10 0.1
11 1.9
12 1.8
13 1.6
14 0.0

therefore begin by selecting an instance type from the center of
the search space, c5.4xlarge. As depicted in Figure 9, we
select the second observation as a r4.16xlarge instance
type. Subsequent observations then select the most distant
instance type before gradually filling in the search space.

Figure 10 shows the MAPE achieved for each application
as the number of observations increases. We see that accuracy
generally increases with additional observations, except in
the case of IndexBam, where accuracy declines as more
observations are made. This is due to the tool being tightly
CPU bound; it performs roughly 25% better on the compute-
optimized C5 family of instances than on any other family.
Thus, the first instance type selected, c5.4xlarge, is in
fact an accurate representation of performance on the C5
family. Subsequent observations on other instance types only
increase the prediction error. As the experiment selection
approach encourages the diverse selection of instance families,
the scaling properties of the model are not efficiently found
between instance families. We aim to address this problem in
later work by extending our experiment selection techniques
to explore scaling both within and across instance families to
further optimize the selection of observation points.

Table IV shows the difference between the average MAPE
at each observation and the final MAPE as we select and
add instance type information to our model. In other words,
when we have three observations on which to train our model,
we achieve a validation MAPE that deviates by 79.3% from
our final MAPE value once experiments are conducted on all
14 instance types. The table also shows that our approach
allows accurate prediction to within 30% of the final MAPE
on average with only four observations and within 2.3% after
six observations. We conclude that there is little benefit to be
gained by conducting more than seven experiments.

VII. RELATED WORK

The problem of selecting suitable resources for a given
application is ubiquitous across cloud providers. Google now
provides a VM sizing recommendation service [23] that mon-
itors system utilization and recommends appropriately sized
virtual machines. Although such a service relies on understand-
ing prior execution information, it does not enable forecasting
for variable usage requirements (e.g., in terms of applications,
data sizes, settings), or let users explore trade-offs between
application performance and cost.



There has been considerable work to determine the execu-
tion requirements of applications, most often in high perfor-
mance and distributed computing environments [6], [3], [24],
[4], [25], [26]. Recently, researchers have begun to explore
predictive modeling as a solution to the instance selection
problem. PARIS [27] is a data-driven system that aims to select
the best instance type given minimal data collection. PARIS
uses a hybrid online and offline data collection and modeling
system to accurately predict workload performance. However,
unlike our work, PARIS focuses on video-encoding workloads
and serving latency. Our work targets scientific uses cases
that differ substantially from many business-oriented cloud
uses. For example, the genotyping workflow that we evaluate
here consists of extremely diverse applications with a wide
range of computational requirements. CherryPick [28] uses
Bayesian Optimization to model application performance to
determine the best, or close-to-best, instance type with minimal
experiments. Ernest [29] is able to predict the execution time
of distributed analytics jobs based on cluster size. However,
unlike our approach, Ernest cannot forecast performance with-
out previously deploying an application on a given resource.
Paragon [30] and Quasar [31] employ historic execution traces
to rapidly classify new applications. In combination with a
small amount of online profiling, Quasar is able to manage
resource allocations and guide job packing. However, these
traces do not incorporate fine-grained resource utilization
statistics. To incorporate these, the Arrow framework [32] in-
corporates low-level performance statistics during its iterative
optimization. This framework uses these statistics along with
the standard runtime and cost statistics to inform a Bayesian
optimization process to reduce the fragility of the optimization
system and to more efficiently reduce “areas” of uncertainty
in the Bayesian process. They have seen promising results that
have overcome many of the previously observed shortcoming
found in Bayesian optimization when applied to workflow
profiling.

Micro-benchmarks have also shown great promise to aid in
predicting the performance of a given workload in a foreign
computing environment [33]. This is accomplished by using
a suite of benchmarks to evaluate the unknown compute
infrastructure and then use the execution characteristics of
those benchmarks on the known infrastructure (i.e., where
the execution characteristics of the workflow are known) to
predict the workflow’s execution characteristics in the new
environment. Others have also sought to learn application
performance models from data obtained from production en-
vironments [34].

VIII. CONCLUSION

Users of cloud platforms face the challenging task of
optimally selecting from a huge collection of instance types
those that are most appropriate for their workflows. To address
this challenge we have presented an approach for selecting
instance types based on a combination of proactive profiling
experiments and transfer learning from prior non-cloud exe-
cutions. Our models are able to accurately predict execution
time for two real-world genome analysis workflows when
considering arbitrary instance types with MAPE of 17.2% and
arbitrary data size with MAPE less than 14.5%. To reduce
the cost of running profiling experiments we explored an
experiment design approach in which we intelligently explored

the instance type search space. Our results show that with only
four experiments we can achieve accuracy within 30% of that
achieved when running experiments on every instance type.

In future work we aim to integrate these models and
profiling techniques into a platform that learns to optimize
genome analyses across cloud instances. We also plan to
explore self-optimization through adaptive parameter tuning
to automatically optimize parametrization based on input data
and workflow composition. In addition, we intend to explore
the ability to trade-off between accuracy, performance, and
cost, such that users can increase accuracy by, for example,
employing multiple variant callers, or decrease cost by electing
smaller, less powerful resources or by integrating optimal
instance type with predicted spot pricing [35]. Finally, we
will continue to explore and optimize our adaptive learning
approaches to better incorporate and predict scaling properties
across instance types.
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