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ABSTRACT

Indoor target tracking appears in several engineering prob-
lems and is a key enabler to a myriad of new applications. Lo-
calization in such global navigation satellite system (GNSS)-
denied environments typically relies on the use of existing
infrastructures and already deployed technologies. In this pa-
per, we are interested in received signal strength (RSS)-based
multiple target tracking (MTT) in wireless sensor networks
(WSN). From an estimation standpoint, two problems arise:
i) standard Bayesian filtering techniques are not able to cope
with high-dimensional systems, and ii) WSN are typically
built with resource-constrained low-cost sensors, which im-
plies the need for distributed algorithms. A possible solution
is to use a multiple Bayesian filtering approach, where the
state-space is partitioned in several lower dimensional sub-
spaces, and then a set of parallel filters are used to character-
ize the marginal subspace posteriors. In this work, we pro-
pose a new distributed multiple Gaussian filtering (MGF) for-
mulation, to solve both the curse-of-dimensionality in high-
dimensional systems and the need of distributed algorithms
in network localization applications.

Index Terms— Network localization, distributed Gaus-
sian filtering, multiple target tracking, state partitioning.

1. INTRODUCTION

It is foreseen that a large number of sensors will be avail-
able in the context of the Internet-of-Things (IoT). The per-
vasiveness of such technology will enable more accurate and
widespread localization applications in a variety of disciplines
such as smart cities, smart grids, and intelligent transportation
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systems [1]. Particularly, this relates to topics in indoor track-
ing, multiple target tracking (MTT), and network localiza-
tion [2]. In this paper, we focus on decentralized approaches
to those challenges. Given that the number of sensing devices
is expected to be large in the IoT context, there is a clear need
to develop new methodology that is scalable and does not col-
lapse due to the increase in dimensionality of the network and
system. Additionally, decentralized networks of sensors have
the feature of being inherently robust to node failures, due to
the redundancy in a dense network. Finally, decentralized ap-
proaches require cost-efficient algorithms whose implemen-
tation does not involve high computational complexity.

In the context of Bayesian filtering, a well-known prob-
lem is the curse-of-dimensionality, that is, the computational
complexity increase and associated performance degradation
in high-dimensional systems [3,4]. Among the possible solu-
tions, a promising approach is the multiple state-partitioning
framework [5], where the state-space is partitioned in sev-
eral lower dimensional subspaces, and then a set of parallel
filters are used to characterize the marginal subspace poste-
riors. This has been applied to both particle filters [5, 6] and
sigma-point Gaussian filters [7–9], the latter named multiple
Gaussian filters (MGFs). But the formal derivation of the dis-
tributed multiple Bayesian filtering is still an open problem.

In this article we propose a new distributed MGF for-
mulation, to solve both the curse-of-dimensionality in high-
dimensional systems, and the need of distributed algorithms
in network localization applications.

2. STATE-SPACE FORMULATION

The general nonlinear Gaussian state-space model (SSM) of
interest can be written as

xt = ft−1(xt−1) + νk−1 , νt−1 ∼ N (0,Qt−1), (1)
yt = ht(xt) + nt , nt ∼ N (0,Rt), (2)

where xt ∈ R
nx and yt ∈ R

ny are the hidden state of the sys-
tem and the measurements at time t, respectively; ft−1(·) and
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ht(·) are known (possibly nonlinear) functions of the state;
and the white Gaussian sequences νt−1 and nt are assumed to
be independent. The system in (1) is assumed to be separable
into S non-overlapping subspaces as xk = [x

(1)
k , . . . ,x

(S)
k ]

such that Qk−1 = diag(Q(1)
k−1, . . . ,Q

(S)
k−1),
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where each function f
(s)
t−1(·) can be different from one an-

other, and the s-th noise process is distributed as ν
(s)
t−1 ∼

N (0,Q
(s)
t−1). Considering a set of observations taken at N

different clusters of sensors given by

yj,t = hj,t(xt) + nj,t, for j = 1, . . . , N. (4)

with nj,t ∼ N (0,Rj,t), the aim is to use a set of individual
filters, each one handling a subspace x

(s)
t , in order to char-

acterize at each cluster of sensors j the subspace marginal
distributions, p(x(s)

t |yj,1:t). We can consider the centralized
filtering problem (i.e., a single filter with access to the full
set of observations collected by all the sensors), which may
be implemented using deterministic sigma-point Gaussian fil-
ters (SPGF) [10, 11]. The extension of these SPGFs within
the multiple state-partitioning framework has been proposed
in [7, 8]. In this case, the exchange of information among fil-
ters and thus the proper marginalization of subspaces can be
tackled via a nested sigma-point approximation [8]. The main
assumption is that the joint distributions may be written as

p(xt|y1:t−1) = p(x
(s)
t |y1:t−1)p(x

(−s)
t |y1:t−1), (5)

p(xt|y1:t) = p(x
(s)
t |y1:t)p(x

(−s)
t |y1:t). (6)

In the following we consider the standard distributed SPGF
formulation, where each cluster of nodes provides an estimate
of the complete state of the system xt.

3. DISTRIBUTED SIGMA-POINT GAUSSIAN
FILTERING BACKGROUND

The information filter (IF) is an algebraically equivalent form
of the Kalman filter (KF), where instead of propagating the
state vector and its associated estimation error covariance, the
so-called information vector and information matrix (i.e., the
inverse of the covariance) is propagated. The main advantage
is in terms of information fusion, because the aggregation of
information provided by different clusters of sensors is just a
sum of individual information vectors [12, 13].

1x(s) denotes the s-th element (possibly a vector) in a vector x and x(−s)

is the vector of all elements in x except for x(s). The dimension of each
subspace n

(s)
x = dim{x(s)

t } is defined such that
∑S

s=1 n
(s)
x = nx, s ∈

S = {1, . . . , S}, and n
(−s)
x = dim{x(−s)

t }.

3.1. Standard Information Filtering

Considering linear/Gaussian systems, i.e., ft−1(xt−1) =
Ft−1xt−1 and ht(xt) = Htxt, to reformulate the KF as an
IF, we define the information vector and matrix as,

ẑt|t = Σ−1
x,t|tx̂t|t = Zt|tx̂t|t ; Zt|t = Σ−1

x,t|t, (7)

and then the standard KF recursions are rewritten as

ẑt|t−1 = Ltẑt−1|t−1, (8)

Zt|t−1 =
(
Ft−1Z

−1
t−1|t−1F

�
t−1 +Qt−1

)−1

, (9)

ẑt|t = ẑt|t−1 + it, (10)
Zt|t = Zt|t−1 + It. (11)

with Lt = Zt|t−1Ft−1Z
−1
t|t−1, and the information contribu-

tions to the updates it = H�
t R

−1
t yt and It = H�

t R
−1
t Ht.

Considering a set of observations taken at N different clusters
of sensors as in (4), each cluster computes its own estimate
and then the global estimate can be updated simply as

ẑt|t = ẑt|t−1 +

N∑
j=1

ij,t ; Zt|t = Zt|t−1 +

N∑
j=1

Ij,t,

with ij,t = H�
j,tR

−1
j,t yj,t and Ij,t = H�

j,tR
−1
j,tHj,t. Notice

that the filter complexity (e.g., inversion of matrices) is trans-
lated from the measurement update to the state prediction,
which is substantially lower dimensional in WSN.

3.2. Sigma-point Information Filtering

For nonlinear/Gaussian systems as the ones of interest in this
work, deterministic sampling sigma-point-based information
filters (SPIFs) have been proposed [12, 13]. In this case, the
prediction step can be implemented as in the standard SPGF,
and the information vector and matrix contributions to con-
struct the measurement update at cluster j are given by

ij,t = Zj,t|t−1Σj,xy,t|t−1R
−1
j,t

(
yj,t − ŷj,t|t−1

+Σ�
j,xy,t|t−1ẑj,t|t−1

)
(12)

Ij,t = Zj,t|t−1Σj,xy,t|t−1R
−1
j,t

(
Zj,t|t−1Σj,xy,t|t−1

)�
,

where from the SPGF formulation we have that [11]

ŷj,t|t−1 =

∫
hj,t(xt)p(xt|yj,1:t−1)dxt ≈

L∑
i=1

ωihj,t(xi,t|t−1),

Σj,xy,t|t−1 =

∫
xth

�
j,t(xt)p(xt|y1:t−1)dxt − x̂j,t|t−1

(
ŷj,t|t−1

)�

≈
L∑

i=1

ωixi,t|t−1hj,t(xi,t|t−1)
� − x̂j,t|t−1

(
ŷj,t|t−1

)�
, (13)

with {ξi, ωi}i=1,...,L a set of sigma-points and weights,
xi,t|t−1 = Sj,x,t|t−1ξi + x̂j,t|t−1, and Sj,x,t|t−1 the square-
root Cholesky factorization of Σj,x,t|t−1. Notice that after
computing the global estimate at the fusion center, the infor-
mation vector and matrix are retransmitted to each cluster.
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4. DISTRIBUTED MULTIPLE GAUSSIAN
INFORMATION FILTERING FORMULATION

In this paper we leverage on the previously introduced SPIF
results to extend the information filtering theory to the dis-
tributed subspace posterior characterization of interest. The
partitioned state and j-th cluster measurement equations are
given in (3) and (4). Considering the filter in charge of the s-
th subspace at cluster j, the Bayesian solution is given by the
s-th subspace marginal predictive and posterior distributions,

p(x
(s)
t |yj,1:t−1) = N

(
x
(s)
t ; x̂

(s)
j,t|t−1,Σ

(s)
j,x,t|t−1

)
(14)

p(x
(s)
t |yj,1:t) = N

(
x
(s)
t ; x̂

(s)
j,t|t,Σ

(s)
j,x,t|t

)
. (15)

We want to formulate an IF-type approximation of these
Gaussian distributions. In the sequel we detail the new dis-
tributed multiple Gaussian information filter (DMGIF).

Consider that at time t, each filter at each cluster knows
the global (complete) information estimates, ẑt−1|t−1 and
Zt−1|t−1, provided by the fusion center. In general, we have
that the full state estimate is the concatenation of individual
subspace estimates, x̂t|t = [x̂

(1)
t|t , . . . , x̂

(S)
t|t ]

�, and the block

diagonal covariance is Σx,t|t = blkdiag(Σ(1)
x,t|t, . . . ,Σ

(S)
x,t|t),

then the information matrix turns to be also block diagonal,
Zt|t = blkdiag(Z(1)

t|t , . . . ,Z
(S)
t|t ), with Z

(i)
t|t = (Σ

(i)
t|t )

−1, and
the information vector is again the concatenation of individ-
ual subspace information vectors, ẑt|t = [ẑ

(1)
t|t , . . . , ẑ

(S)
t|t ]

�.
Notice that each filter within the DMGIF shares with the
other filters the individual subspace predicted information es-
timates before the measurement update, ẑ(s)j,t|t−1 and Z

(s)
j,t|t−1.

4.1. Subspace State Prediction

The subspace marginal predictive distribution of interest at
the filter in charge of the s-th subspace and cluster j is

p(x
(s)
t | yj,1:t−1) =

∫ ∫
p(x

(s)
t |x(s)

t−1,x
(−s)
t−1 )

× p(x
(s)
t−1|yj,1:t−1)p(x

(−s)
t−1 |yj,1:t−1)dx

(s)
t−1dx

(−s)
t−1 .

Taking into account the approximation in (5) and (6), the
mean and corresponding prediction error covariance are2,

x̂
(s)
j,t|t−1 =

∫ ∫
f(x

(s)
t−1,x

(−s)
t−1 )

× p(x
(s)
t−1|yj,1:t−1)p(x

(−s)
t−1 |yj,1:t−1)dx

(s)
t−1dx

(−s)
t−1 , (16)

Σ
(s)
j,x,t|t−1 =

∫ ∫
f2(x

(s)
t−1,x

(−s)
t−1 )p(x

(s)
t−1|yj,1:t−1) (17)

× p(x
(−s)
t−1 |yj,1:t−1)dx

(s)
t−1dx

(−s)
t−1 −

(
x̂
(s)
j,t|t−1

)2

+Q
(s)
t−1.

2We write (x)2, (y)2, f2(·) and h2(·) as the shorthand for xxT , yyT ,
f(·)fT (·) and h(·)hT (·), respectively. We omitted the dependence with
time and the superscript (s) of f (s)t−1(·) and ht(·), for the sake of clarity.

These integrals can be approximated using two sets of sigma-
points [8], {ξ(s)i , ω

(s)
i }i=1,...,Ls

and {ξ(−s)
j , ω

(−s)
j }j=1,...,L−s

,
where Ls and L−s depend on the sigma-point rule and the
dimensions n

(s)
x and n

(−s)
x , respectively. The corresponding

transformed sets which capture the mean and covariance of
p(x

(s)
t−1|yj,1:t−1) and p(x

(−s)
t−1 |yj,1:t−1) are

x
(s)
i,t−1|t−1 = S

(s)
x,t−1|t−1ξ

(s)
i + x̂

(s)
t−1|t−1, i = 1, . . . , Ls,

x
(−s)
l,t−1|t−1 = S

(−s)
x,t−1|t−1ξ

(−s)
l + x̂

(−s)
t−1|t−1, l = 1, . . . , L−s,

with Z
(s)

t−1|t−1 = S
(s)

z,t−1|t−1

(
S
(s)

z,t−1|t−1

)�
, S

(s)

x,t−1|t−1 =(
S
(s)

z,t−1|t−1

)−�
, and the subspace estimates are obtained

as x̂
(s)

t−1|t−1 =
(
Z

(s)

t−1|t−1

)−1

ẑ
(s)

t−1|t−1 . Then (16) and (17) are
approximated (at cluster of nodes j) by

x̂
(s)
j,t|t−1 =

L−s∑
l=1

ω
(−s)
l

Ls∑
i=1

ω
(s)
i f(x

(s)
i,t−1|t−1,x

(−s)
l,t−1|t−1),

Σ
(s)
j,x,t|t−1 =

L−s∑
l=1

ω
(−s)
l

Ls∑
i=1

ω
(s)
i f2(x

(s)
i,t−1|t−1,x

(−s)
l,t−1|t−1)

−
(
x̂
(s)
j,t|t−1

)2

+Q
(s)
t−1.

At the end of the subspace prediction step, this mean and co-
variance are shared with the other filters. We can go back to
the information space as ẑ(s)j,t|t−1 = (Σ

(s)
j,x,t|t−1)

−1x̂
(s)
j,t|t−1.

4.2. Subspace Information Contribution

The s-th filter information vector and matrix contributions to
construct the measurement update at cluster j are [13]

i
(s)
j,t = Z

(s)
j,t|t−1Σ

(s)
j,xy,t|t−1R

−1
j,t

(
yj,t − ŷ

(s)
j,t|t−1

+
(
Σ

(s)
j,xy,t|t−1

)�
ẑ
(s)
j,t|t−1

)
(18)

I(s)
j,t = Z

(s)
j,t|t−1Σ

(s)
j,xy,t|t−1R

−1
j,t

(
Z

(s)
j,t|t−1Σ

(s)
j,xy,t|t−1

)�

(19)

where Z
(s)
j,t|t−1 = (Σ

(s)
j,x,t|t−1)

−1, and we need to obtain the
predicted measurement and cross-covariance matrix, which
are defined as

ŷ
(s)
j,t|t−1 =

∫ ∫
hj,t(x

(s)
t ,x

(−s)
t )p(x

(s)
t |yj,1:t−1)

× p(x
(−s)
t |yj,1:t−1)dx

(s)
t dx

(−s)
t , (20)

Σ
(s)
j,xy,t|t−1 =

∫ ∫
x
(s)
t hT

j,t(x
(s)
t ,x

(−s)
t )p(x

(s)
t |yj,1:t−1)

× p(x
(−s)
t |yj,1:t−1)dx

(s)
t dx

(−s)
t − x̂

(s)
t|t−1

(
ŷ
(s)
j,t|t−1

)T

.
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These integrals can be again approximated using nested
sigma-point rules [8]. The transformed sets are now

x
(s)
i,t|t−1 = S

(s)
j,x,t|t−1ξ

(s)
i + x̂

(s)
j,t|t−1, i = 1, . . . , Ls,

x
(−s)
l,t|t−1 = S

(−s)
j,x,t|t−1ξ

(−s)
l + x̂

(−s)
j,t|t−1, l = 1, . . . , L−s,

with S
(s)
j,x,t|t−1 the square-root Cholesky factorization of

Σ
(s)
j,x,t|t−1, and both x̂

(−s)
j,t|t−1 and S

(−s)
j,x,t|t−1 constructed from

the predictions of the other filters running in parallel. The
integrals of interest are then approximated by

ŷ
(s)
j,t|t−1 =

L−s∑
l=1

ω
(−s)
l

Ls∑
i=1

ω
(s)
i h(x

(s)
i,t|t−1,x

(−s)
l,t|t−1), (21)

Σ
(s)
j,xy,t|t−1 =

L−s∑
l=1

ω
(−s)
l

Ls∑
i=1

ω
(s)
i x

(s)
i,k|k−1

× h(x
(s)
i,t|t−1,x

(−s)
j,t|t−1)

� − x̂
(s)
j,t|t−1

(
ŷ
(s)
j,t|t−1

)�
. (22)

4.3. Global Information Update

The different filters within the cluster share the different
information contributions to build the complete ij,t and
Ij,t, constructed as ij,t = [i

(1)
j,t , . . . , i

(S)
j,t ]

� and Ij,t =

blkdiag(I(1)
j,t , . . . , I(S)

j,t ), which are transmitted to the fusion
center to compute the global estimates as

ẑt|t = ẑt|t−1 +
N∑
j=1

ij,t ; Zt|t = Zt|t−1 +
N∑
j=1

Ij,t, (23)

which are transmitted back to each node to perform the fol-
lowing prediction step.

5. RESULTS: MULTIPLE TARGET LOCALIZATION

We consider a RSS 2D multiple target localization case study,
where K targets are localized using a set of N clusters of
sensors. For each target i, we estimate its 2D position and
velocity, x(i)

t = [p
(i)
x,t, p

(i)
y,t, v

(i)
x,t, v

(i)
y,t]

�. At time t, the m-th
sensor RSS is

ym,t =
K∑
i=1

10 log10

(
1

|rm − li,t|2
)
+ nm,t,

with nm,t ∼ N (0, σ2
m), li,t = [p

(i)
x,t, p

(i)
y,t]

�, known grid sen-
sor position rm, and

x
(i)
t =

(
I2 Ts · I2
0 I2

)
x
(i)
t−1 + ν

(i)
t−1, ν

(i)
t−1 ∼ N (0,Q),

with Q = diag(σ2
px
, σ2

py
, σ2

vx , σ
2
vy ), Ts the sampling period

and I2 the 2 × 2 identity matrix. We consider the following

setup: Ts = 1s, σ2
m = 10−3 for all sensors, and σ2

px
= σ2

py
=

0.0025, σ2
vx = σ2

vy = 0.01, for all targets. The new dis-
tributed method, named DMGIF, is compared to the central-
ized MGF having access to the complete set of observations,
yt. We consider one subspace per target, then the MGF runs
K filters at the central fusion center, and the DMGIF runs K
filters at each cluster of nodes j. To assess the new method’s
performance the following filters are tested:

• MGF using 100 sensors in a 900× 900 m2 grid.

• DMGIF-1 using N = 4 clusters of 25 sensors.

• DMGIF-2 using N = 9 clusters of 9 sensors.

Figure 1 plots the results obtained for a K = 3 target track-
ing example using the new DMGIF, where we show how the
sensor space is partitioned into N clusters of neighbouring
sensors. These clusters first process the information indepen-
dently, and then a fusion center estimates the global estimate
shown in the figure. Figure 2 provides the root mean square
error (RMSE) of the position obtained with the three methods
for K = 2 and K = 3 targets and 100 Monte Carlo runs. We
can see that the performance of the decentralized filter is al-
most equivalent to its centralized counterpart, confirming the
good behavior of the new methodology.

6. CONCLUSIONS

This paper presented a new distributed multiple sigma-point
filter formulation to reduce the curse-of-dimensionality ap-
pearing both in the state and the observation dimension in ap-
plications such as multiple target localization using large sen-
sor networks. The proposed solution allows to avoid the stan-
dard Bayesian filtering performance loss in high-dimensional
state-space models. The original state is partitioned into sev-
eral low dimensional subspaces, and a set of individual sigma-
point information filters running in parallel cope with the sub-
space estimation using only a subset of observations. Each
cluster of nodes in the system computes an individual infor-
mation contribution from the different subspace state estima-
tions, which are transmitted to a fusion center in charge of
the global estimation. Numerical results support the discus-
sion and show the promising capabilities of such distributed
multiple filtering approach.
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