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Abstract

This article introduces a new class of recursive linearly constrained minimum
variance estimators (LCMVEs) that provides additional robustness to modeling
errors. To achieve that robustness, a set of non-stationary linear constraints
are added to the standard LCMVE that allow for a closed form solution that
becomes appealing in sequential implementations of the estimator. Indeed, a
key point of such recursive LCMVE is to be fully adaptive in the context of
sequential estimation as it allows optional constraints addition that can be trig-
gered by a preprocessing of each new observation or external information on
the environment. This methodology has significance in the popular problem of
linear regression among others. Particularly, this article considers the general
class of partially coherent signal (PCS) sources, which encompasses the case of
fully coherent signal (FCS) sources. The article derivates the recursive LCMVE
for this type of problems and investigates, analytically and through simulations,
its robustness against mismatches on linear discrete state-space models. Both
errors on system matrices and noise statistics uncertainty are considered. An
illustrative multi-channel array processing example is treated to support the
discussion, where results in different model mismatched scenarios are provided
with respect to the standard case with only FCS sources.

Key words: Parameter estimation, linearly constrained minimum variance
estimator, model mismatch, robust adaptive beamforming.

1. Introduction

In the literature of signal processing parameter estimation, one of the most
studied estimation problems is that of identifying the components of an V-
dimensional complex observation vector (y) formed as the linear superposition
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of P individual complex signals (x) and complex noisy data (v), also known as

(a.k.a.) linear regression problem?,

y=Hx+v, He CV*" vecCV. (1)

The importance of this problem stems from the fact that a wide range of prob-
lems in communications, array processing, and many other areas can be cast in
this form [1, 2]. In addition, in many practical problems: a) v is zero mean; b)
x is uncorrelated with v; and ¢) the model matrix H and the noise covariance
matrix C, are either known or specified according to known parametric models.
In this setting, recall that the weighted least squares estimator of x [3],

x" = arg min {(y - Hx)" ¢y (y - HX)} = (H7C,'H) HCly, (2)

coincides with the maximum-likelihood estimator [4] if x is deterministic and v
is Gaussian, and is known to minimize the mean-squared error (MSE) matrix
(with respect to the Lowner ordering for positive Hermitian matrices [5]) among
all linear unbiased estimators of x, that is, x* = (L)"y, where [6]

Lb

. H
argIrEn{E[(LHy—x) (LHy~x) }} st. LFH =1
= Cy'H(HC;'H) ', (2b)

regardless of x being a deterministic or random quantity. Furthermore, since
the matrix L (2b) is as well the solution of [2, 6],

L= argmin {L"C,L} s.t. L"H =T, (2¢)

%’ is also known as the minimum variance distortionless response estimator /filter
(MVDRE/MVDRFE) [1, 2, 6]. However, it is well known that the achievable
performance of the MVDRE strongly depends on the accurate knowledge of
the observation parametric model - that is, on H and C, [1, § 6.7], - and are
particularly sensitive to different types of mismatches between the model and
the actual signal [1, § 6.6][7, §1][8]. In order to robustify the MVDRE, the lin-
early constrained minimum variance estimator/filter (LCMVE/LCMVF) [6, 9]

IThe notational convention adopted is as follows: scalars, vectors and matrices are repre-
sented, respectively, by italic, bold lowercase and bold uppercase characters. O and 0 stand
for the all-zeros matrix and all-zeros column vector. The scalar/matrix/vector conjugate
transpose is indicated by the superscript (-). 1y denotes an N-dimensional vector with
components equal to 1. I is the identity matrix. [A B] and [‘g] denote the matrix resulting
from the horizontal and the vertical concatenation of matrices A and B, respectively. The
vector resulting from the vertical concatenation of k£ vectors ay,...,a is denoted as ag. The
matrix resulting from the vertical concatenation of k matrices Aj,..., A of same column
dimension is denoted as Ay. E[-] denotes the expectation operator. If x and y are two com-
plex random vectors: a) mx = E [x] and my 2 E[y], b) Cx, Cy and Cx,y are respectively
the covariance matrices of x, of y, and the cross-covariance matrix of x and y; ¢) if Cy is
invertible, then Cy |y, 2 Cx—Cxy c;lc,i{y. The superscript (-)? denotes that the considered
value is the “best” one according to a given criterion.
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is leveraged in this article, in which additional linear constraints L7 Q = Y are
imposed (where © and Y are known matrices of the appropriate dimensions)
[1, § 6.7][7, §1][8], that is,

L’ = arg min {LPC L} st. LY H Q] = [I Y]
—C;'H Q] ([H Q”c;lH n])_1 m”. (3)

Robustness is understood as the ability to achieve close-to-optimal performance
in situations with imperfect, incomplete, or erroneous knowledge about the sys-
tem under consideration and its environment, while minimal impact on perfor-
mance under nominal conditions is caused. This comes at the expense of an
increase in the achieved MSE, since additional degrees of freedom are used by
LCMVEs (3) in order to satisfy the additional constraints L7 = Y. In this
article we further explore the use of linear constraints to robustify the MVDRE
in the context of recursive filtering, and for realistic multi-channel signal pro-
cessing applications, with system model and noise statistics mismatch. Notice
that C, may be unknown and must be learned by an adaptive technique. Re-
markably, if x and v are uncorrelated, Cy, can be replaced by Cy in (2a)(2b)(3),
which means that either C, can be learned from auxiliary data containing noise
only, if available, or Cy can be used instead and learned from the observations.
When several observations are available, y; € CM, 1 < | < k, with [ the
discrete-time index, recursive adaptive implementations of the LCMVE have
been developed resorting to constrained stochastic gradient [6], constrained re-
cursive least squares [10, 11] and constrained Kalman-type [12] algorithms. The
equivalence between the LCMVE and the generalized side lobe canceller [9, 13]
allows to resort as well to standard stochastic gradient or recursive least squares
[2] solutions. However, thie above recursive algorithms can only sequentially
update the LCMVE (3) in non-stationary environments for a given set of lin-
ear constraints [2, 6, 10, 11, 12]. More explicitly, when the observation model

changes over time
yi = Hix; + vy, (4)

these recursive LCMVEs provide a solution for stationary constraints of the
form LY [H; Q] = [I Y], which may not be the case of interest in practice.

On another note, in presence of fully coherent signal (FCS) sources, i.e. x; =
x; one can concatenate the available observations (y; = Hix+v;, 1 <1< k) to
obtain an augmented observation model,

Y. = ﬁkx—i—Vk, Y Vi € (CN’“, ﬁk S (CN’“XP, Nk = Zle Ny, (5&)

and considering non-stationary constraints we have that

N =b _

XZ = (Lk)HYk (5b)

fz = arg min {kaCkak} s.t. ka mk ﬁk] =[I Y. (5¢)
Ly
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Provided that the noise sequence {vl}f:1 is temporally uncorrelated, authors in
[14] have lately introduced the family of recursive LCMVEs with non-stationary
constraints associated to (5a)-(5c), which can equivalently be computed recur-
sively according to a Kalman-like recursion [15, §1] as

Xp =%, + (LYY (yr — kacifl) . (5d)

However, in real-life experiments some experimental factors, such as source mo-
tion, environmental non-stationarities, medium non-homogeneity, direction er-
rors, or local scattering, may prevent from observing FCS sources. On the con-
trary, it is likely that one rather observes PCS sources because their amplitudes
undergo a partial random walk between observations,

P PxP
xX1=%x, 1 >2:x=F_1x;_ 1+ w1, x1,x,w;_, € C7, Fi_, e C7*7, (6a)

. . k-1 . ™ Q .
where the fluctuation noise sequence {w;},_; is a priori uncorrelated with x;

and the measurement noise sequence {vl}le. The amplitude fluctuation model
(6a) has a number of merits, including its simplicity and its capability to model
most cases of PCS amplitudes, including the situation where Cy, is invariant,
ie. Cx, = Cx,, with an adjustable correlation matrix Cy, x, , between obser-
vations. Unfortunately, even in the case of perfect knowledge of the parametric
model of the observations, a slight loss of coherence of the signal source in-
troduces a severe breakdown on the MVDRE performance in the large sample
regime if the loss of coherence is not considered (see Section 2.4 for an example).
Thus, the most noteworthy merit of (6a) is to introduce an observation model
belonging to the general class of linear discrete state-space (LDSS) models [15]
represented with the state and measurement equations

k>2:x,=Fp (Xp_1+Wg_1, k>1:y,r=Hgxp + vi. (6b)

Indeed, in this setting, the extension of the results derived in [14] to the case
of PCS sources, under milder (w.r.t. [14]) regularity conditions on the noise
covariance matrices, follows from [16] which very recently identified the family
of linear constraints for which the linearly constrained Wiener filter (LCWF)
associated to LDSS models can be computed recursively according to a Kalman-
like recursion of the form

5(2|k = Fk—lﬁz—uk—l + (Li)H <Yk - Hka—l)A(Z—Hk—l) : (6c)

The main contribution of this article is the derivation of robust recursive
LCMVEs for PCS sources, generalizing the results in [14, 16], in order to im-
prove the performance of existing methodologies in realistic multi-channel signal
processing applications. The main significance of the proposed methodology is
herein summarized:

e If the parameters (F;_1, Cw,_,) of the fluctuation model (6a) are known,
it allows for a recursive computation of the optimal estimate fcz of the
amplitude xj, of the sources (6¢) and of its covariance error matrix.
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e PCS sources introduce a lower limit in the achievable estimation perfor-
mance in the large sample regime even with a perfect knowledge of the
LDSS model (6b), as highlighted in Section 2.4. This allows for the com-
putation of the estimator performance.

e If the parameters (Fj_1,Cw,_,) are unknown, it nevertheless allows to
perform a parametric study of the robustness of the LCMVE for FCS
sources (ba) against partial coherency, by comparing its performance — as-
sessed via Monte-Carlo simulations — and the best performance achievable
for each likely (or possible) value of the parameters (Fk_l, ka_l).

e Capability to mitigate both modelling errors in system matrices (Fy_1, Hy)
and system noise statistics uncertainty, in presence of FCS or PCS sources.

In that perspective, in complement of the results introduced in [14, 16], we
provide a detailed analysis (illustrated by representative examples) of the robust
recursive LCWF capabilities. Regarding the possible lack of knowledge on the
statistics of the measurement noise (v) and/or the amplitude fluctuation noise
(w;—1), we consider the case resulting from the addition of nuisances whose
parametric models are partially known. This analysis relies on the particularly
noteworthy feature of the recursive LCWEF to be fully adaptive in the context
of sequential estimation, as it allows optional addition of constraints that can
be triggered by a preprocessing of ecach new observation or external information
regarding the environment. This is a key feature since in numerous real-world
applications [15] the observations become available sequentially and, immedi-
ately upon reception of new observations, it may be desirable to determine new
estimates based upon all previous observations (including the current ones). It
is also an attractive formulation for embedded systems in which computational
time and memory are at a premium, since it does not require that all observa-
tions are available for simultaneous (“batch”) processing. Finally, this can be
computationally beneficial in cases in which the number of observations is much
larger than the number of signals [15].

As shown in Section 2.3, recursive LCMVEs matched to FCS or PCS are spe-
cific instantiations of the recursive LCWF where at time k& = 1 a distortionless
constraint is introduced and (implicitly) propagated from observation to obser-
vation in order to enforce the MVDR property of the estimator of signal source
amplitudes. As a consequence, the MVDRE and LCMVEs are sub-optimal in
terms of MSE but they do not depend on the prior knowledge (first and second
order statistics) on the initial state x;. Hence, the MVDRE and LCMVEs can
be pre-computed and their behaviour can be assessed in advance independently
of the prior knowledge on x;. If this prior knowledge on the initial state x; is
available, then one should incorporate it into the standard form of the LCWF in
order to attain the minimum achievable MSE for a given set of linear constraints.

The reminder of the paper is organized as follows. Section 2.1, along with
the material introduced in the present section, sets the basics of the notation
used in the paper as well as the mathematical modeling of the problem at hand.
The main results on the proposed LCWF are provided in Sections 2.2 and 2.3.



Journal Pre-proof

Section 2.4 discusses a motivating example in the context of a multi-channel
signal processing application, which is used throughout the article. Section 3
discusses the sensitivity to modeling mismatches on the system matrices, as well
as mitigation strategies. Conversely, Section 4 investigates the case of mismatch
on the statistical characterization of the noise. The paper concludes with some
final remarks in Section 5.

2. On the LCWF, MVDRE and LCMVE for LDSS Models

2.1. Signal Model

As in [14][17, §5.1], we adopt a joint proper complex signals assumption for
the set of vectors (x1,{wx},{vg}) which allows to resort to standard estima-
tion in the MSE sense defined on the Hilbert space of complex random variables
with finite second-order moment. A proper complex random variable is un-
correlated with its complex conjugate. Any result derived with joint proper
complex random vectors are valid for real random vectors provided that one
substitutes the matrix/vector conjugate transpose for the matrix/vector trans-
pose. Moreover, we adopt the standard notation used in array processing for
linear estimators, a.k.a. filter estimates or simply filters [1, §6][2, §2.5][17, §5.6],
as in (2b)(2¢)(3)(5¢c), in the case of LDSS models (6b) since one can define
a “state-former” in the same way as a beamformer in array processing or a
frequency-bin former in spectral analysis. Last, the estimate of x; (6b) based
on measurements up to and including time & is denoted X;;,. Since the partial
random walk (6a) of the individual signals x; can be recast as, k > 2,

k-1
Xk = Brixi + Gywi_1, GpWi_1 = ZBk,i+1Wia
i=1
Frp_ 1Fp 5. . F;, k>i
By, = I k=1
0 k<

where Gy € CP*F=DP 5 1 € C*=DP and By,; € CP*P) the observation
model becomes

Vi = Apxi + 1, Ay =H By, ny =vy, ng>o =vp + HyGywi_1 (7a)

leading to the updated augmented observation model

yi H; \2!

_ y2 A, ny _ _

Y = . = . X1 + . = AkX1 + nyg. (7b)
Yk Ay ny,
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2.2. Formulation of the LCWEF for LDSS Models

It is known that, if x and y are two zero mean complex random vectors,
then the linear estimator of x, i.e. X = Wy, which minimizes the MSE matrix
P(W)=F [(WHy -x) (WHy —x) H} with respect to the Lowner ordering
[5], is the Wiener filter (WF) estimate [2, §2.4]. If Cy is invertible, the WF
estimate is given by

X' = (W"Ty, W'=argmin {P (W)} = C;'C,

P (W’) = Cyy.
(sa)

If it is required to impose some linear constraints (LCs) on the filter coefficients

W, the WF (8a) becomes the linearly constrained WF (LCWF) defined as

X' = (L)"y, L’ = argmin {P (L)} s.t. LA =T, (92)

where A and T are known matrices of the appropriate dimensions. If A has full
rank, then [2, (2.113)]

- 1y -1

L' =W+ C,'A (ATC,'A)  (TH — AW, (9b)

P (L) = P (W) + (T — A"W?) " (ATCy'A) " (T — ATW?),  (9¢)

where W is the unconstrained WF (8a). Among many successful applications

of the WF [2], a widely studied application is the estimation of the state vector

x, € CP of LDSS models (6b). In this context, the model matrices Fy and

Hj, are known, and the state noise sequence {wy} and the measurement noise

sequence {vy}, as well as the initial state x;, are random vectors with zero-mean
values and known covariance and cross-covariance matrices.

The WF estimate of x; based on measurements up to and including time &
is then given by (8a) if Cy, is invertible:

Xk ka )
(10a)
where Wy, € CNXP, Py (W) = B [(WEY,, — x1) (Wi, —x)) "] and Py, =
Py (Wz) Since the seminal paper of Kalman [15][19], it is known that, if
{Wp,Vvi.x1} verify certain uncorrelation conditions, lately extended in [20],

Cwiiiy,, =0, C =0,k >2, (10b)

iy, = (W) "y, Wi = argmin {Pyx (Wi)} = Cg ! Cyg

B Xk Y

Vi Yk—1
then f(il . (10a) admits the following convenient recursive form
}A{ZU@ = kal’A{Z—l\kq + (W)t (Yk - Hkafl}A{Z—Hk—l) s k=2, (10c)

so-called the Kalman filter (KF) estimate of xj, [15][19], where W} € CNvxP
is the KF gain matrix at time k. The KF gain matrix W% minimizes the MSE
matrix among all linear filters X, of the form

g (W) = Fra &gy + W (yk - Hka,ng,l‘k,l) : (11a)
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that is W% = arg Hvblil {Pi‘k (Wk)} where

P (W) =E {(ﬁk\k (W) = xx) (Xepe (W) — Xk)H} ; (11b)

and can be computed according to [20]

Pt =FraPy oy Fil + Cw,, +FeaCl, o+ Cu o FiEL
(11c)
Skik—1 = HyPyp_ H{! + Cy, + H,CY |, + Cy, x HY
Wi =Sii 1 (HiPrp1 + Cup ) (11d)
P = (I— (W) "Hy) Prpmy — (W) Cy, - (11e)

The above recursion (11c-11e) is also valid for k& = 1 provided that Py = Cy,
and f(ll’ll = (W) Hy,. Introducing a set of LCs, i.e. WA = Ty, into model
(10a) yields the following LCWF

5‘2|k = L) "yy, Ly = argr%in {Pre (L)} st Lif Ay = Ty, (12a)
whose “batch form” solution is given by (9b)
e [ H 1 \TE —H
LE = Wi + C5 1K, (Ak Cy:Ak) (TkH — A} Wl,;) . (12b)

Let us assume the following block matrix decomposition: L; = [Jﬁl], Jp—1 €
CNe-1xP and Ly, € CN¥*P leading to Ly, =J1 y,._1 + Ly, It appears
[16] that the subset of LCs L Aj, = T, allowing to compute the “batch form”

of the LCWF (12b) with a Kalman-like recursion, that is,
K = Fa %y + LT (v - HiF &), k22, (13a)

consists of the following three types of LCs:

[0

¢ o )| o | =T (130)
[ A

i B [, JoReme 0
[ Ap_q 0

ci [J’?_l LkH] HiFp 1Tk Ak}:[Flekl i (13d)

where
e Cj is dedicated to introduce the first subset of LCs at time &,

e C? corresponds to the implicit propagation at time k via recursion (13a)
of the LCs already set from time 1 up to time k£ — 1,



Journal Pre-proof

e C} combines C7 and C}, that is, propagation of previously set LCs before
time k and addition of a new subset of L.Cs at time k.

Under CZ, L! is given by L = arg nﬁin {P,{lk (Lk)} and can be computed
k
from the “unconstrained” KF recursion (11c-11e). Under C} and C3, L} is given
by L} = arg Hﬁin {P,{‘k (Lk)} s.t. LA = Ty, and can be computed from the
k

following “constrained” KF recursion,

Pk|k—1 = Fk*1P271|k71Fkal +Cw,y + kach

Wk —1,Xk—1

H
+ ka—lyxk—le‘fl

(13e)
Skik—1 = HyPpp_1H' + Cy, + HCx, v, + Cv, x, Hf
Wi, = Sl;\}c—l (HkPklkfl + CVtchk)
L= Ty — AW, O, = AJS ;A
L, = Wi+ S, ApP, Ty, (13f)
P} = (I— W{H) Py — W' Cy, s, +T0'Ty, (13g)

The above recursion (13e-13g) is also valid for £ = 1 provided that P}y = Cy,
and f{ll’ll = (L})"y;. The case of a non-zero mean initial state x;, with mean
my, , is addressed by simply setting

&Ii\l =my, + (WIIJ)H (yl - Hlmxl) ; )A(Ii\l =My, + (Lg)H (yl - Hlmxl) .

Interestingly, the recursive formulation of the LCWF for LDSS models intro-
duced is fully adaptive in the context of sequential estimation as it allows at
each new observation to incorporate or not new LCs. Lastly, since the KF is
the recursive form of the WF obtained for LDSS models, it makes sense to refer
to linearly constrained KF (LCKF) to denote the recursive form of the LCWF
obtained for LDSS models.

2.3. MVDRE and LCMVE for LDSS Models

As the computation of both KF and LCKF depends on prior information
on the mean (my,) and covariance matrix (Cy,) of x;, they can be looked
upon as “initial state first and second order statistics” matched filters. However
in numerous applications my, and/or Cy, are unknown. A commonly used
solution to circumvent this lack of prior information is the Fisher initialization
[21][22, §I1I]. The Fisher initialization consists in initializing the KF recursion at
time k = 1 with the weighted least squares estimator of x; (2a) associated to
the measurement model (6b), which coincides with the MVDRE of x;

. _ _ -1 _ -1
X0, = L)y, L = CJ'H, (H'C'Hy) , P}, = (H{'C{H,) ( , :
14a

that is the LCKF defined by

Xy = (L) yr, L = arg min {Py (L)} st. LH; =1 (14b)
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A closer examination of LCs C7 and C} shows that, if a time k£ = 1 the LCs
LH; =T are set (as in (14b)), then the LCs L A} = By 1 are set at time .
In this case, according to (7b),

Xk = LIy, = LEA,x, + Lfn, = (Brix; + Gywi_1) + Ln, — Gywi

= Xk + ]LkHﬁk — GpWg_1, (14C)

which means that Lj is a distortionless response filter. Thus the use at time
k =1 of LCs of the form

LA =Ty, {A;1=H,, T =1} or {A;=[H @], T =[I7Y,]}, (I5a)
leading to

~ _ _ —1

X1, = @H"y, LY = Cjla (afcglay) T, (15b)
_ —1

P}, =T, (A{C lA)) T, (15¢)

combined with any combination of LCs Cf and C}, 2 < | < k, transforms
the LCKF into either a MVDRE or a LCMVE. Although the MVDRE and
LCMVEs are sub-optimal in terms of MSE (due to the LCs (15a) introduced at
time k = 1), they have a number of merits: a) according to (15b) they do not
depend on the prior knowledge (first and second order statistics) on the initial
state x1, b) they may outperform the LCKF in case of misspecification of the
prior knowledge on x; [20, 23]. In other words, the MVDRE and LCMVEs can
be pre-computed and their behaviour can be assessed in advance independently
of the prior knowledge on x;. As the MVDRE is a special case of LCMVEs, in
the following we only mention LCMVEs.

2.4. On the Impact of PCS Sources on Recursive MVDRE Performance

To further motivate the need of robust recursive MVDRE in real-life multi-
channel signal processing applications, we first show an example for the perfor-
mance degradation on the achievable performance due to PCS sources (w.r.t.
the FCS source hypothesis in [14]). This example is considered throughout the
paper to support the discussion on the proposed methodologies.

Let us consider a uniform linear array with N = 21 sensors equally spaced
at.d = \/2 (half-wavelength) and an impinging signal source 1 with broadside
angle a = 10°, embedded in a spatially and temporally white noise,

,Cy, v, = 14},
(16a)
The signal source z; is random, Gaussian complex circular with unit variance
(Cy, = 1), and is assumed to be fully coherent (xj = z1). However, fluctuation
of the propagation medium are sometime unavoidable during the whole obser-
vation time interval, which prevents from observing a perfectly coherent signal
source. Indeed, the random fluctuation of the propagation medium induces a

yi =hyg (‘z7 a) r1+ Vk,hg (d,a) = (17 e 761%(%1):5“&))

10
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random fluctuation of the signal amplitude. If the propagation medium fluctu-
ations are small, then the mean power received from the signal source remains
unchanged [18], which can be modeled via (6a) as:

Tk = fk?—lmk—l +wk—1) ka = CJH? p$k717mk = Czk,wkfl/cwkfl = .fk—17 (16b)

where fr_1 is the correlation coefficient between x;_1 and a3 which fully char-
acterizes the loss of coherence between observation k — 1 and k (| fe_1|* < 1).
Firstly, we investigate the impact of a slight loss of coherence of the signal source
on the performance of the recursive MVDRE [14, (17a)-(17¢)] computed under
the hypothesis of a FCS source, that is:

xb = (EZ)HY,C, fz = arg min {kaCkak} s.t. kaﬁk =1
Ly

To this end, we compute the MSE in the estimation of zj, both for a FCS source
(reference case) denoted “MVDRE (FCS)”, and for a PCS source, denoted by
“MVDRE Mismatched to PCS”. Secondly, we highlight the benefit of the for-
mulation of a recursive MVDRE taking into account (16b), with fx_1 and Cy, _,
known, and denoted as “MVDRE Matched to PCS”. The results are summa-
rized in Fig. 1, where the empirical MSE (denoted “...(Sim)...”) is assessed with
10* Monte-Carlo trials. Three cases of very small loss of coherence are consid-
ered (02, =02, € {1075,107°,107*}). Fig. 1 clearly exemplifies the impact
of a slight loss of coherence of the signal source on the MVDRE performance
in the large sample regime, which introduces a severe performance breakdown
when the loss of coherence is not taken into account. Thanks to the results in-
troduced in Section 2.2, we can also evaluate which is the minimum achievable
MSE when the amplitude fluctuation model is known (16b). Fig. 1 also shows
that, when the signal source amplitude becomes partially coherent, there exists
a lower limit in the achievable MSE, and an optimal number of observations that
can be combined to estimate the amplitude with a nearly minimum achievable
MSE. Hence, the significance of the derivation of a recursive LCMVE for PCS
sources introduced in this section.

3. Mitigation of Modelling Errors in System Matrices

Sinece the LCKF and LCMVEs of x; are based on the measurements and
our knowledge of the model dynamics, any mismatch between the true model
dynamics and the the assumed model dynamics leads to a suboptimal filter,
and possibly to a filter with bad performance, as the discrepancy between the
two models increases. Thus we consider the situation where we do not know
perfectly the system matrices (Fy_1,Hy), i.e. there is the true LDSS model and
the one we assume:

True: 4 Xk = Fr_1Xp—1+wi_1 Assumed : 4 XF = Ekilxkq + W1
Y& = Hpxp + v v = HeXg + vi

(18)
Let us denote dFy_1 = Fp_1 — /F\k,1 and dH;, = Hy, — ﬁk.

11
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’]0-‘I T T
102
E 10-3 L
= —MVDRE (FCS)
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Figure 1: MSE of the recursive MVDRE of zj, (16a)-(16b) over time.

3.1. Parametric Modelling Errors

The existence of uncertainty on system matrices (Fy_1,H) can be illus-
trated by the case where a parametric modelling of system matrices (Fy_1, Hy)
is known: Fj_y = Fio1 (w) = [fl_; (w) ... ff | (w)] and Hy £ H; (9) =
[hj. (6) ... h; (8)], where w and 6 are supposed to be deterministic vector
values determined via an ad hoc calibration process. In many cases, such cal-
ibration process provides estimates @ = w + dw and @ = 6 + dO of the true
values w and 6. If the calibration process is accurate enough, i.e. dw and dé
are small, then the true state and measurement matrices, i.e. Fy_1 = Fy_4 (w)
and Hy = Hy (0), differ from the assumed ones, i.e. fk,l = Fi_1 (@) and

ﬁk = H,, (é), via first order Taylor series

h! (é) . on’P (é)

H, ~ H), + dH}, dHy=— |——~2d0 ... —— 240 19
k k k k 90" 207 (19a)
- ofl_ (&) . ofF (&) .
Fi1~Fpq+dFyy, dFyq=— [ka‘;:ﬁ)dw ’“8:’7(,)(14 (19D)

12
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3.2. Impact of Modelling Errors in System Matrices
At time & = 1, any LCKF or LCMVE of x; is of the form %X, (L) = Ly,
where L; 2 LY is the solution of L = arg rrﬁin {P11 (L)} or the solution of
1

L = arg nﬁin {P11 (L1)} s.t. LAy = Ty, computed with the assumed LDSS
1

model. Since y; = /I-ilxl + vi + dH1x1, the error made by the assumed filter
in estimating the true x; is given by

)Ail‘l — X1 = — (I — L{Iﬁl) X1 + L{{V1 + €1 (Ll) y (208.)
e1 (L)) = LIIHx;. (20b)

At time k > 2, provided that LCs (13b)-(13d) are considered, any LCKF or
LCMVE of x;, is obtained from the Kalman-like recursion

K (L) = Froa®p_q 0y + Lt (yk - Hka—lﬁZ_”k_l) (21)

where L, £ L is the solution of L = argnIlJikn{Pg“C (Lk)} (11c-11e), or the
solution of L? = argrrﬁikn {P,{lk (Lk)} st. LAA, = Ty (13e-13g), computed
with the assumed LDSS model. Since
Froxp 1 = Fpoaxp i +dFy 50,
ye = Hy (i?\kflxkfl + kal) + v+ dHyx + HygdFgoxp-1,

the error made by the assumed filter (21) in estimating the true xy, is given by

Xk (Lg) — X3 = (I 7 LkHﬁk> (F\k—l (fiz_”k_l - Xk—1) - Wk—l) + LA,

+ €k (Lk) ) (22&)
e (Ly) = (LkHde (EH + dF,H) - (1 - LkHﬁk) dFk,l) Xp_1
+ (L dH) w1 (22b)

3.8. Mitigation of Modelling Errors in System Matrices
At time k = 1, if the subset of gain matrices £; = {L € CN*¥ | g, (L) = 0}
is non empty, then VL; € £;, (20a) and Pyj; (L) reduce to

X —X1 = - (I—Lflﬁl) xl—l—L{qv17 (23a)
P, (L) = (1 - L{Iﬁl) Cs, (I - L{’ﬁl)H +LAC,, Ly
- (I L ﬁl) Cavi —CH (I _LH ﬁl)H(z?,b)

and the best Ly € £; in the MSE sense,
LS = argnLnn{P1|1 (Ly)} st. Ly € Ly, (23c)
1

13
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computed from the assumed LDSS model minimizes the MSE matrix associated
with the true state x;. In that sense, £ defines the set of gain matrices which
match the true observations y; with the assumed LDSS model. We then obtain
the performance of LCKF and LCMVEs for the assumed LDSS model with
an increase of the achievable MSE due to the introduction of additional LCs
(L € £41). At time k > 2, if the subset of gain matrices

L, ={LeC"*" | ¢, (L)=0}, (23d)
is non empty, then for any Ly € L) (22a) reduces to
)A(k|k (Lk) — Xp = (I — LkHi‘I\k) (i?\k,1 (illzflwcfl — kal) — kal) + LkHVk.

(23e)
Without any additional assumptions, the best Ly € Ly in the MSE sense,

L. = argmin {Pglk (Lk)} st Ly € Ly (24)
Ly

is computed according to (13e-13g) relying in part on the knowledge of

— _ H
{ ka—hxk—l = ka—laFk—2xk—2+Wk—2 @ ka—hxk—sz—z + ka—l,wk—z
J— _— b)
ka,Vlc - CFk—lxk—1+Wk—1ka Yy kalcxk—hvk + ka—1,vk

however we only have access to the knowledge of
~ ~H
ka/—\hxk—l :/gwk—lvxk—2Fk—2 + CWk—hwk—‘z
ka,vk = Fk—lcxka,vk + ka—laVk

Thus, if we restrict to the “standard” LDSS model mentioned in monographs
[24, §9.1][25, §7.1], which satisfies

thwk =0, thvk =0, CWl,Wk = kaaéc’
CVlka = CVk(sgﬁ Cwl;vk = ka—l,vk6§c+17 (25)

then Cy,, %, , =0 and Cy, v, = Cw,_, v, leading to

o~

—~
Cwivxi1 = Cwi1x s = 0 and Cx, v, = Cx, v, = Cwy vy

In this case, Py, (Lx) (11b) reduces to

o ~\H
P/, (Ly) = (I — LkHHk) P (I - LfHk) +LEC,, L,

—~ ~\H
- (I - LkHHk) Cwy il —LCH (I - LkHHk) . (26a)
~ ~H
Pk\k—l = Fk71P271|k71Fk71 + ka_la (26b)
H
P} 1 =F [(i2—1|k—1 - xk—l) <)A(lli—1|k—1 - Xk—l) ] ; (26¢)

14
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and the solution of (24) only depends on fk_l, ﬁk, Cy, and my, .

Finally, if £ is non empty at each time k, then for the “standard” LDSS
model (25), LCKF and LCMVEs computed from the assumed LDSS model
are matched to the true observations yj, and the recursion (13e-13g) minimizes
the MSE associated with the true state x;. We then obtain the performance
of LCKF and LCMVEs for the assumed LDSS model with an increase of the
achievable MSE due to the introduction of additional LCs (L € L). However,
under (25) Cyw, _, x,_, = 0, therefore

LIdH, =0
er (L) =0 < { LI dH,, (ﬁk,l + dFk,l) - (I - LkHﬁk) dFj,_1 =0
where Ly, Hy, dHy € CNeXP dF,_; € CP*P_ that is,
er(Lp) =0 & {LkHde =0, (I - LkHﬁk) dF et = 0} , (28a)
which leads to two possible cases: rank (dF_1) = P and rank (dF,_1) < P,
e Case 1) rank (dFy_1) = P

{(1 - LkHﬁk> dFy_1 =0, rdnk(dEj_,) = Pk} & I-LPH, =0,
which leads to a degenerated form of the Kalman-like recursion (21)
Kppk (Li) = (I - LkHﬁk) fk—liz_ukq +Liye = Lys
and a degenerated form of LCKF and LCMVEs

% = (L) "yi B = argmin {L{ Gy, L } st {LkHde —=0,LIH, = I}

(28b)
Thus if rank (d¥_1) = P, the introduction of LCs to mitigate modelling errors
in state matrices Fy_; removes the KF main merit, that is the ability to combine
previous observations to improve the estimation of the current state.

e Case 2) rank (dFy_1) < P
In this case, (28a) can be recast as

{LkHde =0, L7 (ﬁdek_1> - dFk_l}

while the Kalman-like recursion (21) does not degenerate as above. More specif-
ically, let dFy_1 = Up_1d®;_1 be the singular value decomposition (SVD) of
dF},_1 where Uj_; € CP*Bx-1 has full rank Ry_1 < P and d®;_; € CB+—1xP
[5]. Then

(1 - L,?ﬁk) dF_1 =0 < (1 - LkHﬁk) Ui 1d®),_; = 0, Vdd;_;.

15
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Since Ug_; has full rank, the above LCs are equivalent to
(1 - Lfﬁk) Ui1=0 o LY (ﬁkUk_1> —Ups
and (28a) becomes
er(Ly) =0 & {LkHde =0, LY (ﬁkUk_l) - Uk_l}. (28¢)

3.4. Special Case: Mitigation of Modelling Error in State Matrices where dFy_4
has not full rank

If the measurement matrices Hy are perfectly known, then dH;, = 0. At
time k = 1 there is no longer any mismatch to mitigate, whereas at time k > 2
(22a) reduces to

}A{k‘k (Lk) — X = (I — L]?Hk) </F\k,1 (Xzflvcfl —N kal) - Wk71> + LkHV]C
+ €k (Lk) )
where €, (L) = (LfH, —I) dF_1x4_1. Since rank (dFy_1) < P, (28a) be-

comes
€L (Lk) =0 & {LkH (HkUk_l) = Uk—l} (29&)

where dFy_1 = Ug_1d®y_1 is the SVD of dF_1, and, VLy € Ly,

Ko (L) — x = (I— L/ Hy) (F\k—l (Xz_uk_l - Xk—l) - Wk—l) + L vy,
(29b)
leading to, under (25),

P}y, (L) = (I - LIH) Py (I- LEYH,) " + LY C,, Ly
—(I-LIH,) Cy,_, v, L — LECH (1- L))",

Wg—1,Vk

~ ~H
b
Py = kalpkfl\lclekfl + Cwi_1»
H
b _ b b
Pk—1|k—1 =F |:<Xk—1k—1 - Xk—l) (Xk_1|k_1 - Xk—l) ] )

where all terms are known. Finally, if £; is non empty at each time k, then
under (25), LCKF and LCMVEs computed from the assumed LDSS model
are matched to the true observations yj, and the recursion (13e-13g) minimizes
the MSE associated with the true state xi. We then obtain the performance
of LCKF and LCMVEs for the assumed LDSS model with an increase of the
achievable MSE due to the introduction of additional LCs (29a).

16
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3.4.1. Example on State Matriz Error dF_, Mitigation

As an example of model mismatch on the state transition matrix we consider
the same scenario as above (16a), but a second FCS source z is now located
at a broadside angle as in the angular vicinity of the signal of interest, i.e.,
ag = a + asqp/8, where asqp denotes the beamwidth. The second source to
noise power is 40 dB, which is high enough to induce a crosstalk affecting the
first FCS source z; leading to the following true and mismatched LDSS models,

< — 1 do <
True : =10 1 k=1 Assumed : {
yi = Hixp + vy

X = Xk—1
yi=HpXp + vy (302)
where d¢ is the unknown crosstalk coefficient which depends on various features,
including the distance between the two sources. Note that due to crosstalk the
first source x; turns into a PCS source.

The effect of crosstalk on the MVDRE is shown in Figures 2 and 3. In these
figures, firstly, we compare the performance of the MVDRE computed under the
hypothesis of FCS sources [14, (17a)-(17¢c)] when d¢ = 0 (denoted “MVDRE
(FCS)” and “MVDRE (FCS,Sim)”) and when d¢ = 10~* (denoted “MVDRE
(CT,Sim)”). Fig. 2 clearly exemplifies the impact of a loss of coherence of
the signal source x7; on the MVDRE performance in the large sample regime,
which introduces a severe performance breakdown. On the other side, since the
second source xo remains a FCS, its MSE remains unchanged. Secondly, in the
considered scenario dFy_1 = ug_1d¢ where ux_; = (é), and (29a) reduces to

L (Hyw 1) = wer & Ly (da) = ( ; > (30D)
Therefore, according to the analysis introduced above, the effect of the crosstalk
can be mitigated by resorting to a recursive LCMVE based on (13e-13g) where
T, = ((1)) and Ag = hg <d, oz), which is exemplified in Figures 2 and 3 with
curves "LCMVE (CT)” and "LCMVE (CT,Sim)”. The empirical MSEs (de-
noted “..Sim)..."”) are assessed with 10* Monte-Carlo trials. Interestingly enough,
the mitigation of a modelling error on the first source x; does not have an im-
pact on the estimation of the second source x5. Last, but not least, even if
the transformation of a FCS source into a PCS relies on a different mechanism
(crosstalk instead of random walk), the formulation of a recursive LCMVE (in-
stead of a recursive MVDRE) taking this phenomenon into account yields a
similar behaviour in the large sample regime, i.e. a minimum achievable MSE.

3.5. Special Case: Mitigation of Modelling Error in Measurement Matrices

If the state matrices Fy_1 are perfectly known, then dFy_1; = 0. At time
k =1 the above analysis is still valid, whereas at time k > 2 (22a) reduces to

X (L) —xp = (I - Lfﬁk) (Fk—l (fiz_”k_l - Xk—l) - Wk_1> +Liv,
+ €k (Lk) )

17
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Figure 2: MSE of recursive MVDRE and LCMVE of (xj,); over time k, in presence of crosstalk
(30a).
where e, (Ly) = L dHyx;,. Thus (28a) becomes

er(Ly) =0 & {LfdH; =0}, (31a)
and, VL € Ly,

)A(k|k (Lk) [X—= (I — LkHﬁk> (Fk—l ()A(Z—Hk—l — Xk_1) — Wk_1> + LkHVk,
(31b)
leading to, under (10b),

~ o~ H
P/, (L) = (I — LkHHk) Piis (I — LfHk) +LIC,, L,
o~ \H
_ (1 - LkHHk> Cyp v L —LECH (1 - LkHHk> ,
Pk\k—l = kalpzfl\kleffl +Cw,y + kach

Wk—1,Xk—1

H
b _ ob ob
Py 1 =F [(Xk—uk—l - Xk—l) (Xk—1|k—1 - Xk—l) ] .

H
+ ka—lyxk—lefl’

where all terms, including Cy, v, and Cy, , x,_ ,, are known. Finally, if £y
is non empty at each time k, then under (10b), LCKF and LCMVEs com-
puted from the assumed LDSS model are matched to the true observations yy

18
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Figure 3: MSE of recursive MVDRE and LCMVE of (xj), versus k, in presence of crosstalk
(30a).

and the recursion (13e-13g) minimizes the MSE associated with the true state
xj. We then obtain the performance of LCKF and LCMVEs for the assumed
LDSS model with an increase of the achievable MSE due to the introduction of
additional LCs (31a).

3.5.1. Example on Measurement Matrixz Error dHy, Mitigation

Considering the example introduced in Section 2.4, let us assume now that,
due t0 a calibration error, or array deformation (e.g., thermal effects, aging,
etc.), the actual inter-sensor distance is d = 0.98d, ie. d—d = A/100. Thus,
we are in the presence of a parametric modelling error in measurement vectors
hy, (d, &) which leads to the computation of a recursive MVDRE that does not
match the true observations (16a). The effect of such kind of “miscalibration”
on the MVDRE is shown in Fig. 4 where we compare the performance of
MVDREs based on recursions [14, (17a)-(17c)] computed with the true value
d (“Cal MVDRE (FCS)”) and with the assumed value d (“MisCal MVDRE
(FCS,SIM)”) for a FCS source. From a more general perspective, in this case
(31a) becomes

m(6) g (9)

—— 740 ... de| = o0, vde,
00" 00"

LfdH;, =0 & Lf
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which yields the sufficient condition

1(p P (g
LY ahgo(:) ah;ggo) —o0. (33)

Under (33), identity (31b) becomes a first order approximation
)A(k|k (Lk) — X = <I — Lkﬁk> (Fk,1 (ﬁ271|k71 — kal) — Wk71> + Lkvk.

Thus, in order to mitigate the effect on hy, (d, @) of a small change in the system
parameter d, at each iteration the constraint lkH ohy, (ci, a) /9d = 0 is taken into

account (“MisCal LCMVE (FCS,SIM)”). We also assess the impact of a PCS
source on recursive LCMVE performance by considering the amplitude fluctu-
ation model (16b) where o2 = 10~*. For this purpose, we compare the perfor-
mance of the recursive LCMVE computed under the hypothesis of a FCS source
[14, (19a)-(19d)], denoted by “MisCal LCMVE Mismatched to PCS (SIM)” in
Fig. 4, and the proposed extension (13e-13g), that is the ability to resort to
a recursive LCMVE taking into account (16b); denoted by “MisCal LCMVE
Matched to PCS (SIM)” in Fig. 4. Again, even a slight loss of coherence in-
troduces a severe LCMVE performance breakdown when the loss of coherence
is ignored, breakdown which can be mitigated when the amplitude fluctuation
model (16b) is taken into account thanks to the proposed methodology. Last
but not least, in case of a “small” miscalibration effect, the analytic LCMVE
recursion (13e-13g) provides a tight prediction of the actual behaviour of the
LCMVE, both in presence of a FCS source (“MisCal LCMVE (FCS,Pred)”) and
of a PCS source (“MisCal LCMVE Matched to PCS (Pred)”).

4. Mitigation of System Noise Statistics Uncertainty

Since LCKF and LCMVEs are derived as solutions of the minimization of
the MSE matrix of a linear estimator under LCs, only the first and second order
moments are taken into account, and nothing is said about the probability dis-
tribution of the system noise. In that sense, LCKF and LCMVEs can be looked
upon as “system noise first and second order statistics” matched filters. There-
fore any mismatch between the true system noise statistics and the assumed
system noise statistics leads to a suboptimal filter, and possibly to a filter with
bad performance, as the discrepancy between the two models increases. Re-
garding the possible lack of knowledge on the measurement noise (vy) and/or
the amplitude fluctuation noise (w;_1) mean and covariance, we consider the
case where it results from the addition of nuisances whose parametric models
are partially known, leading to the problem of estimating the state of a nominal
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Figure 4: MSE of the recursive LCMVE of zj, (16a-16b) over time k, 02, = 10~*

LDSS model from an observed LDSS model corrupted by the nuisances:

Xp = Fr1Xp—1 + Wi—1 + 11
Ob d : ~ . 34
$4 { R (34)
. Xp =Fp_1Xp_1 +wWi_1
N 1: 35
wnina { X e (35)

4.1. Impact of System Noise Statistics Uncertainty
At time k = 1, any LCKF or LCMVE of x; is of the form X, (L1) = Ly,
where L; 2 LY is the solution of L = arg nlllin {P11 (L)} or the solution of

LY = arg Hﬁin {P1|1 (Ll)} s.t. LA, = Ty, computed with the nominal LDSS
1

model. Since y; = Hix; 4+ vy + ji1, the error made by the nominal filter in
estimating the nominal x; is given by

)A(1|1 — X1 = — (I — L{—IH1) X1 + L{{vl + &1 (Ll), (368.)

where €1 (L1) = L¥j;. At time k > 2, provided that LCs (13b)-(13d) are con-
sidered, any LCKF or LCMVE of x}, is obtained from the Kalman-like recursion

Kifk (Li) = Fra%p g,y + L7 (Yk - Hka—1kZ_1|k_1> (37)
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where Ly £ LY is the solution of L} = argnﬁin{Pi‘k (Lk)} (11c-11e), or the
k

solution of L} = argnﬁin {Pilk (Lk)} st. LEA, = Ty (13e-13g), computed
with the nominal LDSS model. Since

vi = Hy (Feo1xp—1 + Wi—1) + vie + Himy_q + i,
the error made by the nominal filter in estimating the nominal xj, (34) is
X (L) —xi = (I— L Hy,) (Fk—l (iz_uk_l - Xk—l) - Wk—l) + Lilvy
+er(Li), (38a)
where e, (Ly,) = L (Hpm,_q +Jk)-

4.2. Mitigation of System Noise Statistics Uncertainty

At time k = 1, if the subset of gain matrices £; = {Lie CNM*P | &, (L) = 0}
is non empty, then VL; € £q, (20a) and Pyj; (L) reduce to

%ip—x1 = —(I-L{H;)x; +L{'v,
Py (L) = (I-LIH))Cy, (I-LPH)" +L7C, L
(T LI'H,) Cy, v, —CE | (1-LIH)",
and the best L; € £ in the MSE sense,
LS = argnﬁiln {Py1 (L)} st. Ly € Ly, (39a)

computed from the nominal LDSS model minimizes the MSE matrix associated
with the estimation of the nominal state x;. In that sense, £, defines the set
of gain matrices which match the true observations y; with the nominal LDSS
model. We then obtain the performance of LCKF and LCMVEs for the nominal
LDSS model with an increase of the achievable MSE due to the introduction
of additional LCs (Ly € £1). At time k > 2, if the subset of gain matrices
Ly, = {L € CN+*P | g (L) = 0} is non empty, then VL;, € Ly, (38a) reduces to

Xk (L) — xp = (I— L' Hy) (kal (fcz_”k_l - xk,1> - wk,l) + LAy,
leading to, under (10b),
H
Pj (Ly) = T—L{H) Prpy (T-LH) " + LY Cy, Ly

— (1= LIH) Cyy v L — LECH | (1-LIH,)"

Xk VEk

Pk‘k—l = kalefl\klegfl + ka—l + kach + CWk—1,xk—1FI€171ﬂ

Wk—1,Xk—1

H
b _ sb sb
Py yp1=F [(Xk—lk—l - Xk—l) (Xk—1|k—1 - Xk—l) ] :
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Finally, if £, is non empty at each time k, then under (10b), LCKF and
LCMVEs computed from the nominal LDSS model are matched to the true
observations y;, and the recursion (13e-13g) minimizes the MSE matrix associ-
ated with the estimation of the nominal state x;. We then obtain the perfor-
mance of LCKF and LCMVEs for the nominal LDSS model with an increase
in the achievable MSE due to the introduction of additional LCs (L, € Ly).
Interestingly, the LCs

e, (L) = Ly (Himy_y +jr) =0 (40a)
can mitigate various cases of noise statistics uncertainty. For instance:

e The presence of interference sources (jammers) in measurement where
jx = Wiig, ¥y is known and iy is unknown,

LEiw,=0 = Lj, =0 (40b)

e The presence of interference sources or noise statistics uncertainty in the
state where 1;,_; = ®r_18k—1, Pr—1is known and gj_; is unknown,

Lif (Hy®y 1) =0 = LiHyny_, =0, (40c)

which occurs, for example, if the mean value of wy_; is non-zero where
My, , = Pp_18k—1.

e The combination of the two previous cases,

{LkH\Ilk —0, LI H,®,_,) = 0} = LY (Hym_, +ji) =0 (40d)

4.2.1. Ezample on System Noise Statistics Uncertainty Mitigation

If calibration uncertainties must be mitigated for each new observations yy,
in some sequential estimation problems it is more optimal to add on-line con-
straints that are triggered by a preprocessing of yj, or by external information on
the environment. As an example we consider the same scenario as above (16a)
when the ULA can be regarded as perfectly calibrated (§ = ). An intermittent
jammer is located at a known broadside angle a;y in the angular vicinity of the
signal of interest, i.e., & = ay — agqp/4, where azqp denotes the beamwidth.
The jammer to noise power is 40 dB and its probability of activation at each
observation is denoted by P;. We assume that the jammer is detected whenever
it is activated.

Firstly, for a FCS source (reference case), we compare the standard jammer
cancellation procedure [1, §6.7.1] (denoted “Batch LCMVE (FCS)” and “Batch
LCMVE (FCS,Sim)” in Figures (5-9)) with the dynamic jammer cancellation
(denoted “LCMVE (FCS)” and “LCMVE (FCS,Sim)” in Figures (5-9)) allowed
by recursive LCMVEs. The standard procedure [1, §6.7.1] consists in imposing

a permanent null constraint IkHﬁk (6, a5) = 0 in the batch form of the LCMVE
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(12a-12b), i.e. Ty = [10] and Ay = [h; (0, a) hy (0,a,)]. Regarding the
proposed dynamic jammer cancellation, at each jammer detection, the null con-
straint (40b) 17hy, (6, ;) = 0 is added to cancel the jammer signal, and the
recursive LCMVE is updated according to [14, (19a)-(19d)] where T}, = 0 and
Ay = hi (6,ay). In the absence of jammer detection, the recursive LCMVE
is updated without additional constraint, that is according to [14, (17a)-(17c)].
The empirical MSEs (denoted “...Sim)...”) are assessed with 10* Monte-Carlo
trials. When the null constraint is set, the jammer signal is cancelled at the
expense of an increase of the output noise power in comparison with a jammer
free scenario, which increases the minimum MSE achieved. Therefore, to limit
the increase of the MSE achieved, the null constraint must be set only when the
jammer is activated, which is highlighted by Figures (5-9) displaying the MSE
of both solutions obtained for 5 values of Py: 1, 0.9, 0.5;0.1, 0. As expected,
the superiority of the recursive LCMVE over the batch form LCMVE increases
as P decreases.

Secondly, we also assess the impact of a PCS source on recursive LCMVE
performance by considering the amplitude fluctuation model (16b) where o2, =
10~%. For this purpose, we compare the performance of the dynamic jammer
cancellation computed under the hypothesis of a FCS source (as above) denoted
by “LCMVE Mismatched to PCS (Sim)” in Figures (5-9), and the proposed
extension of [14] to PCS source, denoted by “LCMVE Matched to PCS” and
“LCMVE Matched to PCS (Sim)” in Figures (5-9). In the latter case, at each
jammer detection, the null constraint 17hy, (0, ;) = 0 is added via (13e-13g)
where T, = 0 and A, = hy (A, 5). In the absence of jammer detection, the
recursive LCMVE is updated according to (11c-11e).

Once again, Figures (5-9) exemplify the impact of a slight loss of coherence
of the signal source on the LCMVE performance in the large sample regime,
which introduces a severe performance breakdown when the loss of coherence
is not taken into account. Thanks to the results introduced in Section 2.2, we
can also evaluate which is the minimum achievable MSE when the amplitude
fluctuation model is known (16b). Interestingly enough, as illustrated in Figures
5 (permanent jammer) and 9 (no jammer), the minimum achievable MSE does
depend on the LCs considered.

5. Conclusion

A discussion on the important problem of linear regression was provided —
with a focus on a multi-channel signal processing application. Particularly, the
case of partially coherent signal sources was addressed, where the source am-
plitudes undergo a partial random walk between observations, thus extending
prior work involving fully coherent signal sources. In that context, the paper de-
rived a new class of recursive linearly constrained minimum variance estimators
(LCMVE), which was seen to provide additional robustness to modeling errors
through the incorporation of non-stationary linear constraints. Such formula-
tion has the interesting feature of allowing for a closed-form solution. Moreover,
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Figure 5: MSE of recursive and batch form LCMVEs of xj, (16a-16b) over time k, Py = 1.

a noteworthy feature of the recursive LCMVE is to be fully adaptive in the con-
text of sequential estimation as it allows the addition of optional constraints
that can be triggered by a preprocessing of each new observation or external
information on the environment. The proposed methodology is validated with
a running example on array signal processing where a variety of model mis-
matches are analyzed both analytically and with computer simulations. Those
mismatches include erroneous system matrices and noise statistics in linear dis-
crete state-space models. The analyses show the enhanced robustness with
respect to standard LCMVE schemes. Notice that the methodology relies only
on first and second order moments, then there is no need to impose a statistical
model. For slightly nonlinear problems, the proposed solution is still valid if
we consider a first-order linearization of the system model, in the vein of the
extended Kalman filter. The analysis of the general model taking into account,
simultaneously, model errors in system matrices and system noise statistics is
not trivial to elaborate and is a topic under study. The main goal of this article
is not to cover all possible cases but to show the capabilities of the addition of
non-stationary linear constraints in order to robustify LCMVEs.
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