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Abstract—This paper addresses the problem of detecting
anomalous activity in traffic networks where the network is
not directly observed. Given knowledge of what the node-to-
node traffic in a network should be, any activity that differs
significantly from this baseline would be considered anomalous.
We propose a Bayesian hierarchical model for estimating the
traffic rates and detecting anomalous changes in the network.
The probabilistic nature of the model allows us to perform
statistical goodness-of-fit tests to detect significant deviations from
a baseline network. We show that due to the more defined
structure of the hierarchical Bayesian model, such tests perform
well even when the empirical models estimated by the EM
algorithm are misspecified. We apply our model to both simulated
and real datasets to demonstrate its superior performance over
existing alternatives.

Index Terms—anomaly detection, latent variable model, EM
algorithm, minimum relative entropy, hypothesis testing

I. INTRODUCTION

In today’s connected world, communication is increasingly
voluminous, diverse, and essential. Phone calls, delivery ser-
vices, and the Internet are all modern amenities that send mas-
sive amounts of traffic over immense networks. Thus network
security, such as the ability to detect network intrusions or
illegal network activity, plays a vital role in defending these
network infrastructures. For example, (i) computer networks
can protect themselves from malware such as botnets by
identifying unusual network flow patterns; (ii) supply chains
can prevent cargo theft by monitoring the schedule of ship-
ments or out-of-route journeys between warehouses; (iii) law
enforcement agencies can uncover smuggling operations by
detecting alternative modes of transporting goods.

Identifying unusual network activity requires a good esti-
mator of the true network traffic, including the anomalous
activity, in order to distinguish it from a baseline of what
the network should look like. However, often it is not pos-
sible to for an external observer to observe the network
directly due to constraints such as cost, protocols, or legal
restrictions. This makes the problem of estimating the rate
of traffic between nodes in a network difficult because the
edges between nodes are latent unobserved variables. Network
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tomography approaches have been previously proposed for
estimating network topology or reconstructing link traffic
from incomplete measurements and limited knowledge about
network connectivity. However for network anomography, the
detection of anomalous deviations of traffic in the network,
highly accurate estimation of all network traffic may not be
necessary. It often suffices to detect perturbations within the
network at an aggregate or global scale. This paper addresses
the problem of network anomography rather than that of
network tomography or traffic estimation.

A. Related Work

Broadly defined, the network tomography problem is to re-
construct complete network properties, e.g., source-destination
(SD) traffic or network topology, based on incomplete data.
The term “network tomography” was introduced in [1] where
the objective is to estimate unknown source destination traf-
fic intensities given observations of link traffic and known
network topology. Since the publication of [1], the scope
of the term network tomography has been used in a much
broader sense (see the review papers [2], [3], [4], and [5]).
For example, a variety of passive or active packet probing
strategies have been used for topology reconstruction of the
Internet, including unicast, multicast, or multi-multicast [6],
[7], and [8]; or using different statistical measures including
packet loss, packet delay, or correlation [9], [10], [11], and
[12].

In the formulation of [1], the network tomography objective
is to determine the total amount of traffic between SD pairs
given knowledge of the physical network topology and the
total amount of traffic flowing over links, called the link data.
This leads to the linear model for the observations yt = Axt

where A is the known routing matrix defining the routing
paths, and at each time point t, yt is a vector of the observed
total traffic on the links and xt is a vector of the unobserved
message traffic between SD pairs. Using the model that the
elements of xt are independent and Poisson distributed, an
expectation-maximization (EM) maximum likelihood estima-
tor (MLE) and a method of moments estimator are proposed
in [1] for the Poisson rate parameters λ. The authors of [13]
propose a Bayesian conditionally Poisson model, which uses
a Markov chain Monte Carlo (MCMC) method to iteratively
draw samples from the joint posterior of λ and x. The authors
of [14] and [15] assume the message traffic is instead from
a Normal distribution, obtaining a computationally simpler
estimator of the SD traffic rates. The authors of [16] relax the
assumption that the traffic is an independent and identically
Poisson distributed sequence and instead consider the network
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as a directly observable Markov chain. Under this weaker
assumption, they derive a threshold estimator for the Hoeffding
test in order to detect if the network contains anomalous
activity.

In [17] the authors propose an EM approach for Poisson
maximum likelihood estimation when the network topology
is unknown; however, their solution is only computationally
feasible for very small networks and it does not account for
observations of traffic through interior nodes. This has led to
simpler and more scalable solutions in the form of gravity
models where the rate of traffic between each SD pair is
modeled by xsd = (NsNd)/N where Ns and Nd are the total
traffic out of the source node and into the destination node
respectively and N is the total traffic in the network. Standard
gravity models do not account for the interior nodes, thus in
[18] and [19] tomogravity and entropy regularized tomogravity
models were proposed, which incorporate the interior node
information in the second stage of their algorithm. The authors
of [20] generalize the tomogravity model from a rank one
(time periods are independent) to a low rank approximation
(time periods are correlated) and allow additional observations
on individual SD pairs. Similarly, the authors of [21] and [22]
use a low rank model with network traffic maps to incorporate
a sparse anomaly matrix, and they solve their multiple convex
objectives with the alternating direction method of multipliers
(ADMM) algorithm.

Dimensionality reduction has also been used directly for
anomaly detection in the SD traffic flows in networks. Under
the assumption that traffic links have low rank structure, the
authors in [23] and [24] use Principle Component Analysis
(PCA) to separate the anomalous traffic from the nominal
traffic. This low rank framework is generalized to applying
PCA in networks that are temporally low rank or have dynamic
routing matrices, in [25]. The authors of [25] also coin the term
“network anomography” to reflect the influence of network
topology reconstruction, which is a necessary component to
detecting anomalies in a network with unknown structure.
However, later work in [26] discusses the limitations of PCA
for detecting anomalous network traffic, e.g., it is sensitive to
(i) the choice of subspace size; (ii) the way traffic measure-
ments are aggregated; (iii) large anomalies. The low rank plus
sparse framework is extended to online setting with a subspace
tracking algorithm in [27].

Specifically for Internet Protocol (IP) networks, some works
prefer to perform anomaly detection on the flows from the IP
packets instead of the SD flows. The authors of [28] use PCA
to separate the anomalous and nominal flows from sketches
(random aggregations of IP flows) while the authors of [29]
model the sketches as time series and detect change points
with forecasting. The works of [30] and [31] also perform
change point detection using windowed hypothesis testing with
generalized likelihood ratio or relative entropy respectively.

Because our approach in this paper is based on traffic
networks or SD models, these types of approaches were the
focus of our related works subsection. However, networks can
also be represented as graph models or as features of the
network characteristics. This subsection would be incomplete
if it did not mention anomaly detection approaches to other

types of network models. So, we refer to some survey papers
that cover many of the recent techniques in graph based
approaches: [32] and [33]. In particular, similar to the low rank
approaches for SD networks, there are low rank approaches to
graph models such as [34] who assume the inverse covariance
matrix of their wireless sensor network data has a graph
structure and solve a low rank penalized Gaussian graphical
model problem and [35] who impose graph smoothness by
a low rank assumption on graph Laplacian of the features
of the network. [36] also uses a low rank approach on their
KDD intrusion data set, but they directly apply the low rank
assumption to the network characteristics of their data.

B. Our Contribution
In this paper, we consider networks where an exterior

node (a node in an SD pair) only transmits and receives
messages from a few other nodes, but because, as an external
observer (one that is not located on a node), we cannot observe
network directly, we do not know which SD pairs have traffic
and which do not. Thus, we develop a novel framework to
detect anomalous traffic in sparse networks with unknown
sparsity pattern. Our contributions are the following. 1) In
order to estimate the network traffic, we propose a paramet-
ric hierarchical model that alternates between estimating the
unobserved network traffic and optimizing for the best fit
rates of traffic using the EM algorithm. 2) We warm-start
the algorithm with the solution to non-parametric minimum
relative entropy model that directly projects the rates of traffic
onto the nearest attainable sparse network. 3) Since we do
not make assumptions of fixed edge structure in our model,
it allows us to accommodate the possibility of anomalous
edges in the actual network structure because anomalies will
never be known in advance. 4) Using our probabilistic model’s
estimator of actual traffic rates, we test for anomalous network
activity by comparing it to a baseline to determine which
deviations are anomalies and which are estimation noise. We
develop specific statistical tests, based on the generalized
likelihood ratio framework, to control for the false positive
rate of our probabilistic model, and show that even when
our models are misspecified, our tests can accurately detect
anomalous activity in the network.

The rest of the paper is organized in the following way.
Section II proposes a problem formulation of the network we
are interested in and our assumptions about it. Section III
describes our proposed hierarchical Bayesian model, which
is solved with a generalized EM algorithm and warm-starting
the EM with a solution that satisfies the minimum relative
entropy principle. Section IV describes our anomaly detection
scheme through statistical goodness of fit tests and Section
V describes the computational complexity of our method.
Section VI contains simulation results of the performance
of our proposed estimators and applications to the CTU-13
dataset of botnet traffic and a dataset of NYC taxicab traffic.
Finally, Section VII concludes the paper.

II. PROPOSED FORMULATION

We give a simple diagram of a notional network in Fig. 1(a).
An exterior node, Vi, sends messages, N t

ij , at a rate, Λij , to
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another exterior node, Vj , at each time point, t. Messages can
flow through interior nodes, such as U1, but the interior nodes
do not absorb or create messages. Because the magnitude of
flow is just the total number of messages that have been sent
from one node to another, network traffic between nodes is a
counting process. For tractability, it is common to assume the
messages are independent and identically distributed (i.i.d.)
and the total number of messages in a time period is from
some parametric distribution. The Poisson distribution is the
most natural choice because it models events occurring in-
dependently with a constant rate, and it is used by [1], [17],
[13], [14], and [15] although the latter two works use a Normal
approximation to the Poisson for additional tractability.

When the network is observed directly, the edge structure
and rates can be easily estimated using a sample of obser-
vations at different time points. Under these Poisson process
assumptions, the uniformly minimum variance unbiased es-
timator is simply the maximum likelihood estimator (MLE)
of the Poisson distribution. However, this is a very strong
and unrealistic assumption because it implies that we, as
an external observer, are able to track every single message
being passed in the network. Thus, we are interested in the
much weaker assumption that we can only monitor the nodes
themselves. Fig. 1(b) shows what we can actually observe
from the network under this weaker assumption. While we
also observe the total amount of traffic, unlike in [1], we do
not know the network topology.

Since we can only monitor the nodes, we can only observe
the total ingress and egress of the exterior nodes. Thus we
know an exterior node, Vi, transmits N t

i· messages and receives
N t
·i messages, but we do not know which of the other nodes it

is interacting with. We can also observe the flow through inte-
rior nodes, but we cannot distinguish where the messages come
from or are going to. For instance, in Fig. 1(a), an interior
node, such as U1, will observe all messages, F t1 = N t

14+N t
2P ,

that flow through it, but it will not be able to distinguish the
number of messages from each SD pair or whether all the SD
pairs actually send messages.

A network with P exterior nodes can naturally be mathe-
matically formulated as a P ×P matrix, which is observed T
times. Let N t be the unobserved traffic matrix at time instance
t and let the elements of the matrix, N t

ij , be the amount of
traffic between nodes i and j. The row and column sums
of the traffic are denoted by R = [N1. . . . NP.]

′ and C =
[N.1 . . . N.P ]′ respectively, and F = [Fh] are the observed
flows through interior nodes, which are indexed by h. The
traffic at each time instance t is generated from a distribution
with mean Λ, the true intensity/rate parameter of the matrix,
and Λ0 is the baseline parameter of a network without any
anomalies. This mathematical formulation is shown below.

N t=


0 N t

12 N t
13 · · · N t

1P

N t
21 0 N t

23 · · · N t
2P

N t
31 N t

32 0 · · · N t
3P

...
...

...
. . .

...
N t
P1 N t

P2 N t
P3 · · · 0


Observations

N t
.j =

∑P
i=1N

t
ij

N t
i. =

∑P
j=1N

t
ij

F th =
∑
N t
ij

N t
ij for some ij

We assume a priori that the distribution of the rate matrix
is centered around some baseline rate matrix Λ0, which are

(a) Proposed Network: Vi - exterior nodes, Ui - interior nodes, Nt
ij - messages

from node i to node j at time point t

(b) Actual Observed Network: Nt
i· - total egress of exterior nodes, Nt

·i - total
ingress of exterior nodes, F t

i - total flow through interior nodes

Fig. 1. Diagram of a network with P exterior nodes and 2 interior nodes.

the assumed rates when there is no anomalous activity. We
then update this prior distribution using the observations D =
{Rt,Ct,F t}Tt=1 in order to get a distribution of the rates
P(Λ|D), which does account for potential anomalous activity.

III. HIERARCHICAL POISSON MODEL WITH EM

We propose a generative model that assumes a series of
statistical distributions govern the generation of the network.
We assume that the messages N t

ij passed through the network
are Poisson distributed with rates Λij . However, because we
cannot observe the traffic network directly, we do not have
the complete Poisson likelihood and use the EM algorithm. In
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the following subsections, we will show a series of generative
models with increasing complexity that attain successively
higher accuracy. Then we will discuss warm-starting the EM
algorithm at a robust initial solution to compensate for its
sensitivity to initialization.

A. Proposed Hierarchical Bayesian Model

1) Maximum Likelihood by EM: The simplest hierarchical
model assumes all priors are uniform, thus the only distri-
butional assumption is that likelihood P(N1, . . . ,NT |Λ) is∏T
t=1

∏
ij Poisson(Λij). The maximum likelihood estima-

tor for the Poisson rates Λ can be approximated by lower
bounds of the observed likelihood P(D|Λ) using the maximum
likelihood expectation maximization (MLEM) algorithm. The
MLEM alternates between computing a lower bound on the
likelihood function P(D|Λ), the E-step, and maximizing the
lower bound, the M-step. A general expression for the E-step
bound can be expressed as:

log P(D|Λ)≥
T∑
t=1

Eqt
(
log P(Rt,Ct,F t,N t|Λ)

)
+ H(qt) (1)

where qt is an arbitrarily chosen distribution of N t, Eqt

denotes statistical expectation with respect to the reference
distribution qt, and H(qt) is the Shannon entropy of qt.
The choice of qt that makes the bound (1) the tightest, and
results in the fastest convergence of the MLEM algorithm,
is qt = P(N t|Rt,Ct,F t,Λ), (see Section 11.4.7 of [37]);
however, this is not a tractable distribution. When the obser-
vations consist of the row and column sums of the matrix
N t, this distribution is the multivariate Fisher’s noncentral
hypergeometric distribution, and when the flows are also
observed the distribution is unknown. Unfortunately, use of
this optimal distribution leads to an intractable E-step in the
MLEM algorithm due to the coupling (dependence) between
the row and column sums of N t. As an alternative we can
weaken the bound on the likelihood function (1) by using a
different distribution q that leads to an easier E-step. To this
aim, we propose to use a distribution q that decouples the
row sum from the column sum; equivalent to assuming that
each sum is independent, e.g., as if each were computed with
different realizations of N t.

Proposition 1. Assume t1, t2 and t3 are different time points
so that observations at these time points are independent

P(D|Λ) =
T∏

t1=1

P(Rt1 |Λ)
T∏

t2=1

P(Ct2 |Λ)
T∏

t3=1

P(F t3 |Λ).

Then the tightest lower bound of the observed data log
likelihood is

log P(D|Λ) ≥
3∑

τ=1

T∑
tτ=1

H(qtτ ) + Eqtτ
(
log P(N tτ |Λ)

)
where qt1 = P(N t1 |Rt1 ,Λ), qt2 = P(N t2 |Ct2 ,Λ), and
qt3(N t3) = P(N t3 |F t3 ,Λ) are multinomial distributions.

In the EM algorithm, the expectation in the E-step is taken
with respect to the distribution estimated using the previous

iteration’s estimate of the parameter Λ̂k, and the M-step
does not depend on the entropy terms in the lower bound in
Proposition 1, which are constant with respect to Λ. Since the
likelihoods are all Poisson, the E-step reduces to computing
the means of multinomial distributions and the M-step for any
ij pair is given by the Poisson MLE with the unknown N t

ij

terms replaced by their mean values. Explicitly the M-step
objective is

Λ̂k+1
ij = arg max

Λij

− Λij + log(Λij)N
total
ij (2)

where N total
ij =

∑T
t1=1 E(N t1

ij |Rt1 , Λ̂k)

+
∑T
t2=1 E(N t2

ij |Ct2 , Λ̂k) +
∑T
t3=1 E(N t3

ij |F t3 , Λ̂k) and the
expectations are with respect to the multinomial distributions
of Proposition 1 . Thus the Poisson MLE equals Λ̂k+1

ij =

N total
ij /3T .
2) Maximum a Posteriori by EM: Because there are P 2

unobserved variables and only O(P ) observed variables, the
expected log likelihoods have a lot of local maxima. In order
to make the EM objective better defined and incorporate
the baseline Poisson rate information Λ0, a prior can be
added to the likelihood model of the previous subsection.
The EM objective of this new model is now the expected
log posterior and the estimator in the M-step is the maxi-
mum a posteriori (MAP) estimator. It is natural to choose
a conjugate prior of the form P(Λ) =

∏
ij P(Λij) where

each Λij ∼ Gamma(εijΛ0 ij + 1, εij) (shape, rate) as this
choice yields a closed form expression for the posterior
distribution. These priors have modes at the baseline rates
Λ0 ij . The hyperparameters εij can be thought of as the belief
we have in the correctness of the baseline so as ε → 0, the
prior variance goes to infinity, and the prior becomes non-
informative because we have no confidence in the baseline,
while as ε → ∞, the prior variance goes to zero, and the
prior degenerates into the point Λ0 ij because we are certain
the baseline is correct.

Given a matrix of hyperparameters ε, the complete
data posterior distribution is P(Λ|ε,N1, . . . ,NT ) =∏
ij P(Λij |εij , N1

ij , . . . , N
T
ij ) where each posterior is of the

form of Gamma(εijΛ0 ij + 1 +
∑T
t=1Nij , εij + T ). Be-

cause we can only observe the network indirectly D =
{Rt,Ct,F t}Tt=1, we again must estimate the mode of this
posterior using the EM algorithm, which is very similar to
the algorithm for the likelihood model. The only difference
is the M-step in which an additional term of the form∑
ij(εijΛ0 ij) log(Λij)− εijΛij is added to (2). Thus at every

EM iteration, the entries of the MAP estimator matrix Λ̂k+1

are

Λ̂k+1
ij =

εijΛ0 ij +N total
ij

εij + 3T
(3)

where N total
ij is the same as in (2).

3) Bayesian Hierarchical Model: Choosing the hyperpa-
rameters εij can be difficult because it is not always possible
to quantify our belief in the correctness of the baseline rates.
We can rectify this by allowing the εij to be random with
hyperpriors εij ∼ Uniform(0,∞). We choose uninformative
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hyperpriors for εij > 0. A notional diagram for the proposed
hierarchical model is shown in Fig. 2.

Fig. 2. The statistical process believed to underlie our network.

With these uninformative priors the posterior takes the form

P(Λ|N1, . . . ,NT ) =

∫
P(N1, . . . ,NT |Λ)P(Λ|ε)P(ε)

P(N1, . . . ,NT )
dε

=

∫
P(N1, . . . ,NT |Λ)P(Λ|ε)

P(N1, . . . ,NT |ε)
P(N1, . . . ,NT |ε)P(ε)

P(N1, . . . ,NT )
dε

=

∫
P(Λ|ε,N1, . . . ,NT )P(ε|N1, . . . ,NT ) dε (4)

where P(ε|N1, . . . ,NT ) =
∫

P(Λ, ε|N1, . . . ,NT ) dΛ. The
observed (incomplete data) log posterior log P(Λ|D) has lower
bound proportional to

log

(∫
exp

{
Eq
(
log P(Λ|ε,N1, . . . ,NT )

)}
exp

{
Eq

(
log

∫
P(Λ, ε|N1, . . . ,NT ) dΛ

)}
dε

)
which is tight when q = P(N1, . . . ,NT |D,Λ), as shown in
(9) in the Appendix.

However, marginalizing the joint posterior∫
P(Λ, ε|N1, . . . ,NT ) dΛ is often not feasible, so instead it

is popular to use empirical Bayes to approximate it with a
point-estimate

We propose an empirical Bayes approach to maximizing
the log posterior as an alternative to maximization of (4)
ε̂ = arg max

ε
P(ε|N1, . . . ,NT ). This empirical Bayes ap-

proximation can be embedded in the EM algorithm so that
once we have an estimate for ε, an estimator for Λ is
obtained by maximizing the expected log conditional posterior
Eq
(
log P(Λ|ε̂,N1, . . . ,NT )

)
.

Theorem 1. Using the time independence in Proposition 1
and the empirical Bayes approximation, the E-step of the EM
algorithm for the hierarchal model is

N̂ t1
ij = E(N t1

ij |R
t1 , Λ̂k) =

Λ̂kij∑P
j=1 Λ̂kij

Rt1i

N̂ t2
ij = E(N t2

ij |C
t2 , Λ̂k) =

Λ̂kij∑P
i=1 Λ̂kij

Ct2j ,

N̂ t3
ij = E(N t3

ij |F
t3 , Λ̂k) =

Λ̂kij∑
ij Λ̂kij

F t3h for any pair ij,

and the M-step is

ε̂ k+1
ij = arg max

εij

3∑
τ=1

T∑
tτ=1

log
Γ(N̂ tτ

ij + εijΛ0 ij + 1)

Γ(εijΛ0 ij + 1)

+
3∑

τ=1

T∑
tτ=1

(εijΛ0 ij + 1) log
εij

1 + εij
− N̂ tτ

ij log(1 + εij)

and

Λ̂k+1
ij = arg max

Λij

(ε̂ijΛ0 ij) log(Λij)− ε̂ijΛij − 3TΛij

+ log(Λij)

(
T∑

t1=1

N̂ t1
ij +

T∑
t2=1

N̂ t2
ij +

T∑
t3=1

N̂ t3
ij

)
.

Since the function that lower bounds the observed log like-
lihood changes after every iteration of the EM algorithm, the
prior should also change after every iteration. Intuitively, the
earlier iterations of the EM algorithm will have expected log
likelihoods that are more misspecified than the later iterations.
This suggests spreading the prior distribution in the earlier
iterations. The empirical Bayes approximation of Theorem 1
effectively does this by allowing the variance of the prior to be
chosen using the data instead of fixing it as a constant. In this
manner, the empirical Bayes approximation can be thought of
as a Bayesian analog to the regularized EM algorithm of [38].

B. Warm Starting with Minimum Relative Entropy

The EM algorithm is well known to be sensitive to initial-
ization, especially if the objective has a lot of local maxima.
Thus if instead of a random initialization, the EM algorithm is
warm-started, it is more likely to converge to a good maximum
and also potentially converge faster. A good choice for an
initialization point is a more robust estimator of the rate matrix
such as the solution to a model with fewer distributional
assumptions. Thus instead of modeling an explicit generative
model, we can instead adopt the minimum relative entropy
(MRE) principle [39], [40], [41], and [42]. Geometrically, this
reduces to an information projection of the prior distribution,
as shown in Fig. 3.

The constrained minimum relative entropy distribution is
the density that is closest to a given prior distribution and
lies in a feasible set, P . This feasible set is formed from
constraints that require their expected values, with respect to
the minimum relative entropy distribution, to match properties
of the observations, D (the total ingress, egress, and flows).
And because relative entropy is the Kullback-Leibler (KL)
divergence between probability distributions, this is used as
the metric for closeness. This closeness criterion is well
suited to the anomaly detection problem of interest to us
because anomalous activity is rare, so the distribution of the
actual rates, Λ, should be similar to the prior distribution
P0(Λ) = P(Λ|Λ0), which is parameterized by the baselines
rates Λ0.
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Fig. 3. A projection of the prior, P0(Λ), onto a feasible set P of distributions
that satisfy the observed data, D.

The MRE objective is

min
P(Λ|R,C,F )

KL (P(Λ|R,C,F )||P0(Λ))

subject to∫
P(Λ|R,C,F )(Λ1− R̄) dΛ = 0∫
P(Λ|R,C,F )(1′Λ− C̄) dΛ = 0∫
P(Λ|R,C,F )(AΛB − F̄ ) dΛ = 0

where 0 and 1 are vectors of zeros and ones respectively,
C̄ = 1

T

∑T
t=1C

t and R̄ = 1
T

∑T
t=1R

t are the average rates
of observed total traffic into and out of each node, and A
and B are 0-1 matrices summing the rates that flow through
each of the interior nodes with average observations F̄ =
1
T

∑T
t=1 F

t. Using the Legendre transform of the Lagrangian
to get the Hamiltonian, the optimal density has the form

P(Λ|R,C,F ) =
P0(Λ)

Z(ρ,γ,φ)
exp

{
ρ′(Λ1− R̄) (5)

+γ′(1′Λ− C̄) + φ′(AΛB − F̄ )
}

where ρ,γ,φ are Lagrange multipliers that maximize the
negative log partition function − log(Z (ρ,γ,φ)).

Proposition 2. Let P0(Λ) =
∏
ij P0(Λij) be independent

Laplace distributions with mean parameter Λ0 ij and scale
parameter 1, then the constrained mode of the MRE distribu-
tion is the solution to

arg max
Λ∈R+

− ||Λ−Λ0||1 + ρ̂′(Λ1− R̄)

+ γ̂′(1′Λ− C̄)′ + φ̂′(AΛB − F̄ )

where ρ̂, γ̂, φ̂ = arg max
ρ,γ,φ

− log (Z(ρ,γ,φ)).

Maximizing the above expression over Λ (constrained to
only positive real numbers) can be seen as a slight relaxation
of the more direct objective of minimizing the loss function

arg min
Λ∈R+

||Λ−Λ0||1 (6)

subject to Λ1 = R̄, 1′Λ = C̄, AΛB = F̄

where || · ||1 is the element wise `1 norm. The loss function
in (6) has the advantage that it can be easily implemented in
any constrained convex solver such as CVX [43].

The objective in (6) is an easily interpretable formulation
for estimating the rate matrix, which does not depend on the
unobserved traffic N t

ij . And, because it does not put distri-
butional assumptions on the “likelihood”, it is more robust to
model mismatch, at the cost of accuracy. The generality of the
solution to (6), while not precise enough on its own, makes
it a good candidate to be further refined by the EM algorithm
in the Hierarchical Poisson model.

IV. TESTING FOR ANOMALIES

Since the estimators in the previous section are maximizers
of probabilistic models, a natural way to test for anomalies
in the rate matrix Λ is to compare goodness of fit of the
fitted model using hypothesis testing. By testing the null
hypothesis vec(Λ) = vec(Λ0) against the alternative hypoth-
esis vec(Λ) 6= vec(Λ0), we can control the false positive
rate (FPR) (Type 1 error), of incorrectly declaring anomalous
activity in the rate matrix, using a level-α test. In this section
we will represent a statistical model with the notation M(·),
as the results apply for both log likelihood and log posterior
models.

Depending on if the statistical models are likelihoods or
posteriors, the statistic

ψ = −2
T∑
t=1

(
log(Mt(Λ0))− log(Mt(Λ̂))

)
(7)

would be either a log likelihood ratio (LR) statistic or a log
posterior density ratio (PDR) statistic [44] respectively, where
Λ̂ = arg max

Λ∈R+

M(Λ). Thus testing ψ against a threshold can

be seen as a generalized log likelihood ratio test or generalized
log posterior ratio test with a composite alternative hypothesis.

Proposition 3. Under the standard regularity conditions for
the log LR statistic or under the sufficient conditions of
the Bernstein-von Mises theorem for the log PDR statistic,
ψ will be asymptotically χ2

P 2−P distributed under the null
hypothesis.

Next we show that the statistic ψ in (7) is a good estimator
of the KL divergence between the true model at its maximum
and the true model at the baseline. And even if the models are
misspecified, the statistic

ψ̂ = −2
T∑
t=1

(
log(M̂k

t (Λ0))− log(M̂k
t (Λ̂))

)
can still be a good estimator for goodness-of-fit, where the
k in M̂k(Λ0) and M̂k(Λ̂) indicates the iteration of the EM
algorithm.

Proposition 4. The statistic ψ/T is a consistent estimator for

Ψ = 2 KL (M(Λ∗)||M(Λ0)) ,
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the KL divergence between the true model and the true model
under the null hypothesis. The statistic ψ̂/T is a consistent
estimator for

2 KL (M(Λ∗)||M(Λ0)) (8)

− 2
(

KL(M(Λ∗)||M̂k(Λ̂∗))− KL(M(Λ0)||M̂k(Λ0))
)

where M̂k(Λ̂∗) is the closest population local maximum at
iteration k.

The second term in (8) can be seen as the difference
between the true model misspecification error and the model
misspecification error of the null hypothesis. So if conditions
are satisfied so that the EM algorithm converges to the global
maximum as the number of iterations k →∞ or if the model
is equally as misspecified under the truth as under the null
hypothesis such that the differences in the second term in
(8) cancel to 0, then the statistic ψ̂/T is also a consistent
estimator of Ψ. The justification for using misspecified models
can also be geometrically interpreted as follows. Because the
models estimated from the EM algorithm are from the correct
parametric family of distributions, the misspecified models still
lie on the same Riemannian manifold as the correct models.
Below, we provide an algorithm for performing hypothesis
testing on the statistic ψ̂.

Algorithm 1: Anomaly Test

Input: models M̂k
1 , . . . ,M̂k

T , critical value c = F−1(α)
where F is χ2

p2−p
CDF, α is test level

Solve Λ̂ = arg max
Λ∈R+

∑T
t=1 log(M̂k

t (Λ))

ψ̂ = −2
∑T

t=1

(
log(M̂k

t (Λ0))− log(M̂k
t (Λ̂))

)
if ψ̂ > c then

Reject vec(Λ) = vec(Λ0)
else

Do not reject vec(Λ) = vec(Λ0)
end if
Return: Reject or Not

Algorithm 1 calculates the statistic ψ̂ as a log ratio of the
modes of the model under the null and alternative hypothesis.
It then tests ψ̂ against a critical value c, which is related to
the false positive level.

Under the null hypothesis, the statistic ψ̂ can be decomposed
as sampling error −2

∑T
t=1 log M̂k

t (Λ̂∗) − max
Λ∈R+

log M̂k
t (Λ)

plus model error −2
∑T
t=1 log M̂k

t (Λ0)− log M̂k
t (Λ̂∗). Thus

for the level-α test P(ψ̂ > c|H0) = α, a Type-I error can occur
due to either sampling error or model error or a combination
of both. Since typically the finite sample distribution of the
statistic ψ is unknown, the asymptotic distribution described
in Proposition 3 can be used to choose the critical value c
of P(ψ > c|H0) = α. Assuming the model error is small,
or small relative to the sampling error, we can also use
Proposition 3 to choose the critical value of a test with a
misspecified statistic P(ψ̂ > c|H0) = α. In the following
section, we will show in simulations that the asymptotic
distribution of the correct statistic ψ is adequate for choosing
the critical value of a test using the misspecified statistic ψ̂.

V. COMPUTATIONAL COMPLEXITY

In Algorithm 2, we present our hierarchical Poisson EM
model warm started at the MRE estimator and analyze its
computational complexity.

Algorithm 2: HP-MRE

Input: observations D = {Rt,Ct,F t}Tt=1, test level α
Initialize: Λ̂ as the solution to (6)
repeat

E-Step: Calculate N̂t1
ij , N̂

t2
ij , N̂

t3
ij for all i, j in Theorem 1

M-Step: Solve for ε̂ k+1
ij and Λ̂k+1

ij for all i, j in Theorem 1
until convergence
Test: Calculate ψ̂ and reject if it is greater than critical value c
Return: Reject or Not

Warm starting the EM algorithm at the MRE solution
(6) requires using interior-point methods, which have poly-
nomial complexity in the number of variables. Since the
MRE objective has P 2 linear variables and 2P 2 second order
cone problem variables, the computational cost is of order
O(#IP iter(3P 2)r) where r is the polynomial degree (often
3) and #IP iter is the number of iterations of the interior
point algorithm.

The E-Step consists of calculating the multinomial means
using the observed data. Assume that the number of flows
in the interior nodes are roughly P , so that each of the row
sums, column sums, and interior node flows are the summation
of P values. Then for each independent time instance tτ ,
there are P summations of P values in denominator and a
multiplication and division operation on each of the P 2 entries
in the numerator. The total computational cost of the E-step
is of order O(τTP 2) where τ is the number of different time
points in Proposition 1 (2 + number of interior nodes).

In the M-step, the estimator ε̂ k+1
ij can only be solved nu-

merically because the score function of the negative binomial
distribution is a non-linear equation. Because we can derive
the gradient of the score function, we can use a trust-region
method with a Newton conjugate gradient subproblem (each
subproblem has linear complexity in time points). Given ε̂ k+1

ij ,
the estimator Λ̂k+1

ij can be solved in closed form (3) with
scalar operations, making its complexity linear in time points.
Thus the total computational cost of the M-step is of order
O((1 + #CGiter)TP 2) where #CGiter is the number of
conjugate gradient iterations.

Given the final iterations EM estimators, evaluating the
models at each i, j entry only involves scalar operations,
and getting the log ratio statistic ψ̂ requires summing over
all i, j entries and the T time points; so the total com-
plexity of the anomaly test statistics is of order O(TP 2).
Thus, overall Algorithm 2 has computational complexity
of order O(#IP iter(3P 2)r + #EMiter((τ + 1)TP 2 +
#CGiterTP 2)). Note that our choice in algorithms for the
numerical optimizations were based more on convenience
(using popular standard packages e.g. CVX, Matlab’s fsolve)
than optimal performance, so the computational complexities
listed in this section are certainly not the best case scenarios.
Nonetheless, even using non-optimal numerical algorithms, we
show, in the following section, that our method can run in a
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reasonable amount of time in both simulations and large real
world problems.

VI. SIMULATION AND DATA EXAMPLES

In this section, we model network traffic in both simulated
and real datasets as hierarchical Poisson posteriors to get
estimators of the true network traffic rates. These estimators,
from the hierarchical Poisson posteriors where the EM algo-
rithm is initialized randomly or at the MRE estimator (Rand-
HP or MRE-HP), are tested against baseline rates to detect
anomalous activity in the network, as shown in Algorithm
1. We compare the performance of our proposed models to
the maximum likelihood EM (MLEM) model of [17] (with
the same time independence assumptions of Proposition 1 for
feasibility), the Traffic and Anomaly Map (TA-Map) method
of [22], and an “Oracle” that unrealistically observes the
network directly. The “Oracle” estimator is the uniformly min-
imum variance unbiased estimator and achieves the Cramer-
Rao lower bound [45].

The Traffic and Anomaly Map method is the state-of-the-
art for estimating the rates in networks with traffic anomalies.
Specifically for the TA-Map method we use the objective of
(P1) in [22], but with the low rank decomposition of (P4) in
[22] where X = LQ′ and Q = 1 is a vector of ones because
the rates do not change over time. Since the anomalies also do
not change over time, they can be expanded as AQ′ where A
is a P 2 × 1 vector of rates of anomalous activity. We use Λ0

to form the routing matrix for the vector of nominal rates L
and a full routing matrix for the vector of anomalous rates A
since we do not know any structural knowledge about them.
Additionally, converting the notation of [22] to the notation
of this paper, Y = [C,R,F ], ZΠ are defined as the edges
that are observed, and L+A = vec(Λ), where L and A are
solved using CVX on (P1) in [22]. We empirically choose the
penalty parameters λ? = 0.5 and λ1 = 0.1.

A. Simulation Results

We simulate networks where the baseline rate matrix has
10 exterior nodes and 2 interior nodes. The probability of
an edge between any two nodes in the baseline network is
0.65, the baseline rates Λ0 ij are drawn from Gamma(1.75, 1)
distributions, and each interior node observes the total flow of
a random 7 edges. We consider scenarios where anomalous
activity can take place in either the edges or the nodes. In
the first scenario, the anomalous activity can cause increases
in the rates of some of the edges, new edges to appear
or disappear, or both. So, the rates of anomalous activity
Λij − Λ0 ij are drawn from Gamma(0.75, 1) distributions
where the probability of anomalous activity between any two
nodes is 0.2. In the second scenario, there is a hidden node that
is interacting with the other nodes, thus affecting the observed
total flows of the known nodes. So the entries of the true rate
matrix are drawn from Gamma(1.75, 1) distributions, but the
true rate matrix has 11 exterior nodes and the baseline rate
matrix is the 10× 10 submatrix of known nodes. Like in the
first scenario, the probability of an edge between the hidden

node and another node is 0.2. All simulations contain 200
trials, with anomalous activity in approximately half of them.

In Fig. 4 we explore the accuracy of correctly identifying
anomalous activity as a function of the percentage of observed
edges, where we observe T = 100 time points (samples). We
measure accuracy as #TP+#TN

#Trials where the number of true
positives (TP) and true negatives (TN) are the number of times
a method correctly detects that there is anomalous activity
or no anomalous activity respectively. For the probabilistic
models (MLEM, Rand-HP, MRE-HP) , we use the likelihood
or posterior density ratio tests described in Section IV where
the critical value is calculated using the inverse cumulative
distribution function of the χ2

P 2−P distribution at 0.05. The
Traffic and Anomaly Map method uses a threshold on the
maximum (absolute) value of the anomaly matrix A where
the threshold is chosen so that it has 0.05 Type-I error. While
the accuracy of all the probabilistic models increases as the
percentage of observed edges increases, the MLEM has low
accuracy unless over 80% of the network is observed whereas
the two Hierarchical Poisson models have high accuracy even
when no part of the network is directly observed. The TA-
Map method also has poor performance at all percentages of
the network observed. This may due to issues the TA-Map
method has at separating L and A into the correct separate
matrices even when the total estimator L+A is accurate.

Fig. 4. The network has 10 exterior nodes, 2 interior nodes, 35% sparsity,
and a 0.5 probability of having anomalous activity, where T = 100
samples are observed. The accuracy of correctly detecting if the network
has anomalous activity increases as the number of edges observed increases.
The proposed Rand-HP, and MRE-HP models outperform the state-of-the-art
TA-Map anomaly detector.

While the Rand-HP and MRE-HP models have approx-
imately the same accuracy at detecting anomalies (MRE-
HP does slightly better when only a few of the edges are
observed), initializing the EM algorithm of the Hierarchical
Poisson model at the MRE solution has additional benefits.
Fig. 5 shows that the EM algorithm in the Hierarchical Poisson
model with random initialization takes longer to converge than
if it is initialized at the MRE solution. This is because, if the
EM algorithm is initialized in a place where likelihood is very
noisy, it may have difficultly deciding on the best of the nearby
local maxima, but the MRE solution is often already close to
a good local maximum.

Fig. 6 shows the mean squared error (MSE) of the estimated
rate matrices ||Λ̂−Λ||2F . The MRE-HP model gains some of
the advantages of the MRE estimator making its MSE much
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lower than that of the Rand-HP model. As the percentage
of observed edges in the network increases, all estimators’
errors decrease to the Oracle estimator’s error, which is the
lowest possible MSE among all unbiased estimators. However,
both the TA-Map method and the MLEM model do not have
good performance except when almost all of the network
is observed, at which point every estimator performs well.
Note that estimating the traffic is not the end goal in the
considered anomaly detection problem. We demonstrate this
by comparing Fig. 6 to Fig. 4, where we can see that estimating
the traffic well (having low MSE) does not guarantee the
method high accuracy. Low MSE implies that a method’s
estimates do not have a large difference with the true rates,
however depending on where the differences occur, it can be
enough to cause the method to incorrectly detect anomalous
activity.

Fig. 5. The number of iterations required for the EM algorithm to converge as
the observation time and number of edges observed vary. By warm-starting
the EM algorithm at the MRE estimator, the number of iteration is much
fewer everywhere because it is already close to a good local maximum.

Fig. 7 shows the ROC curves of the anomaly detection
performance of the MRE-HP, MLEM, and TA-Map methods
for both the anomalous rates and the hidden node scenarios,
where only 20% of the edges are observed. The accuracy
of the MRE-HP model increases with the total observation
time T , and it can detect anomalous activity almost perfectly
with only 100 time points, as evidenced by its area under
the curve (AUC) being very close to 1. The stars over the
lines are the FPR vs TPR when using the critical values found
by calculating the inverse cumulative distribution function of
the χ2

P 2−P distribution at 0.05. The ROC curve for testing a
misspecified LR test statistic using the MLEM is just the point
at (1, 1) because the Poisson MLE model is so misspecified, it
always rejects the null hypothesis. The TA-Map method, while
it does not always rejects the null hypothesis like the MLEM
model, performs about as bad as random guessing (a diagonal

Fig. 6. The MSE decreases as the number of edges observed increases. The
proposed MRE, Rand-HP, and MRE-HP models outperform the state-of-the-
art TA-Map method.

line from (0, 0) to (1, 1)). These results are consistent with
the accuracy results shown in Fig. 4.

In Table I, we show the corresponding CPU timings of each
method in the two scenarios used in Fig. 7. The algorithms
were run on an Intel Xeon E5-2630 processor at 2.30GHz
without any explicit parallelization; however some of the built-
in Matlab functions are by default multi-threaded (such as ones
that call BLAS or LAPACK libraries). While the MRE-HP is
slower than the competing methods, its computation time is
still very fast and on average less than half a minute. Also, note
the significant performance improvement provided by MRE-
HP in the considered anomaly detection problem (see Fig. 4
and Fig. 7).

TABLE I
FIG. 7 CPU TIMES (IN SECONDS) OVER 200 TRIALS

Increase in Rates Hidden Node
Average Standard Dev. Average Standard Dev.

MRE-HP 18.594 28.611 18.901 30.785
MLEM 0.0398 0.0112 0.0380 0.0119
TA-Map 3.1860 0.1347 3.1861 0.1912

B. CTU-13 Dataset

The proposed model was applied to botnet traffic networks
from the CTU-13 dataset, which come from 13 different
scenarios of botnets executing malware attacks captured by
CTU University, Czech Republic, in 2011 [46]. The dataset
contains real botnet traffic mixed with normal traffic and back-
ground traffic and the authors of [46] processed the captured
traffic into bidirectional NetFlows and manually labeled them.
Because the objective is to detect if there is botnet traffic
among the regular users, we will only use the sub-network
of nodes that are being used for normal traffic, but the traffic
on this sub-network can be of any type: normal, background,
or botnet. Thus, baseline traffic on the network is either normal
or background traffic and the anomalous traffic is from botnets.
And because the botnet traffic originates and also potentially
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Fig. 7. ROC curves where 20% of edges in the network are observed and
roughly half of the networks have anomalous activity. The proposed MRE-HP
model can detect anomalous activity almost perfectly while the TA-Map and
MLEM methods have poor performance.

ceases from nodes that are not the regular users, the anomalous
activity is due to unobserved hidden nodes.

The observations consist of the total ingress and egress of
each node along with the total flows of 10 interior nodes,
where each interior node receives flow from 0.7P other nodes,
in addition to observing 20% of the edges in the network. An
observation or sample is all the traffic that occurs in a one-hour
time period. For each of the scenarios, we test the probabilistic
models at an alpha level of 0.05 under both regimes where

the null hypothesis is true (no botnet traffic) and not true
(botnet traffic). For the TA-Map method of [22], we use the
ROC curves from the simulations to choose the threshold that
yields a Type-I error equal to 0.05. Table II summarizes the
characteristics of each of the 13 difference scenarios.

TABLE II
CTU NETWORK CHARACTERISTICS

Time # of # of Edges # of # of Edges
Scenario T Nodes Normal Hidden Botnet

(Hours) P Traffic Nodes Traffic
1 7 510 1566 2280 4428
2 6 114 249 283 337
3 68 333 977 2463 2466
4 5 414 1737 9 27
5 2 246 652 59 67
6 3 200 380 2 5
7 2 93 161 11 14
8 20 3031 8799 57 106
9 6 485 1799 706 3372
10 6 260 1088 25 131
11 1 53 162 7 19
12 2 290 697 861 1829
13 17 272 814 267 345

Table III shows that the Hierarchical Poisson model ini-
tialized at the MRE solution always correctly rejects the null
hypothesis when it is not true. However, the model incorrectly
rejects the null hypothesis in Scenario 3. This scenario has far
more nodes than any of the other scenarios, and as the number
of nodes increase, the number of entries that must be esti-
mated, O(P 2), vastly outweigh the number of observations,
O(P ). This gives rise to a large model misspecification error in
this scenario, which would negatively impact the accuracy of
Algorithm I. Like in the simulations, the Poisson MLE model
always rejects the null hypothesis due to its massive model
misspecification error and the TA-Map method also has poor
performance in the scenarios that are computationally feasible
for the method (the ones marked NA are too computationally
expensive). Overall MRE-HP has good performance detecting
anomalous activity, especially compared to the other methods.

TABLE III
CTU NETWORK TEST

Scenario When H0 is True When HA is True
MRE-HP MLE TA-Map MRE-HP MLE TA-Map

1 X × NA X X NA
2 X × × X X X

3 × × NA X X NA
4 X × NA X X NA
5 X × NA X X NA
6 X × NA X X NA
7 X × × X X X
8 X × NA X X NA
9 X × NA X X NA
10 X × NA X X NA
11 X × × X X X
12 X × NA X X NA
13 X × NA X X NA
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In Table IV, we show the CPU timings of the algorithms for
the 13 scenarios in the CTU-13 dataset under both hypothesis,
where the algorithms are run on the same processor described
in the simulations. Even for scenario 8, the computational
times of MRE-HP are feasible despite running on a rather
out-of-date processor with a low clock speed. Again we mark
NA for the scenarios that are computationally infeasible for the
TA-Map method (the memory requirements are above 32GB
even for scenario 6). The MRE-HP method despite being
slower than the TA-Map on smaller networks (see Table I),
scales much more efficiently to larger networks.

TABLE IV
CTU NETWORK CPU TIMES (IN SECONDS)

Scenario When H0 is True When HA is True
MRE-HP MLE TA-Map MRE-HP MLE TA-Map

1 513.72 25.381 NA 1303.2 62.148 NA
2 19.258 5.2586 426.69 206.71 1.0702 683.26
3 790.60 70.706 NA 468.39 55.564 NA
4 2038.0 10.834 NA 3607.5 30.863 NA
5 539.85 2.0568 NA 263.56 3.2602 NA
6 69.452 1.6095 NA 58.427 12.556 NA
7 10.164 0.8487 360.09 17.043 0.6761 366.83
8 62602 8071.2 NA 55591 2087.8 NA
9 5439.3 97.082 NA 903.46 51.762 NA

10 648.88 7.8440 NA 174.66 2.9925 NA
11 4.2550 0.7101 55.126 17.645 0.4735 56.367
12 1864.8 3.6154 NA 514.97 5.5562 NA
13 355.20 17.620 NA 792.81 76.237 NA

C. Taxi Dataset

The proposed model was applied to a dataset consisting
of yellow and green taxicabs rides from the New York City
Taxi and Limousine Commission (NYC TLC) [47] and [48].
For every NYC taxicab ride, the dataset contains the pickup
and drop-off locations as geographic coordinates (latitude
and longitude). Green taxicabs are not allowed to pickup
passengers below West 110th Street and East 96th Street in
Manhattan, but occasionally they risk the chance of getting
punished and ignore the regulations. In an article on June 10th
2014, the New York Post explains how the city began hiring
more TLC inspectors to catch illegal pickups and enforce the
location rules [49]. Thus we are interested in identifying if
there are green taxicabs operating in lower Manhattan when
we only know the yellow taxicab network. We treat the 18
Neighborhood Tabulation Areas (NTA) in lower Manhattan
as nodes and associate any pickups or drop-offs within an
NTA’s boundaries as traffic entering or leaving the node. We
form edges from only frequently occurring routes of traffic,
which we define as having activity at least an average of every
20 minutes for yellow taxicabs and twice a month for green
taxicabs. For samples, we use the yellow and green taxicab
rides from between January and May of 2014 and aggregate
them into daily totals.

Like in the previous example, we indirectly observe samples
of the total ingress and egress of each node, and the total
flows of 10 interior nodes that each observe the flows of 0.7P

nodes. This creates a total traffic network with P = 18 nodes
and 187 non-zero edges (39% sparsity) where the baseline
network (yellow taxicab rides) has 163 of the edges. There is
anomalous activity (green taxicab rides) on 56 of the edges,
where 32 of these edges are also in the baseline network and
24 are not. We observe the network for a total of T = 150
days. Fig. 8 shows the baseline network formed from yellow
taxicab rides and the unknown anomalous activity due to
illegal pickups from green taxicabs.

Fig. 8. A network of taxicab rides in lower Manhattan where the nodes are
the 18 NTAs. The traffic from yellow taxicab rides (solid purple lines) form
the baseline network and the traffic from green taxicab rides (dashed green
lines) are anomalous activity in the network.

Table V shows, for different percentages of edges observed,
whether the correct decision (reject or not) is made when the
null hypothesis is true (no green taxi traffic) and when it is
not true (green taxi traffic). The Hierarchical Poisson model
initialized at the MRE solution always makes the correct
decision while the Poisson MLE model, except for when
the network can be directly observed, always rejects the null
hypothesis. These two models are tested at an alpha level of
0.05. The Traffic and Anomaly Map method, which has a
0.05 Type-I error threshold chosen from the ROC curves of
the simulations, also has poor performance.

From the results of Table V, we know the Hierarchical
Poisson model initialized at the MRE solution is always able
to detect changes in the network at a global scale, but we are
also interested in the recovery of the individual green taxicab
routes. When 70% of the network is observed, the model
is able to detect 52 of the 56 edges that contain anomalous
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TABLE V
TAXI NETWORK TEST

% When H0 is True When HA is True
Edges MRE-HP MLE TA-Map MRE-HP MLE TA-Map

0 X × X X X ×
10% X × X X X ×
20% X × X X X ×
30% X × X X X ×
40% X × X X X ×
50% X × X X X ×
60% X × × X X ×
70% X × × X X X
80% X × × X X X

90% X × × X X X
100% X X × X X X

activity with only a 2% false positive rate. The 4 missed edges
and 5 false alarms are shown in Fig. 9.

Fig. 9. A miss (red line) is an edge that the MRE-HP model fails to identify
as containing anomalous activity and a false alarm (blue line) is an edges
that is incorrectly identified as containing anomalous activity. The majority of
the misses depart from MN31 (Lenox Hill and Roosevelt Island), which may
contain legal activity because green taxis are allowed to pick up passengers
from Roosevelt Island.

Out of the 4 misses, 3 of them are from green taxicab
pickups from MN31, which contains the Lenox Hill and
Roosevelt Island areas. Green taxicabs are allowed to pick up
passengers from Roosevelt Island, but not from Lenox Hill,
so some of the traffic on these 3 routes could be legal and not
anomalous activity. The other miss, from MN19 to MN40,

only had 11 rides in 150 days, making it harder to distinguish
from just perturbation noise in the samples.

VII. CONCLUSION

We have developed a framework and a probabilistic model
for detecting anomalous activity in the traffic rates of sparse
networks. Our framework is realistic and robust in that, at
minimum, it only requires observing the total egress and
ingress of the nodes. Because it imposes no fixed assumptions
of edge structure, our framework allows the estimator to handle
noisy observations and anomalous activity. Our simulation
results show the advantages of our model over competing
methods in detecting anomalous activity. Through application
of our models to the CTU-13 botnet datasets, we show that
the model is scalable and robust to various scenarios, and with
the NYC taxi dataset, we show an application of our model
and framework to an already identified real-world problem.

APPENDIX

Proof of Proposition 1. By Jensen’s inequality, log (P(D|Λ))

= log

(
T∏

t1=1

P(Rt1 |Λ)
T∏

t2=1

P(Ct2 |Λ)
T∏

t3=1

P(F t3 |Λ)

)

≥
T∑

t1=1

Eqt1
(
log P(Rt1,N t1 |Λ)

)
− Eqt1

(
log q(N t1)

)
+

T∑
t2=1

Eqt2
(
log P(Ct2,N t2 |Λ)

)
− Eqt2

(
log q(N t2)

)
+

T∑
t3=1

Eqt3
(
log P(F t3,N t3 |Λ)

)
− Eqt3

(
log q(N t3)

)
=

T∑
t1=1

Eqt1
(
log P(Rt1 |N t1,Λ)

)
+

T∑
t2=1

Eqt2
(
log P(Ct2 |N t2,Λ)

)
+

T∑
t3=1

Eqt3
(
log P(F t3 |N t3,Λ)

)
+

3∑
τ=1

T∑
tτ=1

Eqtτ
(
log P(N tτ |Λ)

)
+ H

(
q(N tτ )

)
and P(Rt1|N t1,Λ) = P(Ct2|N t2,Λ) = P(F t3|N t3,Λ) = 1.
The inequality is tight (by KL divergence) when q(N t1) =
P(N t1 |Rt1,Λ), q(N t2) = P(N t2 |Ct2,Λ), and q(N t3) =
P(N t3 |F t3,Λ) are multinomial distributions.

Proof of Theorem 1.
Define N = {N tτ: ∀tτ = 1, . . . , T and τ = 1, . . . , 3} as the
set of all network traffic at different time points tτ for the
entire sample window 1, . . . , T . So ∩N is the intersection
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of the set and P(∩N ) is its joint probability. By Jensen’s
inequality, log P(Λ|D)

= log

∫
P(Λ, ε|D) dε = log

∫
P(D|Λ, ε)P(Λ|ε)P(ε)

P(D)
dε

= log

∫ (∫
· · ·
∫

P (D,∩N|Λ, ε) P(Λ|ε)P(ε)

P(D)
dN
)
dε

= log

∫
Eq

(
P(D,∩N|Λ, ε)∏3
τ=1

∏T
tτ=1 q(N tτ )

P(Λ|ε)P(ε)

P(D)

)
dε

≥ log

∫
exp

{
Eq

(
log P(D,∩N|Λ, ε) + log P(Λ|ε)

+ log
P(ε)

P(D)
−

3∑
τ=1

T∑
tτ=1

log q(N tτ )

)}
dε

= log

∫
exp

{
Eq

(
log

P(D,∩N ,Λ|ε)
P(D,∩N|ε)

P(D,∩N|ε)P(ε)

P(D)

)}
dε

+ log

(
exp

{
−Eq

(
3∑

τ=1

T∑
tτ=1

log q(N tτ )

)})

= log

∫
exp {Eq (log P(Λ| ∩ N , ε)) + Eq (log P(∩N , ε|D))}dε

+
3∑

τ=1

T∑
tτ=1

H
(
q(N tτ )

)
(9)

= log

∫
exp {Eq (log P(Λ| ∩ N , ε)) + Eq (log P(ε| ∩ N ))}dε

where this bound is tight (by KL divergence) when
q = P(∩N|D,Λ, ε)
=
∏3
τ=1

∏T
tτ=1 P(N tτ |Rtτ ,Λ)P(N tτ |Ctτ ,Λ)P(N tτ |F tτ ,Λ)

are multinomial distributions. And, maximizing
Eq (log P(∩N , ε|D))

= Eq (log P(D| ∩ N , ε) + log P(∩N , ε)− log P(D))

= Eq (log(1) + log P(∩N|ε)) + log P(ε)− log P(D)

= log P(ε)− log P(D) +

3∑
τ=1

T∑
tτ=1

Eqtτ log P(N tτ |ε)

is equivalent to maximizing a lower bound of log P(ε|D)

= log

∏T
t1=1

∏T
t2=1

∏T
t3=1 P(Rt1 ,Ct2 ,F t3 |ε)P(ε)

P(D)

= log P(ε)− log P(D) + log
T∏
t=1

Eqt1

(
P(Rt1,N t1 |ε)

qt1(N t1)

)

+ log
T∏

t2=1

Eqt2

(
P(Ct2,N t2 |ε)

qt2(N t2)

)
+ log

T∏
t3=1

Eqt3

(
P(F t3,N t3 |ε)

qt3(N t3)

)

≥ log P(ε)− log P(D) +
T∑

t1=1

Eqt1 (log P(Rt1 |N t1), ε)

+

T∑
t2=1

Eqt2
(
log P(Ct2 |N t2, ε)

)
+

T∑
t3=1

Eqt3
(
log P(F t3 |N t3, ε)

)
+

3∑
τ=1

T∑
t(τ)=1

Eqtτ
(
log P(N tτ |ε)

)
− Eqtτ

(
log q(N tτ )

)

∝ log P(ε)− log P(D) +
3∑

τ=1

T∑
tτ=1

Eqtτ
(
log P(N tτ |ε)

)
for any distributions of q(N t1), q(N t2), q(N t3).

Since N tτ
ij |εij ∼ NegBin(εijΛ0 ij + 1, 1

1+εij
) is the negative

binomial distribution and εij ∼ Unif(0,∞), the M-step is ε̂ij

= arg max
εij

log P(εij) +
3∑

τ=1

T∑
tτ=1

Eqtτ
(
log P(N tτ

ij |εij)
)

∝ arg max
εij

3∑
τ=1

T∑
tτ=1

Eqtτ
(
log Γ(N tτ

ij + εijΛ0 ij + 1)
)

+ log(εij)3T (εijΛ0 ij + 1)− log(1 + εij)3T (εijΛ0 ij + 1)

− 3T log Γ(εijΛ0 ij + 1)− log(1 + εij)
3∑

τ=1

T∑
tτ=1

Eqtτ (N tτ
ij )

≥ arg max
εij

3T

(
(εijΛ0 ij + 1) log

εij
1 + εij

− log Γ(εijΛ0 ij + 1)

)
+

3∑
τ=1

T∑
tτ=1

log Γ(Eqtτ (N tτ
ij ) + εijΛ0 ij + 1)

− log(1 + εij)
3∑

τ=1

T∑
tτ=1

Eqtτ (N tτ
ij )

and given estimates of the hyperparameters ε̂ij , estimators for
the rates Λ̂ij

= arg max
Λij

Eq (log P(∩N|Λ, ε̂) + log P(Λ|ε̂)− log P(∩N ))

∝ arg max
Λij

log P(Λ|ε̂) +

3∑
τ=1

T∑
tτ=1

Eqtτ
(
log P(N tτ |Λ)

)
∝ arg max

Λij

(ε̂ijΛ0 ij) log(Λij)− ε̂ijΛij − 3TΛij

+
3∑

τ=1

T∑
tτ=1

Eqtτ (N tτ
ij )

Thus when Eqt1 (N t
ij) = E(N t1

ij |Rt1 , Λ̂k) where Λ̂k

are the previous iterations’ estimators for the rate ma-
trix, the lower bound will push up against the observed
log posterior log P(Λ|D). This makes the E-step just
the means of the independent Multinomial distributions∏P
i=1Multi(Rt1i ,

Λ̂ki1∑P
j=1 Λ̂kij

, . . . ,
Λ̂kiP∑P
j=1 Λ̂kij

) like in the previous

models. The same holds when given the column sums Ct2 or
flows F t3 .

Proof of Proposition 2. The positive estimator Λ̂ that maxi-
mizes the MRE distribution is the solution to

= arg max
Λ∈R+

log (P(Λ|R,C,F ))

= arg max
Λ∈R+

log(
∏
ij

exp {−|Λij − Λ0ij |})− log(Z (ρ,γ,φ))

+ log(exp{ρ̂′(Λ1− R̄) + γ̂′(1′Λ− C̄) + φ̂′(AΛB − F̄ )})

= arg max
Λ∈R+

−
∑
ij

|Λij − Λ0ij |+ ρ̂′(Λ1− R̄) + γ̂′(Λ′1− C̄)
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+ φ̂′(AΛB − F̄ )

= arg min
Λ∈R+

||Λ−Λ0||1 − ρ̂′(Λ1− R̄)− γ̂′(Λ′1− C̄)

− φ̂′(AΛB − F̄ )

where || · ||1 is the element wise `1 norm and the optimal
Lagrange multipliers ρ̂, γ̂, φ̂ are the solution to

= arg max
ρ,γ,φ

− log (Z(ρ,γ,φ)) (10)

= arg max
ρ,γ,φ

P∑
i=1

ρiR̄i +
P∑
j=1

γjC̄j +
∑
h

φhF̄h − log 2

−
∑
ij

Λ0ij(ρi + γj +
∑
h

φhAhiBj)

+ log(1 + LMij) + log(1− LMij)

= arg max
ρ,γ,φ

P∑
i=1

ρi(R̄i −
P∑
j=1

Λ0ij) +
P∑
j=1

γj(C̄j −
P∑
i=1

Λ0ij)

+
∑
h

φh(F̄h −
∑
ij

AhiΛ0ijBj) +
∑
ij

log(1− LM2
ij)

where LMij = ρi + γj +
∑
h φhAhiBj .

The Lagrangian of the loss function in (6) is ||Λ−Λ0||1
+ρ′(Λ1− R̄) +γ′(1′Λ− C̄) +φ′(AΛB− F̄ ) with optimal
Lagrange multipliers that are the solution to dual problem

= arg max
ρ,γ,φ

−
∑
ij

f∗(−ρi − γj −
∑
h

φhAhiBj)−
P∑
i=1

ρiR̄i

−
P∑
j=1

γjC̄j −
∑
h

φhF̄h

= arg max
ρ,γ,φ

∑
ij

Λ0ij(LMij)−
P∑
i=1

ρiR̄i −
P∑
j=1

γjC̄j −
∑
h

φhF̄h

subject to |LMij | < 1 ∀i, j

because f∗(−ρi − γj −
∑
h φhAhiBj) are the convex conju-

gates defined as

= max
Λij
− Λij(ρi + γj +

∑
h

φhAhiBj)− |Λij − Λ0ij |

= max
Λij

 Λ0ij − Λij(1 + LMij) if Λij ≥ Λ0ij

Λij(1− LMij)− Λ0ij if Λij < Λ0ij

=

 ∞ if |ρi + γj +
∑
h φhAhiBj | > 1

−Λ0ij(ρi + γj +
∑
h φhAhiBj) otherwise.

The dual can be relaxed with log barrier terms to an uncon-
strained problem that is equivalent to (10) making minimizing
the Lagrangian of (6) for Λ equivalent to maximizing the MRE
distribution.

Proof of Proposition 3. Using Remark 1.7 of [50], then for
regular models, the MAP estimator will have the same asymp-
totic properties as the MLE. Thus, the standard proof for the
asymptotic distribution for the log likelihood ratio [51] applies
to the log posterior density ratio.

Proof of Proposition 4. Let M(Λ∗) be the true model, then
the test statistic ψ

= −2
T∑
t=1

log(Mt(Λ0))− log(Mt(Λ̂))

= −2

(
T∑
t=1

log(Mt(Λ0))− max
Λ∈R+

T∑
t=1

log(Mt(Λ))

)

= 2
T∑
t=1

log(Mt(Λ
∗))− log(Mt(Λ0))

− 2 min
Λ∈R+

T∑
t=1

log(Mt(Λ
∗))− log(Mt(Λ))

and as T →∞, ψ/T
→ 2 KL (M(Λ∗||M(Λ0))− 2 min

Λ∈R+
KL (M(Λ∗)||M(Λ))

= 2 KL (M(Λ∗||M(Λ0))) = Ψ

The misspecified test statistic ψ̂

= −2

T∑
t=1

log(M̂k
t (Λ0))− log(M̂k

t (Λ̂))

= −2
T∑
t=1

log(M̂k
t (Λ0))− max

Λ∈R+

T∑
t=1

log(M̂k
t (Λ))

= 2
T∑
t=1

log(Mt(Λ
∗))− log(Mt(Λ0)) (11)

+ 2

T∑
t=1

log(Mt(Λ0))− log(M̂k
t (Λ0))

− 2
T∑
t=1

log(Mt(Λ
∗))− log(M̂k

t (Λ̂∗))

− 2 min
Λ∈R+

T∑
t=1

log(M̂k
t (Λ̂∗))− log(M̂k

t (Λ))

and as T →∞, ψ̂/T

→ 2 KL (M(Λ∗)||M(Λ0)) + 2 KL
(
M(Λ0)||M̂k(Λ0)

)
− 2 KL

(
M(Λ∗)||M̂k(Λ̂∗)

)
− 2 min

Λ∈R+
KL
(
M̂k(Λ̂∗)||M̂k(Λ)

)
= Ψ− 2

(
KL
(
M(Λ∗)||M̂k(Λ̂∗)

)
− KL

(
M(Λ0)||M̂k(Λ0)

))
where Ψ = 2 KL (M(Λ∗||M(Λ0))) and M̂k(Λ̂∗) is the
closest population local maximum at iteration k. If as k →∞,
the EM model M̂k converges to the true model M , then
ψ̂/T → Ψ
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