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ABSTRACT: Ultrahigh-throughput conformational sampling
of biopolymers like nucleic acids are most effectively carried
out without explicit solvents, but the physical origins of almost
all inter- and intramolecular interactions controlling nucleic
acid structures are rooted in water. Single-stranded (ss) DNAs
or RNAs in water are characterized by ensembles of diverse
conformations. To properly capture solvent-induced nucleo-
base stacking interactions in an otherwise solvent-free Monte
Carlo algorithm, theoretical models are developed here to
describe the solvent entropy and dispersion terms in base
stacking free energies. To validate these models, equilibrium
ensembles of ss (dA)n and (dT)n sequences (n = 30, 40, and
50) were simulated, and they quantitatively reproduced
experimental small-angle X-ray scattering (SAXS) data. Simulated dA ensembles show substantial stacking. While less
prevalent, stacking in dT chains is not negligible. Analysis of SAXS profiles suggests that excess features between wavevector
0.03 and 0.18 Å−1 correlate with stacking, and stacking in dA versus dT chains is chain length-dependent, where (dT)30 and
(dA)30 chains have more similar structures, but longer dA chains show more stacking over dT. The average stack length in ss-dA
chains is 5−10 nucleotides, yielding an estimate for the overall A|A stacking free energy at ∼1 kcal/mol.

1. INTRODUCTION

Base stacking is a key determinant of DNA stability, but the
physical origin of stacking interactions is still debated. For a
long time, π−π interactions between delocalized electrons in
the conjugated rings of purine and pyrimidine bases were
thought to be the major component of stacking interactions.
Evidence for this came mainly from ab initio electronic
structure calculations of flat conjugated molecules, such as
benzene, in vacuum.1 However, more recent attempts to
include solvent fields in ab initio calculations reveal that π−π
interactions produce very minimal effects that could not
otherwise be attributed to dispersion, electrostatics, and
solvent-induced forces,2 and conventional molecular mechan-
ics force fields like Amber3 are good descriptors of these
effects. The dispersion forces attributable to π−π interactions
between conjugated molecules also turn out to be largely offset
by base−solvent dispersion forces, and understanding stacking
therefore necessitates a detailed understanding of the role of
the solvent. Recently, a large-scale molecular dynamics
simulation was carried out aimed at quantifying the solvent’s
contribution to DNA base stacking free energies, and the
results suggest that solvent entropy alone could account for
majority of the stacking free energy between DNA bases in
water.4 The overall magnitude of this solvent-induced
entropically derived stacking force seems to be mild, only of
the order of a few kcal/mol per stack. Experimental evidence
concurs that while stacking is the major driving force of helix
stability, the double-helix is only marginally stable,5−9 and base

complementarity interactions surprisingly contribute an almost
negligible amount to stability. Evidence from DNA melting
experiments10 also confirms that the unstacking of a base pair
from helix amounts to only a few kcal/mol of free energy.
However, resolving theoretical predictions with experimental
measurements remains challenging because the measured
stacking free energy is convoluted with other free energy
terms such as the sugar−phosphate backbone conformational
free energy, base complementarity interactions, and counter-
ion-induced intrachain attractions, making the unambiguous
separation of the free energy into its individual terms rather
difficult.
In a recent paper, we have reported a new Monte Carlo

(MC) simulation algorithm for single-stranded DNA and
RNA.11 To achieve high ergodicity, this algorithm makes use of
an analytical formula to describe the conformational entropy of
the sugar−phosphate backbone, summing over a large set of
backbone conformational states using a mixed numerical-
analytical scheme to eliminate the need to explicitly sample the
backbone atoms. The analytical part of this “backbone
conformational volume” (BCV) algorithm was formulated
using inverse kinematics,12,13 borrowing from well-established
mathematics in robotics.14 Refinement of this backbone
closure formula by excluding conformations in which backbone
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atoms suffer any steric clash led to the final BCV/-c
algorithm.11,15 We have validated this BCV/-c algorithm by
comparing MC simulation results to a number of experimental
structural measurements on ssDNA and RNA.11 Using the
BCV/-c algorithm, large thermal ensembles of ssDNA and
RNA chains can be simulated rapidly, and the technique has
been applied to predicting single-stranded RNA secondary-
and tertiary-structure thermodynamics, demonstrating strong
agreements with experiments.11,15

Bases interact with each other in the original formulation of
BCV/-c via steric interactions only. This was done deliberately
so the BCV/-c algorithm could be validated against experi-
ments without contamination from other base−base free-
energy terms and a number of DNA and RNA constructs,
primarily pyrimidine sequences (poly-dT or poly-U) where
stacking is minimal, have been simulated and used to validate
against experiments. To further extend the applicability of
BCV/-c to sequences beyond these constructs, an accurate
theoretical model for stacking free energies must be developed
and integrated into the algorithm. This is the focus of this
paper.
BCV/-c has been designed to be a solvent-free simulation.

The key to high-ergodicity conformational sampling of
solution-phase biopolymers is to not employ explicit water
molecules, which significantly impede sampling efficiency.
However, if base stacking forces are indeed driven by the
solvent, finding a way to describe the solvent-induced effects
without explicitly including the solvent requires a theory. The
availability of solvent-free theoretical models for the different
classes of molecular forces important for the accurate
description of nucleic acid structures is therefore central to
the success of the general strategy adopted by solvent-free
simulations like BCV/-c MC. Previously, we have formulated a
theoretical model for capturing the intra- and interchain free
energies mediated by Mg2+ or Na+ counterions in the solution
on the sugar−phosphate backbone into BCV/-c MC.16−18

This paper is aimed at extending this development to provide a
theoretical model for the solvent-induced base-stacking
interactions.

2. PHYSICAL BASIS FOR THE SOLVENT’S ROLES IN
BASE STACKING

Figure 1a shows a cartoon of two bases with their rings parallel
to each other and solvated in water. The solvent molecules are
colored white and the flat bases are colored gray. This drawing
takes a sideview perspectivethe two bases would be stacked
when viewed from the top. In this drawing, there is a layer of
solvent molecules lining the vertical separation between the

two bases. At other separations, there would be different
numbers of solvent molecules between them.
To accommodate a solute, the solvent sacrifices entropy.

Figure 1a shows the solvent molecules that were originally in
the space now occupied by the gray solute molecules using
dashed lines. Solvating the solutes requires these solvent
molecules be expelled from the space now occupied by solutes,
and this incurs an entropic cost for the solvent. Recent studies
of the solvation of proteins in water and the driving force of
hydrophobic assemblies19−27 suggest that the probability of
observing a certain number of solvent molecules N in a cavity
with volume V within the solvent is well described by a
Gaussian theory when V is not too large

πχ χ= [− − ⟨ ⟩ ]−P N N N( ) (2 ) exp ( ) /2V V V V
1/2 2

(1)

where ⟨N⟩V = ρV is the equilibrium value of N and ρ is the
number density of the solvent, and

∫ ∫χ δ ρ ρ= ⟨ ⟩ = + ′ | − ′|N V hr r r r( ) d d ( )
V V

V V

2 2

(2)

gives the second moment in the fluctuations of N, where h(r)
≡ g(r) − 1 and g(r) are the radial distribution function of the
neat liquid solvent. The free energy of observing no solvent
molecule in the cavity then gives the approximate solvation
free energy

ρ χ πχΔ ≈ +G k T V k T( ) /2 ln(2 )/2
V VB

2
B (3)

where kB is Boltzmann’s constant and T is absolute
temperature. Because [g(r) − 1] cuts off quickly beyond the
correlation length of the liquid, the free energy ΔG is roughly
proportional to V. In a dense liquid where the repulsive part of
the interactions drives structures, this ΔG is largely entropic in
origin. As a rough estimate, expelling one water molecule at its
normal density costs ∼4 kcal/mol of free energy at room
temperature.
When two bases are far apart, the total solvation free energy

of the two bases is expected to be the sum of each one
individually. However, when the two bases approach each
other, at some distances, the intrinsic structure of the solvent
will begin to be felt by the bases. This is illustrated by Figure
1b. On the left, Figure 1b shows a scenario where the bases
have a single layer of the solvent molecule between them. On
the right, it shows another scenario where the two bases are
slightly closer to each other, and the space between them is
now too tight to be able to accommodate solvent molecules. At
this separation, the two bases together exclude more water
molecules that sum of them individually, and the solvent
experiences an extra entropic penalty. The solvent’s desire to
eliminate this entropic overhead tends to force the bases

Figure 1. Sideview schematic showing two stacked bases (gray) solvated in water (white circles). (a) Solute molecules take up the space that was
originally occupied by the water molecules indicated by the dashed lines. Expelling these solvent molecules causes an entropic penalty for the
solvent. (b) As the separation between the two bases changes, the structural granularity of the solvent is felt by the solutes when the space between
them is too small to accommodate the solvent, leading to an extra entropic overhead that forces the gap between them to close, driving the bases to
stack.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.8b10848
J. Phys. Chem. B 2019, 123, 1939−1949

1940



together to try to close this gap and constitutes the physical
basis of the solvent-induced entropically-derived stacking force.
When there are no solvent molecules between the two bases,
their composite volume is somewhat smaller than the sum of
them individually. This produces a stabilization force on two
stacked bases.
These solvent entropic effects have been illustrated vividly in

a recently reported large-scale explicit water simulation, where
two bases (A|A or G|G, with no sugar−phosphate backbone)
were stacked in a box of 10 000 TIP3P water, and the free
energy of stacking was computed using umbrella sampling. The
results are reproduced in Figure 2 for a G|G stack constrained

to stay parallel to each other in the geometry that they would
have if the stack was part of a B-DNA, with the x-axis being
their vertical separate distance. The computed solvent-induced
entropic part of the computed free energy is shown by the
orange circles. This entropic part of the stacking free energy
exhibits a striking oscillatory dependence on the base−base
distance, which is most certainly a consequence of the solvent’s
granular structure. By applying perturbations to the inter-
molecular potentials, the simulation was also able to estimate
the contributions of dispersion forces and partial-charge
interactions between the two bases on the stacking free
energy, and these are shown in Figure 2 as the green squares
and the purple diamonds, respectively. The details for this
perturbation procedure were described in ref 4, which involved
calculating perturbations in the free energy when different
types of energy terms in the intermolecular potentials were
added successively to the system’s total energy, starting from a
system with no dispersion interactions and no electrostatics
(i.e., with all van der Waals potentials replaced by the Weeks−
Chandler−Andersen model28 and no partial charges, giving the
orange curve in Figure 2), to one adding hydrogen bonding in
the solvent (the purple curve in Figure 2), and to one adding
electrostatic interactions between the two bases (the green
curve in Figure 2). Because these perturbations are not

formally small in magnitude, the results are sensitive to the
order in which these “perturbation” were applied, and any
numerical uncertainties in the result from one perturbation will
also propagate to the next. Nonetheless, the results in Figure 2
do show that the net perturbations to the free energy when
successive potential energy terms are added to the system are
quite small (no more than a few kcal/mol), even though the
perturbation to the total potential energy itself may not be, and
it lends support to the validity of this perturbative
decomposition of the stacking free energy. The solvent-
renormalized charge−charge interactions between the two Gs
(purple diamonds) turn out to be effectively repulsive. On the
other hand, the solvent-renormalized dispersion forces (green
squares) are much weaker than the van der Waals interaction
of two naked Gs without water. The range of both the
dispersion and electrostatics terms of the stacking free energy
are also shorter than without water, effectively cutting off at
just around 6 Å. While both show a slight dip around 6 Å, this
feature is likely due to an imprecision in how the free-energy
terms were divided up based on the simulation data. Similarly,
the solvent free-energy term shown by the orange circles are
probably somewhat right-shifted also because of this. These
results show that the solvent renormalizes the dispersion
interaction between the two solutes heavily. Apparently, the
loss of dispersion interaction between the two bases, as they
separate from each other, is quickly offset by the gain in
dispersion interactions between the bases and the solvent
molecules as they refill the space between the bases, resulting
in what appears to be a highly attenuated dispersion term in
the stacking free energy.

3. MODELING THE SOLVENT ENTROPY TERM IN
BASE STACKING FREE ENERGY

To develop a theory for the solvent entropic contribution to
the stacking free energy, we start with eq 3. χV, the variance of
the solvent density within the combined volume V occupied by
the two bases, appears in both terms on the righthand side.
Because the radial distribution function g(r) for water is
known, the calculation of χV is in principle straightforward for
V of any shape and size. The most important part of the theory
is how χV changes with the separation between the two bases.
As a reference, one can take χV

0 to be the value of χV when the
bases are far apart

∫ ∫

∫ ∫

χ ρ ρ ρ

ρ

= + ′ | − ′| +

+ ′ | − ′|

V h V

h

r r r r

r r r r

d d ( )

d d ( )

V
V V

V V

0
A

2
B

2

A A

B B (4)

where VA and VB are the volumes occupied by the individual
bases. At large separations, there are no cross terms in the
double integrals because h(r) → 0. However, as the two bases
come closer to each other, cross terms begin to appear, leading
to

∫ ∫χ ρ ρ= + + ′ | − ′|
+ +

V V hr r r r( ) d d ( )
V

V V V V
A B

2

A B A B

(5)

The difference between eqs 4 and 5 gives ΔχV = χV − χV
0 ,

where

∫ ∫χ ρΔ = ′ | − ′|hr r r r2 d d ( )
V

V V

2

A B (6)

Figure 2. Data from the explicit-water simulation study in ref 4,
showing the solvent entropic term (orange circles) in the stacking free
energy between two guanines, as well as the dispersion term (green
squares) and the electrostatic term (purple diamonds). Lines show
theoretical models for the solvent entropic term (solid orange) and
the dispersion term (dashed green) in the stacking free energy. The
insets show schematics of how the solvent molecules are arranged
around the bases at the first maximum and second minimum of the
solvent entropic term (see discussion surrounding Figure 1).

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.8b10848
J. Phys. Chem. B 2019, 123, 1939−1949

1941



For the sizes and shapes of the purine and pyrimidine bases,
the magnitude of ΔχV is typically much smaller than χV

0 .
Therefore, when χV is substituted back into eq 3, ΔG should be
well approximated by Taylor expanding both terms on the
right, yielding, to linear order, the stacking free energy

φ θ ψ χΔ − Δ ∞ ≈ ΔG G Cr( ; , , ) ( )
VAB AB (7)

where ΔGAB(r;φ,θ,ψ) is the solvent-entropy-induced stacking
interaction between bases A and B at some vector distance r

apart and with relative orientations specified by three Euler
angles (φ,θ,ψ), and C is a constant coefficient independent of
the identities of the bases. Notice that the Taylor expansion of
the first term in eq 3 yields a first-order term with a negative
coefficient, whereas the second has a positive coefficient, but
the first term usually dominates so the sign of the coefficient C
is overall negative. The variations in ΔG with distance and
orientation are of the order of just a few kcal/mol per stack,
rendering the Taylor expansion to linear order an accurate
approximation. This expansion also removes the need of
having to calculate χV

0 , which is necessarily different for
different collection of bases, and simplifies the theory
significantly. Also, when there are more than two bases, eq 7
remains valid, except ΔχV will have additional cross terms, and
because of the structure of integrals involved, the additional
cross terms are all pairwise. For example, if there are multiple
bases A, B, ... Z, eq 6 becomes

∫ ∫∑χ ρΔ = ′ | − ′|
α β> = α β

hr r r r2 d d ( )
V

V V

2

A

Z

(8)

While eq 8 can be used directly in a simulation to estimate
the stacking free energy, the calculation of the double integrals
during runtime can be further simplified by breaking down the
volume of each molecule α into a sum of nonintersecting
spheres that tile that molecule’s volume (or approximately as a
sum of barely intersecting spheres). A natural choice is to place
the centers of these spheres on the heavy (non-hydrogen)
atoms in each base, and the volume of each base then becomes
a sum over these spheres, turning eq 8 into

∫ ∫∑ ∑ ∑χ ρΔ = ′ | − ′|
α β α β> = ∈ ∈

hr r r r2 d d ( )
V

i j
V V

2

A

Z

i j (9)

where i and j are spheres on bases α and β, respectively, and
the integrals in eq 8 then break up into a sum of smaller
integrals, each involving a pair of spheres from two different
bases. Because the bond distances between heavy atoms in the
purine and pyrimidine bases vary from roughly 1.32 to 1.55 Å,
we approximate each base by a sum of barely intersecting
spheres with diameter D = 1.52 Å, centered at the positions of
its heavy atoms. The double integral in eq 9 over the interiors
of two spheres with distance r between their centers can be
transformed to a two-dimensional integral

ikjjjj y{zzzzikjjjj y{zzzz

∫ ∫

∫

∫

π

= ′ | − ′|

= −
+ −

−
+ −

−

+

−

+

VVk r h

s
r s R

rs
s

t
s t R

st
t h t

r r r r( ) d d ( )

(2 ) d 1
2

d 1
2

( )

i j
V V

r R

r R

s R

s R

2
2 2 2

2

2 2 2
2

i j

(10)

where R = D/2 is the radius of spheres Vi and Vj. Using h(r)
for water, the integration in eq 10 can be performed and stored
numerically as a function of the distance r between the two
spheres. Figure 3 shows h(r) for water as the orange circles,

and the result for k(r) is shown in as the solid green line. The
range of distances where 3 Å < r < 7 Å is most relevant,
because steric repulsion prevents two nonbonded non-
hydrogen atoms from approaching distance less than ∼3 Å,
and k(r) vanishes beyond ∼7 Å. For example, if two spheres
representing two nonbonded atoms are 3 Å apart, their ΔG
would be repulsive because k(r = 3 Å) is negative and the
coefficient C in eq 3 is also negative. However, this ΔG would
become attractive at r ≈ 3.2 Å because k(r) changes sign there.
This ΔG would then reach a minimum at r ≈ 3.7 Å, after
which it switches sign again at r ≈ 4.3 Å. Using k(r), eq 9 for
any collection of bases simplifies to a sum over pairwise
interactions between spheres centered on the heavy atoms
belonging to different pairs of basesikjjjj y{zzzz ∑ ∑ ∑χ ρ

π
Δ =

α β α β> = ∈ ∈

R
k r2

4

3
( )

V
i j

ij
2

3 2

A

Z

(11)

where rij is the distance between sphere i on base α and sphere
j on base β.
Applying this model to the system studied by the

simulations summarized in Figure 2, the results of using eq 9
and k(r) to compute the stacking free energy between a G|G
stack are shown by the solid orange line in Figure 2. Compared
to the simulation results in the open circles, the theoretical
model predicts an analogous oscillatory behavior, manifestly
the result of the solvent’s inherent structural granularity,
according to the peaks and valleys in h(r). The magnitude of
the coefficient C in eq 3 can be adjusted to reproduce the
magnitude of the stacking free energy from the simulations.
The oscillations in ΔG from theory are somewhat left-shifted
compared to the simulations. Because the free-energy terms
computed by the simulations were sensitive to how and the
order in which the perturbations were applied, there is also an
inherent uncertainty in how the free energy is decomposed
into individual terms. Some of the discrepancy between the
exact positions of the peaks and valleys in ΔG between the
model and simulations can be partly attributed to this
imprecision. Note that this uncertainty also introduces similar
errors into the estimation of the dispersion term (green

Figure 3. Radial distribution function h(r) = g(r) − 1 of water
(orange circles),4 and the function k(r) defined in eq 10.
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squares) as well as the charge term (purple diamonds) because
the terms are all correlated with each other.

4. MODELING SOLVENT-RENORMALIZED
DISPERSION FORCE BETWEEN BASES

Next, we consider the dispersion term in the stacking free
energy. Our model for the dispersion term is more empirical in
nature compared to the entropy model. It starts with the
supposition that besides just taking up the space that was
originally occupied by the solvent molecules, the solutes do not
significantly alter the structure of the solvent. This is clearly
true in the limit where the solute molecules are small
compared to the solvent molecules as well as in the opposite
limit, where the solute molecules are large compared to the
solvent molecules. In the regime where the solute and solvent
molecules are comparable, the shape of the solute molecules
does matter. The solute molecules could also polarize the
solvent molecules to distort its structure away from the neat
liquid, and these polarization effects are expected to be more
important for larger solutes that have a significant interfacial
area with the solvent.27,29 But interestingly, the supposition
that the solutes do not significantly perturb the solvent
structure is corroborated by the entropy model described
above. The entropy model also presupposes that the original
solvent structure is largely unperturbed in the presence of the
solutes; otherwise, the model, which is based on the radial
distribution of the neat liquid solvent, would not have been
correct. The fact that the entropy model largely reproduces the
essential features of the simulation results lends support to the
underlying assumption that the solvent’s structure is not very
different.
Assuming the dispersion forces are pairwise, which is the

case when the Lennard-Jones potential is used to model
dispersion, the total potential energy of the neat liquid solvent
can be written as

∫ ∫∑ ρ= = ′ | − ′| | − ′|
>

U u r g ur r r r r r( ) d d ( ) ( )
i j

ij
V V

2

(12)

where the sum goes over all pairs of solvent molecules, u is the
pairwise potential between them, the angled brackets represent
an ensemble average, g is the radial distribution function, and V
is the entire volume of the solvent. Equation 12 also works if
we are computing the interaction of one region in the solvent
V1 with another region V2, simply by replacing the double
volume integral over V by one over V1 and the other over V2.
For example, if one wants to compute the original dispersion
interactions between all the solvent molecules that were
displaced by one of the solute molecules in Figure 1a (let this
be A) with the solvent molecules that were displaced by the
other solute (let this be B), one simply applies eq 12 and uses
the volume of the two solutes VA and VB instead

∫ ∫ ρ= ′ | − ′| | − ′|U g ur r r r r rd d ( ) ( )
V V

SS 2

A B (13)

Analogously, if one wants to compute the original dispersion
interactions between the solvent molecules displaced by both
solutes in Figure 1a with the rest of the solvent, one simply
applies eq 12 and uses the composite volume of the two solutes
VA + VB for one of the integrals and the complementary
volume V − (VA + VB) for the other

∫ ∫ ρ= ′ | − ′| | − ′|
+ − +

U g ur r r r r rd d ( ) ( )
V V V V V

Ss

( )

2

A B A B

(14)

This double integral can be further decomposed into six terms,
representing double integrals over VA and V, VA and VA, VA

and VB, VB and V, VB and VA, and VB and VB.
When the solvent molecules are replaced by solutes, the

magnitudes of the dispersion interactions USS between the two
regions defined by the solutes, as well as the dispersion
interactions USs between the regions defined by the solutes and
the rest of the solvent, will change, but we assume that the
forms (i.e., how the integrals in eqs 13 and 14 depend on the
separation and orientation of the two bases) do not. This then
provides an approximate model for the functional form of the
solvent-renormalized dispersion interactions between two
bases. Note that in both eqs 13 and 14, the only terms that
change with the separation and the relative orientations of the
two bases are due to double integrals over VA and VB. All the
other terms are invariant. Therefore, the functional form of the
solvent-renormalized dispersion interactions between two
solutes A and B is necessarily characterized by a pairwise
potential, which has been modified by the radial distribution
function g(r) of the solvent

∫ ∫= ′ | − ′| | − ′|U C g ur r r r r rd d ( ) ( )
V V

disp
SS

0
A B (15)

where C0 is an empirical coefficient. Because this effective
dispersion interaction is now controlled by both the range of g
as well as u, g essentially screens u, giving the solvent-
renormalized dispersion a much shorter distance range
compared to the original u.
Using the functional form in eq 15 and g(r) from Figure 3,

we computed the solvent-renormalized dispersion interaction
between a G|G stack. The results are shown in Figure 2 as the
green dashed line. The model agrees with the simulations
depicted by the green squares quite accurately up to about 5.6
Å, after which the simulation data show a dip between 5.6 and
7.6 Å. There is no physical reason to expect the dispersion
interactions between the two bases should increase at this
distance range, unless the bases polarize the solvent and alters
it structure. As discussed above, this dip in the simulated
dispersion could be a result of the imprecise nature of how the
individual terms of the stacking free energy were extracted
from the simulations. Interestingly, the dip in the simulated
dispersion interaction coincides with a dip in the stacking free
energy predicted by the solvent entropy model describe above,
shown in Figure 2 as the orange line, suggesting that they may
have similar origins.

5. THREE-BODY TERMS IN THE
SOLVENT-ENTROPY-INDUCED STACKING FREE
ENERGY

The solvent-entropy-driven stacking free energy model derived
above contains only two-body interactions, manifestly in its
final form in eq 11. The pairwise nature of this solvent entropy
term comes from the Taylor expansion of the free energy to
first order in ΔχV. However, going to higher orders will not
fundamentally change this because the lack of three-body or
higher correlations in the model is a consequence of the
Gaussian model assumed in eq 1. According to Wick’s
theorem,30 all higher moments of a Gaussian distribution can
be re-expressed in terms of just the covariance. Therefore, any
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theory based on eq 1 cannot contain independent terms higher
than two-body. As the simulation data will demonstrate below,
while the Gaussian model is quite accurate for two solute
molecules, deficiencies due to the lack of three-body terms are
quite noticeable when multiple bases are present. Predom-
inately, the lack of three-body terms in the model reveals itself
in the simulations as a bias toward excessively compact folded
structures. The highly dense core in the interior of these
compact conformations were overstabilized by excessive
attractive two-body stacking forces, leading to too many
base−base contacts. To repair these deficiencies, missing three-
body terms in the inherently Gaussian theory in eq 1 must be
added back to the model.
There is no existing theory of how or which kinds of three-

body interactions are most appropriate for base stacking. To
model them, we employ the Kirkwood superposition
approximation,31,32 assuming that the three-body distribution
function gABC between three objects A, B, and C could be
approximately constructed from their two-body correlations
gAB, gBC, and gCA, via the combination gABC ≈ gABgBCgCA. This
superposition satisfies all the permutation symmetry require-
ments for the three-body distribution and can be constructed
easily once the two-body base stacking interactions have been
computed. Adding this to the stacking free energy, eq 11 is
modified to Ä
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where C′ is an empirical coefficient. The sign of the added
three-body term counteracts two-body forces in the direction
of reducing excessive stacking in densely packed regions, where
three-body base contacts are prevalent.

6. RESULTS

The theoretical models for the solvent entropy and the solvent-
renormalized dispersion terms in the stacking free energy were
integrated into a solvent-free BCV/-c MC simulation. To
validate the model, we used simulated ensembles of two sets of
ssDNA constructs to assess the effects of base stacking. The
first set consisted of poly-dT chains of lengths 30, 40, and 50-
nts. Thought to have only minimal stacking, dT chains serve as
a baseline model. The second set consisted of poly-dA chains
of lengths 30, 40, and 50-nts. In contrast with dT chains, dA
chains are thought to be more strongly stacked. Ensembles of
poly-dT and poly-dA ssDNA strands in solution have been
studied in great detail by Pollack et al.33,34 and by Herschlag et
al.35 using small-angle X-ray scattering (SAXS). These DNA
constructs and the particular chain lengths used in the
simulations were selected to match those for which high-
quality SAXS data are available. These simulations provide a
rigorous validation of both the theoretical interaction models
as well as the simulation method itself. For each of the
simulation reported below, an equilibrium of 100 000 to 200
000 independent conformations were sampled using the

BCV/-c algorithm,12,13 with the two-body and three-body
solvent entropic terms and the dispersion forces described
above appended to the free-energy function.
For the validation of the stacking models and the

simulations, poly-dA and poly-dT chains were selected because
they should have maximal difference in stacking. Indeed,
experimental SAXS data35 suggested that the stiffness of
ssDNA sequences with chain lengths between 8 and 100 bases
could be largely controlled by stacking, with poly-dA having
much higher stiffness compared to poly-dT chains. This
conclusion came from comparing the scaling exponents of
poly-dA and poly-dT chains to steric-only simulations.35

However, more recent SAXS data34 suggest that this difference
might be much subtler than previously thought, showing that
the conformations of (dT)30 and (dA)30 in solution are
surprisingly similar around physiologically relevant ionic
strengths. While the differences in conformational character-
istics of poly-dA and poly-dT chains are undoubtedly related to
differences in their stacking propensities, the relationship
between their structures as revealed by scattering experiments
and their stacking may not be as straightforward as previously
thought. An accurate stacking model together with an efficient
conformational sampling algorithm should be able to
reproduce SAXS data, but at the same time also shed some
light on this subtle relationship between ssDNA structures and
base stacking.
Figure 4a shows snapshots from (dA)30 simulations where

the two-body solvent entropy model, the solvent-renormalized
dispersion model, and the empirical three-body solvent
entropy term have been integrated into the BCV/-c MC
algorithm. The simulations also included an effective counter-
ion model, which had been calibrated to an approximately 100
mM Na+ concentration.18 The snapshots in Figure 4a are
random samples, illustrating some of the typical features
observed in the ensemble and how the bases along this (dA)30
sequence are stacked. Unlike in a B-DNA, these stacked
structures appear to be much more heterogenous in ssDNAs.
Also, while the prevalence of stacking in these poly-dA chains
is clear, stacked bases rarely persist over very long stretches on
the sequence, the majority of them having stack lengths
roughly between 5 and 10-nts. Figure 5 shows atomistic details
of the sugar−phosphate backbone and the bases from
conformations in the simulated ensemble.
The simulated (dA)30 conformational ensemble consisted of

close to 200 000 independent configurations, some of which
have been depicted in Figure 4a. An ensemble-averaged
scattering profile was computed using these configurations
with the CRYSOL program.36 The results are shown in Figure
6a as the open squares, with the experimental SAXS profile34

shown as the solid line. The experimental SAXS scattering
were reported in arbitrary intensity units, so the magnitudes of
the SAXS data (solid line) have been scaled to provide the best
overlap with the simulation data (open squares), and the
proper basis of comparison between the experiment and
simulation is the functional dependence of the scattering
intensity q × I(q) as a function of the wavevector q. The
agreement between the experiment and simulation is clearly
quite strong. The other sets of simulation data in Figure 6a
(closed circles and diamonds), which will be described below,
correspond to two other sets of model parameters, but their
intensities have not been scaled relative to the open squares,
showing absolute intensity differences among different models.
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To ascertain the effects of the two-body and three-body
solvent entropy terms in the stacking free energy, Figure 4b
shows snapshots from a (dA)30 simulation without the three-
body term, and Figure 4c shows snapshots from a simulation
without any solvent entropy term at all. Comparing the
conformations in Figure 4b to 4a, the chains appear to be

much more compact without the three-body entropy term.
The two-body-only solvent entropy model produces over-
aggressive base−base interactions, and the incorporation of the
three-body entropy term helps dissolve some of these
excessively compact folds.
The quantitative effects of these terms in the stacking model

on the scattering behavior of the chains are displayed in Figure
6a, which shows the ensemble-averaged SAXS profile
corresponding to this simulation as the green diamonds. The
lack of three-body interactions counteracting overaggressive
two-body forces produced excessive structures in the wave-
vector range between 0.03 and 0.18 Å−1, and these features
correspond to some of the densely packed structures illustrated
in Figure 4b. On the other hand, if there are no solvent-
entropy-driven stacking forces at all (two- or three-body),
stacking becomes quite minimal. In the absence of two- or
three-body solvent entropy terms, the solvent-renormalized
dispersion forces alone seem to be able to seed a small amount
of stacking in (dA)30, but its SAXS profile shown as the cyan
circles in Figure 6a suggests that the chain is now
understacked, revealed by a depletion of features in the
wavevector range between 0.03 and 0.18 Å−1.
In contrast to (dA)30, (dT)30 chains show a much lower level

of stacking. This is illustrated in Figure 6b, which compares the
experimental SAXS profile of (dT)30 (solid line) to simulations
with all terms in the stacking free turned on (open squares),
simulations without the three-body solvent entropy term
(green diamonds), and simulations without any solvent
entropy term at all (cyan circles). In this case, the three
simulated SAXS profiles are very similar, and they all seem to
agree reasonably well with the experiment. These results
corroborate the general assumption that dT chains have only
minimal stacking. However, this is not to be taken as evidence
that there is no stacking in dT chains at all. In fact, as we will
show by snapshots from other simulations below, surprisingly,
there appears to be a bit of stacking even in poly-dT chains.
Also, the fact that the no-stacking simulation data depicted by
the cyan circles in Figure 6b are lacking features near the peak
of the profile compared to the experiment as well as to the
other two sets of simulations also suggests that stacking in dT
chains is not entirely negligible.
Going to 40-nt chains, Figure 7a shows simulation results for

(dT)40 and (dA)40 scattering profiles compared to SAXS
experimental data for (dT)40.

33 Again, the simulations for
(dT)40 agree well with the experiment, although the
experimental profile seems to contain features in the
wavevector range from 0.10 to 0.18 Å−1 not entirely captured
by the simulations. Compared to (dT)40, the simulations for
(dA)40 show an abundance of features in the wavevector range
0.03−0.18 Å−1, suggesting stronger stacking in (dA)40
compared to (dT)40, as expected. Figure 7b shows simulations
results for (dT)50 and (dA)50 compared to experimental data
for (dA)50.

35 Again, the simulations for (dA)50 agree well with
the experiment.
Snapshots from the simulated (dA)50 ensemble are shown in

Figure 8. Similar to the (dA)30 conformations in Figure 4a,
(dA)50 shows clear signs of stacking. Compared to (dA)30, the
lengths of the stacks are not very different in (dA)50. Again, the
average stack length ∼5−10-nts. Figure 9 shows snapshots
from the simulated (dT)50 ensemble. A casual inspection of the
(dA)50 structures in Figure 8 and (dT)50 in Figure 9 would not
reveal any significant difference between the two ensembles.
While stacking in (dA)50 is noticeably more abundant, stacking

Figure 4. Snapshots of the (dA)30 ensemble: (a) using all terms in the
theoretical model (i.e., two- and three-body solvent entropic terms
and solvent-renormalized dispersion), (b) omitting three-body
solvent entropic term leads to overly compact structures, and (c)
omitting solvent entropic terms all together leads to understacking of
the bases.

Figure 5. Space filling models of: (a) a (dT)30 and (b) a (dT)30
conformation from the simulated ensembles, showing greater
atomistic details of the sugar−phosphate backbone and the bases.
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in (dT)50 is not negligible either. This apparent similarities in
the conformations of poly-dA versus dT chains was also
observed by Pollack et al.34 based on their SAXS data. The
SAXS profiles in Figure 7b, however, indicate that there are
indeed differences in (dA)50 compared to (dT)50. A closer
examination of the snapshots in Figures 8 and 9 indicates that
(dT)50 is somewhat more flexible, adopting more random coil
structures more frequently. The persistence lengths along the
backbone for both (dA)50 and (dT)50 chains turn out not to be
very different, both ∼3-nts; therefore, stacking does not seem

to impact chain persistence and the inherent difference
between (dA)50 and (dT)50 must be due to longer-range
structures.
To understand the origin of the longer-lengthscale structures

that differentiate (dA)n chains from (dT)n chains, consider a
simple lattice model in which we map the nucleotide sequence
onto one-dimensional space, and the stacking between two
sequence-neighbor bases j and j + 1 is represented by a binary
number sj, where sj = 1, if they are stacked and sj = 0, otherwise.
Let the free energy of two stacked bases relative to two

Figure 6. SAXS profiles for (a) (dA)30 and (b) (dT)30 chains, showing experimental data (solid line)34 compared to MC simulation with the full
stacking model (open squares), simulation without the three-body solvent entropy term (green diamonds) and simulations with no solvent entropy
term all together (cyan circles).

Figure 7. SAXS profiles for (a) 40-nt and (b) 50-nt poly-dT chains (solid circles) and poly-dA chains (open squares), showing experimental data
(solid line)33,35 compared to MC simulations.

Figure 8. Snapshots from a simulated (dA)50 ensemble.
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unstacked bases be ϵ. For a sequence with n nts, the total free
energy is then F = ∑j=1

n−1ϵsj. Summing over all stacking
configurations along the sequence, the partition function of
this system becomes Z = (e−βϵ + 1)n−1, where β = 1/kBT, and
the equilibrium average number of stacked base along the
chain is simply ⟨∑jsj⟩ = (n − 1)p1, where p1 = e−βϵ/(1 + e−βϵ)
is the probability that a pair of sequence-neighbor bases are
stacked. Clearly, there is no true long-range stacking order in
this model as in the simulation results, but the mean stack
length is well-defined. Using this model, one can easily
compute the average length of a stacked sequence on this chain
t o b e

⟨ ⟩ = + ·[ + − − ] ⎯ →⎯⎯⎯⎯ −
− →∞

−l p np n p1 1 ( 1) (1 )
p

p

n

n1 1 1 1
11

1

.

(The same result can be derived assuming stacking follows
Poisson statistics.) The average stack length in this model does
not depend on the chain length as long as n ≳ 30. Using ϵ =
−1 kcal/mol, one obtains ⟨l⟩ ≈ 6 at 310 K, and if ϵ = −2 kcal/
mol, ⟨l⟩ ≈ 27. On the basis of this, our observation from the
simulated ensembles that the average stack length in (dA)n
chains is between 5 and 10-nts places the stacking energy
between −0.85 and −1.4 kcal/mol. (This estimate for the
stacking free energy not only includes effects from the direct
stacking free energy between two bases described in the
models above, but it also includes effects from the entropic
costs of the sugar−phosphate backbone in the BCV/-v model
to attain a conformation consistent with what is required for
two sequence-neighbor bases to properly stack against each
other.) This particular estimate that stacking is stabilized by
0.85−1.4 kcal/mol of free energy per stack is very much in line
with experimental estimates, which show that for an A|A stack,
the effective stacking free energy is ∼−1 kcal/mol at room
temperature.9

The simple lattice model described here assumes the only
relevant energy comes from the stacking of sequence-neighbor
bases. Of course, stacking interactions may extend over longer
separation in sequence space than this. For example, if the
stacking of bases j − 1 and j induces the stacking of bases j and

j + 1, next-nearest-neighbor interactions would enter the
model. More likely though, because the chain can bend, the
interaction between two bases far apart in sequence can also
induce stacking in the local sequence neighborhood of each of
the bases. In this case, it is possible that stacking could be
seeded by long-range interactions along the sequence, and a
careful measurement of the average stack length ⟨l⟩ as a
function of the sequence length may provide further
information on these long-range interactions.
Figure 10 shows a plot of the SAXS scattering intensities of

poly-dA divided by poly-dT from the 30-, 40- and 50-nt

ensembles in MC simulations. As described above, the features
in the scattering profile between wavevector 0.03 and 0.18 Å−1

are related to enhanced stacking. Figure 10 shows that for
(dA)40 and (dA)50, these features are more intense than in
(dT)40 (green diamonds) or (dT)50 (cyan squares), suggesting
that for these chain lengths, stacking is more abundant in poly-
dA than poly-dT, as expected. However, in the 30-nt dA
chains, these features are attenuated compared to (dT)30
(orange circles in Figure 10) and the peak between 0.03 and

Figure 9. Snapshots from a simulated (dT)50 ensemble.

Figure 10. SAXS profile intensities for poly-dA chains divided by
same-length poly-dT chains for 30-, 40- and 50-nt sequences from
simulations. Excess features between q = 0.03 and 0.18 Å−1,
comparing dA against dT chains, reflect enhanced stacking.
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0.18 Å−1 is now missing, suggesting that the propensity of
stacking in (dA)30 and (dT)30 are less dissimilar than in 40- or
50-nt chains. This supports the hypothesis that longer chains,
because they are able to make more contacts between bases far
apart in sequence, may be able to seed more stacking
interactions in poly-dA chains over poly-dT, and stacking
propensity acquires an apparent chain-length dependence.

7. CONCLUSIONS

An implicit-solvent analytical theory has been developed to
model base stacking interactions in DNA. On the basis of
results from previous simulation studies, indicating that the
majority of the stacking free energy between DNA bases could
be explained by solvent entropic effects, an analytic expansion
of the entropic costs for forming a cavity in the solvent
occupied by stacked bases have been derived as a function of
positions and orientations of the bases involved. Supplemented
with a theory for the solvent-renormalized dispersion energy as
well as an empirical function for three-body stacking forces,
this stacking model has been incorporated into a ssDNA
simulation based on the BCV/-c algorithm previously
reported, in order to construct a high-throughput simulation
method for DNAs in solution without explicit solvent but
correctly capturing the solvent’s role in enforcing stacking
interactions among the nucleobases. The results of the model
and the simulations were validated against experimental data
from SAXS of poly-dA and poly-dT chains with sequence
lengths between 30 and 50 nucleotides. The simulation results
quantitatively reproduced experimental SAXS data and they
were able to provide insights on the nature of the subtle
differences observed in the scattering profiles between poly-dA
and poly-dT chains and how these differences are related to
the different stacking propensities of A versus T. Simulated dA
ensembles show substantial stacking. While less prevalent,
stacking in dT chains is not negligible. Analysis of SAXS
profiles suggests that excess features between wavevector 0.03
and 0.18 Å−1 correlate with stacking, and stacking in dA versus
dT chains is chain length-dependent, where (dT)30 and (dA)30
chains have more similar structures, but longer dA chains show
more stacking over dT. Average stack length in ss-dA chains is
5−10 nucleotides, yielding an estimate for the overall A|A
stacking free energy at ∼1 kcal/mol. These results demonstrate
that the BCV/-c algorithm is a viable numerical method for the
conformational sampling of DNAs in solution, able to capture
full solvent effects in a solvent-free simulation, making possible
high-throughput simulations of nucleic acids that are
“structureless”, where their conformations must be charac-
terized by a statistical thermal ensemble instead of a single
minimum free-energy fold.
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