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Abstract:  

 

Spatially-distributed time-series data support a range of environmental modeling and data 

research efforts. A critical first step to any such effort is acquiring interpolated 

hydrometeorological data. Standardized tools to facilitate this process into analyses have not 

been readily available for watershed scale research. Here, we introduce the Observatory for 

Gridded Hydrometeorology (OGH), an open source python library that fills this critical software 

gap by providing a cyberinfrastructure component to fetch and manage distributed data 

processed from regional and continental-scale gridded hydrometeorology products. Our 

approach involves annotating metadata to make gridded data products discoverable and usable 

within the software, enabling interoperability and reproducibility of models that use the data. 

This paper presents the design, architecture, and application of OGH using four commonly 

practiced use-cases with gridded time-series data at watershed scales.   
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https://www.hydroshare.org/resource/87dc5742cf164126a11ff45c3307fd9d/
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1. Introduction 

Gridded data products are extensively used in Earth Science research [King et al., 2013; 

Gampe et al., 2016; Ledesma and Futter, 2017], social vulnerability analysis [Cutter et al., 2014] 

and population risk and estimate studies [Lloyd et al., 2017]. Gridded hydrometeorological data 

products are produced by interpolating local observations to predetermined spatial-temporal 

resolutions. The purpose of developing gridded products is to extend spatial information beyond 

point locations and provide space and time dimensions to observations such that spatial-

temporal variability can be analyzed. Gridded data products also provide a means to compare 

and validate numerical weather prediction outputs (short term forecasts and long term climate 

change). Prior studies in hydrometeorology have highlighted the growing usefulness of gridded 

data products in Earth science modeling (most recently reviewed in Henn et al., 2018). In this 

paper, we introduce the Observatory for Gridded Hydrometeorology (OGH), an open-source 

python toolkit to streamline processes for interacting with gridded hydrometeorological data 

products at a user-defined spatial scale of interest (single location to regional watershed), 

designed to support watershed scale science applications. This tool fills a model pre-processing 

gap of processing large regional datasets (~1000 km2) for smaller scale geographic subsets (~1 

km2 - 100 km2).  

 

In the conterminous United States (CONUS), since the introduction of Parameter-elevation 

Regressions on Independent Slopes Model [PRISM, Daly et al., 1994], gridded meteorological 

data products are routinely interpolated using daily measurements from over 20,000 NOAA 

COOP observation stations [Maurer et al., 2002; Livneh et al., 2013], with similar products in 

development for other regions around the world [Yanto et al., 2017]. In these data products, 

each grid cell contains observation-interpolated, multivariate time-series [Maurer et al., 2002].  It 

is common practice for the hydrologic community to incorporate gridded meteorological time-

series variables as inputs to land surface hydrologic models such as the Variable Infiltration 

Capacity (VIC) model [Liang et al., 1994]. A wealth of modeled land surface hydrologic states 

(e.g, soil moisture) and fluxes (e.g., latent and sensible heat) have been developed and used in 

Earth science research [Livneh et al. 2013; Livneh et al. 2015]. In mountainous regions, where 

ground-level observation collection is not feasible, the Weather Research Forecasting (WRF) 

atmospheric model has been downscaled and similarly used to produce hydrologic model 

outputs; however, this process inevitably requires bias-correction based on observational 

products [Salathé et al., 2010; 2014]. Recently, gridded hydrometeorological data was 
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combined with geo-environmental and demographic surveys to yield gridded population data 

sets and new insight to enhance population-modeling resolution and accuracy [Cutter et al., 

2014; Lloyd et al., 2017]. It can be expected that gridded data products will continue to increase 

in abundance and complexity in how they represent the impacts of geography and landscape 

morphology. 

 

Before the potential usefulness of gridded data products can be realized for watershed-scale 

actionable research, several data and metadata access challenges need to be addressed. 

Continental-scale gridded data products, such as those from Livneh et al., (2013; 2015) and 

Salathé et al., (2014), are increasingly being published as NetCDF files. For watershed 

researchers who are interested in studying physical processes, NetCDF files used for regional 

and continental-scale gridded products (1000 km2 - 10,000 km2) contain information that far 

exceeds the geographic extent needed for local, watershed-scale research (e.g., 1-100 km2 

catchment area), adding computational resource burden in exploratory research. One 

alternative data product format is the 1D ASCII time-series files for a geographically-specific 

gridded cell. As observed in Livneh et al. (2013; 2015) and Salathé et al. (2014) data products, 

1D ASCII time-series files are not self-described with column names, time-series dates, or value 

units, so annotations are needed in order to perform analyses with files in this format. 

Information to locate and use the data files may be confined to elusive publications and 

documentation files. Even so, the data files may be hosted in management structures for their 

study convenience (e.g., Universal Transverse Mercator boundaries), making manual data 

retrieval non-trivial and not intuitive by human interpretation. Hence, annotating data 

provenance, metadata provenance, and file management structure are crucial steps towards 

making gridded data products findable, accessible, interoperable, and reusable [FAIR; 

Wilkinson et al., 2016; Mons et al., 2017] for secondary analyses. 

 

Currently available tools for water data, such as WaterML, WOFpy, GSFLOW, Geoknife, offer 

access to time-series of observation data [Kadlec et al., 2012, Gardner et al., 2018; Read et al., 

2015]. However, in areas where observations are unavailable, such as heterogeneous 

landscapes at high elevation locations, data sparsity can be addressed with krigged and model-

interpolated data products. Python libraries such as OpenClimateGIS offer access to NetCDF 

gridded data products, but these functionalities exclude legacy data sets provided in 1D ASCII 
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time-series format. More importantly, aside from data access, it is challenging to recognize 

differences between gridded data product－such as aggregation into different gridded cell 

schemas, the temporal resolution, time period, or long-term trends－for use in future modelling 

efforts and model validation operations. 

 

To streamline the processes needed for interacting with gridded hydrometeorological data 

products in a FAIR manner, promote use in Earth modeling and interdisciplinary domains, and 

support decision-making for selecting gridded cells in a study site, we designed OGH as a open-

source python toolkit to select gridded cells in a study site, data download, spatial-temporal 

analyses, and provide data visualization.  In this paper, we describe the design of the OGH 

Python library, which contains functions to conduct basic data access and data processing 

operations to simplify gridded data product use in research. Users start with an ESRI shapefile 

that describes their study site (e.g., HUC12 units, county-boundaries, state-boundaries) to 

generate a comma-separated table that helps with file management of gridded cell data 

availability across gridded data products. Users can then conduct data retrieval in-parallel from 

a number of gridded hydrometeorological data products with automated file management for 

analyses. These functions are flexible to integrate new gridded products and publishing 

standards. To address the absence and/or variability in describing online gridded data products, 

we propose a set of minimum annotation criteria (metadata fields) for describing ASCII gridded 

hydrometeorological data products, and the decision steps needed to access these gridded 

datasets. 

 

In the Methods section, we describe OGH software design for gridded cell selection and 

visualization, data download, spatial-temporal calculations, and applied statistics functionalities. 

OGH was designed to incorporate climatological and hydrometeorological gridded data products 

with comparable data structures to ASCII and NetCDF formats. Here, we emphasize watershed-

scale applications using 1D ASCII time-series data products. In the Results section, we 

demonstrate these functionalities using three watersheds of end-member climatologies in 

CONUS: two high alpine glacierized watershed in the high-end of the precipitation gradient in 

the CONUS (> 3,000 mm), Sauk-Suiattle, WA and Elwha river basin, WA; and a desert 

watershed with a large precipitation gradient from valleys to peaks (200 mm - 3500 mm), Upper 

Rio Salado, NM. We compute precipitation and temperature spatial-temporal statistics and 
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exceedance probability calculations using gridded hydrometeorological data products from 

Livneh et al., (2013) and Salathé et al., (2014). OGH v.0.1.11 is publicly accessible at 

https://github.com/Freshwater-Initiative/Observatory and available by conda installation. 

 

2. Methods 

OGH is a python library designed to perform gridded cell selection, data download, data 

processing for desired space-time analytics, and visualization of spatial-temporal data. A 

proposed set of metadata annotations was developed to provide default information about data 

product capacities using two case study gridded products. We provide OGH examples 

reproducible on HydroShare, a cyber-infrastructure for sharing data and models [Heard et al., 

2014; Horsburgh et al., 2016; Castronova, 2017]. OGH is not dependent on HydroShare, though 

in the example use-cases, HydroShare is a platform providing dockerized or local server 

environments for community software, including those used by OGH operations to manage, 

compute, and store directories of files.  

 

User workflows, scenario use-cases, and key socio-technical needs were developed through 

key informant interviews, diagramming, and rapid prototype testing sessions (Baxter and 

Sommerville, 2011; Devi et al., 2012). Four key principles of user-centered design and 

engagement were maintained throughout the rapid prototype testing process, described in 

Supplementary Table 1 (Devi et al., 2012). 
 

2.1. Software Design 

We designed OGH using open-source Python 3.6 programming, which is interoperable with 

major operating systems and computing environments used by personal desktop computers, 

high performance computers, and supercomputers. OGH functions are written as modular 

components that leverage classes and methods from a number of Python libraries: time-series 

analysis from Pandas [McKinney et al., 2011]; geospatial analytics from Geopandas, Fiona, 

Shapely, and Matplotlib-Basemap [McKinney 2011; Gillies 2007, 2011; Jordahl et al., 2014]; and 

task management from Multiprocessing and Dask [Rocklin, 2015]. Operations from these 

libraries are assembled into scripted functions, which can be wrapped into sequential operations 

or applied in distributed computing practices. 

 

https://github.com/Freshwater-Initiative/Observatory
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OGH is intended to perform operations within computing environments, where input and output 

files are managed within data sharing platforms and community data repositories (e.g., 

HydroShare). While HydroShare has many features, we make use of the docker or server 

environment, where file storage, migration, and computation can be performed with multi-core 

resources. HydroShare (www.hydroshare.org) is a collaborative platform that supports data 

sharing and model reproducibility in hydrologic research, and it provides a cloud-computing 

environment through the Consortium of Universities for the Advancement of Hydrologic Science, 

Inc. (CUAHSI) JupyterHub server [Horsburgh et al., 2016]. The HydroShare REST API Python 

library (hs_restclient) is used to migrate files contained in HydroShare resources in and out of 

the JupyterHub docker environments [HydroShare REST API Python client library, 2018]. File 

storage within the computing environment is intended to be temporary storage for the duration 

of the computations. The research workflows presented in this paper are designed to be guided 

by Jupyter notebooks, sharable code-execution interfaces that operate within the JupyterHub 

docker environments [Castronova, 2017].    
 

2.2. Gridded data product annotations 

We annotated seven daily, 1/16o (~6 km) gridded data products from three studies published 

and made available online (Livneh et al., 2013, 2015; Salathé et al., 2014).  The datasets 

published by Livneh et al., (2013) provided an interpolated climate-station meteorology for 

CONUS and a meteorology data product that was bias-corrected to the Columbia river basin 

regional climatology in the time-span from 1915 to 2011. Expanding on Livneh et al., (2013), 

Livneh et al., (2015) includes a PRISM-calibrated interpolated climate-station meteorology 

extends from Mexico to limited regions of Canada; however, the period has 33 total years less 

data with a time-span of 1950 to 2013. Both interpolated meteorology data products were used 

to predict macro-scale hydrologic fluxes at the 1/16o, daily resolution by the VIC model. The 

WRF gridded data product provides model downscaled daily precipitation, maximum and 

minimum air temperature, and wind speed for the Columbia river basin for the period of 1950 to 

2010 [Salathé et al., 2014]. The data products can be further differentiated according to their 

type of analysis and reported spatial coverage (Table 1).  

http://www.hydroshare.org/
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Table 1: Summary of seven daily, 1/16o gridded data product. Descriptions in this summary compare data 
products by variable, date range, analysis type, intended spatial coverage, and their source publication. 

Data set 

 

Features and variables  

(in order) 

Start  

date 

End  

date 

Analysis  

type 

Spatial  

coverage 

Publication 

 

Climate station meteorology       

    dailymet_livneh2013 PRECIP, TMIN, TMAX, WINDSPEED 1915-01-01 2011-12-31 raw CONUS [Livneh et al., 2013] 

    dailymet_bclivneh2013 PRECIP, TMIN, TMAX, WINDSPEED 1915-01-01 2011-12-31 bias-corrected Columbia river [Livneh et al., 2013] 

    dailymet_livneh2015 PRECIP, TMIN, TMAX, WINDSPEED 1950-01-01 2013-12-31 raw CONUS [Livneh et al., 2015] 

WRF-NNRP model meteorology       

    dailywrf_salathe2014 PRECIP, TMIN, TMAX, WINDSPEED 1950-01-01 2010-12-31 raw Columbia river [Salathé et al., 2014] 

    dailywrf_bcsalathe2014 PRECIP, TMIN, TMAX, WINDSPEED 1950-01-01 2010-12-31 bias-corrected Columbia river [Salathé et al., 2014] 

Variable Infiltration Capacity       

    dailyvic_livneh2013 YEAR, MONTH, DAY, EVAP, RUNOFF, 

BASEFLOW, SMTOP, SMMID, SMBOT, 

SWE, WDEW, SENSIBLE, LATENT, 

GRNDFLUX, RNET, RADTEMP, PREC 

1915-01-01 2011-12-31 Physics-based 

model 

CONUS [Livneh et al., 2013] 

    dailyvic_livneh2015 

 

YEAR, MONTH, DAY, EVAP, RUNOFF, 

BASEFLOW, SMTOP, SMMID, SMBOT, 

SWE, WDEW, SENSIBLE, LATENT, 

GRNDFLUX, RNET, PETTALL, 

PETSHORT, PETNATVEG 

1950-01-01 

 

2013-12-31 

 

Physics-based 

model 

CONUS 

 

[Livneh et al., 2015] 

 

 
The annotations describe the gridded data products published as ASCII files, where each file 

contains the gridded cell historic time-series data. Annotation features include the data set short 

name, information to locate the ASCII files, information about the file structure and sources of 

metadata, and metadata about the file variables (Table 2). File locations can be represented or 

reconstructed given by the web protocol (e.g., ftp, https), web domain and subdomain, decision 

steps within the subdomain to locate the data file subdirectory (e.g., centroid latitude given the 

the spatial resolution, bounding box bins), the filename structure, and the file format. The file 

structure is described by the variable list (left-to-right column order), time-series date range, 

temporal resolution, file delimiter, and the data types and unit increment for each variable. Full 

annotations are provided in the ogh_meta module. 
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Table 2: Minimum annotation criteria for gridded data products. 
Metadata Metadata descriptions 
File location   
    1. Dataset name of the gridded data product 
    2. Spatial resolution the distance between gridded cell centroids 
    3. Web protocol the data transfer protocol 
    4. Domain the web domain 
    5. Subdomain the subdomain path 
    6. Decision steps the file organization for locating data files 
    7. Filename structure the standard components to the filename 
    8. File format the file type at download 
File structure   
    9. Start date the start date of the time-series 
    10. End date the end date of the time-series 
    11. Temporal resolution the unit increment for time-steps 
    12. Delimiter the column separator within each line of data 
    13. Variable_list the list of variables in order of appearance 
    14. Reference the sources of metadata 
Variable structure   
    15. Variable_info   
        ● desc the long name of the variable 
        ● dtypes the expected data type 
        ● units the unit increment of the data 

 
2.2.1. Example use-cases 

We present four example use-cases in the form of Jupyter Notebooks to demonstrate the OGH 

operations (Figure 1). In the first use-case, we identify the subset gridded cells of interest for 

four watershed study sites using the treatgeoself function (Figure 1A). The shapefiles for these 

watersheds are stored within a public HydroShare resource for ease of collaborative use [Sauk-

Suiattle river basin available in Bandaragoda, C. (2017); Elwha river basin available in 

Beveridge, C. (2017); and Upper Rio Salado basin available in Bandaragoda, C. (2017)]. 

Watershed boundaries were defined in ArcGIS® using 12-digit Hydrologic Unit Code polygons 

from the National Watershed Boundary Database. In the second use-case, the time-series data 

files are retrieved, cataloged, then summarized for data availability (Figure 1B). In the third use-

case, we focus on the Sauk-Suiattle watershed to determine the monthly meteorological spatial-

temporal statistics computed using the Livneh et al., (2013) Meteorology versus the Salathé et 

al., 2014 WRF model output data products (Figure 1C). Finally, we compute potential runoff 

values using the VIC hydrologic data product from Livneh et al., (2013) to approximate the 10% 

exceedance probability thresholds based on the daily time-series in each dataset (Figure 1D). 

Functions introduced in each use-case are summarized in Supplementary Table 2. 
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Figure 1: Scenario use-cases for OGH operations in cloud environments. A) With the user-defined watershed 
shapefile, spatial intersection with the 1/16o gridded cell centroid shapefile identifies the target gridded cell centroids, 
which are then documented within the mapping file output. B) The mapping file provides the Lat-Long coordinates for 
data download operations to produce a localized folder of ASCII files and a file catalog appended within the mapping 
file. C) For each gridded data product, spatial-temporal summary statistics are computed from the mapping file, file 
structure metadata, and ASCII files. The output dictionary can be reused to collect summary statistics for multiple 
data products. D) The hydrologic gridded product is used to compute exceedance probability at a statistical threshold 
for each gridded cell. 
 
For illustration, five reference locations are used in the Sauk-Suiattle watershed examples. One 

gridded cell is identified at the highest average elevation value, 2216 meters above sea level. 

Two gridded cells were identified at the lowest average elevation value, 164 meters above sea 

level. The Darrington ranger station (COOP station 451992) is used as the reference source of 

meteorological observations, with data collected at 167 meters above sea level from Jan 1 1931 

through Dec 31 2005. Sauk River Near Sauk, WA (USGS-12198500) used as the reference 

source of observed streamflow discharge using data collected between Jan 1 1950 through Dec 

31 2011 [Konrad et al., 2012]. 
 
2.2.2. General workflow and required files 

Workflows for the use-cases executed in the JupyterHub environment (Figure 2) are illustrated 

in detail in Figure 1. The general workflow begins with three HydroShare resources as sources 

of input files (Figure 2). Resource A - a HydroShare resource that contains a Jupyter Notebooks 

to execute code for each example use-case presented in this paper, Resource B - a 

HydroShare resource with a user-defined shapefile representing the region of interest (e.g., a 

watershed), and Resource C - a file of point-locations describing CONUS gridded cell centroids 

(only pre-requisite for ‘mapping watershed centroids’). From the web page for HydroShare 

Resource A, the Jupyter Notebooks are launched in the JupyterHub docker environment, 

wherein the HydroShare REST API functions migrate in requisite data files from Resource B 
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and C (Figure 2). Use-case notebooks 1 through 4 progress through OGH operations in Figure 

2: ’identify watershed gridded cell centroids’ (map watershed centroids),’download and display 

data availability’ (data download), ‘summarize monthly meteorology’ (data processing), and 

‘compute exceedance probabilities’ (another form of data processing) (Figure 2). Each use-case 

notebook produces output data files, plots data visualizations, and finally migrates these output 

to new shareable HydroShare resources to conclude the use-case demonstration. 

 

 
Figure 2: The general workflow for OGH in cloud-computing environments. HydroShare is the collaborative 
platform to facilitate file storage (Resources A, B and C), and HydroShare API rest-client migrates files in-and-out of 
the JupyterHub docker environment. Jupyter notebooks guide users through different use-cases like decision-making 
steps (e.g., map watershed centroids), data download, data processing, or generating visualization products. At the 
close of each notebook, research data products are migrated to HydroShare as new sharable resources. 
 
2.2.3. Map watershed gridded cell centroids 

For each of the three example watersheds, we generate a mapping file with the gridded cell 

centroids that spatially intersect these study sites (Figure 1a). Shapefiles were transformed into 

the 1984 World Geodetic System (WGS84) Lat-Long coordinates system as the standard 

projection. The study site was given a buffer region (default buffer distance of 0.06o) to include 

adjacent gridded cells. CONUS 1/16o (i.e., 0.06250o) gridded cell ESRI shapefile identifies each 

gridded cell by the 5-digit centroid latitude-longitude [Livneh et al., 2013; Livneh, 2017]. Average 

elevation in the gridded cell (in meters above sea level) are based on the CONUS digital 

elevation model described in Livneh et al., (2013). 
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The output from this use-case includes three mapping files, each denoting the latitude, 

longitude, and average elevation within the gridded cell. Other outputs include spatial 

visualizations of the study site (maps) and the elevation gradient among the gridded cells, and 

plots showing the data for select grid cell traces. 
 
2.2.4. Summarize data download and availability 

The mapping file guides data download from the seven gridded data products (Figure 1b). 

Target gridded cell files identified within the mapping file are web requested using data 

download wrapper functions (e.g., the getDailyMET_livneh2013). Request operations are 

distributed using multiprocessing pool operations. Downloaded files are cataloged into the 

mapping file (using addCatalogToMap). Data availability is determined for each gridded data 

product and watershed study site (using mappingfileSummary). Files that do not exist for 

retrieval are excluded from the catalog. 
 

The output from this use-case is a summary table that describes data availability and seven 

folders containing the downloaded files for all the watersheds. 
 
2.2.5. Summarize monthly meteorology 

 
Figure 3: Spatial-temporal calculations (total sum and average). The gridclim_dict function reads and applies A) 
aggregate_space_time_average for each variable in the gridded data product. Variables to be considered by periodic 
sums (e.g. total annual precipitation) can be processed with B) aggregate_space_time_sum. 
 
With the Livneh et al., (2013) interpolated meteorology and Salathé et al., (2014) WRF files, we 

compare the monthly meteorology variables for the Sauk-Suiattle river watershed using the 61-

years of data from their mutual time-series period (i.e., Jan 1, 1950 through Dec 31, 
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2010).Using the Sauk-Suiattle mapping file, each variable from the ASCII gridded cell time-

series are compiled into data frames, where rows are the daily time-series and columns are 

denoted with the gridded cell centroids. Temperature trends are interpreted using monthly 

mean, yearly mean, and global mean expected values (Figure 3A). Annual anomaly from the 

global mean value is used to identify years with extreme events (highest and lowest data 

values). Precipitation trends are interpreted using period sums (e.g., month-yearly sums and 

yearly sums) and mean of period sums (e.g., mean monthly sums, mean yearly sums, and the 

global mean of monthly sums) (Figure 3B). 

 

The gridclim_dict function is a series of wrapped operations to return a dictionary object of 

spatial-temporal values across the ASCII gridded cell time-series (Figure 1C). Gridclim_dict 

provides parameters to specify elevation ranges or time-period selection, where defaults are all 

gridded cells and the full time-series. Gridclim_dict wraps read_files_in_vardf, which performs 

distributed file reading to generate a variable data frame for each variable in the data product, 

then applies aggregate_space_time_average to compute summary statistics using the prefix-

suffix conventions for each variable (Figure 3A). The suffix represents the gridded data product, 

which can be user-defined or default to the annotated gridded data product dataset name (e.g., 

‘dailymet_livneh2013’). The first prefix appended to the suffix by underscore separation is the 

data product variable (e.g., ‘PRECIP’). The second prefixes represent the statistical averages 

computed using the gridded cell dimensions (columns) and the temporal groupings (rows). The 

aggregate_space_time_sum produces outputs with the following second prefixes: 

“meanbydaily” (daily averages by each gridded cell), “meanbymonth” (daily averages by each 

month and gridded cell), “meanbyyear” (daily averages by each year and gridded cell), 

“meandaily” (average values across gridded cells by each date), “meanmonth” (daily averages 

across gridded cells for each month), “meanyear” (daily averages across gridded cells by each 

year), “meanallyear” (global mean of daily values across all years and gridded cells), and 

“anomyear” (the residual between each yearly mean and the global mean). To consider trends 

by period sums of daily events, the aggregate_space_time_sum function computes summary 

statistics of month-yearly and yearly sums (Figure 3B). The second prefixes here include 

“monthsum” (month-yearly sum of daily values by gridded station), “yearsum” (annual sum of 

daily values by gridded station), “meanbymonthsum” (mean of monthly sums for each calendar 

month and gridded cell), “meanbyyearsum” (mean of annual sums for each gridded cell), 

“meanmonthsum” (mean of month-yearly sums across gridded cells), ”meanyearsum” (mean of 

annual sums across gridded cells),”meanalldailysum” (global mean of the daily sums across all 
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gridded cells), “meanallmonthsum” (global mean of month-yearly sums across gridded cells), 

”meanallyearsum” (global mean of annual sums across gridded cells). Variations to these 

outputs are influenced by the gridded cells and time-period parameters. 

 

The output for this use-case is a JSON dictionary object containing analytical data frames and 

data series, as shown in Figure 3, for each variable within a given time-frame. Other outputs 

include maps and monthly boxplots of the corresponding grid cell values. 
 
2.2.6. Compute exceedance probabilities 

For the Sauk-Suiattle study watershed, we approximate the 10% exceedance probability 

threshold using unrouted daily runoff for each calendar month and each gridded cell (Figure 

1D). This is useful for visualizing the 10% highest daily streamflow generated for each grid cell 

in the dataset, which is a combined function of climate data, soils, land cover, and other model 

parameters in each grid cell. Potential runoff rates are computed as the sum of baseflow rate 

(mm/s) and surface flow runoff rate (mm/s) from Livneh et al., (2013) VIC model outputs, 

converted the units to millimeters per day (mm/day) for comparison with daily precipitation rates. 

The same general operations were applied to Livneh et al., (2015) VIC model outputs. For each 

calendar month (e.g., January) and each gridded cell (e.g., centroid Lat-Long at 48.8723, -

121.8974), daily potential runoff rates are compiled into a cumulative distribution function using 

data from 1 Jan 1950 through 31 Dec 2011 (62-years), the mutual/overlapping time-series 

period between Livneh et al., (2013) and Livneh et al., (2015) data products. Each distribution 

has approximately n=1800 VIC modeled observations. The 10% monthly exceedance 

probabilities (peak runoff threshold) for each gridded cell is estimated by linear interpolation as 

the 90th-percentile of the respective cumulative distributions [Vogel et al., 2007]. An 

exceedance probability developed from a population of daily runoff in a given month should not 

be confused with annual flood statistics, which are developed by fitting a statistical distribution to 

a population of annual maximum daily streamflow. The 10% exceedance probability of observed 

streamflow discharge measured at Sauk River Near Sauk, WA (USGS-12189500) can be 

plotted with the modeled streamflow to provide an observed reference based on routed 

streamflow for relatively high flows. 

  

The output for this use-case includes low, average, and high elevation analytical data frames at 

the 10% exceedance threshold for VIC results, compared to observations. Other outputs include 

maps and monthly boxplots of the exceedance probability for each gridded cell. 
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3. Results 

3.1. Map Watershed Centroids 

Functions used:  

reprojShapefile, treatgeoself, multiSiteVisual, griddedCellGradient 

 

Sauk-Suiattle, Elwha, and Upper Rio Salado watersheds were processed to generate mapping 

files and gridded cell gradient visualizations (Figure 4). Ninety-nine grid cells were identified for 

the Sauk-Suiattle river watershed, displaying the largest elevation difference (162 m - 2246 m) 

among the three watersheds (Table 3). Sauk-Suiattle river watershed is located in the 

northwestern region of the Cascade mountains in Washington state, USA, ranging from multiple 

high elevation areas in the southeast to a single outlet in the northwestern gridded cells. Fifty 

five gridded cells were identified for the Elwha river watershed, which has a comparable 

elevation difference to Sauk-Suiattle. The Elwha river watershed is located on the northern 

region of the Olympic Peninsula, where the elevation gradient (36 m - 1642 m) descends from 

the southern gridded cells by a single river draining to the northern gridded cells (Figure 4b). 

Thirty one grid cells were identified for the Upper Rio Salado watershed, with a higher elevation 

(1962 m - 2669 m) grid cells than the other two watersheds (Table 3). Upper Rio Salado’s 

elevation gradient descends from the southwest-most to the northeast-most gridded cell.   
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Figure 4. Aerial view of watersheds and gridded cells. The Sauk-Suiattle (164-2216 m), Elwha (36-1642 m), and 
Upper Rio Salado (1962-2669 m) watersheds located in western United States were visualized using the 
multisiteVisual function with an EPSG:3857 geospatial projection. Each watershed (outlined in magenta) and their 
gridded cells are visualized using the griddedCellGradient function at the 1/16o spatial-resolution (~6 km). In the 
Sauk-Suiattle watershed, five reference markers denote the highest elevation gridded cell (gridded cell 69, elevation: 
2216 m), the lowest elevation gridded cells (gridded cells 3 and 24, elevation: 164 m), the Darrington Ranger Station 
site (*; COOP station 451992, elevation: 167 m) for observed meteorology data, and the Sauk River Near Sauk, WA 
streamflow gauge (§, USGS-12189500, elevation: 81 m) for observed streamflow discharge measured at the 
downstream-most tip of the watershed. While the numeric distributions can be conformed to a single scale, each 
watershed map uses a different numeric colorbar legend, so this figure is intended to provide a qualitative impression 
of the elevation gradient. 

 
3.2. Summarize data download and availability 

Functions used: 

getDailyMET_livneh2013, getDailyMET_bcLivneh2013, getDailyMET_livneh2015, 

getDailyVIC_livneh2013, getDailyVIC_livneh2015, getDailyWRF_salathe2014, 

getDailyWRF_bcsalathe2014, mappingfileSummary 

 

Among the seven gridded data products, 1D ASCII time-series files were fully-represented for 

Sauk-Suiattle, mostly represented for Elwha, and substantially limited in representation for 

Upper Rio Salado (Table 3). Download tasks for the full time-series ASCII files were distributed 

across 5-10 parallel worker CPUs. Computation efficiencies consisted of 693 Sauk-Suiattle files 

(10.0 Gb disk space) downloaded in 3 min 56 s wall time, 375 Elwha files (5.4 Gb) took 1 min 59 
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s, and 124 Upper Rio Salado files (2.7 Gb) took 48.8 s. All files were cataloged into their 

respective mapping files, organized by gridded data product short name and gridded cell 

centroid. 

 

Elwha is located in the northwestern-most region of Washington state. Three gridded cells were 

available for all seven gridded data products, although they were available for the bias-corrected 

Livneh et al., (2013) meteorology and Livneh et al., (2015) meteorology and VIC model output 

products. Differences among the elevation gradient suggest that these three gridded cells were 

the northern-most low-elevation gridded cell, on the boundary of CONUS and Columbia River 

Basin extents (Figure 4). This poses certain limitations if multiple gridded data products for 

Elwha were used for intercomparison. These limitations are more obvious with Upper Rio 

Salado, which is located outside of the Columbia River Basin. 

 

Livneh et al., (2013) and (2015) gridded products were consistently spatially available in each of 

the watersheds, but the gridded products differed in the temporal extent (historic time-series 

included). The overlap period between Livneh et al., (2013) and (2015) data products is Jan 1 

1950 through Dec 31 2011 (62-years). Livneh et al., (2013) and Salathé et al., (2014) share the 

Jan 1 1950 through Dec 31 2010 (61-years), which is the same overlap period as Livneh et al., 

(2013) and Salathé et al., (2014). Despite the spatial availability of time-series data within a 

watershed, gridded data product intercomparisons should consider the historic time period 

represented as well as data variabilities such as correction methods and algorithms used to 

generate the gridded product. 
 

Table 3: Counts of gridded cell ASCII files for each watershed by gridded data product. For the seven  
gridded data products, the downloaded files are summarized for each watershed as an inventory of the data 
availabilities and potential gaps due to spatial extent of the gridded data product. 

  Watersheds 

 Sauk-Suiattle river Elwha river Rio Salado 

Median Elevation in meters [range] 
(Number of gridded cells) 

1171[164-2216]  
(n=99) 

1020[36-1642] 
 (n=55) 

2308[1962-2669] 
 (n=31)  

dailymet_bclivneh2013 1171[164-2216] (n=99) 1120[36-1642] (n=55) 0 
dailymet_livneh2013 1171[164-2216] (n=99)  1146[174-1642] (n=52) 2308[1962-2669] (n=31) 
dailymet_livneh2015 1171[164-2216] (n=99) 1120[36-1642] (n=55) 2308[1962-2669] (n=31) 
dailyvic_livneh2013 1171[164-2216] (n=99) 1146[174-1642] (n=52) 2308[1962-2669] (n=31) 
dailyvic_livneh2015 1171[164-2216] (n=99) 1120[36-1642](n=55) 2308[1962-2669] (n=31) 
dailywrf_salathe2014 1171[164-2216] (n=99) 1142[97-1642] (n=53) 0 
dailywrf_bcsalathe2014 1171[164-2216] (n=99) 1142[97-1642] (n=53) 0 
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3.3. Summary monthly meteorology 

Functions used: 

findCentroidCode, overlappingDates, gridclim_dict, aggregate_space_time_sum, valueRange, 

saveDictOfDf, renderValueInBoxplot, renderValueInPoints 

 

The function gridclim_dict generates a JSON dictionary for Sauk-Suiattle that contains 36 

analytical data frames for Livneh et al., (2013) meteorology and Salathé et al., (2014) WRF 

outputs. Each data frame was named according to the analysis method (second prefix), variable 

(first prefix), and gridded data product short name (suffix). In Figure 5, average monthly total 

precipitation (i.e., meanbymonthsum_PRECIP_dailymet_livneh2013 and 

meanbymonthsum_PRECIP_dailywrf_salathe2014) are depicted as boxplots to represent the 

distribution of values across the 99 gridded cells. The Livneh et al., (2013) interpolated 

meteorology (Figure 5, top-left) indicates a greater variability of average monthly precipitation 

during the November through January months, while Salathé et al., (2014) WRF model outputs 

(Figure 5, bottom-left) shows a higher median and greater variability from April through 

September. Average monthly precipitation for targeted high and low elevation grid cells (Figure 

4) are plotted alongside the boxplots, as well as the point observations from Darrington Ranger 

Station (Figure 5). Comparison of observations and modeled precipitation shows that observed 

precipitation (at low elevations) is less than the monthly averages modeled by Salathé et al., 

(2014) during spring and summer. Spatial variations observed with Livneh et al., (2013) show 

large deviations between neighboring cells, especially in comparison to the smoother spatial 

trends organized with the elevation gradient can be observed from the Salathé et al., (2014) 

(Figure 5A-F). 
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Figure 5: Comparison of the average monthly total precipitation for each gridded cell in the Sauk-Suiattle 
watershed. The boxplots compare the statistical distribution of the average monthly total precipitation (inches) to the 
spatial distribution of precipitation in each gridded cell (A-F), using data from Jan 1 1950 through Dec 31 2010. 
Created using the renderValueInBoxplot function, the boxplot colors represent the median value of the gridded cell 
distributions. Reference trend lines were included to illustrate Sauk-Suiattle’s highest elevation gridded cell (#69; 
orange) and the lowest elevation gridded cells (#3 and #24; light and dark gray), found using the findCentroidCode 
function. The gridded cell distributions are rendered spatially with a basemap using the renderValueInPoints function. 
The spatial distribution of gridded cell values are rendered using the renderValueInPoints function for Livneh et al. 
(2013) interpolated meteorology for A) October, B) January, and C) April, compared with to Salathé et al. (2014) 
WRF model outputs for D) October, E) January, and F) April. All maps and boxplots use the same colorbar legend 
and numerical distribution shown in the top-left. 
 
Monthly temperature statistics were computed for each grid cell using the daily minimum and 

maximum temperature between Jan 1, 1950 through Dec 31, 2010 (Figure 6). The distribution 

of mean maximum temperature shows that Livneh et al., (2013) interpolated meteorology has 

greater variability than Salathé et al., (2014) WRF model outputs. This effect is also observed 

when comparing the distribution of mean monthly minimum temperature, noting that Livneh et 

al., (2013) has more extreme hot and cold trends, sometimes up to 5oC difference compared 

with the Salathé et al., (2014) WRF model outputs. Reference meteorological observations from 

the Darrington Ranger Station closely resemble the Livneh et al., (2013) interpolated 
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meteorology. Livneh et al., (2013) values are dependent on source observations clustered 

around low elevation gridded cells (light and dark gray) with COOP stations; sparse 

observations limit the performance assessment for high elevation gridded cells. While average 

daily minimum temperature seems to be comparable, Salathé et al., (2014) predicts colder 

maximum temperatures for low elevation areas for all months, and warmer temperatures for 

higher elevation areas (orange line) from November through April. 

 
Figure 6: Comparison of monthly mean of daily minimum and maximum temperature. The monthly mean of 
daily maximum (top) and minimum (bottom) temperatures (in Celsius) were computed for each of the 99 Sauk-
Suiattle gridded cells. The boxplots represent the observations from Livneh et al., (2013) meteorology (left) and 
Salathé et al., (2014) WRF model outputs (right). Reference trend lines were included to represent the highest 
elevation gridded cell (orange) and the lowest elevation gridded cells (light and dark gray) in Sauk-Suiattle. The field 
observations (blue dashed line) measured at Darrington Ranger Station (elevation: 167 m) indicates that maximum 
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daily temperature (top) are more closely represented by Livneh et al., (2013) in the Sauk-Suiattle watershed, while 
there are no remarkable differences observable for minimum daily temperature (bottom). 
 

3.4. Compute exceedance probabilities 

Functions used: 

monthlyExceedence_mmday, computeSurfaceArea, cfs_to_mmday 

 
Figure 7 displays the monthly 10% exceedance probability and average (50%) thresholds for 

unrouted potential runoff using two VIC gridded data products for the Sauk-Suiattle watershed. 

Not to be confused with approximations like the 10,000-year flood which are based on empirical 

streamflow values, the probabilities generated by this function are based on empirical unrouted 

model outputs, which have limited numeric range and interpretation thereof. Each point in the 

distributions represent the potential runoff threshold at which there is only a 10% chance 

expectation of exceeding that value in that month. Both gridded data products display a slight 

increase in November where the muted impact of the highest extreme winter flood events on 

lower average monthly flows, followed by a high peak flow in June/July (from snowmelt runoff), 

using the same color scale and axis ranges (Figure 7, right side). The major contribution to 

potential runoff in any given year is from the Cascade mountain ranges during the snowmelt 

season (June-July). Although the 10% exceedance probability at the highest elevation are 

comparable between data products, the trends at the low elevation stations indicate that Livneh 

et al., (2015) produces more potential runoff between November through April months than 

Livneh et al., (2013). Livneh et al., (2015) applies a bias correction (using PRISM data as a 

proxy for observations), which produces more precipitation from winter rainfall season 

compared to results without a bias correction. A comparison between the two gridded data 

products illustrates that Livneh et al., (2015) boxplots have approximately 2-3 mm median 

increase in potential runoff between October to May compared to Livneh et al., (2013) (Figure 

7). 

 

The monthly 10% exceedance probability with Sauk River Near Sauk, WA, discharge 

observations range from 4.2 to 15.3 mm/day across the calendar months. The exceedance 

probability threshold peaks in two months, November and June, corresponding with fall 

atmospheric river rainfall-dominated storm events, and early summer snowmelt. The first 

smaller peak is observed in November, which aligns with both Livneh et al., (2013) and (2015) 

the boxplot distributions. The second larger peak occurs in June, where the mean decreases 

though the variance increases in July. The Sauk River Near Sauk gauge is approximate 81 
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meters above sea level, half of the average elevation in gridded cell 3 where it is located. The 

spatially averaged (mm/day) routed streamflow dynamics in Sauk River Near Sauk can be 

expected to fall within the elevation mean of unrouted VIC modeled runoff using the lower 

resolution 1/16o gridded cells. The observed data at the outlet is provided for context, and the 

modeled results is provided to demonstrate the spatial variability of the grid cells contributing to 

the modeled streamflow at the watershed outlet. 
 

 
Figure 7: Average total monthly potential runoff (mm) and 10% exceedance probability for each monthly 
unrouted potential runoff (mm/day) within the Sauk-Suiattle watershed. The boxplots are comprised of 99 
gridded cell values for each month. Peak of average total monthly potential runoff (left) occurs in November and June 
months shown by the observed USGS streamflow discharge (blue dash), and observable by the spatial average of 
the gridded cell (orange dash). The 10% exceedance probability for each gridded cell (right) is a function of the 
spatial average of peak flow occurs in November and July. The snowmelt season is the major period for expected 
runoff for highest elevation gridded cell (orange line), while the rainfall season is the major period contributing to 
runoff for lowest elevation gridded cells (light and dark gray lines).  
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4. Discussion 

The primary step in the workflow presented here is treatgeoself, which enables users to control 

gridded cell inclusion and exclusion using shapefile-guided data selection. It generates the 

mapping file to guide distributed computing for data download and data processing; this 

catalogue allows for machine reading, selection and sorting of available data. The examples use 

watersheds defined by HUC12 boundaries, but the shape can be user-defined (e.g., census 

block, legislative boundaries, fish species migration spatial clusters). Geopandas operations 

enable treatgeoself to transform shapefiles of varying spatial projections and to include buffer 

regions. In the early development stage, treatgeoself applied unfiltered spatial intersection with 

each shape polygon in the shapefile, resulting in slow mapping performance and interpretation 

difficulty when buffer regions were included. At present, study sites with multiple subpolygons 

are merged by spatial union into a single MultiPolygon object, simplifying treatgeoself into a 

first-order loop. Intercomparison of gridded data products of different gridded parcel schemas 

are expected to be enabled and more efficient with the use of the projection alignment and 

cross-mapping functionalities. 

 

Data download operations are functionalized for distributed computing, but the concurrent 

queue and transfer rate are limited by the computing resources allocated by the user and the 

data content provider. Data download was found to be rate-limited to approximately 5 

concurrent web requests to the Livneh et al., (2013) web domain. All other gridded data product 

hosts enabled 10 or more concurrent web requests. A rate-limiter for the number of parallel data 

retrieval tasks was incorporated into the data download functions, but not for local data 

processing operations. The rate of data transfer would need to be assessed before OGH could 

integrate data servers with RESTful API such as ERDDAP, which could expedite mapping and 

retrieval of gridded data products and metadata [Simons and Mendelssohn, 2012]. Other limits 

include nuanced issues of data maintenance by the data publisher/provider.  For example, 

during production and testing of workflow and functions, data products mentioned in Livneh et 

al., (2013) were migrated to a new web domain, resulting in misdirected requests. Annotations 

and data retrieval functions may need updating over time. 

 

We qualitatively described differences between two gridded data products of the same 

empirically estimated statistical exceedance probability approach. The VIC-modeled gridded 
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data products originate from unrouted flow modeling. In contrast to empirically estimated 

10,000-year flood at-stream gauges, empirically estimated exceedance probability for grid cells 

without flow routing may be limited in interpretations to potential runoff. It is unclear how the 

different model simulations may affect these interpretations. These concerns regarding model 

comparison would merit further research and development of functionalities for in-watershed 

stream gauge selection and quantitative determinations for the goodness-of-fit between routed 

and unrouted modeled values relative to those estimated from at-stream observations. 

 

While we designed OGH specifically for users who primarily import ASCII-formatted files into 

hydrologic and earth surface model software e.g. Landlab [Hobley et al., 2017], a noteworthy 

limitation of using ASCII file format is that as NetCDF adoption is increasing as a data standard, 

ASCII time-series may not be available for newer gridded data products. This limitation is 

addressed using the proposed minimum information criteria and having initial criteria for 

conducting gridded data product intercomparisons. NetCDF files are embedded with metadata, 

while ASCII files are unannotated. To inform the structure and use of the ASCII files, the 

proposed minimum information criteria serves as a road map for locating gridded data product 

files and considers the schema of the file organization and the features within each file. Gridded 

data products published by Livneh et al., (2013) partitioned files by spatial bounding box 

subfolders denoted by the file prefix, West, East, South, and North cardinal limits. For Livneh et 

al., (2013), scrape_domain and mapToBlock functions were designed to abstract the bounding 

boxes then decide the subfolder identity by spatial intersection. The spatial bounding box for 

gridded cells within British Columbia, Canada did not follow this folder naming structure; thus, a 

separate annotation was provided for the spatial boundary in British Columbia, Canada.  

 

Among the annotated ASCII gridded data products, we’ve observed a variety of file 

organizations; different gridded cell schemas, spatial resolution, or NetCDF file organizations 

may be adaptable. Retrieval and data management of NetCDF files in cloud computing 

environments would benefit from further design assessments, as it is not yet clear how to 

conduct or evaluate NetCDF-to-ASCII intercomparison without a priori format preferences that 

may result in information loss. In addition, the development of a user-centered reference of 

controlled vocabulary would improve the usefulness and adoption of a minimum information 

criteria that can be used across data formats. These may help adapt climate and water resource 

information for researching interdisciplinary questions with other data products such as Air 

Quality or Population data sets [Wohlstadter et al., 2016; Lloyd et al., 2017]. For use by 
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researchers who are not hydrometeorology analyst, NetCDF files contain data outside the study 

area extent; 1D ASCII time-series files may be the preferred format for small study areas (1-100 

km2). 

 

We tested and developed the examples using HydroShare for the computing and data sharing 

environment. An important benefit of HydroShare is that it hosts a REST API that enables data 

migration and the creation of new shareable data objects. Additionally, as a community 

repository for hydrologic science, FAIR publication of hydrologic data sets and software 

execution with reproducible workflows is demonstrated with the use-cases developed in this 

work. OGH operations are technically independent of HydroShare, and minor changes would 

allow the code to operate in other similar computing and data sharing environments such as 

local servers, cloud servers (Amazon AWS, Microsoft Azure), and dockerized virtual 

environments with a Jupyter instance (data.world, DataOne, PanGeo, ESIPhub). 

 
5. Conclusions 

OGH is a toolkit that makes download and processing of large climate datasets more efficient by 

leveraging distributed computing for watershed scale research and intercomparison of ASCII 

gridded data products, which extends climate modeling products to represent otherwise 

sparsely observed parts of the landscape. The mapping file output is the key data management 

tool, which catalogs the watershed gridded cells and downloaded files as a lens across gridded 

data products. Along with the proposed minimum information criteria to annotate ASCII gridded 

data products, these data management tools enable multiprocessing and dask-distributed 

operations comparable to the efficiency of Xarray for NetCDF gridded data products. This 

metadata component improves the standardization of gridded hydrometeorology products 

published for use by third-party researchers and scientists. The dictionary of analytical data 

frames is a key data management device that enables key-value pair retrieval and exporting of 

summary outputs. To address user needs for exploratory data analysis and visual control, 

various data frames were rendered into different geographic and temporal modes of human-

readable visual inspection. Overall, OGH is equipped with metadata framework and workflow 

that makes it a useful introduction and training tool for watershed studies using gridded data 

products and ASCII time-series data sets. The data summary capabilities increase the efficiency 

of comparing multiple gridded hydrometeorology products without discontinuous use of different 

software. OGH and the four use-cases demonstrated are available for interactive use on 
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HydroShare (https://www.hydroshare.org/resource/87dc5742cf164126a11ff45c3307fd9d) and 

also available for open development from the University of Washington Freshwater Initiative 

Observatory repository: https://github.com/Freshwater-Initiative/Observatory). 

 
6. Abbreviations 

● Observatory for Gridded Hydrometeorology (OGH) 

● conterminous United States (CONUS) 

● Weather Research Forecasting (WRF) 

● Findable, Accessible, Interoperable, and Reusable (FAIR) 

● HydroShare REST API Python library (hs_restclient) 

● Variable Infiltration Capacity (VIC) 
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10. Appendices: 
Supplementary Table 1. Description of user centered design principles used (following 
framework in Devi et al., 2012).  

Key Principles Development Description Users Involved 

1- The active involvement 
of users and clear 
understanding of user and 
task requirements. 

We worked with the Landlab project, UW 
Watershed Dynamics Lab, and other UW 
students to understand which datasets they 
needed. 

Academic faculty (1) 
PhD students (7) 
Other students (10) 

2- An appropriate allocation 
of function between user 
and system.  

Limits were set based on using a 
JupyterHub server for compute resources, 
and available software. 

Science domain users (3) 
Developers (4) 

3- Iteration of design 
solutions.  

Switching from manual processes with 
commercial software to open source 
software processes required more than 18 
months of iterative development. 

Team from 1 above. 

4- Multi-disciplinary design 
teams.  

Testing and presentation of the methods 
occurred in research groups in both College 
of Engineering and School of Medicine 
research lab groups.  

Civil & Environmental 
Engineering (10), 
Biomedical informatics 
(1), Data Science (1) 
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