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Abstract:

Spatially-distributed time-series data support a range of environmental modeling and data
research efforts. A critical first step to any such effort is acquiring interpolated
hydrometeorological data. Standardized tools to facilitate this process into analyses have not
been readily available for watershed scale research. Here, we introduce the Observatory for
Gridded Hydrometeorology (OGH), an open source python library that fills this critical software
gap by providing a cyberinfrastructure component to fetch and manage distributed data
processed from regional and continental-scale gridded hydrometeorology products. Our
approach involves annotating metadata to make gridded data products discoverable and usable
within the software, enabling interoperability and reproducibility of models that use the data.
This paper presents the design, architecture, and application of OGH using four commonly

practiced use-cases with gridded time-series data at watershed scales.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/Freshwater-Initiative/Observatory
https://github.com/Freshwater-Initiative/Observatory/tree/master/tutorials
https://www.hydroshare.org/resource/87dc5742cf164126a11ff45c3307fd9d/

1. Introduction

Gridded data products are extensively used in Earth Science research [King et al., 2013;
Gampe et al., 2016; Ledesma and Futter, 2017], social vulnerability analysis [Cutter et al., 2014]
and population risk and estimate studies [Lloyd et al., 2017]. Gridded hydrometeorological data
products are produced by interpolating local observations to predetermined spatial-temporal
resolutions. The purpose of developing gridded products is to extend spatial information beyond
point locations and provide space and time dimensions to observations such that spatial-
temporal variability can be analyzed. Gridded data products also provide a means to compare
and validate numerical weather prediction outputs (short term forecasts and long term climate
change). Prior studies in hydrometeorology have highlighted the growing usefulness of gridded
data products in Earth science modeling (most recently reviewed in Henn et al., 2018). In this
paper, we introduce the Observatory for Gridded Hydrometeorology (OGH), an open-source
python toolkit to streamline processes for interacting with gridded hydrometeorological data
products at a user-defined spatial scale of interest (single location to regional watershed),
designed to support watershed scale science applications. This tool fills a model pre-processing
gap of processing large regional datasets (~1000 km2) for smaller scale geographic subsets (~1
km? - 100 km?).

In the conterminous United States (CONUS), since the introduction of Parameter-elevation
Regressions on Independent Slopes Model [PRISM, Daly et al., 1994], gridded meteorological
data products are routinely interpolated using daily measurements from over 20,000 NOAA
COOP observation stations [Maurer et al., 2002; Livneh et al., 2013], with similar products in
development for other regions around the world [Yanto et al., 2017]. In these data products,
each grid cell contains observation-interpolated, multivariate time-series [Maurer et al., 2002]. It
is common practice for the hydrologic community to incorporate gridded meteorological time-
series variables as inputs to land surface hydrologic models such as the Variable Infiltration
Capacity (VIC) model [Liang et al., 1994]. A wealth of modeled land surface hydrologic states
(e.g, soil moisture) and fluxes (e.g., latent and sensible heat) have been developed and used in
Earth science research [Livneh et al. 2013; Livneh et al. 2015]. In mountainous regions, where
ground-level observation collection is not feasible, the Weather Research Forecasting (WRF)
atmospheric model has been downscaled and similarly used to produce hydrologic model
outputs; however, this process inevitably requires bias-correction based on observational

products [Salathé et al., 2010; 2014]. Recently, gridded hydrometeorological data was



combined with geo-environmental and demographic surveys to yield gridded population data
sets and new insight to enhance population-modeling resolution and accuracy [Cutter et al.,
2014; Lloyd et al., 2017]. It can be expected that gridded data products will continue to increase
in abundance and complexity in how they represent the impacts of geography and landscape

morphology.

Before the potential usefulness of gridded data products can be realized for watershed-scale
actionable research, several data and metadata access challenges need to be addressed.
Continental-scale gridded data products, such as those from Livneh et al., (2013; 2015) and
Salathé et al., (2014), are increasingly being published as NetCDF files. For watershed
researchers who are interested in studying physical processes, NetCDF files used for regional
and continental-scale gridded products (1000 km? - 10,000 km?) contain information that far
exceeds the geographic extent needed for local, watershed-scale research (e.g., 1-100 km?
catchment area), adding computational resource burden in exploratory research. One
alternative data product format is the 1D ASCII time-series files for a geographically-specific
gridded cell. As observed in Livneh et al. (2013; 2015) and Salathé et al. (2014) data products,
1D ASCII time-series files are not self-described with column names, time-series dates, or value
units, so annotations are needed in order to perform analyses with files in this format.
Information to locate and use the data files may be confined to elusive publications and
documentation files. Even so, the data files may be hosted in management structures for their
study convenience (e.g., Universal Transverse Mercator boundaries), making manual data
retrieval non-trivial and not intuitive by human interpretation. Hence, annotating data
provenance, metadata provenance, and file management structure are crucial steps towards
making gridded data products findable, accessible, interoperable, and reusable [FAIR;

Wilkinson et al., 2016; Mons et al., 2017] for secondary analyses.

Currently available tools for water data, such as WaterML, WOFpy, GSFLOW, Geoknife, offer
access to time-series of observation data [Kadlec et al., 2012, Gardner et al., 2018; Read et al.,
2015]. However, in areas where observations are unavailable, such as heterogeneous

landscapes at high elevation locations, data sparsity can be addressed with krigged and model-

interpolated data products. Python libraries such as OpenClimateGIS offer access to NetCDF

gridded data products, but these functionalities exclude legacy data sets provided in 1D ASCII



time-series format. More importantly, aside from data access, it is challenging to recognize
differences between gridded data product - such as aggregation into different gridded cell
schemas, the temporal resolution, time period, or long-term trends - for use in future modelling

efforts and model validation operations.

To streamline the processes needed for interacting with gridded hydrometeorological data
products in a FAIR manner, promote use in Earth modeling and interdisciplinary domains, and
support decision-making for selecting gridded cells in a study site, we designed OGH as a open-
source python toolkit to select gridded cells in a study site, data download, spatial-temporal
analyses, and provide data visualization. In this paper, we describe the design of the OGH
Python library, which contains functions to conduct basic data access and data processing
operations to simplify gridded data product use in research. Users start with an ESRI shapefile
that describes their study site (e.g., HUC12 units, county-boundaries, state-boundaries) to
generate a comma-separated table that helps with file management of gridded cell data
availability across gridded data products. Users can then conduct data retrieval in-parallel from
a number of gridded hydrometeorological data products with automated file management for
analyses. These functions are flexible to integrate new gridded products and publishing
standards. To address the absence and/or variability in describing online gridded data products,
we propose a set of minimum annotation criteria (metadata fields) for describing ASCII gridded
hydrometeorological data products, and the decision steps needed to access these gridded

datasets.

In the Methods section, we describe OGH software design for gridded cell selection and
visualization, data download, spatial-temporal calculations, and applied statistics functionalities.
OGH was designed to incorporate climatological and hydrometeorological gridded data products
with comparable data structures to ASCIlI and NetCDF formats. Here, we emphasize watershed-
scale applications using 1D ASCII time-series data products. In the Results section, we
demonstrate these functionalities using three watersheds of end-member climatologies in
CONUS: two high alpine glacierized watershed in the high-end of the precipitation gradient in
the CONUS (> 3,000 mm), Sauk-Suiattle, WA and Elwha river basin, WA; and a desert
watershed with a large precipitation gradient from valleys to peaks (200 mm - 3500 mm), Upper

Rio Salado, NM. We compute precipitation and temperature spatial-temporal statistics and



exceedance probability calculations using gridded hydrometeorological data products from
Livneh et al., (2013) and Salathé et al., (2014). OGH v.0.1.11 is publicly accessible at

https://github.com/Freshwater-Initiative/Observatory and available by conda installation.

2. Methods

OGH is a python library designed to perform gridded cell selection, data download, data
processing for desired space-time analytics, and visualization of spatial-temporal data. A
proposed set of metadata annotations was developed to provide default information about data
product capacities using two case study gridded products. We provide OGH examples
reproducible on HydroShare, a cyber-infrastructure for sharing data and models [Heard et al.,
2014; Horsburgh et al., 2016; Castronova, 2017]. OGH is not dependent on HydroShare, though
in the example use-cases, HydroShare is a platform providing dockerized or local server
environments for community software, including those used by OGH operations to manage,

compute, and store directories of files.

User workflows, scenario use-cases, and key socio-technical needs were developed through
key informant interviews, diagramming, and rapid prototype testing sessions (Baxter and
Sommerville, 2011; Devi et al., 2012). Four key principles of user-centered design and
engagement were maintained throughout the rapid prototype testing process, described in

Supplementary Table 1 (Devi et al., 2012).

2.1.  Software Design

We designed OGH using open-source Python 3.6 programming, which is interoperable with
major operating systems and computing environments used by personal desktop computers,
high performance computers, and supercomputers. OGH functions are written as modular
components that leverage classes and methods from a number of Python libraries: time-series
analysis from Pandas [McKinney et al., 2011]; geospatial analytics from Geopandas, Fiona,
Shapely, and Matplotlib-Basemap [McKinney 2011; Gillies 2007, 2011; Jordahl et al., 2014]; and
task management from Multiprocessing and Dask [Rocklin, 2015]. Operations from these
libraries are assembled into scripted functions, which can be wrapped into sequential operations

or applied in distributed computing practices.
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OGH is intended to perform operations within computing environments, where input and output
files are managed within data sharing platforms and community data repositories (e.g.,
HydroShare). While HydroShare has many features, we make use of the docker or server
environment, where file storage, migration, and computation can be performed with multi-core

resources. HydroShare (www.hydroshare.org) is a collaborative platform that supports data

sharing and model reproducibility in hydrologic research, and it provides a cloud-computing
environment through the Consortium of Universities for the Advancement of Hydrologic Science,
Inc. (CUAHSI) JupyterHub server [Horsburgh et al., 2016]. The HydroShare REST API Python
library (hs_restclient) is used to migrate files contained in HydroShare resources in and out of
the JupyterHub docker environments [HydroShare REST API Python client library, 2018]. File
storage within the computing environment is intended to be temporary storage for the duration
of the computations. The research workflows presented in this paper are designed to be guided
by Jupyter notebooks, sharable code-execution interfaces that operate within the JupyterHub

docker environments [Castronova, 2017].

22. Gridded data product annotations

We annotated seven daily, 1/16° (~6 km) gridded data products from three studies published
and made available online (Livneh et al., 2013, 2015; Salathé et al., 2014). The datasets
published by Livneh et al., (2013) provided an interpolated climate-station meteorology for
CONUS and a meteorology data product that was bias-corrected to the Columbia river basin
regional climatology in the time-span from 1915 to 2011. Expanding on Livneh et al., (2013),
Livneh et al., (2015) includes a PRISM-calibrated interpolated climate-station meteorology
extends from Mexico to limited regions of Canada; however, the period has 33 total years less
data with a time-span of 1950 to 2013. Both interpolated meteorology data products were used
to predict macro-scale hydrologic fluxes at the 1/16°, daily resolution by the VIC model. The
WREF gridded data product provides model downscaled daily precipitation, maximum and
minimum air temperature, and wind speed for the Columbia river basin for the period of 1950 to
2010 [Salathé et al., 2014]. The data products can be further differentiated according to their

type of analysis and reported spatial coverage (Table 1).
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Table 1: Summary of seven daily, 1/16° gridded data product. Descriptions in this summary compare data
products by variable, date range, analysis type, intended spatial coverage, and their source publication.

Data set Features and variables Start End Analysis Spatial Publication
(in order) date date type coverage
Climate station meteorology
dailymet_livneh2013 PRECIP, TMIN, TMAX, WINDSPEED ~ 1915-01-01 2011-12-31 raw CONUS [Livneh et al., 2013]
dailymet_bclivneh2013 PRECIP, TMIN, TMAX, WINDSPEED  1915-01-01 2011-12-31 bias-corrected  Columbia river [Livneh et al., 2013]
dailymet_livneh2015 PRECIP, TMIN, TMAX, WINDSPEED ~ 1950-01-01 2013-12-31 raw CONUS [Livneh et al., 2015]
WRF-NNRP model meteorology
dailywrf_salathe2014 PRECIP, TMIN, TMAX, WINDSPEED  1950-01-01 2010-12-31 raw Columbia river [Salathé et al., 2014]
dailywrf_bcsalathe2014 PRECIP, TMIN, TMAX, WINDSPEED  1950-01-01 2010-12-31 bias-corrected  Columbia river [Salathé et al., 2014]
Variable Infiltration Capacity
dailyvic_livneh2013 YEAR, MONTH, DAY, EVAP, RUNOFF, 1915-01-01 2011-12-31 Physics-based CONUS [Livneh et al., 2013]
BASEFLOW, SMTOP, SMMID, SMBOT, model

SWE, WDEW, SENSIBLE, LATENT,
GRNDFLUX, RNET, RADTEMP, PREC
dailyvic_livneh2015 YEAR, MONTH, DAY, EVAP, RUNOFF, 1950-01-01 2013-12-31 Physics-based CONUS [Livneh et al., 2015]
BASEFLOW, SMTOP, SMMID, SMBOT, model
SWE, WDEW, SENSIBLE, LATENT,
GRNDFLUX, RNET, PETTALL,
PETSHORT, PETNATVEG

The annotations describe the gridded data products published as ASCII files, where each file
contains the gridded cell historic time-series data. Annotation features include the data set short
name, information to locate the ASCII files, information about the file structure and sources of
metadata, and metadata about the file variables (Table 2). File locations can be represented or
reconstructed given by the web protocol (e.g., ftp, https), web domain and subdomain, decision
steps within the subdomain to locate the data file subdirectory (e.g., centroid latitude given the
the spatial resolution, bounding box bins), the filename structure, and the file format. The file
structure is described by the variable list (left-to-right column order), time-series date range,
temporal resolution, file delimiter, and the data types and unit increment for each variable. Full

annotations are provided in the ogh_meta module.



Table 2: Minimum annotation criteria for gridded data products.

Metadata Metadata descriptions

File location
1. Dataset name of the gridded data product
2. Spatial resolution the distance between gridded cell centroids
3. Web protocol the data transfer protocol
4. Domain the web domain
5. Subdomain the subdomain path
6. Decision steps the file organization for locating data files
7. Filename structure the standard components to the filename
8. File format the file type at download

File structure
9. Start date the start date of the time-series
10. End date the end date of the time-series
11. Temporal resolution  the unit increment for time-steps
12. Delimiter the column separator within each line of data
13. Variable_list the list of variables in order of appearance
14. Reference the sources of metadata

Variable structure
15. Variable_info

e desc the long name of the variable
e dtypes the expected data type
e units the unit increment of the data

2.2.1. Example use-cases

We present four example use-cases in the form of Jupyter Notebooks to demonstrate the OGH
operations (Figure 1). In the first use-case, we identify the subset gridded cells of interest for
four watershed study sites using the freatgeoself function (Figure 1A). The shapefiles for these
watersheds are stored within a public HydroShare resource for ease of collaborative use [Sauk-
Suiattle river basin available in Bandaragoda, C. (2017); Elwha river basin available in
Beveridge, C. (2017); and Upper Rio Salado basin available in Bandaragoda, C. (2017)].
Watershed boundaries were defined in ArcGIS® using 12-digit Hydrologic Unit Code polygons
from the National Watershed Boundary Database. In the second use-case, the time-series data
files are retrieved, cataloged, then summarized for data availability (Figure 1B). In the third use-
case, we focus on the Sauk-Suiattle watershed to determine the monthly meteorological spatial-
temporal statistics computed using the Livneh et al., (2013) Meteorology versus the Salathé et
al., 2014 WRF model output data products (Figure 1C). Finally, we compute potential runoff
values using the VIC hydrologic data product from Livneh et al., (2013) to approximate the 10%
exceedance probability thresholds based on the daily time-series in each dataset (Figure 1D).

Functions introduced in each use-case are summarized in Supplementary Table 2.
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Figure 1: Scenario use-cases for OGH operations in cloud environments. A) With the user-defined watershed
shapefile, spatial intersection with the 1/16° gridded cell centroid shapefile identifies the target gridded cell centroids,
which are then documented within the mapping file output. B) The mapping file provides the Lat-Long coordinates for
data download operations to produce a localized folder of ASCII files and a file catalog appended within the mapping
file. C) For each gridded data product, spatial-temporal summary statistics are computed from the mapping file, file
structure metadata, and ASCII files. The output dictionary can be reused to collect summary statistics for multiple

data products. D) The hydrologic gridded product is used to compute exceedance probability at a statistical threshold
for each gridded cell.
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For illustration, five reference locations are used in the Sauk-Suiattle watershed examples. One
gridded cell is identified at the highest average elevation value, 2216 meters above sea level.
Two gridded cells were identified at the lowest average elevation value, 164 meters above sea
level. The Darrington ranger station (COOP station 451992) is used as the reference source of
meteorological observations, with data collected at 167 meters above sea level from Jan 1 1931
through Dec 31 2005. Sauk River Near Sauk, WA (USGS-12198500) used as the reference

source of observed streamflow discharge using data collected between Jan 1 1950 through Dec
31 2011 [Konrad et al., 2012].

2.2.2. General workflow and required files

Workflows for the use-cases executed in the JupyterHub environment (Figure 2) are illustrated
in detail in Figure 1. The general workflow begins with three HydroShare resources as sources
of input files (Figure 2). Resource A - a HydroShare resource that contains a Jupyter Notebooks
to execute code for each example use-case presented in this paper, Resource B - a
HydroShare resource with a user-defined shapefile representing the region of interest (e.g., a
watershed), and Resource C - a file of point-locations describing CONUS gridded cell centroids
(only pre-requisite for ‘mapping watershed centroids’). From the web page for HydroShare
Resource A, the Jupyter Notebooks are launched in the JupyterHub docker environment,

wherein the HydroShare REST API functions migrate in requisite data files from Resource B

10



and C (Figure 2). Use-case notebooks 1 through 4 progress through OGH operations in Figure
2: ’identify watershed gridded cell centroids’ (map watershed centroids),’ download and display
data availability’ (data download), ‘summarize monthly meteorology’ (data processing), and
‘compute exceedance probabilities’ (another form of data processing) (Figure 2). Each use-case
notebook produces output data files, plots data visualizations, and finally migrates these output

to new shareable HydroShare resources to conclude the use-case demonstration.
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Figure 2: The general workflow for OGH in cloud-computing environments. HydroShare is the collaborative
platform to facilitate file storage (Resources A, B and C), and HydroShare API rest-client migrates files in-and-out of
the JupyterHub docker environment. Jupyter notebooks guide users through different use-cases like decision-making
steps (e.g., map watershed centroids), data download, data processing, or generating visualization products. At the
close of each notebook, research data products are migrated to HydroShare as new sharable resources.

2.2.3. Map watershed gridded cell centroids

For each of the three example watersheds, we generate a mapping file with the gridded cell
centroids that spatially intersect these study sites (Figure 1a). Shapefiles were transformed into
the 1984 World Geodetic System (WGS84) Lat-Long coordinates system as the standard
projection. The study site was given a buffer region (default buffer distance of 0.06°) to include
adjacent gridded cells. CONUS 1/16° (i.e., 0.06250°) gridded cell ESRI shapefile identifies each
gridded cell by the 5-digit centroid latitude-longitude [Livneh et al., 2013; Livneh, 2017]. Average
elevation in the gridded cell (in meters above sea level) are based on the CONUS digital

elevation model described in Livneh et al., (2013).
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The output from this use-case includes three mapping files, each denoting the latitude,
longitude, and average elevation within the gridded cell. Other outputs include spatial
visualizations of the study site (maps) and the elevation gradient among the gridded cells, and

plots showing the data for select grid cell traces.

2.2.4. Summarize data download and availability

The mapping file guides data download from the seven gridded data products (Figure 1b).
Target gridded cell files identified within the mapping file are web requested using data
download wrapper functions (e.g., the getDailyMET _livneh2013). Request operations are
distributed using multiprocessing pool operations. Downloaded files are cataloged into the
mapping file (using addCatalogToMap). Data availability is determined for each gridded data
product and watershed study site (using mappingfileSummary). Files that do not exist for

retrieval are excluded from the catalog.

The output from this use-case is a summary table that describes data availability and seven

folders containing the downloaded files for all the watersheds.

2.25. Summarize monthly meteorology
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Figure 3: Spatial-temporal calculations (total sum and average). The gridclim_dict function reads and applies A)

aggregate _space_time_average for each variable in the gridded data product. Variables to be considered by periodic
sums (e.g. total annual precipitation) can be processed with B) aggregate space_time_sum.

With the Livneh et al., (2013) interpolated meteorology and Salathé et al., (2014) WREF files, we

compare the monthly meteorology variables for the Sauk-Suiattle river watershed using the 61-

years of data from their mutual time-series period (i.e., Jan 1, 1950 through Dec 31,
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2010).Using the Sauk-Suiattle mapping file, each variable from the ASCII gridded cell time-
series are compiled into data frames, where rows are the daily time-series and columns are
denoted with the gridded cell centroids. Temperature trends are interpreted using monthly
mean, yearly mean, and global mean expected values (Figure 3A). Annual anomaly from the
global mean value is used to identify years with extreme events (highest and lowest data
values). Precipitation trends are interpreted using period sums (e.g., month-yearly sums and
yearly sums) and mean of period sums (e.g., mean monthly sums, mean yearly sums, and the

global mean of monthly sums) (Figure 3B).

The gridclim_dict function is a series of wrapped operations to return a dictionary object of
spatial-temporal values across the ASCII gridded cell time-series (Figure 1C). Gridclim_dict
provides parameters to specify elevation ranges or time-period selection, where defaults are all
gridded cells and the full time-series. Gridclim_dict wraps read_files_in_vardf, which performs
distributed file reading to generate a variable data frame for each variable in the data product,
then applies aggregate space_time _average to compute summary statistics using the prefix-
suffix conventions for each variable (Figure 3A). The suffix represents the gridded data product,
which can be user-defined or default to the annotated gridded data product dataset name (e.g.,
‘dailymet_livneh2013’). The first prefix appended to the suffix by underscore separation is the
data product variable (e.g., ‘PRECIP’). The second prefixes represent the statistical averages
computed using the gridded cell dimensions (columns) and the temporal groupings (rows). The
aggregate_space_time_sum produces outputs with the following second prefixes:
“‘meanbydaily” (daily averages by each gridded cell), “meanbymonth” (daily averages by each
month and gridded cell), “meanbyyear” (daily averages by each year and gridded cell),
“meandaily” (average values across gridded cells by each date), “meanmonth” (daily averages
across gridded cells for each month), “meanyear” (daily averages across gridded cells by each
year), “meanallyear” (global mean of daily values across all years and gridded cells), and
“anomyear” (the residual between each yearly mean and the global mean). To consider trends
by period sums of daily events, the aggregate space_time_sum function computes summary
statistics of month-yearly and yearly sums (Figure 3B). The second prefixes here include
“monthsum” (month-yearly sum of daily values by gridded station), “yearsum” (annual sum of
daily values by gridded station), “meanbymonthsum” (mean of monthly sums for each calendar
month and gridded cell), “meanbyyearsum” (mean of annual sums for each gridded cell),
“meanmonthsum” (mean of month-yearly sums across gridded cells), "meanyearsum” (mean of

annual sums across gridded cells),”"meanalldailysum” (global mean of the daily sums across all
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gridded cells), “meanallmonthsum” (global mean of month-yearly sums across gridded cells),
"meanallyearsum” (global mean of annual sums across gridded cells). Variations to these

outputs are influenced by the gridded cells and time-period parameters.

The output for this use-case is a JSON dictionary object containing analytical data frames and
data series, as shown in Figure 3, for each variable within a given time-frame. Other outputs

include maps and monthly boxplots of the corresponding grid cell values.

2.26. Compute exceedance probabilities

For the Sauk-Suiattle study watershed, we approximate the 10% exceedance probability
threshold using unrouted daily runoff for each calendar month and each gridded cell (Figure
1D). This is useful for visualizing the 10% highest daily streamflow generated for each grid cell
in the dataset, which is a combined function of climate data, soils, land cover, and other model
parameters in each grid cell. Potential runoff rates are computed as the sum of baseflow rate
(mm/s) and surface flow runoff rate (mm/s) from Livneh et al., (2013) VIC model outputs,
converted the units to millimeters per day (mm/day) for comparison with daily precipitation rates.
The same general operations were applied to Livneh et al., (2015) VIC model outputs. For each
calendar month (e.g., January) and each gridded cell (e.g., centroid Lat-Long at 48.8723, -
121.8974), daily potential runoff rates are compiled into a cumulative distribution function using
data from 1 Jan 1950 through 31 Dec 2011 (62-years), the mutual/overlapping time-series
period between Livneh et al., (2013) and Livneh et al., (2015) data products. Each distribution
has approximately n=1800 VIC modeled observations. The 10% monthly exceedance
probabilities (peak runoff threshold) for each gridded cell is estimated by linear interpolation as
the 90th-percentile of the respective cumulative distributions [Vogel et al., 2007]. An
exceedance probability developed from a population of daily runoff in a given month should not
be confused with annual flood statistics, which are developed by fitting a statistical distribution to
a population of annual maximum daily streamflow. The 10% exceedance probability of observed
streamflow discharge measured at Sauk River Near Sauk, WA (USGS-12189500) can be
plotted with the modeled streamflow to provide an observed reference based on routed

streamflow for relatively high flows.
The output for this use-case includes low, average, and high elevation analytical data frames at

the 10% exceedance threshold for VIC results, compared to observations. Other outputs include

maps and monthly boxplots of the exceedance probability for each gridded cell.
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3. Results
3.1. Map Watershed Centroids

Functions used:

reprojShapefile, treatgeoself, multiSiteVisual, griddedCellGradient

Sauk-Suiattle, Elwha, and Upper Rio Salado watersheds were processed to generate mapping
files and gridded cell gradient visualizations (Figure 4). Ninety-nine grid cells were identified for
the Sauk-Suiattle river watershed, displaying the largest elevation difference (162 m - 2246 m)
among the three watersheds (Table 3). Sauk-Suiattle river watershed is located in the
northwestern region of the Cascade mountains in Washington state, USA, ranging from multiple
high elevation areas in the southeast to a single outlet in the northwestern gridded cells. Fifty
five gridded cells were identified for the Elwha river watershed, which has a comparable
elevation difference to Sauk-Suiattle. The Elwha river watershed is located on the northern
region of the Olympic Peninsula, where the elevation gradient (36 m - 1642 m) descends from
the southern gridded cells by a single river draining to the northern gridded cells (Figure 4b).
Thirty one grid cells were identified for the Upper Rio Salado watershed, with a higher elevation
(1962 m - 2669 m) grid cells than the other two watersheds (Table 3). Upper Rio Salado’s

elevation gradient descends from the southwest-most to the northeast-most gridded cell.
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Figure 4. Aerial view of watersheds and gridded cells. The Sauk-Suiattle (164-2216 m), Elwha (36-1642 m), and
Upper Rio Salado (1962-2669 m) watersheds located in western United States were visualized using the

multisite Visual function with an EPSG:3857 geospatial projection. Each watershed (outlined in magenta) and their
gridded cells are visualized using the griddedCellGradient function at the 1/16° spatial-resolution (~6 km). In the
Sauk-Suiattle watershed, five reference markers denote the highest elevation gridded cell (gridded cell 69, elevation:
2216 m), the lowest elevation gridded cells (gridded cells 3 and 24, elevation: 164 m), the Darrington Ranger Station
site (*; COOP station 451992, elevation: 167 m) for observed meteorology data, and the Sauk River Near Sauk, WA
streamflow gauge (§, USGS-12189500, elevation: 81 m) for observed streamflow discharge measured at the
downstream-most tip of the watershed. While the numeric distributions can be conformed to a single scale, each
watershed map uses a different numeric colorbar legend, so this figure is intended to provide a qualitative impression
of the elevation gradient.

3.2.  Summarize data download and availability

Functions used:

getDailyMET_livneh2013, getDailyMET_bcLivneh2013, getDailyMET_livneh2015,
getDailyVIC_livneh2013, getDailyVIC_livheh2015, getDailyWRF _salathe2014,
getDailyWRF _bcsalathe2014, mappingfileSummary

Among the seven gridded data products, 1D ASCII time-series files were fully-represented for
Sauk-Suiattle, mostly represented for Elwha, and substantially limited in representation for
Upper Rio Salado (Table 3). Download tasks for the full time-series ASCII files were distributed
across 5-10 parallel worker CPUs. Computation efficiencies consisted of 693 Sauk-Suiattle files
(10.0 Gb disk space) downloaded in 3 min 56 s wall time, 375 Elwha files (5.4 Gb) took 1 min 59
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s, and 124 Upper Rio Salado files (2.7 Gb) took 48.8 s. All files were cataloged into their
respective mapping files, organized by gridded data product short name and gridded cell

centroid.

Elwha is located in the northwestern-most region of Washington state. Three gridded cells were
available for all seven gridded data products, although they were available for the bias-corrected
Livneh et al., (2013) meteorology and Livneh et al., (2015) meteorology and VIC model output
products. Differences among the elevation gradient suggest that these three gridded cells were
the northern-most low-elevation gridded cell, on the boundary of CONUS and Columbia River
Basin extents (Figure 4). This poses certain limitations if multiple gridded data products for
Elwha were used for intercomparison. These limitations are more obvious with Upper Rio

Salado, which is located outside of the Columbia River Basin.

Livneh et al., (2013) and (2015) gridded products were consistently spatially available in each of
the watersheds, but the gridded products differed in the temporal extent (historic time-series
included). The overlap period between Livneh et al., (2013) and (2015) data products is Jan 1
1950 through Dec 31 2011 (62-years). Livneh et al., (2013) and Salathé et al., (2014) share the
Jan 1 1950 through Dec 31 2010 (61-years), which is the same overlap period as Livneh et al.,
(2013) and Salathé et al., (2014). Despite the spatial availability of time-series data within a
watershed, gridded data product intercomparisons should consider the historic time period
represented as well as data variabilities such as correction methods and algorithms used to

generate the gridded product.

Table 3: Counts of gridded cell ASCII files for each watershed by gridded data product. For the seven
gridded data products, the downloaded files are summarized for each watershed as an inventory of the data
availabilities and potential gaps due to spatial extent of the gridded data product.

Watersheds

Sauk-Suiattle river Elwha river Rio Salado

Median Elevation in meters [range] 1171[164-2216] 1020[36-1642] 2308[1962-2669]
(Number of gridded cells) (n=99) (n=55) (n=31)

dailymet_bclivheh2013
dailymet_livneh2013
dailymet_livneh2015
dailyvic_livneh2013
dailyvic_livneh2015
dailywrf_salathe2014
dailywrf_bcsalathe2014

1171[164-2216] (n=99)
1171[164-2216] (n=99)
1171[164-2216] (n=99)
1171[164-2216] (n=99)
1171[164-2216] (n=99)
1171[164-2216] (n=99)
1171[164-2216] (n=99)

1120[36-1642] (n=55)
1146[174-1642] (n=52)
1120[36-1642] (n=55)
1146[174-1642] (n=52)
1120[36-1642](n=55)
1142[97-1642] (n=53)
1142[97-1642] (n=53)

0
2308[1962-2669] (n=31)
2308[1962-2669] (n=31)
2308[1962-2669] (n=31)
2308[1962-2669] (n=31)
0
0
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3.3.  Summary monthly meteorology
Functions used:
findCentroidCode, overlappingDates, gridclim_dict, aggregate _space_time_sum, valueRange,

saveDictOfDf, renderValuelnBoxplot, renderValuelnPoints

The function gridclim_dict generates a JSON dictionary for Sauk-Suiattle that contains 36
analytical data frames for Livneh et al., (2013) meteorology and Salathé et al., (2014) WRF
outputs. Each data frame was named according to the analysis method (second prefix), variable
(first prefix), and gridded data product short name (suffix). In Figure 5, average monthly total
precipitation (i.e., meanbymonthsum PRECIP_dailymet_livneh2013 and

meanbymonthsum PRECIP_dailywrf _salathe2014) are depicted as boxplots to represent the
distribution of values across the 99 gridded cells. The Livneh et al., (2013) interpolated
meteorology (Figure 5, top-left) indicates a greater variability of average monthly precipitation
during the November through January months, while Salathé et al., (2014) WRF model outputs
(Figure 5, bottom-left) shows a higher median and greater variability from April through
September. Average monthly precipitation for targeted high and low elevation grid cells (Figure
4) are plotted alongside the boxplots, as well as the point observations from Darrington Ranger
Station (Figure 5). Comparison of observations and modeled precipitation shows that observed
precipitation (at low elevations) is less than the monthly averages modeled by Salathé et al.,
(2014) during spring and summer. Spatial variations observed with Livneh et al., (2013) show
large deviations between neighboring cells, especially in comparison to the smoother spatial
trends organized with the elevation gradient can be observed from the Salathé et al., (2014)
(Figure 5A-F).
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Sauk-Suiattle average total precipitation by month
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Figure 5: Comparison of the average monthly total precipitation for each gridded cell in the Sauk-Suiattle
watershed. The boxplots compare the statistical distribution of the average monthly total precipitation (inches) to the
spatial distribution of precipitation in each gridded cell (A-F), using data from Jan 1 1950 through Dec 31 2010.
Created using the renderValuelnBoxplot function, the boxplot colors represent the median value of the gridded cell
distributions. Reference trend lines were included to illustrate Sauk-Suiattle’s highest elevation gridded cell (#69;
orange) and the lowest elevation gridded cells (#3 and #24; light and dark gray), found using the findCentroidCode
function. The gridded cell distributions are rendered spatially with a basemap using the renderValuelnPoints function.
The spatial distribution of gridded cell values are rendered using the renderValuelnPoints function for Livneh et al.
(2013) interpolated meteorology for A) October, B) January, and C) April, compared with to Salathé et al. (2014)
WRF model outputs for D) October, E) January, and F) April. All maps and boxplots use the same colorbar legend
and numerical distribution shown in the top-left.

Monthly temperature statistics were computed for each grid cell using the daily minimum and
maximum temperature between Jan 1, 1950 through Dec 31, 2010 (Figure 6). The distribution
of mean maximum temperature shows that Livneh et al., (2013) interpolated meteorology has
greater variability than Salathé et al., (2014) WRF model outputs. This effect is also observed
when comparing the distribution of mean monthly minimum temperature, noting that Livneh et
al., (2013) has more extreme hot and cold trends, sometimes up to 5°C difference compared
with the Salathé et al., (2014) WRF model outputs. Reference meteorological observations from

the Darrington Ranger Station closely resemble the Livneh et al., (2013) interpolated
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meteorology. Livneh et al., (2013) values are dependent on source observations clustered
around low elevation gridded cells (light and dark gray) with COOP stations; sparse
observations limit the performance assessment for high elevation gridded cells. While average
daily minimum temperature seems to be comparable, Salathé et al., (2014) predicts colder
maximum temperatures for low elevation areas for all months, and warmer temperatures for

higher elevation areas (orange line) from November through April.

A) Livneh et al. (2013) B) Salathe et al. (2014)
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Figure 6: Comparison of monthly mean of daily minimum and maximum temperature. The monthly mean of
daily maximum (top) and minimum (bottom) temperatures (in Celsius) were computed for each of the 99 Sauk-
Suiattle gridded cells. The boxplots represent the observations from Livneh ef al., (2013) meteorology (left) and
Salathé et al., (2014) WRF model outputs (right). Reference trend lines were included to represent the highest
elevation gridded cell (orange) and the lowest elevation gridded cells (light and dark gray) in Sauk-Suiattle. The field
observations (blue dashed line) measured at Darrington Ranger Station (elevation: 167 m) indicates that maximum
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daily temperature (top) are more closely represented by Livneh et al., (2013) in the Sauk-Suiattle watershed, while
there are no remarkable differences observable for minimum daily temperature (bottom).

34. Compute exceedance probabilities

Functions used:

monthlyExceedence_mmday, computeSurfaceArea, cfs_to_mmday

Figure 7 displays the monthly 10% exceedance probability and average (50%) thresholds for
unrouted potential runoff using two VIC gridded data products for the Sauk-Suiattle watershed.
Not to be confused with approximations like the 10,000-year flood which are based on empirical
streamflow values, the probabilities generated by this function are based on empirical unrouted
model outputs, which have limited numeric range and interpretation thereof. Each point in the
distributions represent the potential runoff threshold at which there is only a 10% chance
expectation of exceeding that value in that month. Both gridded data products display a slight
increase in November where the muted impact of the highest extreme winter flood events on
lower average monthly flows, followed by a high peak flow in June/July (from snowmelt runoff),
using the same color scale and axis ranges (Figure 7, right side). The major contribution to
potential runoff in any given year is from the Cascade mountain ranges during the snowmelt
season (June-July). Although the 10% exceedance probability at the highest elevation are
comparable between data products, the trends at the low elevation stations indicate that Livnheh
et al., (2015) produces more potential runoff between November through April months than
Livneh et al., (2013). Livneh et al., (2015) applies a bias correction (using PRISM data as a
proxy for observations), which produces more precipitation from winter rainfall season
compared to results without a bias correction. A comparison between the two gridded data
products illustrates that Livneh et al., (2015) boxplots have approximately 2-3 mm median
increase in potential runoff between October to May compared to Livneh et al., (2013) (Figure
7).

The monthly 10% exceedance probability with Sauk River Near Sauk, WA, discharge
observations range from 4.2 to 15.3 mm/day across the calendar months. The exceedance
probability threshold peaks in two months, November and June, corresponding with fall
atmospheric river rainfall-dominated storm events, and early summer snowmelt. The first
smaller peak is observed in November, which aligns with both Livneh et al., (2013) and (2015)
the boxplot distributions. The second larger peak occurs in June, where the mean decreases

though the variance increases in July. The Sauk River Near Sauk gauge is approximate 81
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meters above sea level, half of the average elevation in gridded cell 3 where it is located. The

spatially averaged (mm/day) routed streamflow dynamics in Sauk River Near Sauk can be

expected to fall within the elevation mean of unrouted VIC modeled runoff using the lower

resolution 1/16° gridded cells. The observed data at the outlet is provided for context, and the

modeled results is provided to demonstrate the spatial variability of the grid cells contributing to

the modeled streamflow at the watershed outlet.
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Figure 7: Average total monthly potential runoff (mm) and 10% exceedance probability for each monthly
unrouted potential runoff (mm/day) within the Sauk-Suiattle watershed. The boxplots are comprised of 99
gridded cell values for each month. Peak of average total monthly potential runoff (left) occurs in November and June
months shown by the observed USGS streamflow discharge (blue dash), and observable by the spatial average of
the gridded cell (orange dash). The 10% exceedance probability for each gridded cell (right) is a function of the
spatial average of peak flow occurs in November and July. The snowmelt season is the major period for expected
runoff for highest elevation gridded cell (orange line), while the rainfall season is the major period contributing to
runoff for lowest elevation gridded cells (light and dark gray lines).

22



4. Discussion

The primary step in the workflow presented here is treatgeoself, which enables users to control
gridded cell inclusion and exclusion using shapefile-guided data selection. It generates the
mapping file to guide distributed computing for data download and data processing; this
catalogue allows for machine reading, selection and sorting of available data. The examples use
watersheds defined by HUC12 boundaries, but the shape can be user-defined (e.g., census
block, legislative boundaries, fish species migration spatial clusters). Geopandas operations
enable treatgeoself to transform shapefiles of varying spatial projections and to include buffer
regions. In the early development stage, freatgeoself applied unfiltered spatial intersection with
each shape polygon in the shapefile, resulting in slow mapping performance and interpretation
difficulty when buffer regions were included. At present, study sites with multiple subpolygons
are merged by spatial union into a single MultiPolygon object, simplifying freatgeoself into a
first-order loop. Intercomparison of gridded data products of different gridded parcel schemas
are expected to be enabled and more efficient with the use of the projection alignment and

cross-mapping functionalities.

Data download operations are functionalized for distributed computing, but the concurrent
queue and transfer rate are limited by the computing resources allocated by the user and the
data content provider. Data download was found to be rate-limited to approximately 5
concurrent web requests to the Livneh et al., (2013) web domain. All other gridded data product
hosts enabled 10 or more concurrent web requests. A rate-limiter for the number of parallel data
retrieval tasks was incorporated into the data download functions, but not for local data
processing operations. The rate of data transfer would need to be assessed before OGH could
integrate data servers with RESTful APl such as ERDDAP, which could expedite mapping and
retrieval of gridded data products and metadata [Simons and Mendelssohn, 2012]. Other limits
include nuanced issues of data maintenance by the data publisher/provider. For example,
during production and testing of workflow and functions, data products mentioned in Livneh et
al., (2013) were migrated to a new web domain, resulting in misdirected requests. Annotations

and data retrieval functions may need updating over time.

We qualitatively described differences between two gridded data products of the same

empirically estimated statistical exceedance probability approach. The VIC-modeled gridded
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data products originate from unrouted flow modeling. In contrast to empirically estimated
10,000-year flood at-stream gauges, empirically estimated exceedance probability for grid cells
without flow routing may be limited in interpretations to potential runoff. It is unclear how the
different model simulations may affect these interpretations. These concerns regarding model
comparison would merit further research and development of functionalities for in-watershed
stream gauge selection and quantitative determinations for the goodness-of-fit between routed

and unrouted modeled values relative to those estimated from at-stream observations.

While we designed OGH specifically for users who primarily import ASClI-formatted files into
hydrologic and earth surface model software e.g. Landlab [Hobley et al., 2017], a noteworthy
limitation of using ASCII file format is that as NetCDF adoption is increasing as a data standard,
ASCII time-series may not be available for newer gridded data products. This limitation is
addressed using the proposed minimum information criteria and having initial criteria for
conducting gridded data product intercomparisons. NetCDF files are embedded with metadata,
while ASCII files are unannotated. To inform the structure and use of the ASCII files, the
proposed minimum information criteria serves as a road map for locating gridded data product
files and considers the schema of the file organization and the features within each file. Gridded
data products published by Livneh et al., (2013) partitioned files by spatial bounding box
subfolders denoted by the file prefix, West, East, South, and North cardinal limits. For Livneh et
al., (2013), scrape_domain and mapToBlock functions were designed to abstract the bounding
boxes then decide the subfolder identity by spatial intersection. The spatial bounding box for
gridded cells within British Columbia, Canada did not follow this folder naming structure; thus, a

separate annotation was provided for the spatial boundary in British Columbia, Canada.

Among the annotated ASCII gridded data products, we’ve observed a variety of file
organizations; different gridded cell schemas, spatial resolution, or NetCDF file organizations
may be adaptable. Retrieval and data management of NetCDF files in cloud computing
environments would benefit from further design assessments, as it is not yet clear how to
conduct or evaluate NetCDF-to-ASCII intercomparison without a priori format preferences that
may result in information loss. In addition, the development of a user-centered reference of
controlled vocabulary would improve the usefulness and adoption of a minimum information
criteria that can be used across data formats. These may help adapt climate and water resource
information for researching interdisciplinary questions with other data products such as Air
Quality or Population data sets [Wohlstadter et al., 2016; Lloyd et al., 2017]. For use by
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researchers who are not hydrometeorology analyst, NetCDF files contain data outside the study
area extent; 1D ASCII time-series files may be the preferred format for small study areas (1-100

km?).

We tested and developed the examples using HydroShare for the computing and data sharing
environment. An important benefit of HydroShare is that it hosts a REST API that enables data
migration and the creation of new shareable data objects. Additionally, as a community
repository for hydrologic science, FAIR publication of hydrologic data sets and software
execution with reproducible workflows is demonstrated with the use-cases developed in this
work. OGH operations are technically independent of HydroShare, and minor changes would
allow the code to operate in other similar computing and data sharing environments such as
local servers, cloud servers (Amazon AWS, Microsoft Azure), and dockerized virtual

environments with a Jupyter instance (data.world, DataOne, PanGeo, ESIPhub).

5. Conclusions

OGH is a toolkit that makes download and processing of large climate datasets more efficient by
leveraging distributed computing for watershed scale research and intercomparison of ASCII
gridded data products, which extends climate modeling products to represent otherwise
sparsely observed parts of the landscape. The mapping file output is the key data management
tool, which catalogs the watershed gridded cells and downloaded files as a lens across gridded
data products. Along with the proposed minimum information criteria to annotate ASCII gridded
data products, these data management tools enable multiprocessing and dask-distributed
operations comparable to the efficiency of Xarray for NetCDF gridded data products. This
metadata component improves the standardization of gridded hydrometeorology products
published for use by third-party researchers and scientists. The dictionary of analytical data
frames is a key data management device that enables key-value pair retrieval and exporting of
summary outputs. To address user needs for exploratory data analysis and visual control,
various data frames were rendered into different geographic and temporal modes of human-
readable visual inspection. Overall, OGH is equipped with metadata framework and workflow
that makes it a useful introduction and training tool for watershed studies using gridded data
products and ASCII time-series data sets. The data summary capabilities increase the efficiency
of comparing multiple gridded hydrometeorology products without discontinuous use of different

software. OGH and the four use-cases demonstrated are available for interactive use on
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HydroShare (https://www.hydroshare.org/resource/87dc5742cf164126a11ff45¢3307fd9d) and
also available for open development from the University of Washington Freshwater Initiative

Observatory repository: https://github.com/Freshwater-Initiative/Observatory).

6. Abbreviations
e Observatory for Gridded Hydrometeorology (OGH)

e conterminous United States (CONUS)

e Weather Research Forecasting (WRF)

e Findable, Accessible, Interoperable, and Reusable (FAIR)
e HydroShare REST API Python library (hs_restclient)

e Variable Infiltration Capacity (VIC)
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Figures and Tables:

Figure 1: The general workflow for OGH in cloud-computing environments

Table 1: Summary of seven daily, 1/16° gridded data product

Table 2: Minimum annotation criteria for gridded data products

Figure 2: Scenario use-cases for OGH operations in cloud environments

Figure 3: Spatial-temporal calculations (total sum and average)

Figure 4. Aerial view of watersheds and gridded cells

Figure 5: Comparison of spatial-temporal precipitation in Sauk-Suiattle

Figure 6: Comparison of annual mean of daily minimum and maximum temperature
Figure 7: Average total monthly potential runoff and 10% exceedance probability for
each monthly unrouted potential runoff within Sauk-Suiattle.
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10. Appendices:

Supplementary Table 1. Description of user centered design principles used (following
framework in Devi et al., 2012).

Key Principles

Development Description

Users Involved

1- The active involvement
of users and clear
understanding of user and
task requirements.

We worked with the Landlab project, UW
Watershed Dynamics Lab, and other UW
students to understand which datasets they
needed.

Academic faculty (1)
PhD students (7)
Other students (10)

2- An appropriate allocation
of function between user
and system.

Limits were set based on using a
JupyterHub server for compute resources,
and available software.

Science domain users (3)
Developers (4)

3- Iteration of design
solutions.

Switching from manual processes with
commercial software to open source
software processes required more than 18
months of iterative development.

Team from 1 above.

4- Multi-disciplinary design
teams.

Testing and presentation of the methods
occurred in research groups in both College
of Engineering and School of Medicine
research lab groups.

Civil & Environmental
Engineering (10),
Biomedical informatics
(1), Data Science (1)
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