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Abstract

Regret minimization is a powerful tool for solv-

ing large-scale problems; it was recently used

in breakthrough results for large-scale extensive-

form game solving. This was achieved by com-

posing simplex regret minimizers into an over-

all regret-minimization framework for extensive-

form game strategy spaces. In this paper we study

the general composability of regret minimizers.

We derive a calculus for constructing regret mini-

mizers for composite convex sets that are obtained

from convexity-preserving operations on simpler

convex sets. We show that local regret minimizers

for the simpler sets can be combined with addi-

tional regret minimizers into an aggregate regret

minimizer for the composite set. As one appli-

cation, we show that the CFR framework can be

constructed easily from our framework. We also

show ways to include curtailing (constraining)

operations into our framework. For one, they en-

able the construction of CFR generalization for

extensive-form games with general convex strat-

egy constraints that can cut across decision points.

1. Introduction

Counterfactual regret minimization (CFR) (Zinkevich et al.,

2007), and its newer variants (Lanctot et al., 2009; Brown &

Sandholm, 2015a; Tammelin et al., 2015; Brown et al., 2017;

Brown & Sandholm, 2017a; 2019), have been a central com-

ponent in several recent milestones in solving imperfect-

information extensive-form games (EFGs). Bowling et al.

(2015) used CFR+ to near-optimally solve heads-up limit

Texas hold’em. Brown & Sandholm (2017c) used CFR
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variants, along with other scalability techniques such as

real-time endgame solving (Ganzfried & Sandholm, 2015;

Burch et al., 2014; Moravcik et al., 2016; Brown & Sand-

holm, 2017b) and automated action abstraction (Brown &

Sandholm, 2014), to create Libratus, an AI that beat top hu-

man specialist professionals at the larger game of heads-up

no-limit Texas hold’em. Moravčı́k et al. (2017) also used

CFR variants and endgame solving to beat professional hu-

man players at that game.

CFR and its newer variants are usually presented as al-

gorithms for finding an approximate Nash equilibrium in

zero-sum EFGs. However, an alternative view is that it is a

framework for constructing regret minimizers for the types

of action spaces encountered in EFGs, as well as single-

agent sequential decision making problems with similarly-

structured actions spaces. Viewed from a convex optimiza-

tion perspective, the class of convex sets to which they apply

are sometimes referred to as treeplexes (Hoda et al., 2010;

Kroer et al., 2015; 2018). In this view, those algorithms

specify how a set of regret minimization algorithms for sim-

plexes and linear loss functions can be composed to form

a regret minimizer for a treeplex. Farina et al. (2019) take

this view further, describing how regret-minimization al-

gorithms can be composed to form regret minimizers for

a generalization of treeplexes that allows convex sets and

convex losses. This decomposition into individual optimiza-

tion problems can be beneficial because it enables the use

of 1) different algorithms for different parts of the search

space, 2) specialized techniques for different parts of the

problem, such as warm starting (Brown & Sandholm, 2014;

2015b; 2016) and pruning (Lanctot et al., 2009; Brown &

Sandholm, 2015a; Brown et al., 2017; Brown & Sandholm,

2017a), and 3) approximation of some parts of the space.

In this paper we introduce a general methodology for com-

posing regret minimizers. We derive a set of rules for how

regret minimizers can be constructed for composite convex

sets via a calculus of regret minimization: given regret mini-

mizers for convex sets X ,Y we show how to compose these

regret minimizers for various convexity-preserving opera-

tions performed on the sets (e.g., intersection, convex hull,

Cartesian product), in order to arrive at a regret minimizer

for the resulting composite set.

Our approach treats the regret minimizers for individual



Regret Circuits: Composability of Regret Minimizers

convex sets as black boxes, and builds a regret minimizer

for the resulting composite set by combining the outputs of

the individual regret minimizers. This is important because

it allows freedom in choosing the best regret minimizer for

each individual set (from either a practical or theoretical per-

spective). For example, in practice the regret matching (Hart

& Mas-Colell, 2000) and regret matching+ (RM+) (Tam-

melin et al., 2015) regret minimizers are known to perform

better than theoretically-superior regret minimizers such as

Hedge (Brown et al., 2017), while Hedge may give better

theoretical results when trying to prove the convergence rate

of a construction through our calculus.

One way to conceptually view our construction is as regret

circuits: in order to construct a regret minimizer for some

convex set X that consists of convexity-preserving opera-

tions on (say) two sets X1,X2, we construct a regret circuit

consisting of regret minimizers for X1 and X2, along with

a sequence of operations that aggregate the results of those

circuits in order to form an overall circuit for X . We use this

view extensively in the paper; we show the regret-circuit

representation of every operation that we develop.

As an application, we show that the correctness and con-

vergence rate of the CFR algorithm can be proven easily

through our calculus. We also show that the recent Con-

strained CFR algorithm (Davis et al., 2019) can be con-

structed via our framework. Our framework enables the

construction of two algorithms for that problem. The first

is based on Lagrangian relaxation, and only guarantees ap-

proximate feasibility of the output strategies. The second is

based on projection and guarantees exact feasibility, for the

first time in any algorithm that decomposes overall regret

into local regrets at decision points.

2. Regret Minimization

We will prove our results in the online learning framework

called online convex optimization (Zinkevich, 2003) (OCO).

In OCO, a decision maker repeatedly interacts with an un-

known environment by making a sequence of decisions

x1,x2, . . . from a convex and compact set X ⊆ R
n. After

each decision xt, the decision maker faces a convex loss

function ℓt(xt), which is unknown to the decision maker

until after the decision is made. So, we are constructing a

device that supports two operations: (i) it provides the next

decision xt+1 ∈X and (ii) it receives/observes the convex

loss function ℓt used to “evaluate” decision xt. The deci-

sion making is online in the sense that the next decision,

xt+1, is based only on the previous decisions x1, . . . ,xt and

corresponding observed loss functions ℓ1, . . . , ℓt.

The quality of the device is measured by its cumulative

regret, which is the difference between the loss cumulated by

the sequence of decisions x1, . . . ,xT and the loss that would

have been cumulated by playing the best-in-hindsight time-

independent decision x̂. Formally, the cumulative regret up

to time T is

RT
(X ,F) :=

T
∑

t=1

ℓt(xt)− min
x̂∈X

{

T
∑

t=1

ℓt(x̂)

}

. (1)

Above we introduce the new notation of a subscript (X ,F)

to be explicit about the domain of the decisions {xt} and the

domain of the loss functions {ℓt}, respectively. This turns

out to be important because we will study composability of

devices with different domains.

The device is called a regret minimizer if it satisfies the de-

sirable property of Hannan consistency: the average regret

approaches zero, that is, RT
(X ,F) grows sublinearly in T .

Formally, in our notation, we have the following definition.

Definition 1 ((X ,F)-regret minimizer). Let X be a con-

vex and compact set, and let F be a convex cone in the

space of bounded convex functions on X , and such that

F contains the space L of linear functions. An (X ,F)-

regret minimizer is a function that selects the next decision

xt+1 ∈ X given the history of decisions x1, . . . ,xt and ob-

served loss functions ℓ1, . . . , ℓt ∈ F , so that the cumulative

regret RT
(X ,F) = o(T ).

2.1. Universality of Linear Loss Functions

Regret minimizers for linear loss functions are in a sense

universal: one can construct a regret minimizer for convex

loss functions from any regret minimizer for linear loss

functions (e.g., McMahan (2011)). The crucial insight is

that the regret that we are trying to minimize, RT
(X ,F), is

bounded by the regret of a (X ,L)-regret minimizer that, at

each time t, observes as its loss function a tangent plane of

ℓt at the most recent decision xt. Thus we can minimize

RT
(X ,F) by minimizing RT

(X ,L).

Formally, let ∂ℓt(xt) be any subgradient of ℓt at xt. By

convexity of ℓt,

ℓt(x̂) ≥ ℓt(xt) + 〈∂ℓt(xt), x̂− x
t〉 ∀ x̂ ∈ X ,

and, substituting into (1), we obtain

RT
(X ,F) ≤

T
∑

t=1

〈∂ℓt(xt), xt〉−min
x̂∈X

{

T
∑

t=1

〈∂ℓt(xt), x̂〉

}

, (2)

where the right hand side is RT
(X ,L), the regret cumulated by

a device that observes the linear loss functions 〈∂ℓt(xt), · 〉.1

1A downside of this approach is that (2) is an inequality, not
an equality. When we use a linearization of the loss function at
each decision point, we introduce error. This can cause regret to be
minimized more slowly than somehow working on the nonlinear
loss functions directly. Nevertheless, we obtain a regret minimizer
for the original problem.
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2.2. Connection to Convex-Concave Saddle-Point

Problems and Game Theory

In this subsection we review how regret minimization can

be used to compute solutions to regularized bilinear saddle-

point problems, that is solutions to problems of the form

min
x∈X

max
y∈Y

{

x
⊤
Ay + d1(x)− d2(y)

}

, (3)

where X ,Y are closed convex sets, and d1, d2 are convex

functions. This general formulation allows us to capture,

among other settings, several game-theoretical applications

such as computing Nash equilibria in two-player zero-sum

games. In that setting, d1 and d2 are the constant zero

functions, X and Y are convex polytopes whose description

is provided by the sequence-form constraints, and A is a

real payoff matrix (von Stengel, 1996).

In order to use regret minimization to solve problems of

the form (3), we consider the loss functions ℓtX : x 7→

(−Ayt)⊤x + d1(x), ℓtY : y 7→ (A⊤xt)⊤y + d2(y). The error

metric that we use is the saddle-point residual (or gap)

ξ of (x̄, ȳ), defined as ξ(x̄, ȳ) := maxŷ∈Y{d1(x̄)−d2(ŷ)+

〈x̄,Aŷ〉}−minx̂∈X {d1(x̂)−d2(ȳ)+〈x̂, Aȳ〉}. The following

folk theorem shows that the average of a sequence of regret-

minimizing strategies for the choice of losses above leads

to a bounded saddle-point residual (see, for example, Farina

et al. (2019) for a proof).

Theorem 1. If the average regret accumulated on X and Y

by the two sets of strategies {xt}Tt=1 and {yt}Tt=1 is ǫ1 and

ǫ2, respectively, then the strategy profile (x̄, ȳ) where x̄ =
1
T

∑T
t=1 x

t, ȳ = 1
T

∑T
t=1 y

t has a saddle-point residual

bounded above by ǫ1 + ǫ2.

When d1 ≡ d2 ≡ 0 and X ,Y are the players’ sequence-

form strategy spaces, Theorem 1 asserts that the average

strategy profile produced by the regret minimizers is an

(ǫ1 + ǫ2)-Nash equilibrium. Different choices of the regular-

izing functions d1 and d2 can be used to solve for strategies

in other game-theoretic applications as well, such as com-

puting a normal-form quantal-response equilibrium (Ling

et al., 2018; Farina et al., 2019). Farina et al. (2019) study

opponent exploitation where the goal is to compute a best re-

sponse, subject to a penalty for moving away from a precom-

puted Nash equilibrium strategy; this is captured by having

d1 or d2 include a penalty term that penalizes distance from

the precomputed strategy. Farina et al. (2017) and Kroer

et al. (2017) study constraints on individual decision points,

and Davis et al. (2019) study additional constraints on the

overall EFG polytopes X ,Y. Regret minimization in those

settings requires regret minimizers that can operate on more

general domains X ,Y than the sequence form. In this paper

we show how one can construct regret minimizers for any

convex domain that can be expressed from simpler domains

using convexity-preserving operations.

3. Regret Circuits

In this paper, we introduce regret circuits. They are com-

posed of independent regret minimizers connected by wires

on which the loss functions and decisions can flow. Regret

circuits encode how the inputs and outputs of multiple re-

gret minimizers can be combined to achieve a goal, in a

divide-and-conquer fashion, and help simplify the design

and analysis of regret-minimizing algorithms. Using the con-

structions that we will present, one can compose different

regret circuits and produce increasingly complex circuits.

The regret circuits approach has several advantages that

make it appealing when compared to other, more monolithic,

approaches. For one, by treating every regret minimizer that

appears in a regret circuit as an independent black box, our

approach enables one to select the best individual algorithm

for each of them. Second, our framework is amenable to

pruning or warm-starting techniques in different parts of the

circuit, and substituting one or more parts of the circuit with

an approximation. Finally, regret circuits can be easily run

in distributed and parallel environments.

We will express regret circuits pictorially through block

diagrams. We will use the following conventions when

drawing regret circuits:

• an (X ,F)-regret minimizer is drawn as a box

(X ,F)
ℓt−1 xt

where the input (red) arrow represents the loss at a

generic time t− 1, while the output (blue) arrow repre-

sents the decision produced at time t;

• the symbol is used to denote an operation that con-

structs or manipulates one or more loss functions;

• the symbol is used to denote an operation that com-

bines or manipulates one or more decisions;

• the symbol denotes an adder, that is a node that

outputs the sum of all its inputs;

• dashed arrows denote decisions that originate from the

previous iteration.

As an example, consider the construction of Section 2.1,

where we showed how one can construct a regret minimizer

for generic convex loss functions from any regret minimizer

for linear loss functions. Figure 1 shows how that construc-

tion can be expressed as a regret circuit.

(X ,L)
x
tℓt−1 〈∂ℓt−1(xt−1), · 〉

x
t−1

Figure 1. Regret circuit representing the construction of an (X ,F)-
regret minimizer using an (X ,L)-regret minimizer.
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4. Circuit Construction for Operations that

Enlarge or Transform Sets

In this section, we begin the construction of our calculus of

regret minimization. Given regret minimizers for two closed

convex sets X and Y, we show how to construct a regret

minimizer for sets obtained via convexity-preserving opera-

tions on X and Y. In this section, we focus on operations

that take one or more sets and produce a regret minimizer

for a larger set—this is the case, for instance, of convex

hulls, Cartesian products, and Minkowski sums.

As explained in Section 2.1, one can extend any (X ,L)-

regret minimizer to handle more expressive loss functionals.

Therefore, in the rest of the paper, we focus on (X ,L)-regret

minimizers.

4.1. Cartesian Product

In this section, we show how to combine an (X ,L)- and a

(Y,L)-regret minimizer to form an (X × Y,L)-regret min-

imizer. Any linear function ℓ : X × Y → R can be writ-

ten as ℓ(x,y) = ℓX (x) + ℓY (y) where the linear functions

ℓX : X → R and ℓY : Y → R are defined as ℓX : x 7→ ℓ(x,0)

and ℓY : y 7→ ℓ(0,y). It is immediate to verify that

RT
(X×Y,L) =

(

T
∑

t=1

ℓtX (xt)− min
x̂∈X

{

T
∑

t=1

ℓtX (x̂)

})

+

(

T
∑

t=1

ℓtY (y
t)− min

ŷ∈Y

{

T
∑

t=1

ℓtY (ŷ)

})

= RT
(X ,L) +RT

(Y,L).

In other words, it is possible to minimize regret on X ×Y by

simply minimizing it on X and Y independently and then

combining the decisions, as in Figure 2.

(X ,L)

(Y,L)

x
t

y
t

(xt,yt)ℓt−1

ℓt−1(·,0)

ℓt−1(0, ·)

Figure 2. Regret circuit for the Cartesian product X × Y .

4.2. Affine Transformation and Minkowski Sum

Let H : E → F be an affine map between two Euclidean

spaces E and F , and let X ⊆ E be a convex and compact

set. We now show how an (X ,L)-regret minimizer can be

employed to construct a (H(X ),L)-regret minimizer.

Since every y ∈ H(X ) can be written as y = H(x) for

some x ∈ X , the cumulative regret for an (H(X ),L)-regret

minimizer can be expressed as

RT
(H(X ),L) =

T
∑

t=1

(ℓt ◦H)(xt)− min
x̂∈X

{

T
∑

t=1

(ℓt ◦H)(x̂)

}

.

Since ℓt and H are affine, their composition ℓtH := ℓt ◦ H

is also affine. Hence, RT
(H(X ),L) is the same regret as an

(X ,L)-regret minimizer that observes the linear function

ℓtH(·)− ℓtH(0) instead of ℓt. The construction is summarized

by the circuit in Figure 3.

(X ,L)
x
t H(xt)ℓt−1 ℓ

t−1

H
(·)− ℓ

t−1

H
(0)

Figure 3. Regret circuit for the image H(X ) of X under the affine

transformation H .

As an application, we use the above construction to form a

regret minimizer for the Minkowski sum X + Y := {x+ y :

x ∈ X ,y ∈ Y} of two sets. Indeed, note that X + Y =

σ(X ×Y), where σ : (x,y) 7→ x+ y is a linear map. Hence,

we can combine the construction in this section together

with the construction of the Cartesian product (Figure 2).

See Figure 8 in the appendix for the resulting circuit.

4.3. Convex Hull

In this section, we show how to combine an (X ,L)- and

a (Y,L)-regret minimizer to form a (co{X ,Y},L)-regret

minimizer, where co denotes the convex hull operation,

co{X ,Y} = {λ1x + λ2y : x ∈ X ,y ∈ Y, (λ1, λ2) ∈ ∆2},

and ∆2 := {(λ1, λ2) ∈ R
2
+ : λ1 + λ2 = 1} is the two-

dimensional simplex. We can think of a (co{X ,Y},L)-regret

minimizer as picking a triple (λt,xt,yt) ∈ ∆2 × X × Y at

each time point t. Using the linearity of the loss functions,

RT
(co{X ,Y},L) =

(

T
∑

t=1

λt1ℓ
t(xt) + λt2ℓ

t(yt)

)

− min
λ̂∈∆2

x̂∈X ,ŷ∈Y

{

λ̂1

T
∑

t=1

ℓt(x̂) + λ̂2

T
∑

t=1

ℓt(ŷ)

}

.

Now, we make two crucial observations. First,

min
λ̂∈∆2

x̂∈X ,ŷ∈Y

{

λ̂1

T
∑

t=1

ℓt(x̂) + λ̂2

T
∑

t=1

ℓt(ŷ)

}

= min
λ̂∈∆2

{

λ̂1 min
x̂∈X

{

T
∑

t=1

ℓt(x̂)

}

+ λ̂2 min
y∈Y

{

T
∑

t=1

ℓt(ŷ)

}}

,

since all components of λ̂ are non-negative. Second, the

inner minimization problem over X is related to the cu-

mulative regret RT
(X ,L) of the (X ,L)-regret minimizer that

observes the loss functions ℓt as follows:

min
x̂∈X

{

T
∑

t=1

ℓt(x̂)

}

= −RT
(X ,L) +

T
∑

t=1

ℓt(xt).

(An analogous relationship holds for Y.) Hence,

RT
(co{X ,Y},L) =

(

T
∑

t=1

λt1ℓ
t(xt) + λt2ℓ

t(yt)

)

−min
λ̂∈∆2

{(

T
∑

t=1

λ̂1ℓ
t(xt)+λ̂2ℓ

t(yt)

)

−
(

λ̂1R
T
(X ,L)+λ̂2R

T
(Y,L)

)

}

.
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Using the fact that min(f + g) ≥ min f +min g, and intro-

ducing the quantity

RT
(∆2,L) :=

(

T
∑

t=1

λt1ℓ
t(xt) + λt2ℓ

t(yt)

)

−min
λ̂∈∆2

{(

T
∑

t=1

λ̂1ℓ
t(xt) + λ̂2ℓ

t(yt)

)}

,

we conclude that

RT
(co{X ,Y},L) ≤ RT

(∆2,L) +max{RT
(X ,L), R

T
(Y,L)}. (4)

The introduced quantity, RT
(∆2,L), is the cumulative regret

of a (∆2,L)-regret minimizer that, at each time instant t,

observes the (linear) loss function

ℓtλ : ∆2 ∋ (λ1, λ2) 7→ λ1ℓ
t(xt) + λ2ℓ

t(yt). (5)

Intuitively, this means that in order to make “good decisions”

in the convex hull co{X ,Y}, we can let two independent

(X ,L)- and (Y,L)-regret minimizers pick good decisions

in X and Y respectively, and then use a third regret mini-

mizer that decides how to “mix” the two outputs. This way,

we break the task of picking the next recommended triple

(λt,xt,yt) into three different subproblems, two of which

can be run independently. Equation (4) guarantees that if

all three regrets {RT
(∆2,L), R

T
(X ,L), R

T
(Y,L)} grow sublinearly,

then so does RT
(co{X ,Y},L). Figure 4 shows the regret circuit

that corresponds to our construction above.

(X ,L)

(Y,L)

(∆2,L)

x
t

x
t−1

y
t

y
t−1

λt
1x

t + λt
2y

t
ℓt−1 ℓt−1

λ λt

Figure 4. Regret circuit for the convex hull co{X ,Y}. The loss

function ℓtλ is defined in Equation (5).

Extending to multiple sets The construction shown

in Figure 4 can be extended to handle the convex hull

co{X1, . . . ,Xn} of n sets as follows. First, the input loss

function ℓt−1 is fed into all the (Xi,L)-regret minimizers

(i = 1, . . . , n). Then, the loss function ℓtλ, defined as

ℓtλ : ∆n ∋ (λ1, . . . , λn) 7→ λ1ℓ(x
t
1) + · · ·+ λnℓ(x

t
n),

is input into a (∆n,L)-regret minimizer, where ∆n is the

n-dimensional simplex. Finally, at each time instant t, the

n decisions xt
1, . . . ,x

t
n output by the (Xi,L)-regret mini-

mizers are combined with the decision λt output by the

(∆n,L)-regret minimizer to form λt1x
t
1 + · · ·+ λtnx

t
n.

V -polytopes Our construction can be directly applied to

construct an (X ,L)-regret minimizer for a V -polytope X =

co{v1, . . . ,vn} where v1, . . . ,vn are n points in a Euclidean

space E. Of course, any ({vi},L)-regret minimizer outputs

the constant decision vi. Hence, our construction (Figure 4)

reduces to a single (∆n,L)-regret minimizer that observes

the (linear) loss function

ℓtλ : ∆n ∋ (λ1, . . . , λn) 7→ λ1ℓ
t(v1) + · · ·+ λnℓ

t(vn).

The observation that a regret minimizer over a simplex

can be used to minimize regret over a V -polytope already

appeared in Zinkevich (2003), Schuurmans & Zinkevich

(2016), and Farina et al. (2017, Theorem 3).

5. Application: Derivation of CFR

We now show that these constructions can be used to con-

struct the CFR framework. The first thing to note is that

the strategy space of a single player in an extensive-form

game is a treeplex, which can be viewed recursively as a

series of convex hull and Cartesian product operations. This

perspective is also used when constructing distance func-

tions for first-order methods for EFGs (Hoda et al., 2010;

Kroer et al., 2015; 2018). In particular, an information set is

viewed as an n-dimensional convex hull (since the sum of

probabilities over actions is 1), where each action a at the

information set corresponds to a treeplex Xa representing

the set of possible information sets coming after a (in order

to perform the convex hull operation, we create a new, larger

representation of Xa so that the dimension is the same for

all a, described in detail below). The Cartesian product

operation is used to represent multiple potential information

sets being arrived at (for example different hands dealt in a

poker game).

Figure 5 shows an example. Each information set Xi (ex-

cept X0) corresponds to a 2-dimensional convex hull over

two treeplexes, one of which is always empty (that is, a

leaf node). Each is a Cartesian product. The top-most

represents the three possible hands that the player may

have when making their first decision. The second layer of

Cartesian products represent actions taken by the opponent.

The information-set construction is as follows: let I be the

information set under construction, and AI the set of actions.

Each action a ∈ AI has some, potentially empty, treeplex

Xa beneath it; let na be the dimension of that treeplex. We

cannot form a convex hull over {Xa}a∈AI
directly since the

sets are not of the same dimension, and we do not wish to

average across different strategy spaces. Instead, we create

a new convex set X ′
a ∈ R

|AI |+
∑

a∈AI
na for each a. The first

|AI | indices correspond to the actions in AI , and each Xa

gets its own subset of indices. For each x ∈ Xa there is a

corresponding x′ ∈ X ′
a; x′ has a 1 at the index of a, x at the

indices corresponding to Xa, and 0 everywhere else. The

convex hull is constructed over the set {X ′
a}a, which gives

exactly the treeplex rooted at I. The Cartesian product is

easy and can be done over a given set of treeplexes rooted
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X2
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X1
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Figure 5. Treeplex for the first player in the game of Kuhn poker.

Each Xi represents a convex hull over the treeplexes below, while

denotes the Cartesian product operation.
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Figure 6. Inductive treeplex construction rules. ei ∈ R
n contains

a 1 at index i, and 0 everywhere else.

at information sets I1, . . . , In. The inductive construction

rules for the treeplex are given in Figure 6. In fact, one

can prove that the ℓλ loss functions defined in Equation (5)

are exactly the counterfactual loss functions defined in the

original CFR paper (Zinkevich et al., 2007). If we use as our

loss function the gradient Ayt where yt is the opponent’s

strategy at iteration t, and then apply our expressions for

the Cartesian-product and convex-hull regrets inductively, it

follows from (5) that the loss function associated with each

action is exactly the negative counterfactual value. Finally,

the average treeplex strategy as per Theorem 1 coincides

with the per-information-set averaging used in standard CFR

expositions (e.g., (Zinkevich et al., 2007)).

6. Circuit Construction for Operations that

Constrain Sets

Unlike Section 4, in this section we deal with operations

that curtail the set of decisions that can be output by our

regret minimizer. Section 6.1 and 6.2 propose two differ-

ent constructions, and Section 6.3 discusses the merits and

drawbacks of the two.

6.1. Constraint Enforcement via Lagrangian Relaxation

Suppose that we want to construct an (X∩{x : g(x)≤0},L)-

regret minimizer, where g is a convex function, but we only

possess an (X ,L)-regret minimizer. One natural idea is to

use the latter to approximate the former, by penalizing any

choice of x ∈ X such that g(x) > 0. In particular, it seems

natural to introduce the penalized loss function

ℓ̃t : X ∋ x 7→ ℓt(x) + βt max{0, g(x)},

where βt is a (large) positive constant that can change over

time. This approach is reminiscent of Lagrangian relaxation.

The loss function ℓ̃t is not linear, and as such it cannot be

handled as is by our (X ,L)-regret minimizer. However, as

we have observed in Section 2.1, the regret induced by ℓ̃t can

be minimized by our (X ,L)-regret minimizer if it observes

the ‘linearized’ loss function ℓ̃t⋄ : X → R defined as

ℓ̃t⋄(x) = ℓt(x) + βt
⋄〈∂g(x

t),x〉, βt
⋄ :=

{

βt if g(xt) > 0

0 otherwise.

Figure 9 in the appendix shows the regret circuit correspond-

ing to the construction described so far.

In the rest of this subsection we analyze in what sense small

cumulative regret implies that the constraint g(x) ≤ 0 is

satisfied. Let RT
(X ,L) be the cumulative regret of our (X ,L)-

regret minimizer. Introducing Xg := X ∩ {x : g(x) ≤ 0}

and τg := {t ∈ {1, . . . , T} : g(xt)>0},

RT
(X ,L) =

T
∑

t=1

ℓ̃t⋄(x
t)− min

x̂∈X

{

T
∑

t=1

ℓ̃t⋄(x̂)

}

≥
T
∑

t=1

ℓt(xt) +
∑

t∈τg

βtg(xt)

− min
x̂∈X

{

T
∑

t=1

ℓt(x̂)+

(

T
∑

t=1

βi

)

max{0, g(x̂)}

}

≥

(

T
∑

t=1

ℓt(xt)−min
x̂∈Xg

T
∑

t=1

ℓt(x̂)

)

+
∑

t∈τg

βtg(xt), (6)

where the first inequality is by (2) and the second inequality

comes from simply restricting the domain of the minimiza-

tion from X to Xg.2 Thus, if the βt are sufficiently large,

the average decision x̄ := 1
B (β1x1 + · · · + βTxT ) where

B := β1 + · · ·+ βT satisfies

max{0, g}(x̄) ≤
1

B

T
∑

t=1

βt max{0, g}(xt) =
1

B

∑

t∈τg

βtg(xt)

≤
1

B

(

RT
(X ,L) + min

x̂∈Xg

{

T
∑

t=1

ℓt(x̂− x
t)

})

,

where the first inequality follows by convexity of max{0, g},

and the second inequality follows by (6).

If
∑T

t=1 βi ≫ TLD, where L is an upper bound on the norm

of the loss functions ℓ1, . . . , ℓT and D is an upper bound on

the diameter of X , then max{0, g(x̄)} → 0 as T → ∞, that

2It may tempting to recognize in the term in parentheses in (6)
the cumulative regret of an(Xg,L)-regret minimizer. This would be
incorrect: the decisions xt are not guaranteed to satisfy g(xt) ≤ 0.
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is, the constraint is satisfied at least by the average in the

limit. If L and D are known ahead of time, one practical

way to guarantee
∑T

t=1 βi ≫ TLD is to choose βt = κLD

where κ > 0 is a large constant. This guarantees that in

the limit, small cumulative regret implies that the average

strategy approximately satisfies the constraint and satisfies

Hannan consistency. Alternatively, the βt can be chosen

by a regret minimizer which sees the constraint violation

max{0, g(xt)} at time t as its loss function.

6.2. Intersection with a Closed Convex Set

In this subsection we consider constructing an (X ∩ Y,L)-

regret minimizer from an (X ,L)-regret minimizer, where Y

is a closed convex set such that X ∩ Y 6= ∅. As it turns out,

this is always possible, and can be done by letting the (X ,L)-

regret minimizer give decisions in X , and then projecting

them onto the intersection X ∩ Y.

We will use a Bregman divergence D(y‖x) := d(y)−d(x)−

〈∇d(x),y−x〉 as our notion of distance between the points x

and y, where the distance generating function (DGF) d is µ-

strongly convex and β-smooth (that is, d is differentiable and

its gradient is Lipschitz continuous with Lipschitz constant

β). Our construction makes no further assumptions on d, so

the most appropriate DGF can be used for the application

at hand. When d(x) = ‖x‖22 we obtain D(y‖x) = ‖y−x‖22,

so we recover the usual Euclidean distance between x and

y. In accordance with our generalized notion of distance,

we define the projection of a point x ∈ X onto X ∩ Y as

πX∩Y (x) = argminy∈X∩Y D(y‖x). For ease of notation,

we will denote the projection of x onto X ∩ Y as [x]; since

X ∩ Y is closed and convex, and since D(·‖x) is strongly

convex, such projection exists and is unique. The cumulative

regret of the (X ∩ Y,L)-minimizer is

RT
(X∩Y,L)=

T
∑

t=1

ℓt([xt])− min
x̂∈X∩Y

{

T
∑

t=1

ℓt(x̂)

}

=

T
∑

t=1

ℓt([xt]−x
t)− min

x̂∈X∩Y

{

T
∑

t=1

ℓt(x̂−x
t)

}

, (7)

where the second equality holds by linearity of ℓt. The

first-order optimality condition for the projection problem is

〈∇d(xt)−∇d([xt]), x̂− [xt]〉 ≤ 0 ∀ x̂ ∈ X ∩ Y.

Consequently, provided αt ≥ 0 for all t,

min
x̂∈X∩Y

{

T
∑

t=1

ℓt(x̂− x
t)

}

≥ min
x̂∈X

{

T
∑

t=1

ℓt(x̂− x
t)

+

T
∑

t=1

αt〈∇d(xt)−∇d([xt]), x̂− [xt]〉

}

(8)

(note the change in the domain of the minimum between the

left- and right-hand side). The role of the αt coefficients is

to penalize choices of xt that are in X \ Y. In particular, if

1

µ

T
∑

t=1

ℓt([x
t]− x

t) ≤
T
∑

t=1

αt‖[xt]− x
t‖2, (9)

then, by µ-strong convexity of d, we have

T
∑

t=1

ℓt([x
t]−xt) ≤

T
∑

t=1

αt〈∇d(xt)−∇d([xt]),xt−[xt]〉. (10)

Substituting (10) and (8) into Equation (7) we get

RT
(X∩Y,L) ≤

(

T
∑

t=1

ℓt(xt) + αt〈∇d(xt)−∇d([xt]),xt〉

)

− min
x̂∈X

{

T
∑

t=1

ℓt(x̂) + αt〈∇d(xt)−∇d([xt]), x̂〉

}

,

which is the regret observed by an (X ,L)-regret minimizer

that at each time t observes the linear loss function

ℓ̃t : x 7→ ℓt(x) + αt〈∇d(xt)−∇d([xt]),x〉. (11)

Hence, as long as condition (9) holds, the regret circuit of

Figure 7 is guaranteed to be Hannan consistent.

(X ,L)
[xt]

[xt−1]

πX∩Y

+
ℓt−1 ℓ̃t−1

αt−1〈∇d(xt−1)−∇d([xt−1]), · 〉

x
t

x
t−1

Figure 7. Regret circuit representing the construction of an (X ∩
Y,L)-regret minimizer using a (X ,L)-regret minimizer.

On the other hand, condition (9) can be trivially satisfied by

the deterministic choice

αt =







0 if xt ∈ X ∩ Y

max

{

0,
ℓt([xt]− xt)

µ‖[xt]− xt‖2

}

otherwise.

The fact that αt can be arbitrarily large (when xt and [xt]

are very close) is not an issue. Indeed, αt is only used in

ℓ̃t (Equation 11) and is always multiplied by a term whose

magnitude grows proportionally with the distance between

xt and [xt]. In fact, the norm of the functional ℓ̃t is bounded:

‖ℓ̃t‖ ≤ ‖ℓt‖+

∣

∣

∣

∣

ℓt([xt]− xt)

µ‖[xt]− xt‖2

∣

∣

∣

∣

· ‖∇d(xt)−∇d([xt])‖

≤ ‖ℓt‖+ β

∣

∣

∣

∣

ℓt([xt]− xt)

µ‖[xt]− xt‖2

∣

∣

∣

∣

· ‖[xt]− x
t‖

≤

(

1 +
β

µ

)

‖ℓt‖,

where the second inequality follows by β-smoothness of d.

In other words, our construction dilates the loss functions by

at most a factor 1 + β/µ. For instance, when d(x) = ‖x‖2,

this dilation factor is equal to 2.

6.3. Comparison of the Two Constructions

As we pointed out, the decisions in the construction using

Lagrangian relaxation only converge to the constrained do-

main Xg on average. Thus, formally the construction does
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not provide an (Xg,L)-regret minimizer, but only an approx-

imate one. Section 6.2 solves this problem by providing a

generic construction for an (X ∩ Y,L)-regret minimizer, a

strictly more general task. The price to pay is the need for

(generalized) projections, a potentially expensive operation.

Thus, the choice of which construction to use reduces to a

tradeoff between the computational cost of projecting and

the need to have exact versus approximate feasibility with

respect to g. The right choice depends on the application at

hand. Finally, the construction based on Lagrangian relax-

ation requires large penalization factors βt in order to work

properly. Therefore, the norm of ℓ̃t⋄ can be large, which can

complicate the task of minimizing the regret RT
(X ,L).

7. Application: Handling Strategy Constraints

When solving EFGs, there may be a need to add additional

constraints beyond simply computing feasible strategies:

• Opponent modeling. Upon observing repeated play

from an opponent, we may wish to constrain our model

of their strategy space to reflect such observations.

Since observations can be consistent with several in-

formation sets belonging to the opponent, this requires

adding constraints that span across information sets.

• Bounding probabilities. For example, in a patrolling

game we may wish to ensure that a patrol returns to its

base at the end of the game with high probability.

• Nash equilibrium refinement computation. Refine-

ments can be computed, or approximated, via per-

turbation of the strategy space of each player. For

extensive-form perfect equilibrium this can be done

by lower-bounding the probability of each action at

each information set (Farina & Gatti, 2017), which

can be handled with small modifications to standard

CFR or first-order methods (Farina et al., 2017; Kroer

et al., 2017). However, quasi-perfect equilibrium re-

quires perturbations on the probability of sequences of

action (Miltersen & Sørensen, 2010), which requires

strategy constraints that cross information sets.

All the applications above potentially require adding strat-

egy space constraints that span across multiple information

sets. Such constraints break the recursive nature of the

treeplex, and are thus not easily incorporated into standard

regret-minimization or first-order methods for EFG solv-

ing. Davis et al. (2019) propose a Lagrangian relaxation

approach called Constrained CFR (CCFR): each strategy

constraint is added to the objective with a Lagrangian mul-

tiplier, and a regret minimizer is used to penalize violation

of the strategy constraints. They prove that if the regret

minimizer for the Lagrange multipliers has the optimal La-

grangian multipliers as part of their strategy space, the av-

erage output strategy converges to an approximate solution

to the constrained game. They also prove a bound on the

approximate feasibility of the average output strategy when

their algorithm is instantiated with Regret Matching (Hart

& Mas-Colell, 2000) as the local regret minimizer at each

information set.

At least two alternative variants of CFR for EFGs with strat-

egy constraints can be obtained using our framework. First,

we can apply our method for Lagrangian relaxation of X and

a constraint g(x) ≤ 0. Our Lagrangian approach yields as

a special case the CCFR algorithm. Our approach supports

regret minimization for the Lagrangian multipliers, as was

done in CCFR, since we put no constraints on the form of

the βt multipliers. However, our approach is more general

in that it also allows instantiation with a fixed choice of

multipliers, thus obviating the need for regret minimization.

The second alternative is to apply our construction for the

intersection of convex sets (Section 6.2), which uses (gener-

alized) projection onto X ∩ {x : g(x) ≤ 0}. This leads to a

different regret-minimization approach, which has the major

advantage that all iterates are feasible, whereas Lagrangian

approaches only achieve approximate feasibility. The cost

of projection may be nontrivial, and so in general the choice

of method depends on the application at hand.

8. Conclusion and Future Research

We developed a calculus of regret minimization, which en-

ables the construction of regret minimizers for composite

convex sets that can be inductively expressed as a series of

convexity-preserving operations on simpler sets. We showed

that our calculus can be used to construct the CFR algorithm

directly, as well as several of its variants for the more general

case where we have strategy constraints. Our regret calculus

is much more broadly applicable than just EFGs: it applies

to any setting where the decision space can be expressed

via the convexity-preserving operations that we support. In

the future we plan to investigate novel applications of our

regret calculus. One potential application would be online

portfolio selection with additional constraints (e.g., expo-

sure constraints across industries); our framework makes it

easy to construct such a regret minimizer from any standard

online-portfolio-selection algorithm.

The approach presented in this paper has a large number

of potential future applications. For one, it would be in-

teresting to apply our approaches of including additional

constraints to the computation of quasi-perfect equilibria.

Currently the only solver that is fairly scalable is based on an

exact, monolithic, custom approach that uses heavy-weight

operations such as matrix inversion, etc. (Farina et al., 2018).

Our regret-minimization approach would be the first of its

kind for equilibrium refinement that requires constraints

that cut across information sets. It obviates the need for

the heavy-weight operations, and would still converge to

a feasible solution that satisfies an approximate notion of

quasi-perfect equilibrium. It would be interesting to study

this tradeoff between speed and solution quality.
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A. Additional Figures

(X ,L)

(Y,L)

x
t

y
t

+
x
t + y

tℓt−1

Figure 8. Regret circuit for the Minkowski sum X + Y (Sec-

tion 4.2).

(X ,L)

[xt−1]

+
ℓt−1 ℓ̃t−1

⋄

βt−1
⋄ 〈∂g(xt−1), · 〉

x
t

Figure 9. Regret circuit for the Lagrangian relaxation construction

(Section 6.1) for the constrained set X ∩ {x : g(x) ≤ 0}.
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