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In recent years there have been great strides in artificial intelligence (Al), with games often serving as
challenge problems, benchmarks, and milestones for progress. Poker has served for decades as such a
challenge problem. Past successes in such benchmarks, including poker, have been limited to two-player
games. However, poker in particular is traditionally played with more than two players. Multiplayer games
present fundamental additional issues beyond those in two-player games, and multiplayer poker is a
recognized Al milestone. In this paper we present Pluribus, an Al that we show is stronger than top human
professionals in six-player no-limit Texas hold’em poker, the most popular form of poker played by

humans.

Poker has served as a challenge problem for the fields of ar-
tificial intelligence (AI) and game theory for decades (7). In
fact, the foundational papers on game theory used poker to
illustrate their concepts (2, 3). The reason for this choice is
simple: no other popular recreational game captures the
challenges of hidden information as effectively and as ele-
gantly as poker. Although poKker has been useful as a bench-
mark for new Al and game-theoretic techniques, the
challenge of hidden information in strategic settings is not
limited to recreational games. The equilibrium concepts of
von Neumann and Nash have been applied to many real-
world challenges such as auctions, cybersecurity, and pricing.

The past two decades have witnessed rapid progress in the
ability of Al systems to play increasingly complex forms of
poker (4-6). However, all prior breakthroughs have been lim-
ited to settings involving only two players. Developing a su-
perhuman AI for multiplayer poker was the widely-
recognized main remaining milestone. In this paper we de-
scribe Pluribus, an Al capable of defeating elite human pro-
fessionals in six-player no-limit Texas hold’em poKker, the
most commonly played poker format in the world.

Theoretical and practical challenges of multiplayer
games

Al systems have reached superhuman performance in games
such as checkers (7), chess (8), two-player limit poker (4), Go
(9), and two-player no-limit poker (6). All of these involve
only two players and are zero-sum games (meaning that
whatever one player wins, the other player loses). Every one
of those superhuman Al systems was generated by attempt-
ing to approximate a Nash equilibrium strategy rather than
by, for example, trying to detect and exploit weaknesses in
the opponent. A Nash equilibrium is a list of strategies, one
for each player, in which no player can improve by deviating
to a different strategy. Nash equilibria have been proven to
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exist in all finite games, and many infinite games, though
finding an equilibrium may be difficult.

Two-player zero-sum games are a special class of games
in which Nash equilibria also have an extremely useful addi-
tional property: any player who chooses to use a Nash equi-
librium is guaranteed to not lose in expectation no matter
what the opponent does (as long as one side does not have an
intrinsic advantage under the game rules, or the players al-
ternate sides). In other words, a Nash equilibrium strategy is
unbeatable in two-player zero-sum games that satisfy the
above criteria. For this reason, to “solve” a two-player zero-
sum game means to find an exact Nash equilibrium. For ex-
ample, the Nash equilibrium strategy for Rock-Paper-Scissors
is to randomly pick Rock, Paper, or Scissors with equal prob-
ability. Against such a strategy, the best that an opponent can
do in expectation is tie (Z0). In this simple case, playing the
Nash equilibrium also guarantees that the player will not win
in expectation. However, in more complex games even deter-
mining how to tie against a Nash equilibrium may be diffi-
cult; if the opponent ever chooses suboptimal actions, then
playing the Nash equilibrium will indeed result in victory in
expectation.

In principle, playing the Nash equilibrium can be com-
bined with opponent exploitation by initially playing the
equilibrium strategy and then over time shifting to a strategy
that exploits the opponent’s observed weaknesses (for exam-
ple, by switching to always playing Paper against an oppo-
nent that always plays Rock) (11). However, except in certain
restricted ways (12), shifting to an exploitative non-equilib-
rium strategy opens oneself up to exploitation because the
opponent could also change strategies at any moment. Addi-
tionally, existing techniques for opponent exploitation re-
quire too many samples to be competitive with human ability
outside of small games. Pluribus plays a fixed strategy that
does not adapt to the observed tendencies of the opponents.
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Although a Nash equilibrium strategy is guaranteed to ex-
ist in any finite game, efficient algorithms for finding one are
only proven to exist for special classes of games, among which
two-player zero-sum games are the most prominent. No pol-
ynomial-time algorithm is known for finding a Nash equilib-
rium in two-player non-zero-sum games, and the existence of
one would have sweeping surprising implications in compu-
tational complexity theory (13, 14). Finding a Nash equilib-
rium in zero-sum games with three or more players is at least
as hard (because a dummy player can be added to the two-
player game to make it a three-player zero-sum game). Even
approximating a Nash equilibrium is hard (except in special
cases) in theory (I5) and in games with more than two play-
ers, even the best complete algorithm can only address games
with a handful of possible strategies per player (16). Moreo-
ver, even if a Nash equilibrium could be computed efficiently
in a game with more than two players, it is not clear that
playing such an equilibrium strategy would be wise. If each
player in such a game independently computes and plays a
Nash equilibrium, the list of strategies that they play (one
strategy per player) may not be a Nash equilibrium and play-
ers might have an incentive to deviate to a different strategy.
One example of this is the Lemonade Stand Game (17), illus-
trated in Fig. 1, in which each player simultaneously picks a
point on a ring and wants to be as far away as possible from
any other player. The Nash equilibrium is for all players to be
spaced uniformly along the ring, but there are infinitely many
ways this can be accomplished and therefore infinitely many
Nash equilibria. If each player independently computes one
of those equilibria, the joint strategy is unlikely to result in
all players being spaced uniformly along the ring. Two-player
zZero-sum games are a special case where even if the players
independently compute and select Nash equilibria, the list of
strategies is still a Nash equilibrium.

The shortcomings of Nash equilibria outside of two-player
zero-sum games, and the failure of any other game-theoretic
solution concept to convincingly overcome them, have raised
the question of what the right goal should even be in such
games. In the case of six-player poker, we take the viewpoint
that our goal should not be a specific game-theoretic solution
concept, but rather to create an Al that empirically consist-
ently defeats human opponents, including elite human pro-
fessionals.

The algorithms we used to construct Pluribus, discussed
in the next two sections, are not guaranteed to converge to a
Nash equilibrium outside of two-player zero-sum games. Nev-
ertheless, we observe that Pluribus plays a strong strategy in
multiplayer poker that is capable of consistently defeating
elite human professionals. This shows that even though the
techniques do not have known strong theoretical guarantees
on performance outside of the two-player zero-sum setting,
they are nevertheless capable of producing superhuman
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strategies in a wider class of strategic settings.

Description of Pluribus

The core of Pluribus’s strategy was computed via self play, in
which the AI plays against copies of itself, without any data
of human or prior Al play used as input. The AI starts from
scratch by playing randomly, and gradually improves as it de-
termines which actions, and which probability distribution
over those actions, lead to better outcomes against earlier
versions of its strategy. Forms of self play have previously
been used to generate powerful Als in two-player zero-sum
games such as backgammon (I8), Go (9, 19), Dota 2 (20),
StarCraft 2 (21), and two-player poker (4-6), though the pre-
cise algorithms that were used have varied widely. Although
it is easy to construct toy games with more than two players
in which commonly-used self-play algorithms fail to converge
to a meaningful solution (22), in practice self play has never-
theless been shown to do reasonably well in some games with
more than two players (23).

Pluribus’s self play produces a strategy for the entire game
offline, which we refer to as the blueprint strategy. Then dur-
ing actual play against opponents, Pluribus improves upon
the blueprint strategy by searching for a better strategy in
real time for the situations it finds itself in during the game.
In subsections below, we discuss both of those phases in de-
tail, but first we discuss abstraction, forms of which are used
in both phases to make them scalable.

Abstraction for large imperfect-information games
There are far too many decision points in no-limit Texas
hold’em to reason about individually. To reduce the complex-
ity of the game, we eliminate some actions from considera-
tion and also bucket similar decision points together in a
process called abstraction (24, 25). After abstraction, the
bucketed decision points are treated as identical. We use two
kinds of abstraction in Pluribus: action abstraction and infor-
mation abstraction.

Action abstraction reduces the number of different ac-
tions the AI needs to consider. No-limit Texas hold’em nor-
mally allows any whole-dollar bet between $100 and $10,000.
However, in practice there is little difference between betting
$200 and betting $201. To reduce the complexity of forming
a strategy, Pluribus only considers a few different bet sizes at
any given decision point. The exact number of bets it consid-
ers varies between one and 14 depending on the situation.
Although Pluribus can limit itself to only betting one of a few
different sizes between $100 and $10,000, when actually play-
ing no-limit poker, the opponents are not constrained to
those few options. What happens if an opponent bets $150
while Pluribus has only been trained to consider bets of $100
or $200? Generally, Pluribus will rely on its search algorithm,
described in a later section, to compute a response in real
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time to such “off-tree” actions.

The other form of abstraction we use in Pluribus is infor-
mation abstraction, in which decision points that are similar
in terms of what information has been revealed (in poker, the
player’s cards and revealed board cards) are bucketed to-
gether and treated identically (26-28). For example, a ten-
high straight and a nine-high straight are distinct hands, but
are nevertheless strategically similar. Pluribus may bucket
these hands together and treat them identically, thereby re-
ducing the number of distinct situations for which it needs to
determine a strategy. Information abstraction drastically re-
duces the complexity of the game, but may wash away subtle
differences that are important for superhuman performance.
Therefore, during actual play against humans, Pluribus uses
information abstraction only to reason about situations on
future betting rounds, never the betting round it is actually
in. Information abstraction is also applied during offline self

play.

Self play via improved Monte Carlo counterfactual re-
gret minimization

The blueprint strategy in Pluribus was computed using a var-
iant of counterfactual regret minimization (CFR) (29). CFR is
an iterative self-play algorithm in which the Al starts by play-
ing completely at random but gradually improves by learning
to beat earlier versions of itself. Every competitive Texas
hold’em AI for at least the past six years has computed its
strategy using some variant of CFR (4—6, 23, 28, 30-34). We
use a form of Monte Carlo CFR (MCCFR) that samples actions
in the game tree rather than traversing the entire game tree
on each iteration (33, 35-37).

On each iteration of the algorithm, MCCFR designates one
player as the traverser whose current strategy is updated on
the iteration. At the start of the iteration, MCCFR simulates
a hand of poker based on the current strategy of all players
(which is initially completely random). Once the simulated
hand is completed, the AI reviews each decision that was
made by the traverser and investigates how much better or
worse it would have done by choosing the other available ac-
tions instead. Next, the Al reviews each hypothetical decision
that would have been made following those other available
actions and investigates how much better it would have done
by choosing the other available actions, and so on. This tra-
versal of the game tree is illustrated in Fig. 2. Exploring other
hypothetical outcomes is possible because the AI knows each
player’s strategy for the iteration, and can therefore simulate
what would have happened had some other action been cho-
sen instead. This counterfactual reasoning is one of the fea-
tures that distinguishes CFR from other self-play algorithms
that have been deployed in domains such as Go (9), Dota 2
(20), and StarCraft 2 (21).

The difference between what the traverser would have
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received for choosing an action versus what the traverser ac-
tually achieved (in expectation) on the iteration is added to
the counterfactual regret for the action. Counterfactual regret
represents how much the traverser regrets having not chosen
that action in previous iterations. At the end of the iteration,
the traverser’s strategy is updated so that actions with higher
counterfactual regret are chosen with higher probability.

For two-player zero-sum games, CFR guarantees that the
average strategy played over all iterations converges to a
Nash equilibrium, but convergence to a Nash equilibrium is
not guaranteed outside of two-player zero-sum games. Nev-
ertheless, CFR guarantees in all finite games that all counter-
factual regrets grow sublinearly in the number of iterations.
This, in turn, guarantees in the limit that the average perfor-
mance of CFR on each iteration that was played matches the
average performance of the best single fixed strategy in hind-
sight. CFR is also proven to eliminate iteratively strictly dom-
inated actions in all finite games (23).

Because the difference between counterfactual value and
expected value is added to counterfactual regret rather than
replacing it, the first iteration in which the agent played com-
pletely randomly (which is typically a very bad strategy) still
influences the counterfactual regrets, and therefore the strat-
egy that is played, for iterations far into the future. In the
vanilla form of CFR, the influence of this first iteration decays

1 . . .
at a rate of ? , where T is the number of iterations played.

In order to more quickly decay the influence of these early
“bad” iterations, Pluribus uses a recent form of CFR called
Linear CFR (38) in early iterations. (We stop the discounting
after that because the time cost of doing the multiplications
with the discount factor is not worth the benefit later on.)
Linear CFR assigns a weight of 7 to the regret contributions
of iteration 7 . Therefore, the influence of the first iteration

I 2
ST T(T+)

t=1

decays at arate of . This leads to the strategy
improving significantly more quickly in practice while still
maintaining a near-identical worst-case bound on total re-
gret. To speed up the blueprint strategy computation even
further, actions with extremely negative regret are not ex-
plored in 95% of iterations.

The blueprint strategy for Pluribus was computed in 8
days on a 64-core server for a total of 12,400 CPU core hours.
It required less than 512 GB of memory. At current cloud com-
puting spot instance rates, this would cost about $144: to pro-
duce. This is in sharp contrast to all the other recent
superhuman Al milestones for games, which used large num-
bers of servers and/or farms of GPUs. More memory and com-
putation would enable a finer-grained blueprint that would
lead to better performance, but would also result in Pluribus
using more memory or being slower during real-time search.
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We set the size of the blueprint strategy abstraction to allow
Pluribus to run during live play on a machine with no more
than 128 GB of memory while storing a compressed form of
the blueprint strategy in memory.

Depth-limited search in imperfect-information games
The blueprint strategy for the entire game is necessarily
coarse-grained owing to the size and complexity of no-limit
Texas hold’em. Pluribus only plays according to this blueprint
strategy in the first betting round (of four), where the number
of decision points is small enough that the blueprint strategy
can afford to not use information abstraction and have a lot
of actions in the action abstraction. After the first round (and
even in the first round if an opponent chooses a bet size that
is sufficiently different from the sizes in the blueprint action
abstraction) Pluribus instead conducts real-time search to de-
termine a better, finer-grained strategy for the current situa-
tion it is in. For opponent bets on the first round that are
slightly off the tree, Pluribus rounds the bet to a nearby on-
tree size (using the pseudoharmonic mapping (39)) and pro-
ceeds to play according to the blueprint as if the opponent
had used the latter bet size.

Real-time search has been necessary for achieving super-
human performance in many perfect-information games, in-
cluding backgammon (I8), chess (8), and Go (9, 19). For
example, when determining their next move, chess Als com-
monly look some number of moves ahead until a leaf node is
reached at the depth limit of the algorithm’s lookahead. An
evaluation function then estimates the value of the board
configuration at the leaf node if both players were to play a
Nash equilibrium from that point forward. In principle, if an
Al could accurately calculate the value of every leaf node (e.g.,
win, draw, or loss), this algorithm would choose the optimal
next move.

However, search as has been done in perfect-information
games is fundamentally broken when applied to imperfect-
information games. For example, consider a sequential form
of Rock-Paper-Scissors, illustrated in Fig. 3, in which Player 1
acts first but does not reveal her action to Player 2, followed
by Player 2 acting. If Player 1 were to conduct search that
looks just one move ahead, every one of her actions would
appear to lead to a leaf node with zero value. After all, if
Player 2 plays the Nash equilibrium strategy of choosing each

action with % probability, the value to Player 1 of choosing

Rock is zero, as is the value of choosing Scissors. So Player 1’s
search algorithm could choose to always play Rock because,
given the values of the leaf nodes, this appears to be equally
good as any other strategy.

Indeed, if Player 2’s strategy were fixed to always playing
the Nash equilibrium, always playing Rock would be an opti-
mal Player 1 strategy. However, in reality Player 2 could
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adjust to a strategy of always playing Paper. In that case, the
value of always playing Rock would actually be —1.

This example illustrates that in imperfect-information
subgames (the part of the game in which search is being con-
ducted) (40), leaf nodes do not have fixed values. Instead,
their values depend on the strategy that the searcher chooses
in the subgame (that is, the probabilities that the searcher
assigns to his actions in the subgame). In principle, this could
be addressed by having the value of a subgame leaf node be
a function of the searcher’s strategy in the subgame, but this
is impractical in large games. One alternative is to make the
value of a leaf node conditional only on the belief distribution
of both players at that point in the game. This was used to
generate the two-player poker AI DeepStack (5). However,
this option is extremely expensive because it requires one to
solve huge numbers of subgames that are conditional on be-
liefs. It becomes even more expensive as the amount of hid-
den information or the number of players grows. The two-
player poker Al Libratus sidestepped this issue by only doing
real-time search when the remaining game was short enough
that the depth limit would extend to the end of the game (6).
However, as the number of players grows, always solving to
the end of the game also becomes computationally prohibi-
tive.

Pluribus instead uses a modified form of an approach that
we recently designed—previously only for two-player zero-
sum games (4I1)—in which the searcher explicitly considers
that any or all players may shift to different strategies beyond
the leaf nodes of a subgame. Specifically, rather than assum-
ing all players play according to a single fixed strategy beyond
the leaf nodes (which results in the leaf nodes having a single
fixed value) we instead assume that each player may choose
between k different strategies, specialized to each player, to
play for the remainder of the game when a leaf node is
reached. In the experiments in this paper, £ =4 . One of the
four continuation strategies we use in the experiments is the
precomputed blueprint strategy, another is a modified form
of the blueprint strategy in which the strategy is biased to-
ward folding, another is the blueprint strategy biased toward
calling, and the final option is the blueprint strategy biased
toward raising. This technique results in the searcher finding
a strategy that is more balanced because choosing an unbal-
anced strategy (e.g., always playing Rock in Rock-Paper-Scis-
sors) would be punished by an opponent shifting to one of
the other continuation strategies (e.g., always playing Paper).

Another major challenge of search in imperfect-infor-
mation games is that a player’s optimal strategy for a partic-
ular situation depends on what the player’s strategy is for
every situation the player could be in from the perspective of
her opponents. For example, suppose the player is holding
the best possible hand. Betting in this situation could be a
good action. But if the player bets in this situation only when
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holding the best possible hand, then the opponents would
know to always fold in response.

To cope with this, Pluribus Keeps track of the probability
it would have reached the current situation with each possi-
ble hand according to its strategy. Regardless of which hand
Pluribus is actually holding, it will first calculate how it would
act with every possible hand, being careful to balance its
strategy across all the hands so as to remain unpredictable to
the opponent. Once this balanced strategy across all hands is
computed, Pluribus then executes an action for the hand it is
actually holding. The structure of a depth-limited imperfect-
information subgame as used in Pluribus is shown in Fig. 4.

Pluribus used one of two different forms of CFR to com-
pute a strategy in the subgame depending on the size of the
subgame and the part of the game. If the subgame is rela-
tively large or it is early in the game, then Monte Carlo Linear
CFR is used just as it was for the blueprint strategy computa-
tion. Otherwise, Pluribus uses an optimized vector-based
form of Linear CFR (38) that samples only chance events
(such as board cards) (42).

When playing, Pluribus runs on two Intel Haswell E5-
2695 v3 CPUs and uses less than 128 GB of memory. For com-
parison, AlphaGo used 1,920 CPUs and 280 GPUs for real-
time search in its 2016 matches against top Go professional
Lee Sedol (43), Deep Blue used 480 custom-designed chips in
its 1997 matches against top chess professional Garry Kaspa-
rov (8), and Libratus used 100 CPUs in its 2017 matches
against top professionals in two-player poker (6). The amount
of time Pluribus takes to conduct search on a single subgame
varies between 1 s and 33 s depending on the particular situ-
ation. On average, Pluribus plays at a rate of 20 s per hand
when playing against copies of itself in six-player poker. This
is roughly twice as fast as professional humans tend to play.

Experimental evaluation
We evaluated Pluribus against elite human professionals in
two formats: five human professionals playing with one copy
of Pluribus (5H+1AI), and one human professional playing
with five copies of Pluribus (1IH+5AI). Each human partici-
pant has won more than $1 million playing poker profession-
ally. Performance was measured using the standard metric in
this field of AI, milli big blinds per game (mbb/game). This
measures how many big blinds (the initial money the second
player must put into the pot) were won on average per thou-
sand hands of poker. In all experiments, we used the vari-
ance-reduction technique AIVAT (44) to reduce the luck
factor in the game (45) and measured statistical significance
at the 95% confidence level using a one-tailed ¢ test to deter-
mine whether Pluribus is profitable.

The human participants in the 5H+1AI experiment were
Jimmy Chou, Seth Davies, Michael Gagliano, Anthony Gregg,
Dong Kim, Jason Les, Linus Loeliger, Daniel McAulay, Greg
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Merson, Nicholas Petrangelo, Sean Ruane, Trevor Savage,
and Jacob Toole. In this experiment, 10,000 hands of poker
were played over 12 days. Each day, five volunteers from the
pool of professionals were selected to participate based on
availability. The participants were not told who else was par-
ticipating in the experiment. Instead, each participant was
assigned an alias that remained constant throughout the ex-
periment. The alias of each player in each game was known,
so that players could track the tendencies of each player
throughout the experiment. $50,000 was divided among the
human participants based on their performance to incentiv-
ize them to play their best. Each player was guaranteed a
minimum of $0.40 per hand for participating, but this could
increase to as much as $1.60 per hand based on performance.
After applying AIVAT, Pluribus won an average of 48
mbb/game (with a standard error of 25 mbb/game). This is
considered a very high win rate in six-player no-limit Texas
hold’em poker, especially against a collection of elite profes-
sionals, and implies that Pluribus is stronger than the human
opponents. Pluribus was determined to be profitable with a
p-value of 0.028. The performance of Pluribus over the course
of the experiment is shown in Fig. 5. Due to the extremely
high variance in no-limit poker and the impossibility of ap-
plying AIVAT to human players, the win rate of individual
human participants could not be determined with statistical
significance.

The human participants in the 1H+5AI experiment were
Chris “Jesus” Ferguson and Darren Elias. Each of the two hu-
mans separately played 5,000 hands of poker against five cop-
ies of Pluribus. Pluribus does not adapt its strategy to its
opponents and does not know the identity of its opponents,
so the copies of Pluribus could not intentionally collude
against the human player. To incentivize strong play, we of-
fered each human $2,000 for participation and an additional
$2,000 if he performed better against the Al than the other
human player did. The players did not know who the other
participant was and were not told how the other human was
performing during the experiment. For the 10,000 hands
played, Pluribus beat the humans by an average of 32
mbb/game (with a standard error of 15 mbb/game). Pluribus
was determined to be profitable with a p-value of 0.014. (Dar-
ren Elias was behind Pluribus by 40 mbb/game with a stand-
ard error of 22 mbb/game and a p-value of 0.033, and Chris
Ferguson was behind Pluribus by 25 mbb/game with a stand-
ard error of 20 mbb/game and a p-value of 0.107. Ferguson’s
lower loss rate may be a consequence of variance, skill,
and/or the fact that he used a more conservative strategy that
was biased toward folding in unfamiliar difficult situations.)

Because Pluribus’s strategy was determined entirely from
self-play without any human data, it also provides an outside
perspective on what optimal play should look like in multi-
player no-limit Texas hold’em. Pluribus confirms the
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conventional human wisdom that limping (calling the “big
blind” rather than folding or raising) is suboptimal for any
player except the “small blind” player who already has half
the big blind in the pot by the rules, and thus has to invest
only half as much as the other players to call. While Pluribus
initially experimented with limping when computing its blue-
print strategy offline through self play, it gradually discarded
this action from its strategy as self play continued. However,
Pluribus disagrees with the folk wisdom that “donk betting”
(starting a round by betting when one ended the previous
betting round with a call) is a mistake; Pluribus does this far
more often than professional humans do.

Conclusions

Forms of self play combined with forms of search has led to
a number of high-profile successes in perfect-information
two-player zero-sum games. However, most real-world stra-
tegic interactions involve hidden information and more than
two players. This makes the problem very different and sig-
nificantly more difficult both theoretically and practically.
Developing a superhuman AI for multiplayer poker was a
widely-recognized milestone in this area and the major re-
maining milestone in computer poker. In this paper we de-
scribed Pluribus, an Al capable of defeating elite human
professionals in six-player no-limit Texas hold’em poker, the
most commonly played poker format in the world. Pluribus’s
success shows that despite the lack of known strong theoret-
ical guarantees on performance in multiplayer games, there
are large-scale, complex multiplayer imperfect-information
settings in which a carefully constructed self-play-with-
search algorithm can produce superhuman strategies.
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Fig. 1. An example of the equilibrium selection problem. In the
Lemonade Stand Game, players simultaneously choose a point on a ring
and want to be as far away as possible from any other player. In every
Nash equilibrium, players are spaced uniformly around the ring. There are
infinitely many such Nash equilibria. However, if each player
independently chooses one Nash equilibrium to play, their joint strategy
is unlikely to be a Nash equilibrium. Left: Anillustration of three different
Nash equilibria in this game, distinguished by three different colors. Right:
Each player independently chooses one Nash equilibrium. Their joint
strategy is not a Nash equilibrium.
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Fig. 2. A game tree traversal via Monte Carlo CFR. In this figure player P is traversing the game tree. Left: A
game is simulated until an outcome is reached. Middle: For each P, decision point encountered in the simulation
in the Left figure, P explores each other action that P, could have taken and plays out a simulation to the end of
the game. P, then updatesits strategy to pick actions with higher payoff with higher probability. Right: P, explores
each other action that P could have taken at every new decision point encountered in the Middle figure, and P,
updates its strategy at those hypothetical decision points. This process repeats until no new P, decision points

are encountered, which in this case is after three steps but in general may be more. Our implementation of MCCFR
(described in the supplementary material) is equivalent but traverses the game tree in a depth-first manner. (The
percentages in the figure are for illustration purposes only and may not correspond to actual percentages that the
algorithm would compute.)
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Fig. 3. Perfect-information game search in Rock-Paper-Scissors.
Top: Asequential representation of Rock-Paper-Scissors in which Player
1 acts first but does not reveal her action to Player 2, who acts second.
The dashed lines between the Player 2 nodes signify that Player 2 does
not know which of those nodes he is in. The terminal values are shown
only for Player 1. Bottom: A depiction of the depth-limited subgame if
Player 1 conducts search (with a depth of one) using the same approach
as is used in perfect-information games. The approach assumes that
after each action Player 2 will play according to the Nash equilibrium

strategy of choosing Rock, Paper, and Scissors with é probability each.

This results in a value of zero for Player 1 regardless of her strategy.
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Fig. 4. Real-time search in Pluribus. The subgame shows just two players for simplicity. A dashed line between
nodes indicates that the player to act does not know which of the two nodes she is in. Left: The original imperfect-
information subgame. Right: The transformed subgame that is searched in real time to determine a player’s
strategy. An initial chance node reaches each root node according to the normalized probability that the node is
reached inthe previously-computed strategy profile (or according to the blueprint strategy profile if this is the first
time in the hand that real-time search is conducted). The leaf nodes are replaced by a sequence of new nodes in
which each player still in the hand chooses among & actions, with no player first observing what another player
chooses. For simplicity, k=2 in the figure. In Pluribus, k=4 . Each action in that sequence corresponds to a
selection of a continuation strategy for that player for the remainder of the game. This effectively leads to a
terminal node (whose value is estimated by rolling out the remainder of the game according to the list of
continuation strategies the players chose).
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Fig. 5. Performance of Pluribus in the 5 humans + 1 Al experiment.
Top: The lines show the win rate (solid line) plus or minus the standard
error (dashed lines). Bottom: The lines show the cumulative number of
chips won (solid line) plus or minus the standard error (dashed lines). The
relatively steady performance of Pluribus over the course of the 10,000-
hand experiment suggests the humans were unable to find exploitable
weaknesses in the bot.
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