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Poker has served as a challenge problem for the fields of ar-

tificial intelligence (AI) and game theory for decades (1). In 

fact, the foundational papers on game theory used poker to 

illustrate their concepts (2, 3). The reason for this choice is 

simple: no other popular recreational game captures the 

challenges of hidden information as effectively and as ele-

gantly as poker. Although poker has been useful as a bench-

mark for new AI and game-theoretic techniques, the 

challenge of hidden information in strategic settings is not 

limited to recreational games. The equilibrium concepts of 

von Neumann and Nash have been applied to many real-

world challenges such as auctions, cybersecurity, and pricing. 

The past two decades have witnessed rapid progress in the 

ability of AI systems to play increasingly complex forms of 

poker (4–6). However, all prior breakthroughs have been lim-

ited to settings involving only two players. Developing a su-

perhuman AI for multiplayer poker was the widely-

recognized main remaining milestone. In this paper we de-

scribe Pluribus, an AI capable of defeating elite human pro-

fessionals in six-player no-limit Texas hold’em poker, the 

most commonly played poker format in the world. 

 

Theoretical and practical challenges of multiplayer 

games 

AI systems have reached superhuman performance in games 

such as checkers (7), chess (8), two-player limit poker (4), Go 

(9), and two-player no-limit poker (6). All of these involve 

only two players and are zero-sum games (meaning that 

whatever one player wins, the other player loses). Every one 

of those superhuman AI systems was generated by attempt-

ing to approximate a Nash equilibrium strategy rather than 

by, for example, trying to detect and exploit weaknesses in 

the opponent. A Nash equilibrium is a list of strategies, one 

for each player, in which no player can improve by deviating 

to a different strategy. Nash equilibria have been proven to 

exist in all finite games, and many infinite games, though 

finding an equilibrium may be difficult. 

Two-player zero-sum games are a special class of games 

in which Nash equilibria also have an extremely useful addi-

tional property: any player who chooses to use a Nash equi-

librium is guaranteed to not lose in expectation no matter 

what the opponent does (as long as one side does not have an 

intrinsic advantage under the game rules, or the players al-

ternate sides). In other words, a Nash equilibrium strategy is 

unbeatable in two-player zero-sum games that satisfy the 

above criteria. For this reason, to “solve” a two-player zero-

sum game means to find an exact Nash equilibrium. For ex-

ample, the Nash equilibrium strategy for Rock-Paper-Scissors 

is to randomly pick Rock, Paper, or Scissors with equal prob-

ability. Against such a strategy, the best that an opponent can 

do in expectation is tie (10). In this simple case, playing the 

Nash equilibrium also guarantees that the player will not win 

in expectation. However, in more complex games even deter-

mining how to tie against a Nash equilibrium may be diffi-

cult; if the opponent ever chooses suboptimal actions, then 

playing the Nash equilibrium will indeed result in victory in 

expectation. 

In principle, playing the Nash equilibrium can be com-

bined with opponent exploitation by initially playing the 

equilibrium strategy and then over time shifting to a strategy 

that exploits the opponent’s observed weaknesses (for exam-

ple, by switching to always playing Paper against an oppo-

nent that always plays Rock) (11). However, except in certain 

restricted ways (12), shifting to an exploitative non-equilib-

rium strategy opens oneself up to exploitation because the 

opponent could also change strategies at any moment. Addi-

tionally, existing techniques for opponent exploitation re-

quire too many samples to be competitive with human ability 

outside of small games. Pluribus plays a fixed strategy that 

does not adapt to the observed tendencies of the opponents. 
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Although a Nash equilibrium strategy is guaranteed to ex-

ist in any finite game, efficient algorithms for finding one are 

only proven to exist for special classes of games, among which 

two-player zero-sum games are the most prominent. No pol-

ynomial-time algorithm is known for finding a Nash equilib-

rium in two-player non-zero-sum games, and the existence of 

one would have sweeping surprising implications in compu-

tational complexity theory (13, 14). Finding a Nash equilib-

rium in zero-sum games with three or more players is at least 

as hard (because a dummy player can be added to the two-

player game to make it a three-player zero-sum game). Even 

approximating a Nash equilibrium is hard (except in special 

cases) in theory (15) and in games with more than two play-

ers, even the best complete algorithm can only address games 

with a handful of possible strategies per player (16). Moreo-

ver, even if a Nash equilibrium could be computed efficiently 

in a game with more than two players, it is not clear that 

playing such an equilibrium strategy would be wise. If each 

player in such a game independently computes and plays a 

Nash equilibrium, the list of strategies that they play (one 

strategy per player) may not be a Nash equilibrium and play-

ers might have an incentive to deviate to a different strategy. 

One example of this is the Lemonade Stand Game (17), illus-

trated in Fig. 1, in which each player simultaneously picks a 

point on a ring and wants to be as far away as possible from 

any other player. The Nash equilibrium is for all players to be 

spaced uniformly along the ring, but there are infinitely many 

ways this can be accomplished and therefore infinitely many 

Nash equilibria. If each player independently computes one 

of those equilibria, the joint strategy is unlikely to result in 

all players being spaced uniformly along the ring. Two-player 

zero-sum games are a special case where even if the players 

independently compute and select Nash equilibria, the list of 

strategies is still a Nash equilibrium. 

The shortcomings of Nash equilibria outside of two-player 

zero-sum games, and the failure of any other game-theoretic 

solution concept to convincingly overcome them, have raised 

the question of what the right goal should even be in such 

games. In the case of six-player poker, we take the viewpoint 

that our goal should not be a specific game-theoretic solution 

concept, but rather to create an AI that empirically consist-

ently defeats human opponents, including elite human pro-

fessionals. 

The algorithms we used to construct Pluribus, discussed 

in the next two sections, are not guaranteed to converge to a 

Nash equilibrium outside of two-player zero-sum games. Nev-

ertheless, we observe that Pluribus plays a strong strategy in 

multiplayer poker that is capable of consistently defeating 

elite human professionals. This shows that even though the 

techniques do not have known strong theoretical guarantees 

on performance outside of the two-player zero-sum setting, 

they are nevertheless capable of producing superhuman 

strategies in a wider class of strategic settings. 

 

Description of Pluribus 

The core of Pluribus’s strategy was computed via self play, in 

which the AI plays against copies of itself, without any data 

of human or prior AI play used as input. The AI starts from 

scratch by playing randomly, and gradually improves as it de-

termines which actions, and which probability distribution 

over those actions, lead to better outcomes against earlier 

versions of its strategy. Forms of self play have previously 

been used to generate powerful AIs in two-player zero-sum 

games such as backgammon (18), Go (9, 19), Dota 2 (20), 

StarCraft 2 (21), and two-player poker (4–6), though the pre-

cise algorithms that were used have varied widely. Although 

it is easy to construct toy games with more than two players 

in which commonly-used self-play algorithms fail to converge 

to a meaningful solution (22), in practice self play has never-

theless been shown to do reasonably well in some games with 

more than two players (23). 

Pluribus’s self play produces a strategy for the entire game 

offline, which we refer to as the blueprint strategy. Then dur-

ing actual play against opponents, Pluribus improves upon 

the blueprint strategy by searching for a better strategy in 

real time for the situations it finds itself in during the game. 

In subsections below, we discuss both of those phases in de-

tail, but first we discuss abstraction, forms of which are used 

in both phases to make them scalable. 

 

Abstraction for large imperfect-information games 
There are far too many decision points in no-limit Texas 

hold’em to reason about individually. To reduce the complex-

ity of the game, we eliminate some actions from considera-

tion and also bucket similar decision points together in a 

process called abstraction (24, 25). After abstraction, the 

bucketed decision points are treated as identical. We use two 

kinds of abstraction in Pluribus: action abstraction and infor-

mation abstraction. 

Action abstraction reduces the number of different ac-

tions the AI needs to consider. No-limit Texas hold’em nor-

mally allows any whole-dollar bet between $100 and $10,000. 

However, in practice there is little difference between betting 

$200 and betting $201. To reduce the complexity of forming 

a strategy, Pluribus only considers a few different bet sizes at 

any given decision point. The exact number of bets it consid-

ers varies between one and 14 depending on the situation. 

Although Pluribus can limit itself to only betting one of a few 

different sizes between $100 and $10,000, when actually play-

ing no-limit poker, the opponents are not constrained to 

those few options. What happens if an opponent bets $150 

while Pluribus has only been trained to consider bets of $100 

or $200? Generally, Pluribus will rely on its search algorithm, 

described in a later section, to compute a response in real 
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time to such “off-tree” actions. 

The other form of abstraction we use in Pluribus is infor-

mation abstraction, in which decision points that are similar 

in terms of what information has been revealed (in poker, the 

player’s cards and revealed board cards) are bucketed to-

gether and treated identically (26–28). For example, a ten-

high straight and a nine-high straight are distinct hands, but 

are nevertheless strategically similar. Pluribus may bucket 

these hands together and treat them identically, thereby re-

ducing the number of distinct situations for which it needs to 

determine a strategy. Information abstraction drastically re-

duces the complexity of the game, but may wash away subtle 

differences that are important for superhuman performance. 

Therefore, during actual play against humans, Pluribus uses 

information abstraction only to reason about situations on 

future betting rounds, never the betting round it is actually 

in. Information abstraction is also applied during offline self 

play. 

 

Self play via improved Monte Carlo counterfactual re-
gret minimization 
The blueprint strategy in Pluribus was computed using a var-

iant of counterfactual regret minimization (CFR) (29). CFR is 

an iterative self-play algorithm in which the AI starts by play-

ing completely at random but gradually improves by learning 

to beat earlier versions of itself. Every competitive Texas 

hold’em AI for at least the past six years has computed its 

strategy using some variant of CFR (4–6, 23, 28, 30–34). We 

use a form of Monte Carlo CFR (MCCFR) that samples actions 

in the game tree rather than traversing the entire game tree 

on each iteration (33, 35–37). 

On each iteration of the algorithm, MCCFR designates one 

player as the traverser whose current strategy is updated on 

the iteration. At the start of the iteration, MCCFR simulates 

a hand of poker based on the current strategy of all players 

(which is initially completely random). Once the simulated 

hand is completed, the AI reviews each decision that was 

made by the traverser and investigates how much better or 

worse it would have done by choosing the other available ac-

tions instead. Next, the AI reviews each hypothetical decision 

that would have been made following those other available 

actions and investigates how much better it would have done 

by choosing the other available actions, and so on. This tra-

versal of the game tree is illustrated in Fig. 2. Exploring other 

hypothetical outcomes is possible because the AI knows each 

player’s strategy for the iteration, and can therefore simulate 

what would have happened had some other action been cho-

sen instead. This counterfactual reasoning is one of the fea-

tures that distinguishes CFR from other self-play algorithms 

that have been deployed in domains such as Go (9), Dota 2 

(20), and StarCraft 2 (21). 

The difference between what the traverser would have 

received for choosing an action versus what the traverser ac-

tually achieved (in expectation) on the iteration is added to 

the counterfactual regret for the action. Counterfactual regret 

represents how much the traverser regrets having not chosen 

that action in previous iterations. At the end of the iteration, 

the traverser’s strategy is updated so that actions with higher 

counterfactual regret are chosen with higher probability. 

For two-player zero-sum games, CFR guarantees that the 

average strategy played over all iterations converges to a 

Nash equilibrium, but convergence to a Nash equilibrium is 

not guaranteed outside of two-player zero-sum games. Nev-

ertheless, CFR guarantees in all finite games that all counter-

factual regrets grow sublinearly in the number of iterations. 

This, in turn, guarantees in the limit that the average perfor-

mance of CFR on each iteration that was played matches the 

average performance of the best single fixed strategy in hind-

sight. CFR is also proven to eliminate iteratively strictly dom-

inated actions in all finite games (23). 

Because the difference between counterfactual value and 

expected value is added to counterfactual regret rather than 

replacing it, the first iteration in which the agent played com-

pletely randomly (which is typically a very bad strategy) still 

influences the counterfactual regrets, and therefore the strat-

egy that is played, for iterations far into the future. In the 

vanilla form of CFR, the influence of this first iteration decays 

at a rate of 
1

T
, where T  is the number of iterations played. 

In order to more quickly decay the influence of these early 

“bad” iterations, Pluribus uses a recent form of CFR called 

Linear CFR (38) in early iterations. (We stop the discounting 

after that because the time cost of doing the multiplications 

with the discount factor is not worth the benefit later on.) 

Linear CFR assigns a weight of T  to the regret contributions 

of iteration T . Therefore, the influence of the first iteration 

decays at a rate of 
( )

1

1 2

1T

t
T Tt

=

=
+∑

. This leads to the strategy 

improving significantly more quickly in practice while still 

maintaining a near-identical worst-case bound on total re-

gret. To speed up the blueprint strategy computation even 

further, actions with extremely negative regret are not ex-

plored in 95% of iterations. 

The blueprint strategy for Pluribus was computed in 8 

days on a 64-core server for a total of 12,400 CPU core hours. 

It required less than 512 GB of memory. At current cloud com-

puting spot instance rates, this would cost about $144 to pro-

duce. This is in sharp contrast to all the other recent 

superhuman AI milestones for games, which used large num-

bers of servers and/or farms of GPUs. More memory and com-

putation would enable a finer-grained blueprint that would 

lead to better performance, but would also result in Pluribus 

using more memory or being slower during real-time search. 
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We set the size of the blueprint strategy abstraction to allow 

Pluribus to run during live play on a machine with no more 

than 128 GB of memory while storing a compressed form of 

the blueprint strategy in memory. 

 

Depth-limited search in imperfect-information games 
The blueprint strategy for the entire game is necessarily 

coarse-grained owing to the size and complexity of no-limit 

Texas hold’em. Pluribus only plays according to this blueprint 

strategy in the first betting round (of four), where the number 

of decision points is small enough that the blueprint strategy 

can afford to not use information abstraction and have a lot 

of actions in the action abstraction. After the first round (and 

even in the first round if an opponent chooses a bet size that 

is sufficiently different from the sizes in the blueprint action 

abstraction) Pluribus instead conducts real-time search to de-

termine a better, finer-grained strategy for the current situa-

tion it is in. For opponent bets on the first round that are 

slightly off the tree, Pluribus rounds the bet to a nearby on-

tree size (using the pseudoharmonic mapping (39)) and pro-

ceeds to play according to the blueprint as if the opponent 

had used the latter bet size. 

Real-time search has been necessary for achieving super-

human performance in many perfect-information games, in-

cluding backgammon (18), chess (8), and Go (9, 19). For 

example, when determining their next move, chess AIs com-

monly look some number of moves ahead until a leaf node is 

reached at the depth limit of the algorithm’s lookahead. An 

evaluation function then estimates the value of the board 

configuration at the leaf node if both players were to play a 

Nash equilibrium from that point forward. In principle, if an 

AI could accurately calculate the value of every leaf node (e.g., 

win, draw, or loss), this algorithm would choose the optimal 

next move. 

However, search as has been done in perfect-information 

games is fundamentally broken when applied to imperfect-

information games. For example, consider a sequential form 

of Rock-Paper-Scissors, illustrated in Fig. 3, in which Player 1 

acts first but does not reveal her action to Player 2, followed 

by Player 2 acting. If Player 1 were to conduct search that 

looks just one move ahead, every one of her actions would 

appear to lead to a leaf node with zero value. After all, if 

Player 2 plays the Nash equilibrium strategy of choosing each 

action with 
1

3
 probability, the value to Player 1 of choosing 

Rock is zero, as is the value of choosing Scissors. So Player 1’s 

search algorithm could choose to always play Rock because, 

given the values of the leaf nodes, this appears to be equally 

good as any other strategy. 

Indeed, if Player 2’s strategy were fixed to always playing 

the Nash equilibrium, always playing Rock would be an opti-

mal Player 1 strategy. However, in reality Player 2 could 

adjust to a strategy of always playing Paper. In that case, the 

value of always playing Rock would actually be 1− . 

This example illustrates that in imperfect-information 

subgames (the part of the game in which search is being con-

ducted) (40), leaf nodes do not have fixed values. Instead, 

their values depend on the strategy that the searcher chooses 

in the subgame (that is, the probabilities that the searcher 

assigns to his actions in the subgame). In principle, this could 

be addressed by having the value of a subgame leaf node be 

a function of the searcher’s strategy in the subgame, but this 

is impractical in large games. One alternative is to make the 

value of a leaf node conditional only on the belief distribution 

of both players at that point in the game. This was used to 

generate the two-player poker AI DeepStack (5). However, 

this option is extremely expensive because it requires one to 

solve huge numbers of subgames that are conditional on be-

liefs. It becomes even more expensive as the amount of hid-

den information or the number of players grows. The two-

player poker AI Libratus sidestepped this issue by only doing 

real-time search when the remaining game was short enough 

that the depth limit would extend to the end of the game (6). 

However, as the number of players grows, always solving to 

the end of the game also becomes computationally prohibi-

tive. 

Pluribus instead uses a modified form of an approach that 

we recently designed—previously only for two-player zero-

sum games (41)—in which the searcher explicitly considers 

that any or all players may shift to different strategies beyond 

the leaf nodes of a subgame. Specifically, rather than assum-

ing all players play according to a single fixed strategy beyond 

the leaf nodes (which results in the leaf nodes having a single 

fixed value) we instead assume that each player may choose 

between k  different strategies, specialized to each player, to 

play for the remainder of the game when a leaf node is 

reached. In the experiments in this paper, 4k = . One of the 

four continuation strategies we use in the experiments is the 

precomputed blueprint strategy, another is a modified form 

of the blueprint strategy in which the strategy is biased to-

ward folding, another is the blueprint strategy biased toward 

calling, and the final option is the blueprint strategy biased 

toward raising. This technique results in the searcher finding 

a strategy that is more balanced because choosing an unbal-

anced strategy (e.g., always playing Rock in Rock-Paper-Scis-

sors) would be punished by an opponent shifting to one of 

the other continuation strategies (e.g., always playing Paper). 

Another major challenge of search in imperfect-infor-

mation games is that a player’s optimal strategy for a partic-

ular situation depends on what the player’s strategy is for 

every situation the player could be in from the perspective of 

her opponents. For example, suppose the player is holding 

the best possible hand. Betting in this situation could be a 

good action. But if the player bets in this situation only when 
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holding the best possible hand, then the opponents would 

know to always fold in response. 

To cope with this, Pluribus keeps track of the probability 

it would have reached the current situation with each possi-

ble hand according to its strategy. Regardless of which hand 

Pluribus is actually holding, it will first calculate how it would 

act with every possible hand, being careful to balance its 

strategy across all the hands so as to remain unpredictable to 

the opponent. Once this balanced strategy across all hands is 

computed, Pluribus then executes an action for the hand it is 

actually holding. The structure of a depth-limited imperfect-

information subgame as used in Pluribus is shown in Fig. 4. 

Pluribus used one of two different forms of CFR to com-

pute a strategy in the subgame depending on the size of the 

subgame and the part of the game. If the subgame is rela-

tively large or it is early in the game, then Monte Carlo Linear 

CFR is used just as it was for the blueprint strategy computa-

tion. Otherwise, Pluribus uses an optimized vector-based 

form of Linear CFR (38) that samples only chance events 

(such as board cards) (42). 

When playing, Pluribus runs on two Intel Haswell E5-

2695 v3 CPUs and uses less than 128 GB of memory. For com-

parison, AlphaGo used 1,920 CPUs and 280 GPUs for real-

time search in its 2016 matches against top Go professional 

Lee Sedol (43), Deep Blue used 480 custom-designed chips in 

its 1997 matches against top chess professional Garry Kaspa-

rov (8), and Libratus used 100 CPUs in its 2017 matches 

against top professionals in two-player poker (6). The amount 

of time Pluribus takes to conduct search on a single subgame 

varies between 1 s and 33 s depending on the particular situ-

ation. On average, Pluribus plays at a rate of 20 s per hand 

when playing against copies of itself in six-player poker. This 

is roughly twice as fast as professional humans tend to play. 

 

Experimental evaluation 

We evaluated Pluribus against elite human professionals in 

two formats: five human professionals playing with one copy 

of Pluribus (5H+1AI), and one human professional playing 

with five copies of Pluribus (1H+5AI). Each human partici-

pant has won more than $1 million playing poker profession-

ally. Performance was measured using the standard metric in 

this field of AI, milli big blinds per game (mbb/game). This 

measures how many big blinds (the initial money the second 

player must put into the pot) were won on average per thou-

sand hands of poker. In all experiments, we used the vari-

ance-reduction technique AIVAT (44) to reduce the luck 

factor in the game (45) and measured statistical significance 

at the 95% confidence level using a one-tailed t test to deter-

mine whether Pluribus is profitable. 

The human participants in the 5H+1AI experiment were 

Jimmy Chou, Seth Davies, Michael Gagliano, Anthony Gregg, 

Dong Kim, Jason Les, Linus Loeliger, Daniel McAulay, Greg 

Merson, Nicholas Petrangelo, Sean Ruane, Trevor Savage, 

and Jacob Toole. In this experiment, 10,000 hands of poker 

were played over 12 days. Each day, five volunteers from the 

pool of professionals were selected to participate based on 

availability. The participants were not told who else was par-

ticipating in the experiment. Instead, each participant was 

assigned an alias that remained constant throughout the ex-

periment. The alias of each player in each game was known, 

so that players could track the tendencies of each player 

throughout the experiment. $50,000 was divided among the 

human participants based on their performance to incentiv-

ize them to play their best. Each player was guaranteed a 

minimum of $0.40 per hand for participating, but this could 

increase to as much as $1.60 per hand based on performance. 

After applying AIVAT, Pluribus won an average of 48 

mbb/game (with a standard error of 25 mbb/game). This is 

considered a very high win rate in six-player no-limit Texas 

hold’em poker, especially against a collection of elite profes-

sionals, and implies that Pluribus is stronger than the human 

opponents. Pluribus was determined to be profitable with a 

p-value of 0.028. The performance of Pluribus over the course 

of the experiment is shown in Fig. 5. Due to the extremely 

high variance in no-limit poker and the impossibility of ap-

plying AIVAT to human players, the win rate of individual 

human participants could not be determined with statistical 

significance. 

The human participants in the 1H+5AI experiment were 

Chris “Jesus” Ferguson and Darren Elias. Each of the two hu-

mans separately played 5,000 hands of poker against five cop-

ies of Pluribus. Pluribus does not adapt its strategy to its 

opponents and does not know the identity of its opponents, 

so the copies of Pluribus could not intentionally collude 

against the human player. To incentivize strong play, we of-

fered each human $2,000 for participation and an additional 

$2,000 if he performed better against the AI than the other 

human player did. The players did not know who the other 

participant was and were not told how the other human was 

performing during the experiment. For the 10,000 hands 

played, Pluribus beat the humans by an average of 32 

mbb/game (with a standard error of 15 mbb/game). Pluribus 

was determined to be profitable with a p-value of 0.014. (Dar-

ren Elias was behind Pluribus by 40 mbb/game with a stand-

ard error of 22 mbb/game and a p-value of 0.033, and Chris 

Ferguson was behind Pluribus by 25 mbb/game with a stand-

ard error of 20 mbb/game and a p-value of 0.107. Ferguson’s 

lower loss rate may be a consequence of variance, skill, 

and/or the fact that he used a more conservative strategy that 

was biased toward folding in unfamiliar difficult situations.) 

Because Pluribus’s strategy was determined entirely from 

self-play without any human data, it also provides an outside 

perspective on what optimal play should look like in multi-

player no-limit Texas hold’em. Pluribus confirms the 
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conventional human wisdom that limping (calling the “big 

blind” rather than folding or raising) is suboptimal for any 

player except the “small blind” player who already has half 

the big blind in the pot by the rules, and thus has to invest 

only half as much as the other players to call. While Pluribus 

initially experimented with limping when computing its blue-

print strategy offline through self play, it gradually discarded 

this action from its strategy as self play continued. However, 

Pluribus disagrees with the folk wisdom that “donk betting” 

(starting a round by betting when one ended the previous 

betting round with a call) is a mistake; Pluribus does this far 

more often than professional humans do. 

 

Conclusions 

Forms of self play combined with forms of search has led to 

a number of high-profile successes in perfect-information 

two-player zero-sum games. However, most real-world stra-

tegic interactions involve hidden information and more than 

two players. This makes the problem very different and sig-

nificantly more difficult both theoretically and practically. 

Developing a superhuman AI for multiplayer poker was a 

widely-recognized milestone in this area and the major re-

maining milestone in computer poker. In this paper we de-

scribed Pluribus, an AI capable of defeating elite human 

professionals in six-player no-limit Texas hold’em poker, the 

most commonly played poker format in the world. Pluribus’s 

success shows that despite the lack of known strong theoret-

ical guarantees on performance in multiplayer games, there 

are large-scale, complex multiplayer imperfect-information 

settings in which a carefully constructed self-play-with-

search algorithm can produce superhuman strategies. 
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