
Cite as: N. Brown and T. Sandholm,

Science 10.1126/science.aay2400 (2019).

 RESEARCH ARTICLES

First release: 11 July 2019 www.sciencemag.org (Page numbers not final at time of first release) 1

Poker has served as a challenge problem for the fields of ar-

tificial intelligence (AI) and game theory for decades (1). In

fact, the foundational papers on game theory used poker to

illustrate their concepts (2, 3). The reason for this choice is

simple: no other popular recreational game captures the

challenges of hidden information as effectively and as ele-

gantly as poker. Although poker has been useful as a bench-

mark for new AI and game-theoretic techniques, the

challenge of hidden information in strategic settings is not

limited to recreational games. The equilibrium concepts of

von Neumann and Nash have been applied to many real-

world challenges such as auctions, cybersecurity, and pricing.

The past two decades have witnessed rapid progress in the

ability of AI systems to play increasingly complex forms of

poker (4–6). However, all prior breakthroughs have been lim-

ited to settings involving only two players. Developing a su-

perhuman AI for multiplayer poker was the widely-

recognized main remaining milestone. In this paper we de-

scribe Pluribus, an AI capable of defeating elite human pro-

fessionals in six-player no-limit Texas hold’em poker, the

most commonly played poker format in the world.

Theoretical and practical challenges of multiplayer

games

AI systems have reached superhuman performance in games

such as checkers (7), chess (8), two-player limit poker (4), Go

(9), and two-player no-limit poker (6). All of these involve

only two players and are zero-sum games (meaning that

whatever one player wins, the other player loses). Every one

of those superhuman AI systems was generated by attempt-

ing to approximate a Nash equilibrium strategy rather than

by, for example, trying to detect and exploit weaknesses in

the opponent. A Nash equilibrium is a list of strategies, one

for each player, in which no player can improve by deviating

to a different strategy. Nash equilibria have been proven to

exist in all finite games, and many infinite games, though

finding an equilibrium may be difficult.

Two-player zero-sum games are a special class of games

in which Nash equilibria also have an extremely useful addi-

tional property: any player who chooses to use a Nash equi-

librium is guaranteed to not lose in expectation no matter

what the opponent does (as long as one side does not have an

intrinsic advantage under the game rules, or the players al-

ternate sides). In other words, a Nash equilibrium strategy is

unbeatable in two-player zero-sum games that satisfy the

above criteria. For this reason, to “solve” a two-player zero-

sum game means to find an exact Nash equilibrium. For ex-

ample, the Nash equilibrium strategy for Rock-Paper-Scissors

is to randomly pick Rock, Paper, or Scissors with equal prob-

ability. Against such a strategy, the best that an opponent can

do in expectation is tie (10). In this simple case, playing the

Nash equilibrium also guarantees that the player will not win

in expectation. However, in more complex games even deter-

mining how to tie against a Nash equilibrium may be diffi-

cult; if the opponent ever chooses suboptimal actions, then

playing the Nash equilibrium will indeed result in victory in

expectation.

In principle, playing the Nash equilibrium can be com-

bined with opponent exploitation by initially playing the

equilibrium strategy and then over time shifting to a strategy

that exploits the opponent’s observed weaknesses (for exam-

ple, by switching to always playing Paper against an oppo-

nent that always plays Rock) (11). However, except in certain

restricted ways (12), shifting to an exploitative non-equilib-

rium strategy opens oneself up to exploitation because the

opponent could also change strategies at any moment. Addi-

tionally, existing techniques for opponent exploitation re-

quire too many samples to be competitive with human ability

outside of small games. Pluribus plays a fixed strategy that

does not adapt to the observed tendencies of the opponents.

Superhuman AI for multiplayer poker

Noam Brown1,2* and Tuomas Sandholm1,3,4,5*

1Computer Science Department, Carnegie Mellon University Pittsburgh, PA 15213, USA. 2Facebook AI Research New York, NY 10003, USA. 3Strategic Machine, Inc.

Pittsburgh, PA 15213, USA. 4Strategy Robot, Inc. Pittsburgh, PA 15213, USA. 5Optimized Markets, Inc. Pittsburgh, PA 15213, USA.

*Corresponding author. E-mail: noamb@cs.cmu.edu (N.B.); sandholm@cs.cmu.edu (T.S.)

In recent years there have been great strides in artificial intelligence (AI), with games often serving as

challenge problems, benchmarks, and milestones for progress. Poker has served for decades as such a
challenge problem. Past successes in such benchmarks, including poker, have been limited to two-player
games. However, poker in particular is traditionally played with more than two players. Multiplayer games
present fundamental additional issues beyond those in two-player games, and multiplayer poker is a
recognized AI milestone. In this paper we present Pluribus, an AI that we show is stronger than top human
professionals in six-player no-limit Texas hold’em poker, the most popular form of poker played by
humans.

o
n
 J

u
ly

 1
7
, 2

0
1
9

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 11 July 2019 www.sciencemag.org (Page numbers not final at time of first release) 2

Although a Nash equilibrium strategy is guaranteed to ex-

ist in any finite game, efficient algorithms for finding one are

only proven to exist for special classes of games, among which

two-player zero-sum games are the most prominent. No pol-

ynomial-time algorithm is known for finding a Nash equilib-

rium in two-player non-zero-sum games, and the existence of

one would have sweeping surprising implications in compu-

tational complexity theory (13, 14). Finding a Nash equilib-

rium in zero-sum games with three or more players is at least

as hard (because a dummy player can be added to the two-

player game to make it a three-player zero-sum game). Even

approximating a Nash equilibrium is hard (except in special

cases) in theory (15) and in games with more than two play-

ers, even the best complete algorithm can only address games

with a handful of possible strategies per player (16). Moreo-

ver, even if a Nash equilibrium could be computed efficiently

in a game with more than two players, it is not clear that

playing such an equilibrium strategy would be wise. If each

player in such a game independently computes and plays a

Nash equilibrium, the list of strategies that they play (one

strategy per player) may not be a Nash equilibrium and play-

ers might have an incentive to deviate to a different strategy.

One example of this is the Lemonade Stand Game (17), illus-

trated in Fig. 1, in which each player simultaneously picks a

point on a ring and wants to be as far away as possible from

any other player. The Nash equilibrium is for all players to be

spaced uniformly along the ring, but there are infinitely many

ways this can be accomplished and therefore infinitely many

Nash equilibria. If each player independently computes one

of those equilibria, the joint strategy is unlikely to result in

all players being spaced uniformly along the ring. Two-player

zero-sum games are a special case where even if the players

independently compute and select Nash equilibria, the list of

strategies is still a Nash equilibrium.

The shortcomings of Nash equilibria outside of two-player

zero-sum games, and the failure of any other game-theoretic

solution concept to convincingly overcome them, have raised

the question of what the right goal should even be in such

games. In the case of six-player poker, we take the viewpoint

that our goal should not be a specific game-theoretic solution

concept, but rather to create an AI that empirically consist-

ently defeats human opponents, including elite human pro-

fessionals.

The algorithms we used to construct Pluribus, discussed

in the next two sections, are not guaranteed to converge to a

Nash equilibrium outside of two-player zero-sum games. Nev-

ertheless, we observe that Pluribus plays a strong strategy in

multiplayer poker that is capable of consistently defeating

elite human professionals. This shows that even though the

techniques do not have known strong theoretical guarantees

on performance outside of the two-player zero-sum setting,

they are nevertheless capable of producing superhuman

strategies in a wider class of strategic settings.

Description of Pluribus

The core of Pluribus’s strategy was computed via self play, in

which the AI plays against copies of itself, without any data

of human or prior AI play used as input. The AI starts from

scratch by playing randomly, and gradually improves as it de-

termines which actions, and which probability distribution

over those actions, lead to better outcomes against earlier

versions of its strategy. Forms of self play have previously

been used to generate powerful AIs in two-player zero-sum

games such as backgammon (18), Go (9, 19), Dota 2 (20),

StarCraft 2 (21), and two-player poker (4–6), though the pre-

cise algorithms that were used have varied widely. Although

it is easy to construct toy games with more than two players

in which commonly-used self-play algorithms fail to converge

to a meaningful solution (22), in practice self play has never-

theless been shown to do reasonably well in some games with

more than two players (23).

Pluribus’s self play produces a strategy for the entire game

offline, which we refer to as the blueprint strategy. Then dur-

ing actual play against opponents, Pluribus improves upon

the blueprint strategy by searching for a better strategy in

real time for the situations it finds itself in during the game.

In subsections below, we discuss both of those phases in de-

tail, but first we discuss abstraction, forms of which are used

in both phases to make them scalable.

Abstraction for large imperfect-information games
There are far too many decision points in no-limit Texas

hold’em to reason about individually. To reduce the complex-

ity of the game, we eliminate some actions from considera-

tion and also bucket similar decision points together in a

process called abstraction (24, 25). After abstraction, the

bucketed decision points are treated as identical. We use two

kinds of abstraction in Pluribus: action abstraction and infor-

mation abstraction.

Action abstraction reduces the number of different ac-

tions the AI needs to consider. No-limit Texas hold’em nor-

mally allows any whole-dollar bet between $100 and $10,000.

However, in practice there is little difference between betting

$200 and betting $201. To reduce the complexity of forming

a strategy, Pluribus only considers a few different bet sizes at

any given decision point. The exact number of bets it consid-

ers varies between one and 14 depending on the situation.

Although Pluribus can limit itself to only betting one of a few

different sizes between $100 and $10,000, when actually play-

ing no-limit poker, the opponents are not constrained to

those few options. What happens if an opponent bets $150

while Pluribus has only been trained to consider bets of $100

or $200? Generally, Pluribus will rely on its search algorithm,

described in a later section, to compute a response in real

o
n
 J

u
ly

 1
7
, 2

0
1
9

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 11 July 2019 www.sciencemag.org (Page numbers not final at time of first release) 3

time to such “off-tree” actions.

The other form of abstraction we use in Pluribus is infor-

mation abstraction, in which decision points that are similar

in terms of what information has been revealed (in poker, the

player’s cards and revealed board cards) are bucketed to-

gether and treated identically (26–28). For example, a ten-

high straight and a nine-high straight are distinct hands, but

are nevertheless strategically similar. Pluribus may bucket

these hands together and treat them identically, thereby re-

ducing the number of distinct situations for which it needs to

determine a strategy. Information abstraction drastically re-

duces the complexity of the game, but may wash away subtle

differences that are important for superhuman performance.

Therefore, during actual play against humans, Pluribus uses

information abstraction only to reason about situations on

future betting rounds, never the betting round it is actually

in. Information abstraction is also applied during offline self

play.

Self play via improved Monte Carlo counterfactual re-
gret minimization
The blueprint strategy in Pluribus was computed using a var-

iant of counterfactual regret minimization (CFR) (29). CFR is

an iterative self-play algorithm in which the AI starts by play-

ing completely at random but gradually improves by learning

to beat earlier versions of itself. Every competitive Texas

hold’em AI for at least the past six years has computed its

strategy using some variant of CFR (4–6, 23, 28, 30–34). We

use a form of Monte Carlo CFR (MCCFR) that samples actions

in the game tree rather than traversing the entire game tree

on each iteration (33, 35–37).

On each iteration of the algorithm, MCCFR designates one

player as the traverser whose current strategy is updated on

the iteration. At the start of the iteration, MCCFR simulates

a hand of poker based on the current strategy of all players

(which is initially completely random). Once the simulated

hand is completed, the AI reviews each decision that was

made by the traverser and investigates how much better or

worse it would have done by choosing the other available ac-

tions instead. Next, the AI reviews each hypothetical decision

that would have been made following those other available

actions and investigates how much better it would have done

by choosing the other available actions, and so on. This tra-

versal of the game tree is illustrated in Fig. 2. Exploring other

hypothetical outcomes is possible because the AI knows each

player’s strategy for the iteration, and can therefore simulate

what would have happened had some other action been cho-

sen instead. This counterfactual reasoning is one of the fea-

tures that distinguishes CFR from other self-play algorithms

that have been deployed in domains such as Go (9), Dota 2

(20), and StarCraft 2 (21).

The difference between what the traverser would have

received for choosing an action versus what the traverser ac-

tually achieved (in expectation) on the iteration is added to

the counterfactual regret for the action. Counterfactual regret

represents how much the traverser regrets having not chosen

that action in previous iterations. At the end of the iteration,

the traverser’s strategy is updated so that actions with higher

counterfactual regret are chosen with higher probability.

For two-player zero-sum games, CFR guarantees that the

average strategy played over all iterations converges to a

Nash equilibrium, but convergence to a Nash equilibrium is

not guaranteed outside of two-player zero-sum games. Nev-

ertheless, CFR guarantees in all finite games that all counter-

factual regrets grow sublinearly in the number of iterations.

This, in turn, guarantees in the limit that the average perfor-

mance of CFR on each iteration that was played matches the

average performance of the best single fixed strategy in hind-

sight. CFR is also proven to eliminate iteratively strictly dom-

inated actions in all finite games (23).

Because the difference between counterfactual value and

expected value is added to counterfactual regret rather than

replacing it, the first iteration in which the agent played com-

pletely randomly (which is typically a very bad strategy) still

influences the counterfactual regrets, and therefore the strat-

egy that is played, for iterations far into the future. In the

vanilla form of CFR, the influence of this first iteration decays

at a rate of
1

T
, where T is the number of iterations played.

In order to more quickly decay the influence of these early

“bad” iterations, Pluribus uses a recent form of CFR called

Linear CFR (38) in early iterations. (We stop the discounting

after that because the time cost of doing the multiplications

with the discount factor is not worth the benefit later on.)

Linear CFR assigns a weight of T to the regret contributions

of iteration T . Therefore, the influence of the first iteration

decays at a rate of
()

1

1 2

1T

t
T Tt

=

=
+∑

. This leads to the strategy

improving significantly more quickly in practice while still

maintaining a near-identical worst-case bound on total re-

gret. To speed up the blueprint strategy computation even

further, actions with extremely negative regret are not ex-

plored in 95% of iterations.

The blueprint strategy for Pluribus was computed in 8

days on a 64-core server for a total of 12,400 CPU core hours.

It required less than 512 GB of memory. At current cloud com-

puting spot instance rates, this would cost about $144 to pro-

duce. This is in sharp contrast to all the other recent

superhuman AI milestones for games, which used large num-

bers of servers and/or farms of GPUs. More memory and com-

putation would enable a finer-grained blueprint that would

lead to better performance, but would also result in Pluribus

using more memory or being slower during real-time search.

o
n
 J

u
ly

 1
7
, 2

0
1
9

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 11 July 2019 www.sciencemag.org (Page numbers not final at time of first release) 4

We set the size of the blueprint strategy abstraction to allow

Pluribus to run during live play on a machine with no more

than 128 GB of memory while storing a compressed form of

the blueprint strategy in memory.

Depth-limited search in imperfect-information games
The blueprint strategy for the entire game is necessarily

coarse-grained owing to the size and complexity of no-limit

Texas hold’em. Pluribus only plays according to this blueprint

strategy in the first betting round (of four), where the number

of decision points is small enough that the blueprint strategy

can afford to not use information abstraction and have a lot

of actions in the action abstraction. After the first round (and

even in the first round if an opponent chooses a bet size that

is sufficiently different from the sizes in the blueprint action

abstraction) Pluribus instead conducts real-time search to de-

termine a better, finer-grained strategy for the current situa-

tion it is in. For opponent bets on the first round that are

slightly off the tree, Pluribus rounds the bet to a nearby on-

tree size (using the pseudoharmonic mapping (39)) and pro-

ceeds to play according to the blueprint as if the opponent

had used the latter bet size.

Real-time search has been necessary for achieving super-

human performance in many perfect-information games, in-

cluding backgammon (18), chess (8), and Go (9, 19). For

example, when determining their next move, chess AIs com-

monly look some number of moves ahead until a leaf node is

reached at the depth limit of the algorithm’s lookahead. An

evaluation function then estimates the value of the board

configuration at the leaf node if both players were to play a

Nash equilibrium from that point forward. In principle, if an

AI could accurately calculate the value of every leaf node (e.g.,

win, draw, or loss), this algorithm would choose the optimal

next move.

However, search as has been done in perfect-information

games is fundamentally broken when applied to imperfect-

information games. For example, consider a sequential form

of Rock-Paper-Scissors, illustrated in Fig. 3, in which Player 1

acts first but does not reveal her action to Player 2, followed

by Player 2 acting. If Player 1 were to conduct search that

looks just one move ahead, every one of her actions would

appear to lead to a leaf node with zero value. After all, if

Player 2 plays the Nash equilibrium strategy of choosing each

action with
1

3
 probability, the value to Player 1 of choosing

Rock is zero, as is the value of choosing Scissors. So Player 1’s

search algorithm could choose to always play Rock because,

given the values of the leaf nodes, this appears to be equally

good as any other strategy.

Indeed, if Player 2’s strategy were fixed to always playing

the Nash equilibrium, always playing Rock would be an opti-

mal Player 1 strategy. However, in reality Player 2 could

adjust to a strategy of always playing Paper. In that case, the

value of always playing Rock would actually be 1− .

This example illustrates that in imperfect-information

subgames (the part of the game in which search is being con-

ducted) (40), leaf nodes do not have fixed values. Instead,

their values depend on the strategy that the searcher chooses

in the subgame (that is, the probabilities that the searcher

assigns to his actions in the subgame). In principle, this could

be addressed by having the value of a subgame leaf node be

a function of the searcher’s strategy in the subgame, but this

is impractical in large games. One alternative is to make the

value of a leaf node conditional only on the belief distribution

of both players at that point in the game. This was used to

generate the two-player poker AI DeepStack (5). However,

this option is extremely expensive because it requires one to

solve huge numbers of subgames that are conditional on be-

liefs. It becomes even more expensive as the amount of hid-

den information or the number of players grows. The two-

player poker AI Libratus sidestepped this issue by only doing

real-time search when the remaining game was short enough

that the depth limit would extend to the end of the game (6).

However, as the number of players grows, always solving to

the end of the game also becomes computationally prohibi-

tive.

Pluribus instead uses a modified form of an approach that

we recently designed—previously only for two-player zero-

sum games (41)—in which the searcher explicitly considers

that any or all players may shift to different strategies beyond

the leaf nodes of a subgame. Specifically, rather than assum-

ing all players play according to a single fixed strategy beyond

the leaf nodes (which results in the leaf nodes having a single

fixed value) we instead assume that each player may choose

between k different strategies, specialized to each player, to

play for the remainder of the game when a leaf node is

reached. In the experiments in this paper, 4k = . One of the

four continuation strategies we use in the experiments is the

precomputed blueprint strategy, another is a modified form

of the blueprint strategy in which the strategy is biased to-

ward folding, another is the blueprint strategy biased toward

calling, and the final option is the blueprint strategy biased

toward raising. This technique results in the searcher finding

a strategy that is more balanced because choosing an unbal-

anced strategy (e.g., always playing Rock in Rock-Paper-Scis-

sors) would be punished by an opponent shifting to one of

the other continuation strategies (e.g., always playing Paper).

Another major challenge of search in imperfect-infor-

mation games is that a player’s optimal strategy for a partic-

ular situation depends on what the player’s strategy is for

every situation the player could be in from the perspective of

her opponents. For example, suppose the player is holding

the best possible hand. Betting in this situation could be a

good action. But if the player bets in this situation only when

o
n
 J

u
ly

 1
7
, 2

0
1
9

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 11 July 2019 www.sciencemag.org (Page numbers not final at time of first release) 5

holding the best possible hand, then the opponents would

know to always fold in response.

To cope with this, Pluribus keeps track of the probability

it would have reached the current situation with each possi-

ble hand according to its strategy. Regardless of which hand

Pluribus is actually holding, it will first calculate how it would

act with every possible hand, being careful to balance its

strategy across all the hands so as to remain unpredictable to

the opponent. Once this balanced strategy across all hands is

computed, Pluribus then executes an action for the hand it is

actually holding. The structure of a depth-limited imperfect-

information subgame as used in Pluribus is shown in Fig. 4.

Pluribus used one of two different forms of CFR to com-

pute a strategy in the subgame depending on the size of the

subgame and the part of the game. If the subgame is rela-

tively large or it is early in the game, then Monte Carlo Linear

CFR is used just as it was for the blueprint strategy computa-

tion. Otherwise, Pluribus uses an optimized vector-based

form of Linear CFR (38) that samples only chance events

(such as board cards) (42).

When playing, Pluribus runs on two Intel Haswell E5-

2695 v3 CPUs and uses less than 128 GB of memory. For com-

parison, AlphaGo used 1,920 CPUs and 280 GPUs for real-

time search in its 2016 matches against top Go professional

Lee Sedol (43), Deep Blue used 480 custom-designed chips in

its 1997 matches against top chess professional Garry Kaspa-

rov (8), and Libratus used 100 CPUs in its 2017 matches

against top professionals in two-player poker (6). The amount

of time Pluribus takes to conduct search on a single subgame

varies between 1 s and 33 s depending on the particular situ-

ation. On average, Pluribus plays at a rate of 20 s per hand

when playing against copies of itself in six-player poker. This

is roughly twice as fast as professional humans tend to play.

Experimental evaluation

We evaluated Pluribus against elite human professionals in

two formats: five human professionals playing with one copy

of Pluribus (5H+1AI), and one human professional playing

with five copies of Pluribus (1H+5AI). Each human partici-

pant has won more than $1 million playing poker profession-

ally. Performance was measured using the standard metric in

this field of AI, milli big blinds per game (mbb/game). This

measures how many big blinds (the initial money the second

player must put into the pot) were won on average per thou-

sand hands of poker. In all experiments, we used the vari-

ance-reduction technique AIVAT (44) to reduce the luck

factor in the game (45) and measured statistical significance

at the 95% confidence level using a one-tailed t test to deter-

mine whether Pluribus is profitable.

The human participants in the 5H+1AI experiment were

Jimmy Chou, Seth Davies, Michael Gagliano, Anthony Gregg,

Dong Kim, Jason Les, Linus Loeliger, Daniel McAulay, Greg

Merson, Nicholas Petrangelo, Sean Ruane, Trevor Savage,

and Jacob Toole. In this experiment, 10,000 hands of poker

were played over 12 days. Each day, five volunteers from the

pool of professionals were selected to participate based on

availability. The participants were not told who else was par-

ticipating in the experiment. Instead, each participant was

assigned an alias that remained constant throughout the ex-

periment. The alias of each player in each game was known,

so that players could track the tendencies of each player

throughout the experiment. $50,000 was divided among the

human participants based on their performance to incentiv-

ize them to play their best. Each player was guaranteed a

minimum of $0.40 per hand for participating, but this could

increase to as much as $1.60 per hand based on performance.

After applying AIVAT, Pluribus won an average of 48

mbb/game (with a standard error of 25 mbb/game). This is

considered a very high win rate in six-player no-limit Texas

hold’em poker, especially against a collection of elite profes-

sionals, and implies that Pluribus is stronger than the human

opponents. Pluribus was determined to be profitable with a

p-value of 0.028. The performance of Pluribus over the course

of the experiment is shown in Fig. 5. Due to the extremely

high variance in no-limit poker and the impossibility of ap-

plying AIVAT to human players, the win rate of individual

human participants could not be determined with statistical

significance.

The human participants in the 1H+5AI experiment were

Chris “Jesus” Ferguson and Darren Elias. Each of the two hu-

mans separately played 5,000 hands of poker against five cop-

ies of Pluribus. Pluribus does not adapt its strategy to its

opponents and does not know the identity of its opponents,

so the copies of Pluribus could not intentionally collude

against the human player. To incentivize strong play, we of-

fered each human $2,000 for participation and an additional

$2,000 if he performed better against the AI than the other

human player did. The players did not know who the other

participant was and were not told how the other human was

performing during the experiment. For the 10,000 hands

played, Pluribus beat the humans by an average of 32

mbb/game (with a standard error of 15 mbb/game). Pluribus

was determined to be profitable with a p-value of 0.014. (Dar-

ren Elias was behind Pluribus by 40 mbb/game with a stand-

ard error of 22 mbb/game and a p-value of 0.033, and Chris

Ferguson was behind Pluribus by 25 mbb/game with a stand-

ard error of 20 mbb/game and a p-value of 0.107. Ferguson’s

lower loss rate may be a consequence of variance, skill,

and/or the fact that he used a more conservative strategy that

was biased toward folding in unfamiliar difficult situations.)

Because Pluribus’s strategy was determined entirely from

self-play without any human data, it also provides an outside

perspective on what optimal play should look like in multi-

player no-limit Texas hold’em. Pluribus confirms the

o
n
 J

u
ly

 1
7
, 2

0
1
9

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 11 July 2019 www.sciencemag.org (Page numbers not final at time of first release) 6

conventional human wisdom that limping (calling the “big

blind” rather than folding or raising) is suboptimal for any

player except the “small blind” player who already has half

the big blind in the pot by the rules, and thus has to invest

only half as much as the other players to call. While Pluribus

initially experimented with limping when computing its blue-

print strategy offline through self play, it gradually discarded

this action from its strategy as self play continued. However,

Pluribus disagrees with the folk wisdom that “donk betting”

(starting a round by betting when one ended the previous

betting round with a call) is a mistake; Pluribus does this far

more often than professional humans do.

Conclusions

Forms of self play combined with forms of search has led to

a number of high-profile successes in perfect-information

two-player zero-sum games. However, most real-world stra-

tegic interactions involve hidden information and more than

two players. This makes the problem very different and sig-

nificantly more difficult both theoretically and practically.

Developing a superhuman AI for multiplayer poker was a

widely-recognized milestone in this area and the major re-

maining milestone in computer poker. In this paper we de-

scribed Pluribus, an AI capable of defeating elite human

professionals in six-player no-limit Texas hold’em poker, the

most commonly played poker format in the world. Pluribus’s

success shows that despite the lack of known strong theoret-

ical guarantees on performance in multiplayer games, there

are large-scale, complex multiplayer imperfect-information

settings in which a carefully constructed self-play-with-

search algorithm can produce superhuman strategies.

REFERENCES AND NOTES

1. D. Billings, A. Davidson, J. Schaeffer, D. Szafron, The challenge of poker. Artif. Intell.

134, 201–240 (2002). doi:10.1016/S0004-3702(01)00130-8

2. J. von Neumann, Zur Theorie der Gesellschaftsspiele. Math. Ann. 100, 295–320

(1928). doi:10.1007/BF01448847

3. J. Nash, Non-Cooperative Games. Ann. Math. 54, 286 (1951). doi:10.2307/1969529

4. M. Bowling, N. Burch, M. Johanson, O. Tammelin, Computer science. Heads-up limit

hold’em poker is solved. Science 347, 145–149 (2015).

doi:10.1126/science.1259433 Medline

5. M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh, M.

Johanson, M. Bowling, DeepStack: Expert-level artificial intelligence in heads-up

no-limit poker. Science 356, 508–513 (2017). doi:10.1126/science.aam6960

Medline

6. N. Brown, T. Sandholm, Superhuman AI for heads-up no-limit poker: Libratus beats

top professionals. Science 359, 418–424 (2018). doi:10.1126/science.aao1733

Medline

7. J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in Checkers

(Springer-Verlag, New York, 1997).

8. M. Campbell, A. J. Hoane Jr., F.-H. Hsu, Deep Blue. Artif. Intell. 134, 57–83 (2002).

doi:10.1016/S0004-3702(01)00129-1

9. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.

Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D.

Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K.

Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of Go with deep neural

networks and tree search. Nature 529, 484–489 (2016).

doi:10.1038/nature16961 Medline

10. Recently, in the real-time strategy games Dota 2 (20) and StarCraft 2 (21), AIs have

beaten top humans, but as humans have gained more experience against the AIs,

humans have learned to beat them. This may be because for those two-player

zero-sum games, the AIs were generated by techniques not guaranteed to

converge to a Nash equilibrium, so they do not have the unbeatability property

that Nash equilibruim strategies have in two-player zero-sum games. (Dota 2

involves two teams of five players each. However, because the players on the

same team have the same objective and are not limited in their communication,

the game is two-player zero-sum from an AI and game-theoretic perspective).

11. S. Ganzfried, T. Sandholm, in International Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS) (2011), pp. 533–540.

12. S. Ganzfried, T. Sandholm, ACM Trans. Econ. Comp. (TEAC) 3, 8 (2015). Best of

EC-12 special issue.

13. C. Daskalakis, P. W. Goldberg, C. H. Papadimitriou, The Complexity of Computing

a Nash Equilibrium. SIAM J. Comput. 39, 195–259 (2009).

doi:10.1137/070699652

14. X. Chen, X. Deng, S.-H. Teng, Settling the complexity of computing two-player

Nash equilibria. J. Assoc. Comput. Mach. 56, 14 (2009).

doi:10.1145/1516512.1516516

15. A. Rubinstein, Inapproximability of Nash Equilibrium. SIAM J. Comput. 47, 917–959

(2018). doi:10.1137/15M1039274

16. K. Berg, T. Sandholm, AAAI Conference on Artificial Intelligence (AAAI) (2017).

17. M. A. Zinkevich, M. Bowling, M. Wunder, The lemonade stand game competition:

Solving unsolvable puzzles. ACM SIGecom Exchanges 10, 35–38 (2011).

doi:10.1145/1978721.1978730

18. G. Tesauro, Temporal difference learning and TD-Gammon. Commun. ACM 38,

58–68 (1995). doi:10.1145/203330.203343

19. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.

Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den

Driessche, T. Graepel, D. Hassabis, Mastering the game of Go without human

knowledge. Nature 550, 354–359 (2017). doi:10.1038/nature24270 Medline

20. A. I. Open, A. I. Open, Five, https://blog.openai.com/openai-five/ (2018).

21. O. Vinyals et al., AlphaStar: Mastering the Real-Time Strategy Game StarCraft II,

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-

starcraft-ii/ (2019).

22. L. S. Shapley, Advances in Game Theory, M. Drescher, L. S. Shapley, A. W. Tucker,

Eds. (Princeton Univ. Press, 1964).

23. R. Gibson, Regret minimization in games and the development of champion

multiplayer computer poker-playing agents, Ph.D. thesis, University of Alberta

(2014).

24. T. Sandholm, AAAI Conference on Artificial Intelligence (AAAI) (2015), pp. 4127–

4131. Senior Member Track.

25. T. Sandholm, Computer science. Solving imperfect-information games. Science

347, 122–123 (2015). doi:10.1126/science.aaa4614 Medline

26. M. Johanson, N. Burch, R. Valenzano, M. Bowling, in International Conference on

Autonomous Agents and Multiagent Systems (AAMAS) (2013), pp. 271–278.

27. S. Ganzfried, T. Sandholm, in AAAI Conference on Artificial Intelligence (AAAI)

(2014), pp. 682–690.

28. N. Brown, S. Ganzfried, T. Sandholm, in International Conference on Autonomous

Agents and Multiagent Systems (AAMAS) (2015), pp. 7–15.

29. M. Zinkevich, M. Johanson, M. H. Bowling, C. Piccione, in Neural Information

Processing Systems (NeurIPS) (2007), pp. 1729–1736.

30. E. G. Jackson, AAAI Workshop on Computer Poker and Imperfect Information

(2013).

31. M. B. Johanson, Robust strategies and counter-strategies: from superhuman to

optimal play, Ph.D. thesis, University of Alberta (2016).

32. E. G. Jackson, AAAI Workshop on Computer Poker and Imperfect Information

(2016).

33. N. Brown, T. Sandholm, in International Joint Conference on Artificial Intelligence

(IJCAI) (2016), pp. 4238–4239.

34. E. G. Jackson, AAAI Workshop on Computer Poker and Imperfect Information

Games (2017).

35. M. Lanctot, K. Waugh, M. Zinkevich, in M. Bowling, Neural Information Processing

Systems (NeurIPS) (2009), pp. 1078–1086.

36. M. Johanson, N. Bard, M. Lanctot, R. Gibson, M. Bowling, in International

o
n
 J

u
ly

 1
7
, 2

0
1
9

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 11 July 2019 www.sciencemag.org (Page numbers not final at time of first release) 7

Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2012), pp.

837–846.

37. R. Gibson, M. Lanctot, N. Burch, D. Szafron, M. Bowling, in AAAI Conference on

Artificial Intelligence (AAAI) (2012), pp. 1355–1361.

38. N. Brown, T. Sandholm, AAAI Conference on Artificial Intelligence (AAAI) (2019).

39. S. Ganzfried, T. Sandholm, in International Joint Conference on Artificial

Intelligence (IJCAI) (2013), pp. 120–128.

40. Here we use term subgame the way it is usually used in AI. In game theory that

word is used differently by requiring a subgame to start with a node where the

player whose turn it is to move has no uncertainty about state—in particular, no

uncertainty about the opponents’ private information.

41. N. Brown, T. Sandholm, B. Amos, in Neural Information Processing Systems

(NeurIPS) (2018), pp. 7663–7674.

42. M. Johanson, K. Waugh, M. Bowling, M. Zinkevich, in International Joint Conference

on Artificial Intelligence (IJCAI) (2011), pp. 258–265.

43. E. P. DeBenedictis, Rebooting Computers as Learning Machines. Computer 49,

84–87 (2016). doi:10.1109/MC.2016.156

44. N. Burch, M. Schmid, M. Moravcik, D. Morill, M. Bowling, in AAAI Conference on

Artificial Intelligence (AAAI) (2018), pp. 949–956.

45. Due to the presence of AIVAT and because the players did not know each others’

scores during the experiment, there was no incentive for the players to play a risk-

averse or risk-seeking strategy in order to outperform the other human.

46. A. Gilpin, T. Sandholm, Lossless abstraction of imperfect information games. J.

Assoc. Comput. Mach. 54, 25 (2007). doi:10.1145/1284320.1284324

47. K. Waugh, AAAI Workshop on Computer Poker and Imperfect Information (2013).

48. A. Gilpin, T. Sandholm, T. B. Sørensen, in Proceedings of the AAAI Conference on

Artificial Intelligence (AAAI) (2007), pp. 50–57.

49. S. Ganzfried, T. Sandholm, in International Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS) (2015), pp. 37–45.

50. N. Burch, M. Johanson, M. Bowling, in AAAI Conference on Artificial Intelligence

(AAAI) (2014), pp. 602–608.

51. M. Moravcik, M. Schmid, K. Ha, M. Hladik, S. Gaukrodger, in AAAI Conference on

Artificial Intelligence (AAAI) (2016), pp. 572–578.

52. N. Brown, T. Sandholm, in Neural Information Processing Systems (NeurIPS)

(2017), pp. 689-699.

ACKNOWLEDGMENTS

We thank Pratik Ringshia for building a GUI and thank Jai Chintagunta, Ben Clayman,

Alex Du, Carl Gao, Sam Gross, Thomas Liao, Christian Kroer, Joe Langas, Adam

Lerer, Vivek Raj, and Steve Wu for playing against Pluribus as early testing.

Funding: This material is based on Carnegie Mellon University research

supported by the National Science Foundation under grants IIS-1718457, IIS-

1617590, IIS-1901403, and CCF-1733556, and the ARO under award W911NF-17-

1-0082, as well as XSEDE computing resources provided by the Pittsburgh

Supercomputing Center. Facebook funded the player payments. Author

contributions: N.B. and T.S. designed the algorithms. N.B. wrote the code. N.B.

and T.S. designed the experiments and wrote the paper. Competing interests:

The authors have ownership interest in Strategic Machine, Inc. and Strategy

Robot, Inc. which have exclusively licensed prior game-solving code from Prof.

Sandholm’s Carnegie Mellon University laboratory, which constitutes the bulk of

the code in Pluribus. Data and materials availability: The data presented in this

paper are shown in the main text and supplementary materials. Because poker is

played commercially, the risk associated with releasing the code outweighs the

benefits. To aid reproducibility, we have included the pseudocode for the major

components of our program in the supplementary materials.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/cgi/content/full/science.aay2400/DC1

Supplementary Text

Table S1

References (46–52)

Data File S1

31 May 2019; accepted 2 July 2019

Published online 11 July 2019

10.1126/science.aay2400

o
n
 J

u
ly

 1
7
, 2

0
1
9

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

Superhuman AI for multiplayer poker

Noam Brown and Tuomas Sandholm

published online July 11, 2019

ARTICLE TOOLS http://science.sciencemag.org/content/early/2019/07/10/science.aay2400

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2019/07/10/science.aay2400.DC1

REFERENCES

http://science.sciencemag.org/content/early/2019/07/10/science.aay2400#BIBL
This article cites 21 articles, 5 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the

registered trademark of AAAS.
 is aScienceAmerican Association for the Advancement of Science. No claim to original U.S. Government Works. The title

Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience

o
n
 J

u
ly

 1
7
, 2

0
1
9

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

	Superhuman AI for multiplayer poker

