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1. Introduction

Consider a group of friends deciding which movie to watch together. Furthermore, the movie can be watched in some-
one’s home by renting it or at any of a number of movie theaters. Each of these choices incurs a cost. Since individual
preferences are different and sometimes conflicting, the final choice may not make everybody maximally satisfied. This may
cause some of the agents to misreport their preferences or drop out of the plan. To alleviate this problem, one can think
of monetary transfers so friends who get their more-preferred choice pay more than friends that get their less-preferred
choice. Desirable properties of such a choice and payment rule are that (1) the total side payments (transfers among the
friends) should sum to zero, so there is no surplus or deficit, and (2) the choice is efficient, that is, the movie that is
selected maximizes the sum of all the friends’ valuations. Since the valuations are private information of the friends, an effi-
cient decision requires the valuations to be revealed truthfully. This simple example problem is representative of many joint
decision-making problems that often involve monetary transfers. Consider, for example, a group of firms sharing time on a
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jointly-owned supercomputer, city dwellers deciding on the location and choice of a public project (e.g., stadium, subway,
or library), mobile service providers dividing spectrum among themselves, or a student body deciding which musician or
art performer to invite to entertain at their annual function. These problems all call for efficient joint decision making and
involve—or could involve depending on the application—monetary transfers.

This is a ubiquitous problem in practice and a classic problem in the academic literature. We study the standard model
of this problem where the agents’ utilities are quasi-linear: each agent’s utility is her valuation for the selected alternative
(e.g., the choice of movie) minus the money she has to pay. The classic goal is to select an efficient alternative, that is, the
one that maximizes the sum of the agents’ valuations (also known as social welfare).

In the setting where valuations are private information, a mechanism needs to be designed that incentivizes the agents
to reveal their valuations truthfully (by the revelation principle, there is no loss in objective from restricting attention to
such direct-revelation mechanisms). We will study the problem of designing strategyproof mechanisms, that is, mechanisms
where each agent is best off revealing the truth regardless of what other agents reveal.

Even though there are mechanisms that select efficient alternatives in a truthful manner (e.g., the Vickrey-Clarke-Groves
(VCG) mechanism Vickrey, 1961; Clarke, 1971; Groves, 1973), the transfers by the individuals do not sum to zero (in public
goods settings, the VCG mechanisms leads to too much money being collected from the agents). The execution of such a
mechanism needs an external mediator who consumes the surplus (or may need to pay the deficit), to keep the mechanism
truthful and efficient—a phenomenon known as ‘money burning’ in literature. In our movie selection example, this implies
that we need a third party who will collect the additional money paid by the individuals, which is highly impractical in
many settings. This has attracted significant criticism of the VCG mechanism (Rothkopf, 2007). Ideally, one would like to
design strategyproof mechanisms that are efficient and budget balanced, that is, they do not have any surplus or deficit.
Green and Laffont (1979) proved a seminal impossibility for this setting: in the general quasi-linear domain, strategyproof,
efficient mechanisms cannot be budget balanced.

In this paper, we primarily focus on the problem of minimizing inefficiency subject to budget balance in the general
setting of quasi-linear utilities. This is because, in the applications of interest to this paper (e.g., movie selection), budget
balance is more critical than efficiency. However, we show that for a large set of agents, the per-agent inefficiency vanishes.
We also show that for deterministic settings, optimizing the sum (or any convex combination) of efficiency and budget
balance—which seems to be the most sensible objective—does not provide any asymptotic benefit over maximizing efficiency
subject to budget balance. The main contributions of this paper are summarized in the following subsection.

1.1. Contributions of this paper

In this paper, we assume that the agents’ valuations are picked from a bounded open interval. In Section 3, we char-
acterize the structure of truthful, budget balanced, deterministic mechanisms in this restricted domain, and show that any
such mechanism must have a sink agent,! whose reported valuation function does not impact the choice of alternative and
she gets the payments made by the other agents (Theorem 1). This result strengthens the Green and Laffont impossibility
by showing that even in a restricted domain of bounded valuations, there does not exist a mechanism that is strategyproof,
budget balanced, and takes every agent’s valuation into consideration—a corollary of which is that it cannot be efficient.
With the help of this characterization, we find the optimal deterministic mechanism that minimizes the inefficiency. This
provides a tight lower bound on the inefficiency of deterministic, strategyproof, budget-balanced mechanisms. By ineffi-
ciency of a mechanism in this paper, we mean the worst-case inefficiency over all valuation profiles. We provide a precise
rate of decay (%) of the inefficiency with the increase in the number of agents (Theorem 2). This implies that the inefficiency
vanishes for large number of agents.

To contrast this mechanism with the class of mechanisms that minimize budget imbalance subject to efficiency, in
Section 4 we consider the joint objective of efficiency-budget spillover, which is a convex combination of inefficiency and
budget imbalance. We prove that if the valuations are unbounded, no deterministic, strategyproof mechanism can reduce
this spillover at a rate faster than % (Theorem 3). In other words, in the deterministic setting, minimizing the joint objective
does not give any asymptotic advantage over the solution of minimizing inefficiency with the constraint that the mechanism
is budget balanced.

We investigate the advantages of randomized mechanisms in Section 5. We first consider the class of generalized sink
mechanisms. These mechanisms have, for every possible valuation profile, a probability distribution over the agents that
determines each agent’s chance of becoming the sink. This class of mechanisms is budget balanced by design. We show
examples where mechanisms from this class are not strategyproof (Algorithm 2), and then isolate an interesting subclass
whose mechanisms are strategyproof, the modified irrelevant sink mechanisms (Algorithm 3). We show that no mechanism
from this class can perform better than the deterministic mechanisms if the number of alternatives is greater than the
number of agents (Theorem 4). To understand how inefficiency (weakly) increases with the number of alternatives, we
consider the extreme case of two alternatives and compare the performances of different mechanisms. We show that a

1 Mechanisms using this idea have been presented with different names in the literature. The original paper by Green and Laffont (1979) refers to this
kind of agents as a sample of the population. Later Gary-Bobo and Jaaidane (2000) formalized the randomized version of this mechanism which is known as
polling mechanism. Faltings (2004) refers to this as an excluded coalition (when there are multiple such agents) and Moulin (2009) mentions this as residual
claimants. However, we use the term ‘sink’ for brevity and convenience, and our paper considers a different setup and optimization objective.
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naive uniform random sink mechanism and the modified irrelevant sink mechanism (Algorithm 3) perform equally well
(Theorem 5) and reduce the inefficiency by a constant factor of 2 from that of the deterministic mechanisms. However,
the optimal, strategyproof, budget-balanced, randomized mechanism performs better than these mechanisms. Since the
structure of strategyproof randomized mechanisms for general quasi-linear utilities is unknown,? we take a computational
optimization-based approach to find the best mechanism for the special case of two agents. This approach is known in the
literature as automated mechanism design (Conitzer and Sandholm, 2002). For an overview, see Sandholm (2003). We prove
that for a discrete valuation space with 3 levels, the optimal inefficiency is reduced by a factor of 7 (Theorem 7) from that
of deterministic mechanisms. However, when the number of levels increases—thereby making the lower bound tighter to
the actual open-interval problem—the improvement factor reduces to less than 5 (Fig. 1). This is a significant improvement
over the class of randomized sink mechanisms, which only improve over the best deterministic mechanism by a factor of 2.

We present experiments using real data from two applications. They show that in practice the inefficiency is significantly
smaller than the worst case bounds (Section 6). We conclude the paper in Section 7 and present future research directions.
For a cleaner presentation, we defer most of the proofs to the appendix.

1.2. Relationship to the literature

The Green-Laffont impossibility result motivated the research direction of designing efficient mechanisms that are min-
imally budget imbalanced. The approach is to redistribute the surplus money in a way that satisfies truthfulness of the
mechanism (Bailey, 1997; Cavallo, 2006). The worst case optimal and optimal in expectation guarantees have been given for
this class of mechanisms in restricted settings (Guo and Conitzer, 2008; Moulin, 2009; Guo and Conitzer, 2009). The perfor-
mance of this class of redistribution mechanisms has been evaluated in interesting special domains such as allocating single
or multiple (identical or heterogeneous) objects (Gujar and Narahari, 2011). Also, mechanisms have been developed and
analyzed that are budget balanced (or no deficit) and minimize the inefficiency in special settings (Massé et al., 2015; Guo
and Conitzer, 2014; Mishra and Sharma, 2018). Characterization of strategyproof budget-balanced mechanisms in the setting
of cost-sharing is explored by Moulin and Shenker (2001) and its quantitative guarantees are presented by Roughgarden and
Sundararajan (2009).

If the distribution of the agents’ valuations is known and we assume common knowledge among the agents over those
priors, the strategyproofness requirement can be weakened to Bayesian incentive compatibility. In that weaker framework,
mechanisms can extract full expected efficiency and achieve budget balance (d’Aspremont and Gérard-Varet, 1979; Arrow,
1979). But these mechanisms need the knowledge of the priors over the valuations.

The general quasi-linear setting is important since there are settings, e.g., public goods, where the agents can have
arbitrary valuations over the alternatives and the impossibility of Green and Laffont still holds. Therefore, in the gen-
eral quasi-linear setting, for mechanisms without priors, it is an important open question to characterize the class of
strategyproof budget-balanced mechanisms, to find such mechanisms that minimize inefficiency, and to find strategyproof
mechanisms that minimize the sum (or other convex combination) of inefficiency and budget imbalance. This paper ad-
dresses this important question in the general quasi-linear setting, for both deterministic and randomized settings. Our
approach is also prior-free—the strategyproofness guarantees consider the worst-case scenarios. We show that the answers
are asymptotically positive: even in such a general setup, the Green-Laffont impossibility is not too restrictive when the
number of agents is large, and our mechanisms seem to work well on real-world datasets.

2. Model and definitions

We denote the set of agents by N ={1,2,...,n} and the set of alternatives by A ={ai,as, ..., an}. We assume that each

agent’s valuation is drawn from an open interval (—%, %) C R, that is, the valuation of agent i is a mapping v;: A —

(—%, %), Vi e N and is a private information. Denote the set of all such valuations of agent i as V; and the set of valuation
profiles by V = Xx;cn V.

A mechanism is a tuple of two functions (f, p), where f is called the social choice function (SCF) that selects the allocation
and p = (p1, p2, ..., pn) is the vector of payments, p; : V — R, Vi € N. The utility of agent i for an alternative a and valuation
profile v = (v;, v_;) is given by the quasi-linear function: v;(a) — p;(vi, v_;). For deterministic mechanisms, f:V — A is a
deterministic mapping, while for randomized mechanisms, the allocation function f is a lottery over the alternatives, that
is, f:V — AA. With a slight abuse of notation, we denote v;(f(vi,v_;)) = Eqvf,; v_yVvi(@ = f(vi,v_;) - v; to be the
expected valuation of agent i for a randomized mechanism. The following definitions are standard in the mechanism design
literature.

Definition 1 (Strategyproofness). A mechanism (f, p) is strategyproof if for all v= (vj,v_j) eV,

Vi(f (vi, v=i)) — pi(vi, v—i) = vi(f(vi, V=) — pi(vi,v—i), VVvieV;ieN.

2 For randomized mechanisms, results involving special domains are known, e.g., facility location (Thang, 2010; Procaccia and Tennenholtz, 2009; Feldman
and Wilf, 2011), auctions (Dobzinski et al., 2006), kidney exchange (Ashlagi et al., 2013), and most of these mechanisms aim for specific objectives.
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Definition 2 (Efficiency). An allocation f is efficient if it maximizes social welfare, that is, f(v) € argmaxscq Y jen Vi(@),
YveV.

Definition 3 (Budget balance). A payment function p; : V — R,i € N is budget balanced if > ;_y pi(v) =0, Vv e V.

In addition, in parts of this paper we will consider mechanisms that are oblivious to the alternatives—a property known
as neutrality. To define this, we consider a permutation 7 : A — A of the alternatives. Therefore, 7 over a randomized
mechanism implies that the probability masses over the alternatives are permuted according to 7r. We will overload the
notation of 7 to also denote a permutation of a valuation profile where alternatives are permuted according to 7.> We
illustrate this with the following example.

Example 1. Suppose A ={a,b,c}, N={1,2,3},and w(a) =b, w(b) =c,m(c) =a.

V= Vi V3 V3 T(v)= V] vy v
a 1 2 3 a 7 8 9
b 4 5 6 b 1 2 3
c 7 8 9 c 4 5 6

Definition 4 (Neutrality). A mechanism (f, p) is neutral if for every permutation of the alternatives 7t (where 7 (v) # v) we
have

w(f(v))=f(m(v)) and pi@@)) =pi(v), YveV,VieN.

Note that the condition 7 (v) # v is necessary for the definition. To see this, consider a valuation profile v such that the
values of every agent are identical for alternatives a and b (i.e., rows corresponding to a and b are identical in Example 1),
and 7 be such that 7 (a) = b, w(b) =a, w(c) = c, which yields (v) = v. A social choice function f that gives f(v) =a
should continue to give f((v)) =a and therefore this permutation must be excluded as mentioned in the definition of
neutrality.

Moreover, note that an efficient social choice function is neutral and the Green-Laffont result implicitly assumes this
property.

The most important class of allocation functions in the context of deterministic mechanisms are affine maximizers, defined
as follows.

Definition 5 (Affine maximizers). An allocation function f is an affine maximizer if there exist real numbers w; > 0,i € N, not
all zeros, and a function k : A — R such that f(v) € argmax,cg (ZieN wivi(a) + lc(a)).

As we will explain in the body of this paper, we will focus on neutral affine maximizers (Mishra and Sen, 2012), where
the function « is zero.

f(v) € argmax Z wivi(a) neutral affine maximizer (1)
acA "
ieN

The following property of the mechanism ensures that two different payment functions of an agent, say i, that implement
the same social choice function differ from each other by a function that does not depend on the valuation of agent i.*

Definition 6 (Revenue equivalence). An allocation f satisfies revenue equivalence if for any two payment rules p and p’ that
make f strategyproof, there exist functions h; : V_; — R, such that

pi(vi, v_i) = pj(vi, v_i) + hi(v_j), Vvi € Vi,Vv_j € V_;, Vi€ N.
The metrics of inefficiency we consider in this paper are defined as follows.

Definition 7 (Sample inefficiency). The sample inefficiency for a deterministic mechanism (f, p) is:

() = ﬁ sup [Tea;ieZvia) - Zw(f(v))] . (2)

ieN

3 This follows the convention in social choice literature (see, e.g., Myerson, 2013).
4 This definition is a generalization of auction revenue equivalence and is commonly used in the social choice literature (see, e.g., Heydenreich et al.,
2009).



S. Nath, T. Sandholm / Games and Economic Behavior 113 (2019) 673-693 677

The metric is adapted to expected sample inefficiency for randomized mechanisms:

1
' (f) = oy SR 1 Ero) max} _vi(@) = Y vi(fv) [ (3)

ieN ieN

The majority of this paper is devoted to finding strategyproof and budget balanced mechanisms (f, p) that minimize the
sample inefficiency.
Note that this metric is different in principle from another commonly used metric of inefficiency in the literature, which

is the worst-case ratio of the social welfare of the mechanism and the maximum social welfare: inf,cy %
The first difference is that we need the valuations of the agents to be non-negative in order to define this metric. This
requirement may be a little unrealistic in public project selection settings as a project can be a ‘good’ (positive valued)
or a ‘bad’ (negative valued). To see the second difference, consider the following example.” Let A = {aj,az}, vi(a;) =
M/2 —€,vq(az) =0, and v;(a;) =0, vi(ay) = € /i, Vi > 2. The welfare of the mechanism is arbitrarily small when agent 1 is
a sink (whose valuation is ignored while maximizing the welfare - defined in the next section) and € is small, leading this
metric to be arbitrarily close to zero. However, our metric on this instance will return an inefficiency of 1/2n. Hence, the
sample inefficiency metric is able to measure the inefficiency with a better resolution when it is caused by a mechanism
that ignores the valuations of a constant number of agents.

We are now ready to start presenting our results. We begin with deterministic mechanisms that are strategyproof and
budget balanced.

3. Deterministic, strategyproof, budget-balanced mechanisms

Before presenting the main result of this section, we formally define a class of mechanisms we call sink mechanisms.
A sink mechanism has one or more sink agents, given by the set S C N, picked a priori, whose valuations are not used
when computing the allocation (i.e., f(v) = f(v_s)) and the sink agents do not pay anything and together they receive the
payments made by the other agents. The advantage of a sink mechanism is that it is strategyproof if it is strategyproof for
the agents other than the sink agents and the surplus is divided among the sink agents in some reasonable manner, and sink
mechanisms are budget balanced by design. An example of a sink mechanism is where S = {is} (only one sink agent) and
f(v_i,) chooses an alternative that would be efficient had agent i; not exist, that is, f(v_;) = argmax,cx Ziers} vi(a).
The Clarke (1971) payment rule can be applied here to make the mechanism strategyproof for the rest of the agents—that
is, for agents other than is, p;(v_;,) = MaXqea Zje,\,\{is,“ vij(a) — Zje,\,\ﬁs,“ vi(f(v_i)), Vie N\ {is}. Paying agent is the
‘leftover’ money (that is, p;,(v_i) = — Zje,\,\{,-s} pj(v_i;)) makes the mechanism budget balanced. Our first result establishes
that the existence of a sink agent is not only sufficient but also necessary for deterministic mechanisms.

Theorem 1. Let |A| > 3. Any deterministic, strategyproof, budget-balanced, neutral mechanism (f, p) in the domain V has at least
one sink agent.®

The proof involves two steps.

1. We leverage the fact that a mechanism that satisfies the stated axioms must necessarily be a neutral affine maximizer
(Equation (1)) and has a specific structure for payments. The characterization of the payment structure comes from
revenue equivalence.

2. The core of the proof then lies in showing that for such payment functions, it is impossible to have no sink agents
(identified as agents that have zero weights, w; = 0, in the affine maximizer). This is shown in a contrapositive manner—
assuming that there is no sink agent, we construct valuation profiles that lead to a contradiction to budget balance.

The complete proof is given in the appendix.

Our next goal is to find the mechanism in this class that gives the lowest sample inefficiency (Equation (2)). In the proof
of the next theorem (presented in the appendix) we show that this is achieved when there is exactly one sink and the
neutral affine maximizer weights are equal for all agents other agents. This, in turn, yields the following lower bound on
inefficiency.

Theorem 2. Let |A| > 3. For every deterministic, strategyproof, budget-balanced, neutral mechanism (f, p) over V, r,’)” H= % This
bound is tight.

5 We are grateful to an anonymous referee to raise this point and providing the example.

6 Green and Laffont’s impossibility result holds for efficient mechanisms, and all efficient mechanisms are neutral. However, the neutrality of an efficient
rule is up to tie-breaking, and Green-Laffont applies no matter how the tie is broken. Similarly, our result also holds irrespective of how the tie is broken.
Therefore, this theorem covers and generalizes that result since having at least one sink agent implies that the outcome cannot be efficient.
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The lower bound of inefficiency is achieved by a mechanism that uses a single sink agent and the alternative is cho-
sen to be the efficient one without the sink. As discussed before, the Clarke payment makes this SCF implementable in
dominant strategies. Observe that, the payment of every non-sink agent i, given by p;(v_;) = MaXgea ZjeN\{,-S‘,-} vij(a) —
ZjeN\{,-SJ-} v;j(f(v_i)), is non-negative since the first term on the RHS is no less than the second by definition. Hence, in
this mechanism, every non-sink agent pays a non-negative amount of money, which is collected and transferred to the sink.
So, we have the following observation.

Observation 1. In the one-sink mechanism with Clarke payment for the non-sink agents, the sink agent always receives a non-negative
transfer of money.

This fact guarantees that the sink never needs to subsidize the rest of the agents. However, this does not guarantee
individual rationality of the players. For example, the payment to the sink may not always be sufficient to offset the negative
value incurred by the sink agent due to the choice of alternative that did not take her valuation into account.

4. Jointly minimizing budget imbalance and inefficiency

In the previous section, we considered strategyproof, budget-balanced mechanisms that are minimally inefficient. We
achieved a sample inefficiency lower bound of % Could one do better by, instead of requiring budget balance and minimizing
inefficiency, relaxing budget balance by allowing money burning, and then minimizing the inefficiency from the allocation plus the in-
efficiency caused by money burning (or required subsidy from outside the mechanism)? This would seem like the sensible objective
for minimizing overall waste.

In this section, we consider the joint problem of minimizing inefficiency and budget imbalance in the setting of de-
terministic mechanisms. We consider a convex combination of these two quantities since in the quasi-linear domain both
of them contribute additively in the agents’ utilities and social welfare. We assume that the combination proportions are
normative constants with which the planner associates importance to the two factors of inefficiency and budget balance.
Therefore, the coefficients of the convex combination are independent of the number of agents. We show that for un-
bounded valuations, i.e., when the valuation bound M is large, considering this joint problem does not yield a better than
1/n rate of decay of the efficiency-budget spillover defined as follows.

N ] n n
pn(f.p):= lim nn SUP [A-TT(F )+ =2 - T3P, v)]. (4)

Where T}(f, v) = (maxaea Y ey Vi(@) — Y ien Vi(f (V) and TH(p, v) = |>;cy Pi(v)|. For A =1, that is, when budget im-
balance is not a concern, one can use the VCG mechanism to get p,(f,p) = 0. Similarly, for A =0, a sink mechanism will
give pn(f,p) =0. So, the interesting cases are when A € (0, 1), and for this we have a solution that decays as 1/n. In this
section, we will assume that 4,0 < A <1 is exogenous. Our goal is to find a strategyproof and neutral mechanism (f, p)
that minimizes the objective p,. We have shown in Section 3 that T{(f, v) can at most be a constant when T} (p, v) is
zero for every v. Hence, for any improvement in the efficiency-budget spillover metric, that is, for o, (f,p) = o(rn(f)),
it is necessary that the term sup,cy [A- T} (f,v)+ (1 —2) - T5(p,v)] be o(1). Since both TY(f,v) and Tj(p,v) are non-
negative, it is necessary that the factor T} (p,v) = o(1) for every v € V. Our next result shows that it is impossible to
have T} (p,v) =0(1), Vv e V & limy_, o supycy T5 (P, v) = 0. Hence, for deterministic mechanisms with unbounded valu-
ations, the bound on inefficiency with no budget imbalance (presented in Section 3) is asymptotically optimal for this joint
optimization problem as well.”

Theorem 3 (Unimprovability). Let |A| > 3. For every deterministic, strategyproof, and neutral mechanism (f, p) over V and for every
A e (0,1), pu(f,p) =2 (%) This bound is tight. For A = 0, a sink mechanism, and for . = 1, the VCG mechanism, achieves zero
spillover.

Note that this result ensures optimality of the one-sink mechanism only in an asymptotic sense. It shows that if we
aimed to minimize money-burning instead of inefficiency, that would give the same rate of decay in the spillover factor.
However, the question of finding a mechanism that yields a better reduction in absolute spillover remains to be investigated.

5. Randomized, strategyproof, budget-balanced mechanisms

In Section 3, we saw that the best sample inefficiency achieved by a deterministic budget balanced mechanism is % In
this section, we discuss how the inefficiency can be reduced by considering randomized mechanisms.

An intuitive approach is to consider a mechanism where each agent is picked as a sink with probability %

7 It is easy to see that the conclusions of Theorems 1 and 2 hold even under the assumption of large M.
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Algorithm 1 Generalized sink mechanisms, G.

1: Input: a valuation profile v e V

2: A generic mechanism in this class is characterized by a probability distribution over the agents N (which may depend on the valuation profile),
g:V—> AN

3: The mechanism randomly picks one agent i in N with probability g;(v)

4: Treat agent i as the sink

Algorithm 2 Irrelevant sink mechanism (not strategyproof).

1: Input: a valuation profile v e V

2: for agent i in N do

3: Define: a*(v_;) = argmax,¢ Zj#i vj(a)

4 if Zj#i vi(@*(v_j) — Zj#i vj(@)>M forallae A\ {a*(v_;)} then
5 Call i an irrelevant agent

6: if irrelevant agent is found then
7

8

9

Arbitrarily pick one of them as a sink with probability 1
: else
Pick an agent i with probability % and treat as sink

Definition 8 (Naive randomized sink). A naive randomized sink (NRS) mechanism picks every agent as a sink w.p. % and takes
the efficient allocation without that agent. The payments of the non-sink agents are VCG payments without the sink. The
surplus is transferred to the sink.

Clearly, this mechanism is strategyproof, budget balanced, and neutral by design. In addition, since this is a randomized
version of the deterministic sink mechanism, this also has the property of non-negative payment to the sink - as given
by Observation 1. One can anticipate that this may not yield the best achievable inefficiency bound. Unlike deterministic
mechanisms, very little is known about the structure of randomized strategyproof mechanisms in the general quasi-linear
setting. Furthermore, we consider mechanisms that are budget-balanced in addition. Hence, even though we can obtain
an upper bound on the expected sample inefficiency (r,’)” (f)) by considering specific mechanisms like the NRS mechanism
described above, the problem of providing a lower bound (i.e., no randomized mechanism can achieve a smaller r,Q” (f) than
a given number), seems elusive in the general quasi-linear setting.

Therefore, in the following two subsections, we consider two approaches, respectively. First, we show lower bounds in a
special class of strategyproof, budget-balanced, randomized mechanisms. Second, we analytically provide a lower bound of
the optimal, strategyproof, budget-balanced, randomized mechanism for two agents and two alternatives, using a discrete
relaxation of the original problem (in the spirit of automated mechanism design Conitzer and Sandholm, 2002; Sandholm,
2003). This approach provides an approximation to the strategyproofness and optimality of the original problem. However,
the problems of finding a mechanism that matches this lower bound and extending the lower bound to any number of
agents and alternatives are left as future work.

5.1. Generalized sink mechanisms

In the first approach, we consider a broad class of randomized, budget-balanced mechanisms, which we coin generalized
sink mechanisms. In this class, the probability of an agent i to become a sink is dependent on the valuation profile v € V,
and we consider mechanisms with only one sink, i.e., if the probability vector returned by a generalized sink mechanism is
g(v), then w.p. gi(v), agent i is treated as the only sink agent. (One can think of a more general class of sink mechanisms
where multiple agents are treated as sink agents simultaneously. However, it is easy to see—by a similar argument to that
in the context of deterministic mechanisms, just before Lemma 2—that using multiple sinks cannot decrease inefficiency.)
Clearly, the naive randomized sink mechanism belongs to this class. Once agent i is picked as a sink, the alternative chosen
is the efficient one without agent i. All agents j i are charged a Clarke tax payment in the world without i, and the surplus
amount of money is transferred to the sink agent i. Algorithm 1 shows the steps of a generic mechanism in this class.

Clearly, not every mechanism in this class is strategyproof. The crucial aspect is how the probabilities of choosing the
sink are decided. If the probability g;(v) depends on the valuation of agent i, that is, v;, then there is a chance for agent i
to misreport v; to have higher (or lower) probability of being a sink (being a sink could be beneficial since she gets all the
surplus). For example, the irrelevant sink mechanism given in Algorithm 2 is not strategyproof.

The intuition of this mechanism is that if agent i’s maximum valuation sweep (—M/2 to M/2) cannot change the
alternative, this irrelevant agent can be selected as a sink, which yields the efficient alternative. However, when there is
no such irrelevant agent, the decision of choosing every agent equi-probably leads to a chance of manipulation. An agent
whose true valuation report does not lead her to become a sink can misreport a valuation so that there is no irrelevant
agent, thereby increasing her own probability of being selected as a sink. For example, consider two valuation profiles
with three agents (numbered 1,2, 3) and three alternatives (a, b, ¢), and M = 1. The agents’ valuations in the first profile
are vi = (0.5,0,-0.5), v, = (—0.5,0,0.5), v3 = (0, —0.5,0.5), and in the second profile they are v’1 =(0.5,0,-0.5), v’2 =
(=0.5,0,0.5), v; = (=0.5,0,0.5). The mechanism returns agent 1 as the irrelevant agent in the first profile and therefore
picks alternative ¢ with probability 1. There is no irrelevant agent in the second profile and hence each agent is picked as a
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Algorithm 3 Modified irrelevant sink mechanism (strategyproof).

1: Input: a valuation profile v e V

2: Pick agent i as a default sink with probability p;
3: for agent j in N\ {i} do

4:  if irrelevant agent(s) found within N \ {i} then
5: Arbitrarily pick one of them as a sink

6: Irrelevant agent is found
7:
8:

if no irrelevant agent is found within N\ {i} then
Treat agent i as sink

sink with uniform probability, leading to the probability vector (2/3,0,1/3) for the alternatives a, b, c. But agent 3 strictly
gains by moving from the first profile to the second.?

A small modification of the previous mechanism leads to a strategyproof generalized sink mechanism. This shows that
the class of generalized sink mechanisms is indeed richer than the constant probability sink mechanisms. In the modified
version, we pick a default sink with a certain probability, which will be the sink if there exists no irrelevant agent among
the rest of the agents. The change here is that when an agent is picked as a default sink, her valuation has no effect in
deciding the sink. See Algorithm 3.

We emphasize, however, that we present the modified irrelevant sink (MIS) (Algorithm 3) mechanism to illustrate that
there exist non-trivial mechanisms in the space of generalized sink mechanisms. We will see later that despite this non-
trivial construction, it yields same expected sample inefficiency as the naive randomized sink (NRS) mechanism.

It is easy to verify that this mechanism is strategyproof. The difference of the MIS with the NRS mechanism is in the way
a tie is broken when more than one irrelevant sink exists in N \ {i} (step 5 in Algorithm 3). If the irrelevant sink is picked
in a ‘non-uniformly-random’ fashion, then it marks a difference with the NRS. If the irrelevant sink was picked uniformly at
random, then NRS and MIS becomes identical. This is because, if j is irrelevant in N\ {i}, by definition of irrelevance, i too
is irrelevant in N\ {j} - therefore a uniformly random pick of the irrelevant agent will pick one agent uniformly at random
and assign her as the sink, which is the NRS.

Interestingly, no generalized sink mechanism can improve the expected sample inefficiency over deterministic mecha-
nisms if there are more alternatives than agents (m > n).

Theorem 4 (Generalized sink for m > n). If m > n, every generalized sink mechanism has expected sample inefficiency > %

The proof is critically dependent on m > n. However, we can hope for a smaller inefficiency if the number of alternatives
is small. Therefore we consider the case when m =2 and compute the inefficiency of NRS and MIS mechanisms. For two
alternatives, the following theorem shows that the NRS and MIS mechanisms reduce the inefficiency by a factor of two.

Theorem 5 (Inefficiencies of randomized sink mechanisms). For m = 2, the expected sample inefficiency of both the NRS and MIS
mechanisms is n]—z 27 ~ 4.

Even though the MIS mechanism (Algorithm 3) is sophisticated in its use of the valuation profile, it also yields the same
inefficiency as that of the NRS mechanism. This is because, NRS and MIS have the same inefficiency on every valuation
profile. Both mechanisms choose a single agent as a sink. The default sink for MIS is chosen uniformly at random, identical
to the choice of the sink for NRS. If there does not exist an irrelevant sink in the rest of the agents, the inefficiency remains
the same as that for the default sink, which is identical to the inefficiency of NRS for that choice of sink. But even if an
irrelevant sink exists, by the construction of the irrelevant sink, the resulting alternative is the efficient alternative for the
agents except the default sink. This outcome would have resulted even if the default sink was chosen as the sink. Therefore,
the inefficiencies in MIS and NRS mechanisms are the same.

The above result does not say much about the lowest achievable expected sample inefficiency (even in this special
class of generalized sink mechanisms). In order to understand the limit of lowest achievable inefficiency for randomized
mechanisms, we take an optimization-based approach. However, to keep the analysis simple and tractable, we focus on
the special case of two agents and two alternatives. Our next result gives a lower bound on the inefficiency for the
class of generalized sink mechanisms in that setting. Since we now fix the number of agents in the analysis, minimiz-
ing the expected sample inefficiency is equivalent to minimizing the expected absolute inefficiency given by nr,’f’ (f) which
is % sup,ecy {IEf(V) [maxaeA Doien Vi@ — D ien v,-(f(v))]}. Without loss of generality we will assume M = 1. For the rest of
this section, we let ‘inefficiency’ mean the expected absolute inefficiency.

Theorem 6 (Lower bound of generalized sink). For n = m = 2, the expected absolute inefficiency of every strategyproof generalized
sink mechanism is lower bounded by %

8 One can also verify that the weak monotonicity condition, which is a necessary condition for strategyproofness, is violated for agent 3 between these
two profiles.
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5.2. Unbounded randomized mechanisms

We now move on to study optimal randomized mechanisms without restricting attention necessarily to generalized
sink mechanisms. Finding a mechanism that achieves the minimum absolute inefficiency can be posed as the following
optimization problem.

I?in sup |:maj(iEZN vi(a) — Z Vi(f(V)):|

s ae ;
P veV ieN

st vi(f(vi,v—i)) — pi(vi, v_y)
> vi(f(vi, voi) — pi(Vi, voy), Yvi, vi,v_;, VieN

Zfa(v)zl, Yvev, %)
acA

Zpi(v) =0, VveV,

ieN

fa(v)=0,VveV,acA.

The objective function denotes the absolute inefficiency. The first set of inequalities in the constraints denote the strat-
egyproofness requirement, where the term v;(f(v)) = v; - f(v) denotes the expected valuation of agent i due to the
randomized mechanism f. The second and last set of inequalities ensure that the f;(v)’s are valid probability distributions,
and the third set of inequalities ensure that the budget is balanced. The optimization is over the social choice functions f
and the payments p, where the f variables are non-negative but the p variables are unbounded. Clearly, this is a linear
program (LP), which has an uncountable number of constraints (because the equalities and inequalities have to be satis-
fied at all v € V, which are the profiles of valuation functions mapping alternatives to an open interval). We address this
optimization problem using finite constrained optimization techniques by discretizing the valuation levels. We assume that
each agent’s valuations are uniformly discretized with k levels in [—M/2, M /2], which makes the set of valuation profiles V
finite. The optimal value of such a discretized relaxation of the constraints provides a lower bound on the optimal value of
the original problem. This is because (i) the discretized relaxation of the valuations only increases the feasible set since as
some of the constraints are removed, more f’s and p’s satisfy the constraints, and (ii) discretization of valuations also re-
duces the supremum in the objective function - thus allowing a potentially lower value to be achieved for the minimization
objective.

We argue that this is the only possible looseness in the bounds.” Consider a mechanism (f, p) from the discretized space
which satisfies the constraints. Then consider the non-direct revelation mechanism where each agent’s report is a chosen
type from the discretized space and then f and p are applied to these reports. This mechanism is clearly budget balanced,
it has a direct revelation version which is incentive compatible, and by construction it agrees with (f, p) on the discretized
space. So all looseness in the bounds must come from the fact that some type profiles have been eliminated rather than
allowing new feasible (f, p).

We now prove a lower bound when the number of discretized levels is three. The analysis uses a primal-dual argument
on the discrete relaxation of the problem.

Theorem 7 (Lower bound of inefficiency for randomized mechanisms). For n =m = 2, and for k = 3 discrete levels of valuations, the
absolute inefficiency is lower bounded by % =0.142857.

The proof technique can be extended to a larger number of discrete levels to obtain a tighter lower bound on the
actual inefficiency. We conducted a form of automated mechanism design (Conitzer and Sandholm, 2002; Sandholm, 2003)
by solving this LP using Gurobi (2015) for increasing values of k. We apply the same optimization-based approach for
generalized sink and the deterministic cases as well, even though for these cases we have theoretical bounds. The solid
lines in Fig. 1 show the optimization-based results (denoted as AMD) and the dotted lines show the theoretical bounds.
Note that for deterministic case, the theoretical and optimization-based approaches overlap since the inefficiency is unity
even with two valuation levels. The convergence of the optimization-based approach for generalized sink mechanism shows
the efficacy of the approach and helps to predict the convergence point for the optimal randomized mechanism. One can
see that the lower bound is greater than 0.2 for the optimal mechanism, but it seems to converge to a value much lower
than 0.5.

9 We are grateful to an anonymous reviewer for pointing this out.
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Fig. 1. Lower bound for the discrete relaxation of the inefficiency minimization LP.

6. Experiments with real data

Even though the naive randomized sink (NRS) (Definition 8) mechanism gives a worst-case sample inefficiency between
1/2n (for 2 alternatives, Theorem 5) and 1/n (for more alternatives than agents, m > n, Theorem 4), in this section we
investigate its average and worst-case performances on real datasets of user preferences. Going back to the example of
movie selection by a group of friends (Section 1), we consider several sizes of the group. A small group consists of tens
of friends, while if the decision involves screening a movie at a school auditorium, the group size could easily be in the
hundreds. This is why we consider group sizes spanning from 10 to 210 in steps of 50.

A similar situation occurs when a group of people decides which comedian/musician to invite in a social gathering,
where they need to pay the cost of bringing the performer.

Keeping these motivating situations in mind, we used two datasets that closely represent the scenarios discussed. We
used the MovieLens 20M dataset (Harper and Konstan, 2016) and the Jester dataset (Goldberg et al., 2001) to compare the
performance of the two mechanisms with their worst case bounds. The first dataset contains preferences for movies, while
the second contains preferences for online jokes. The MovieLens 20M dataset (m1-20m) describes users’ ratings between 1
and 5 stars from MovieLens, a movie recommendation service. It contains 20,000,263 ratings across 27,278 movies. These
data were created from the ratings of 138,493 users between January 09, 1995 and March 31, 2015. For our experiment, we
sampled the preferences of a specific number of users (shown as agents on the x-axis of Fig. 2) multiple times uniformly at
random from the whole set of users that rated a particular genre of movies, and computed the sample inefficiency on this
sampled set and plotted the average expected sample inefficiency and standard deviation.

The Jester dataset (jester-data-1) used in our experiment contains data from 24,983 users who have rated 36 or
more jokes, a matrix with dimensions 24983 X 100, and is obtained from Jester, an online joke recommendation system.'°

Fig. 2a shows that the real preferences of users yield much lower expected sample inefficiencies for the naive randomized
sink (NRS) mechanism than the theoretical worst-case guarantee. The improvement ranges from roughly a factor of 5 (for
a group size of 10) to almost 100 (for a group size of 210). This also indicates that the rate of decay of the inefficiency
with the size of the group is faster than the theoretical guarantee. The experiment is run for different sizes of the agent
groups with a random group of each size drawn multiple times from the dataset. The bars in Fig. 2a shows the average
expected sample inefficiencies of the mechanism with the standard deviations around them. Since NRS is a randomized
mechanism, it is also worth looking at its worst-case performance on the same sampled datasets. Fig. 2b shows the average
worst-case sample inefficiency along with its standard deviation. The line plot in both the figures shows the worst-case
expected sample inefficiency for NRS for two alternatives.

By the arguments following Theorem 5, we know that the inefficiency of the modified irrelevant sink (MIS) (Algorithm 3)
will be same as NRS. Since the MIS mechanism also picks exactly one sink, the worst-case behavior of a single sink illus-
trated above also applies to the MIS mechanism.

10 1n both datasets there are missing values because a user has typically not rated all movies/jokes. Before our experiment, we filled the missing values
with a random realization of ratings drawn from the empirical distribution for that alternative (movie or joke). The empirical distribution of an alternative
is created from the histogram of the available ratings of the users. We cleaned the dataset by keeping only those alternatives that have at least 10 or more
available ratings and filled the rest using their empirical distributions.
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Fig. 2. Performance of naive randomized sink mechanism on MovieLens and Jester datasets.

7. Summary and future research

In this paper, we provided several new results on the classic question of the interplay between efficiency and budget
balance, properties that are incompatible with strategyproofness due to the Green-Laffont impossibility result, in the general
quasi-linear setting. We sought to understand the limits of minimal compromise between these two properties, both in the
context of deterministic and randomized mechanism design framework.

We proved characterization results, and a tight lower bound for inefficiency, for deterministic budget-balanced mech-
anisms. We also proved that for unbounded valuations, minimizing inefficiency and budget imbalance together does not
provide any asymptotic advantage in the deterministic paradigm over requiring budget balance and minimizing inefficiency.

We proved that randomization helps—particularly when the number of alternatives is small compared to the number
of agents. Motivated by our result for deterministic mechanisms that shows that a strategyproof, budget-balanced, neutral
mechanism must include a sink, we introduced the class of generalized sink mechanisms which is a general (and adaptive to
the valuation profile) way of picking sink agents. We showed that there exists strategyproof non-trivial mechanism (modified
irrelevant sink) in this class that reduces the worst-case inefficiency by a factor of 2. We used an automated mechanism
design approach for two agents and showed analytically that an optimal randomized mechanism offers further reduction in
the inefficiency.

Experiments with real data from two applications compare the naive randomized sink with its theoretical worst-case
upper bound. We see that the mechanism perform well in practice and yield very little inefficiency (~ 1% to 0.01% depend-
ing on the group size). This inefficiency is 5-100 times smaller than the worst case, and this relative difference increases
with the number of agents. We also consider the worst-case realization of this mechanism, and found that the sample
inefficiency is close to the worst-case expected sample inefficiency of the mechanism.

Future research includes studying the structure of the optimal randomized mechanisms that achieve the (theoretical)
improved efficiency. Future work also includes investigating the rate of improvement of the optimal bound for a general
number of agents.

Appendix A

Proof of Theorem 1

Proof. Consider the class of deterministic, strategyproof, and neutral mechanisms. Mishra and Sen (2012) have shown that
in the domain V, when |A| > 3, an allocation that satisfies the properties above must be a neutral affine maximizer (Defi-
nition 5), that is, there exists w; > 0, Vi € N, not all zero, such that,

f(v)e argmaxZwivi(a). (6)

aeA ieN

Additionally, the results by Rockafellar (1997) and Krishna and Maenner (2001) state that for any convex type space, if the
valuations are linear in type, then a strategyproof allocation satisfies revenue equivalence (Definition 6). In our setting, the
types of the agents are their valuations, which implies, trivially, that the valuations are linear in type. Also, they are drawn
from the interval (—%, %), which is convex. So, revenue equivalence holds for the allocations in our setting. The following

payment implements the affine maximizer allocation f given by Equation (6):
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— i (S wivi @), wi=0
0, w;i=0

pi(vi,v_j) = (7)

for all i € N. Since revenue equivalence holds in this setting, we conclude that any payment p;,i € N that makes (f,p)
strategyproof, will be different from the above mentioned payments p by an additive factor h;(v_;) for each agent i in
every valuation profile.

Now, we turn to proving the result of the theorem. We have the functional form of deterministic, strategyproof, neutral
mechanisms given by Equation (6). If, on this class of mechanisms, we show that one cannot have weights w; > 0 for all
i € N while imposing budget balance, then we are done. This is because, if there exists one agent i € N, for which w; =0,
that agent is a sink agent as her valuations are never used by the social choice function and she is charged no payment.
By revenue equivalence, any other payment that can implement the same allocation f is h;(v_;). Putting this in the budget
balance equation, we get h;(v_;) = —Zje,\,\{i} pj(v), that is, she receives the payments made by the other agents. Thus
agent i is a sink agent. Hence, the proof is completed by proving the following claim.

Lemma 1 (Existence of w; = 0 agent). Let |A| > 3. A budget balanced mechanism (f, p), where f is a neutral affine maximizer on the
domain V, must have at least one agent i that has w; = 0.

Proof. We develop the proof gradually through the cases of two alternatives and two agents to two alternatives and n
agents, and finally generalize to m alternatives and n agents. Note that the affine maximizer characterization result holds for
m > 3. Therefore, we use the same expressions for the SCF and payment for m = 2 as an assumption to build the structure
of the proof. The assumption is WLOG for m > 3 due to the results cited above.

This is a proof via contradiction, and we construct a valuation profile where a neutral affine maximizer cannot
have positive w;’s for all i € N. Suppose for contradiction that w; > 0,Vi € N. Suppose f is a neutral affine maxi-
mizer (Equation (6)) and revenue equivalence holds in V (Equation (7)), we know that the payments are of the form

Piviv-) =hi(v ) = & (L wivi(F(W)) Yv e V. VieN.
Additionally, since the mechanism (f, p) is also budget balanced, we have

n

1
Z hi(v,i)—w ijvj(f(v)) =0,VveV

1

i=1 i
n n .1

= Zhi(v—i)—z ZW— wivi(f(v)) =0, Vv e V. (8)
i=1 i=1 \ j#i = J

Case 1, two alternatives, two agents: Let A = {a,a},n = 2. By assumption, wq, wy > 0. Pick two valuation profiles (vf, v2)
and (vy,vz) such that the affine maximizer alternative in the first is a; while that in the second is a3, that is,

wiv] (@) + wava(a) > wivy (@) + wava(az) (9)
w1vy(a1) + wava(ar) < wivy (a2) + wava(az) (10)

This can be done by choosing vf(az) = v] (a2) = v1(az) (say) small and v, to be small enough for both alternatives, so
that the valuation of agent 1 for a; determines the resulting alternative of f. Therefore, the RHS of the inequalities above
are the same. Since the inequality of Equation (10) is strict, let the difference of the RHS and LHS be § > 0. The allocations
at these two profiles are: f(v;r, v2) =ap and f(v],vz) = ap. Since the payments satisfy revenue equivalence and budget
balance, Equation (8) holds, which gives

1 1
——wava(a1) + hi(v2) — —wqvi (@) + ha(vi) =0
w1 )

1 1 _ _
——w2V2(a2) + h1(v2) — —wivy (az2) + ha(vy) =0.
w1 w2
Subtracting the first equation from the second and rearranging, we get
1 1 _ _
W—1W2(V2(a1) —va(az)) = W—2W1(V1 (a2) — v (@) — ha(v]) + ha(v). (11)

Note that the RHS is independent of v,. Therefore, if v,(a;) is increased by a small amount (< §/w3), both the inequalities
given by Equations (9) and (10) still hold, but Equation (11) fails to hold, which is a contradiction.

Case 2, two alternatives, n > 2 agents: We prove this for a set of alternatives A = {a1, az}. In alternative a,, every agent gets
a value of zero, and when a; is chosen the valuation of each agent is denoted by a single real number. An example of such
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a valuation space is the undertaking of a public project, where a; refers to when the project is undertaken, and a, when it
is not.

Let the agents be numbered in decreasing order of their weights WLOG, that is, w; > w;+q,i=1,2,...,n — 1. We
consider the following valuation profile: (vi +8,v2+36,...,vn—1 + 6, vy),8 > 0 (where the numbers represent the values
for alternative a;) such that

n—1 n n-2
—5ZWi<ZWiVi<—5ZWj (12)
i=1 i=1 i=1

The above inequalities imply that the affine maximizer alternative given by Equation (6) for the profile mentioned above
is a;. However, if any agent i’s, i =1,2,...,n — 1, valuation changes from v; + § to v;, the alternative changes to a,.
We use a generic notation v° to denote this profile, where S denotes the set of agents such that the valuations of all
the agents k € S are vy, and the valuations of the agents j ¢ S are v; 4 8. Hence, v is the profile mentioned before:
(V1+8,v2+38,...,va1 +8,vy) and vi*~11 is the profile: (vi +8,v2 +36, ..., Va1, Vs), for example.

Since, f(v{™) =1, from Equation (8) we have,

n—1 n n—1
<<Zh,-(v{”,.})) +hy (v ) 3 Zi_ wivi+ Yy Zi' wis | =o. (13)
i=1 i=1 \ j#i Wi i=1 \ j#i Wi

We make a series of substitutions in the first parentheses of the expression above, leaving the terms in the other parentheses
unchanged. Note that, the expression in the second parentheses depends on v,, while the expression hn(v{_",i) does not. The
substitutions sequentially eliminate the dependency on v, from all the terms in the first parentheses, similar to what we did
in the two agent case before. This leads to a contradiction, since v, can be perturbed arbitrarily small so that it continues
to satisfy the inequalities of Equation (12), our only assumed condition, but violates the equality in Equation (13).

Consider the term Z?:_ll h,-(v{_ni}) in the first parentheses of Equation (13). Consider the profiles vt j=1,...,n—1.1In
each of these profiles, f(vl/™) =a, (due to the choice of v in Equation (12)). Hence,

n—1
Y YU + vy =0, vie {1, n—1). (14)
i=1

Note that v{' n
tion (13) to get

[111] . Hence, we can substitute terms from Equation (14) to the terms in the first parentheses of Equa-

n n—1
Z Z hi (v’" Zhn(v“")—l—hn(v_n) - Z Zl W,‘V,‘—i—Z Zl wis | =o0.
i=1 js{i.n} j#n i=1 \ j#i Wi i=1 \ j#i Wi
(15)

Continue replacing the terms h j(vﬁ’}”) in the first summation of the first parentheses above. All other terms in that paren-
theses are h, functions and, therefore, are independent of v,. For every i # n, consider the valuation proﬁles vU-in #1i,n.
By Equation (12), f(v¥/-i") =qa,, so we get an equality similar to Equation (14): ZZ }hk(v Jaimhy 4 gy (v ULy 0, Vj£i,n.
Also, v“]l - {in}. So, we follow the same procedure to replace the terms h](vij ) in Equation (15) to yield a similar
equality where more terms that were dependent on v, are now replaced with h, functions, which are independent of v,.

To understand each step of this general transformation, we show the complete expansion for n = 3. The terms in the
first parentheses of Equation (15) are as follows.

Z > e | = () +hs v ) + ha v

i=1 j#{i,3}
== (R +m ) = () + v ) + s vB) (16)

Now applying the budget balance condition for the terms in the inner parentheses of first parentheses of Equation (15), we
have

Zh (v_1k23)+h (v]323)=0

k=1

= ha v + v + v =0
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The implication holds since hz(v{jé”}) = hz(vgf)) and h1(v{ji2’3}) = h1(v£2i3}). Substituting hz(vgf}) +h1(v£2i3)) with

—hg(v[_1§2}) as given by the expression above into Equation (16), we get the expression to be independent of v3, and we are
done.

Since the number of agents n is finite, this process will stop after a finite number of iterations, reducing the terms in the
first parentheses of Equation (15) consisting only of h, functions, that are independent of v,. This construction shows that
a small perturbation of v,, which keeps Equation (12) unaffected, will violate the equality obtained through the iterative
procedure described above. This completes the proof of the lemma for two alternatives and n > 2 agents.

Case 3, m > 2 alternatives, n > 2 agents: Case 2 trivially extends to address the case of m > 2 alternatives. We set the values
for alternative a; with a real number as mentioned in Case 2, and the values for all agents for all alternatives ay, ..., ay are
set to zero. The construction of Equation (12) and the analyses that follow remain identical and a similar contradiction is
reached. This completes the proof of the lemma. O

Lemma 1 shows that there exists an agent with weight zero, which is a sink agent, and hence the proof of Theorem 1 is
complete. O

Proof of Theorem 2

Proof. From Theorem 1, we know that any f that satisfies the properties mentioned in the statement of the current
theorem must be a neutral affine maximizer with at least one agent i* that has w;+ = 0. We now show that the minimum
sample inefficiency r,’,)/’ (f) is achieved when there is exactly one such agent i* and the weights of the other agents i € N\ {i*}
are equal. We prove this in two steps: (a) first we show that the proposed single-sink mechanism indeed gives a worst-case
sample inefficiency of 1/n, and having multiple sinks can only make the inefficiency worse, (b) having unequal weights
for the rest of the agents is suboptimal for sample inefficiency. This immediately proves the theorem since the proposed
mechanism has sample inefficiency %

Step (a): the proposed mechanism, having exactly one i* such that w;+ =0, picks the welfare maximizing allocation not
considering the sink agent i*, that is, f(v) € argmax,ca ZjeN\{,-*) vj(a). Denoting a*(v) to be the efficient allocation, we
write:

maxy vi(@ = Y _vi(f(v) =3 vi@v) =Y vi(f()

ieN ieN ieN ieN
M M (17)
=vie @) —vie(F+ | Z‘ vi@ ) - Z‘ vi(fm) | < (5 - (—5» +0=M
JeN\{i*} JeN\{i*}

The first part of the above inequality comes from the fact that the valuations are drawn from (—%, %) so the difference
in valuation can at most be M. The second part of the inequality holds because f(v) is the welfare maximizing allocation
excluding agent i*.

It is easy to verify that this inequality is tight at the following valuation profile: v« (a) = % —8,vix(2) = —% +v, Vz#a,
and v;(b) = —% +e€,vi(d= —% + % Vz #b,Vj#i* where §, y, € > 0 are arbitrarily small. The alternatives are: a*(v) =
a, f(v) =b. Clearly, this satisfies the above inequality and by taking §, y, € — 0, we get that the supremum of the difference
term approaches M, and hence the sample inefficiency becomes %

This counterexample also shows that having more than one sink agent will make the sample inefficiency worse—that
is, larger. This is because we can replicate the valuation of i* for every other sink and the inequality above will be tightly
upper bounded at 2M for 2 sinks, 3M for 3 sinks, etc. Consequently, the sample inefficiency increases to % 2 etc.

To prove step (b), we use the following lemma. !

Lemma 2 (Lowest sample inefficiency). In the class of neutral affine maximizers given by Equation (6) having a sink agent i* (i.e.,
wix = 0), the lowest sample inefficiency is achieved when w; = w foralli € N \ {i*}.

Proof. Suppose not, that is, 3j, j' € N \ {i*} such that, WLOG, w; > w .. Consider the following valuation profile:

vic@@) = M4y, vib) M_s,
o (@ 2y, M 270 Vi@ = vitb), Yie N\ {i*. j. 7).
vi@ = M_s, viby = M- IM—e
. Vi vi) = Y +% VzeA\{a,b}VieN.
vj/(a) = —7+)/, V]/(b) — % ,

The constants §,y,€ > 0 are arbitrarily small. It is easy to verify that on this profile, by choosing the constants §, y, €
appropriately small, the affine maximizer will return a. But the efficient alternative is a*(v) = b. Consider the term
Yien Vi@ (v)) — Y icn Vi(f (v)). To this term, agent i* contributes inefficiency M, agent j’ contribute M, and agent j
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contributes (—%M), taking the limiting values of 8, y,e€ — 0. Therefore, the inefficiency term on this profile equals

M + (1 — M\;—’J’) M > M, the maximum inefficiency when the weights are equal except i* (by the arguments just before

Lemma 2). Hence, this mechanism cannot achieve the lowest sample inefficiency, which is a contradiction. O
Lemma 2 and the arguments before it complete the proof of the theorem. O
Proof of Theorem 3

Proof. The steps of the proof of this theorem closely follows that of the proof of Lemma 1. Therefore, we illustrate the steps
for two alternatives which can be generalized to more than two alternatives in a similar fashion.

Suppose, there exists a deterministic, strategyproof, and neutral mechanism (f, p) that also satisfies limp_, o SuUp,cy X
T} (p, v) = 0. It implies that, at the limit, the mechanism has no budget imbalance, i.e., lim;_, o SUp,cy |Z',-1:1 p,-(v)| =0.
From the arguments in Theorem 1 (Equations (6) and (7)), we know that f is a neutral affine maximizer and payments are
of the form p;(vi,v_i) =hj(v_j) — WL, (Z#i ijj(f(v))) ,Yw; > 0. We already have the sink mechanism where at least
one w; =0 and the above sum can be made smallest (exactly zero) for every profile v € V. However, that yields a constant
upper bound for the term A - T{(f,v) 4 (1 — ) - T}(p, v). Hence, we need to consider the case w; > 0, Vi, which implies
that

n

1
lim sup Z hi(v_;) — o ZWjVj(f(V)) =0.

n—oo
“Pvyev =1 i\ Gz
This implies that for every € > 0, there exists N¢ € Z>¢ such that for all n > N,

n

Z h,-(v_,-)—wli ijvj(f(v)) <€, VveV. (18)

i=1 J#i

We show that this identity leads to a contradiction for an appropriately chosen v. Note that this immediately proves the

theorem, because if there does not exist any mechanism (f,p) that satisfies the properties mentioned in the theorem

statement and makes lim;_, o sup,cy T5(p, v) =0, then the best possible lower bound is a constant, i.e., sup,cy T} (p, V) =

Q(1). Therefore, the best lower bound for the spillover factor pn(f, p) is (%) and this is achievable by the sink mechanism.
We prove this for a set of alternatives A = {0, 1} for similar reasons mentioned in Lemma 1. As an illustration of the

general proof, let us consider the same argument when N¢ = 2. Let the valuations are (vq +§, v,) for alternative 1 and zero

otherwise (8 > 0). Also assume that the numbers are such that

wi(vi +38) +wyvy >0, and wivy + wavy < 0.

That means, the affine maximizer results in 1 at profile (v1 + 48, v2) and 0 at (v1, v2). The above inequalities can be written
concisely as

—w1d < WiV + wavy < 0. (19)

Now by the convergence relation of Equation (18), we have

<€

w w
h1(va) + ha(v1 +8) — —2vy — —(v1 +6)
w1 %)

lh1(v2) + ha(vy)| <€

These inequalities imply'’

< 2€

w w
ha (V1 +8) — —2vy — —(v1 +8) — ha(v1)
w1 wy

w w
= ‘—2\/2-1-(hz(Vl)—hz(V1+5)+—](V1+5)> <2e (20)
w1 w2

But this inequality is violated by choosing a large enough § and large negative v, in Equation (19). This is possible to pick
since the valuations are picked from (—M/2, M/2) and M is large by definition of p, (Equation (4)). Also note that, the

MW If|x+zl<eand |[y+z| <€, then [x—y|=[x+2z—(y+2)| < |x+2z|+ |y +2| <2e.
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term within parentheses in Equation (20) is independent of v,, hence changes in the v, will not affect them. Our only
assumed relation is Equation (19), and a suitable choice satisfying it violates Equation (20).

The general proof of this theorem extends this idea for any N =n > 2. Let the agents are numbered in the decreasing
order of their weights WLOG, i.e,, w; > wiy1,i=1,2,...,n—1. We consider the valuation profile (vi+6,v2+6,...,Vy—1+
8,vn), 8 > 0 such that

n—1 n n—2
—5ZW1‘<ZW1‘V1‘<—6ZW,‘ (21)
i=1 i=1 i=1

The above inequalities imply that the affine maximizer alternative for the profile mentioned above is 1. However, if any
agent i’s, i=1,2,...,n — 1, valuation changes to v; from v; + §, the alternative changes to 0. We use a generic notation
vS to denote this profile, where S denotes the set of agents such that for all agents k € S, the valuations are vy, and for all
j ¢S, the valuations are v + 8. Hence, v is the profile mentioned before: (vi +8,v2+38, ..., vn_1+8, vy) and vii—11 s
the profile: (vi+46,vy+34,...,Vva_1, vn), for example. Note that, the following term in Equation (18) can be reorganized as

Y Twron | =2 (Lo | wvion.
i=1 b\ ji i=1 \ j#i )

Since, f(v™) =1, from Equation (18) we have

n—1 n n—1
<Zhi(v{_"i}) +h,,(v{”,§)> - Z Z wi, Wivi + Z Z Wi] wis || <e. (22)
i=1 i=1 \ j#i i=1 \ j#i
The idea of the proof is to make a series of substitutions in the first parentheses of the expression above, leaving the
terms in the other parentheses unchanged. Note that, the expression in the second parentheses depends on v, while the
expression hn(v{f,)l) does not. The substitutions sequentially eliminate the dependency on v, from all the terms in the first
parentheses, similar to what we did in the two agent case before. This will also increase the RHS of the inequality in
Equation (22), but it will be a finite constant factor of €. This leads to a contradiction, since v, can be chosen arbitrarily
large negative by choosing a large positive §, and still continues to satisfy Equation (21) but violates Equation (22).

The substitutions will involve the term Z’i:]] h,-(v{_"l.}) in the first parentheses of Equation (22). Consider the profiles

vl i=1,...,n—1.In each of these profiles, f(v{/™) =0 (due to the choice of v" in Equation (21)). Hence,
n—1 ) )
Yohv + Y| <€ viet, .. n-1). (23)
i=1

Note that vﬁ’in} = v[fl] . Hence, we can substitute terms from Equation (23) to the terms in the first parentheses of Equa-

tion (22) to get

n—1
=303 m Y =Y S e
i=1 j#{i,n} j#n

n 1 n—1 1
— | wijvi+ — | w;ié || <ne. 24
2Ly w2\ L 24
i=1 \ j#i i=1 \ j#i
{i,n
— o
ses are h, functions and, therefore, are independent of v,. For every i  n, consider the valuation profiles vi/iml j—£i n,
By Equation (21), f(vt:im) =0, hence, we get an inequality similar to Equation (23):

We now replace the terms h;(v }) in the first summation of the first parentheses above. All other terms in that parenthe-

n—1
> Y™ + ha U <€, vi#ion, (25)
k=1

Also, note that, vV = v{_"}”. So, we follow the same procedure to replace the terms hj(v{_";”) in Equation (24) to yield a
similar inequality where the RHS is replaced by a larger term. Since the number of agents is finite, this process will stop
after a finite number of iterations, reducing the terms in the first parentheses only consisting of h, functions, which are
independent of v,, and the RHS of the inequality being a finite factor K(n)e (say). This construction shows that the choice
of a suitably large § and negative v,, which keeps Equation (21) unaffected, can violate the inequality obtained through the
iterative procedure described above. Hence the claim is established. O
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Proof of Theorem 4

Proof. Assume m =n+1. The proof generalizes to any m > n. Consider the valuation profile v; = (vj(ay), ..., vi(@n), Vi(@n+1))
where vi(a;)) = —-M/2+€/2,vi(any1) =M/2 — € and vi(a;) =M/2 —€/2,Vj#i,n+1, and € > 0 is arbitrarily small, i € N.
This profile is possible to construct since m > n. Clearly, the efficient alternative is a,4+1, but if any agent i is picked as
a sink, the alternative changes to a;, which has inefficiency of M — €. Therefore the expected sample inefficiency for any
generalized sink mechanism is nLM(M — €). Taking € — 0 proves the theorem. 0O

Proof of Theorem 5

Since we discussed why NRS and MIS have the same expected sample inefficiency, here we prove the bound only for the
NRS.

Proof. In this setting, the set of alternatives is A = {a, b}. Let a*(v) € argmaxgcp Y ;cy Vi(a). Denote the SCF when agent
i is chosen as the sink as fS"™*=i_ Therefore, fSi"*=i(v) ¢ argmax,., ZjeN\m vj(x). We claim that the following inequality
holds:

Y X (vi@wn vyt | <[5 ] m. (26)
ieN \jeN
Note that if this holds then we have proved one part of the theorem (the other part requires an example where the bound

is tight, which we show later in this proof). This is because, the NRS mechanism chooses each agent as sink with probability
%. Therefore, the expected inefficiency can at most be % . f%-| - M. Divide this by nM to get the expected sample inefficiency
which is at most 5.

To prove the claim of Equation (26), assume WLOG, a*(v) = a. We call agents to be pivotal sink if after removing them
the welfare maximizing alternative becomes b, i.e., her presence is critical for the chosen alternative to be a. Denote the set
of all pivotal sinks at a valuation profile v as

P(v):={ieN: fink=i(y) = p}.
The set of non-pivotal sinks is denoted by NP(v) = N \ P(v). Then the LHS of Equation (26) can be written as
ZieP(v) (ZJ-GN (vj(a) — vj(b))> = |P(v)|(Vq — V}), where Vy = ZEN vj(x),x =a,b. Define a few more terms as follows
(we omit the expressions’ dependence on valuation profile v where it is understood).

d]' = vj(a) — Vj(b),

D= Y (@ vib)= Y 4

jeP() JjeP(v)
Dypi= Y (vi@—vij)= > dj
JENP(v) JENP(v)

Clearly, Dp + Dyp = V4 — Vp > 0, by assumption of a*(v) =a.

Consider an arbitrary agent i € P(v). By definition of pivot, we have

doovi@< Y vib)= Ve—vi(@ < Vp—vi(h) = di > Vo — V.

JeN\{i} JeN\{i}

Hence, Dp = ZieP(v) di > |P(v)|(Vq — Vp), which is the LHS of Equation (26). We claim that Dp < [ —| M and then we are
done.

Suppose the claim is false, i.e.,, Dp > |—%'| M. Since v;(x) € (—M/2, M/2) for all x € A, the maximum value d; can take
for all i € P(v) is M. Therefore there are at least > [ 7], ie., at least [5] + 1 pivotal sinks. Hence, |[P(v)| > [5] + 1.
Therefore, there are at most n — |P(v)| = L—J — 1 non-pivotal sinks. Since d; can be at least —M for all j € NP(v), we have
Dyp > —(| 5] —1)M. Then V4 — Vy =Dp + Dnp > [5]M — (| 3] — 1) M > M. Since d; = vi(a) — vi(b) can be at most M
for all i € P(v), then Vg, — V}, — (vi(a) — vi(b)) > 0 which is a contradiction to i € P(v) because then the welfare maximizing
alternative remains a even without i, i.e., fS"k=i(v) = q instead of b. In other words, the gap between V, and V}, is so high
that the alternative does not flip even without one pivotal sink, which is the contradiction. Hence we have proved the claim.

Note that this bound (Equation (26)) is tight. Con51der the following example. Let vi(a) = % — 7 and v;(b) = % + %

fori=1,....[5] and vj(@) = —% + % and vj(b) = % 2, for j=[%5]+1....,n. Clearly, the efﬁc1ent outcome is a, and if
any of the agents in the first partition is selected as a sink the inefficiency is M, and for the latter partition, the inefficiency
is zero. Hence the absolute inefficiency is [%] M, assuming § is arbitrarily small.

Hence, we have proved the theorem. O
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Proof of Theorem 6

Proof. For n =m = 2, either the two agents prefer the same candidate or opposing candidates. (Ties are broken in favor of
ap, say.) If they agree, any probability of the generalized sink mechanism yields zero absolute inefficiency, since the efficient
alternative will be chosen irrespective of which agent is the sink. Note that the payments are always zero for two-agent
generalized sink mechanisms. When the agents oppose, we claim that in every opposing profile, a strategyproof generalized
sink mechanism must have the same probability of picking the sinks. Suppose not, that is, for a specific generalized sink
mechanism g:V — AN, the probabilities of picking the sinks are different in profiles v = (v{,v3) and v/ = (v}, V)), ie,
g(v) # g(v'). Consider the transition: v = (v, v2) = (v}, v2) — (v}, v}) = v'. The sink-picking probabilities g must have
changed in at least one of these two transitions, that is, either g(v1, v2) # g(v}, v2) or g(v}, va) # g(v}, v5). But this is a
contradiction to strategyproofness since at least one agent will misreport in that profile pair. She will prefer to increase the
probability of the other agent becoming sink so that her favorite candidate has higher probability of being selected, which
increases her utility since payment is zero. For example, suppose in the first transition, the probability that agent 1 is a sink
is higher in the profile (v1, v2), and consequently, probability that agent 2 is a sink is lower. Then agent 1 will misreport
her valuation to v/. Now, among all fixed probability distributions, (0.5, 0.5) gives the minimum absolute inefficiency which
is 4. O

Proof of Theorem 7

The problem of Equation (5) can be written in a standard LP representation as follows. The notation f;(v) denotes the
probability of picking alternative a by the randomized mechanism f when the valuation profile is v.

min l (27)
f.p

s.t.

[vi(a) - fa(vi, v2) + vi(b) - fo(v1,v2) — p1(v1, v2)l — [v1(a) - fa(V], v2)
+vi(b) - fy(v],v2) — p1(v],v2)]1 =0, Vv, v],v2, Agent1,SP

[va(a) - fa(vi, v2) + vab) - fo(v1, v2) — p2(v1, v2)] — [va(a) - fa(vy, v5)
+va(b) - fp(v1,vh) — pa(vy, vH)]1 >0, Vvq,va, vy, Agent2,SP

faW)+ fo(v)=1, VveV, SCF

p1(v) +p2(v) =0, Vv eV, BudgetBalance

+ (vi(@) +v2(@) - fa(v) + (vi(b) + va(b)) - fr(V)
> xrgr}g);}(w(x) +v2(x), Vv e V, Max Inefficiency

fa), fo(v) 20, Vv eV

Proof. For k = 3, each agent has 3% = 9 valuations, since the number of alternatives is 2, and therefore, the number of
valuation profiles is 81. The optimization variables are

x:= (fa(W%), fr(v0), ..., fa(v®0), fr(vE0), p1(v0), p2(v0), ..., p1(v30), p2(v¥%), )T,

Here the 81 valuation profiles are indexed from 0 to 80 and are denoted by the superscripts. Hence there are 81 x4+ 1=
325 variables to the discretized relaxation of the primal problem of Equation (27). However, we can significantly reduce the
number of variables using the symmetry of the LP. The symmetry that we consider are anonymity, i.e., the SCF alternative
is invariant to the permutation of the agents, and the payments are permuted according to the permutation of the agents
(defined below), and neutrality, i.e., the relabeling of the alternatives changes the alternative according to the same relabeling
(Definition 4).

Definition 9 (Anonymity). A mechanism (f, p) is anonymous if for every permutation of the agents A we have
fGw)=f) and pi@*©)=pi(v), VveV,VieN.

Note that, similar to Definition 4, we have overloaded the notation of A for the valuation profile to denote that the profile
where the agents are permuted according to A.

Lemma 3. For every strategyproof, budget-balanced, randomized mechanism that achieves the minimum absolute inefficiency, there
exists an anonymous, neutral, strategyproof, budget-balanced, randomized mechanism that achieves the same absolute inefficiency.
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Proof. We prove this for two agents and two alternatives. The same argument generalizes to any number of agents and
alternatives. Consider an optimal solution of the optimization problem of Equation (27). This yields a solution x* (say).
Suppose, we relabel the agents 1 and 2 by swapping their identities, which changes the valuation profiles accordingly. For
example, now the payment pi(vq, vy) is swapped with p,(va, vq). We keep the SCF alternatives identical, i.e., fq(vq, v2) =
fa(v2,v1). Now consider the resulting vector of variables X}-g\r.swap- NOte that, this permutation of the variables reorders
the set of constraints in Equation (27). The SP constraints of agent 1 now becomes the SP constraints of agent 2 and
vice-versa. SCF constraints remain identical, budget balance constraints are reordered but same, and the max-inefficiency
constraints are also reordered. Hence xAGENT swap is a feasible solution of the LP (Equation (27)) and since Xi.pnrswap and
x* has the same value for ¢, Xjcpnrswap 1S @n optimal solution of the LP (Equation (27)).

Similarly, we swap the alternatives a and b and the valuations accordingly to obtain a different reordered vector
Xamswap- 1his relabeling of the alternatives again reorders all the constraints in a different way than the earlier case,
with ¢ remaining same in both these cases. In a similar way as before, we argue that X} 1 p iS an optimal solution of the
LP (Equation (27)).

Now, we swap both the alternatives and agents to obtain Xi.r\rarswap Which reorders the constraints in a two-fold
manner, but the last variable of this vector remains ¢ as before, and therefore it is also an optimal solution of the LP
(Equation (27)).

Now, we have 4 optimal solutions given the original optimal solution x*, which are complementary to each other in
terms of agents and alternatives, but all of them are strategyproof, budget-balanced, randomized mechanisms (since they
are feasible solutions of Equation (27)). Consider the average of all these solutions:

AN _ * * % «
X" =3 (X* + Xacent-swap T Xarr-swap + XAGENT-ALT-SWAP) -

By construction, XN is anonymous and neutral, but this is also another optimal solution of the LP (Equation (27)) (since

the set of constraints is convex). Hence, we have proved the lemma for two agents and two alternatives. For n agents and m
alternatives, we consider all n! and m! possible permutations of the agents and alternatives respectively and take the mean
of them to obtain our resulting optimal solution that is both anonymous and neutral. O

Hence, it is WLOG to consider neutral and anonymous mechanisms to solve the optimization problem of Equation (27).
This reduces the number of variables in the primal problem, since for valuations that are either agent permuted or alterna-
tive permuted or both permuted version of a valuation profile we have already considered, we can replace their constraints
with the already considered variables. We write the coefficient matrix of the constraint set of the LP in Equation (27)
denoted by A as follows.

faW®) frv® L s favB0) f(vB0) pr(v0) pa(vO) L. p1(v3) pa(v8) ¢
Vi@ v0b) —v3@ —v8h) 0 0 -1 0 10 O 0 0
vi@ vib) —vim —-vib) o 0 0 -1 1 0 0 0
0 0 0 0 0 0 ... 0 0 0
0 0 —v29(a) —vzg(b) v8a v8b) o 0 01 0 -1 0
00 0 0 0 0 ... 0 0 0
1 1 0 0 0 0 0 0 00 O 0 0
0 0 0 0 0 0 00 O 0 0 (28)
0 0 0 0 1 1 0 0 00 0 0 0
0 0 0 0 0 0 1 1 00 0O 0 0
0 0 0 0 0 0 0 0 ... 0 0 0
9 0 0 o0 0 0 0 0 00 1 10
wl@ wib) 0 0 0 0 0 0 00 O 0 1
0 0 0 0 0 0 00 O 0 1
0 0 0 0 w¥@ w¥®m) o0 0 00 O 0 1

Where wP(x) = v1 x) + vg(x) x € {a, b}, and p denotes the profile index. The header of the matrix shows the primal
variables. The sections showed in dotted lines corresponds to the strategyproofness, valid SCF, budget balance, and maximum
inefficiency constraints respectively. The RHS of the constrained inequalities of the LP is a vector b that looks as follows:

b:=(0,...,0, 11y}, 0y, maxwo(x), e, masto(x))T
X X

Denoting the cost vector of the LP as, ¢ := (O4v|, 1)T, we can represent the LP of Equation (27) in the standard form:

min  ¢'x max by
primal X dual y (29)

st.AX>b sty A<c
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Our goal is to provide a lower bound of the optimal value of the primal. Hence, we consider its dual, and provide a feasible
solution. By weak duality lemma, the value of the dual objective at that feasible point will be a lower bound of the primal.
The dual variables represented by y consists of (A, y, u,8). The A variables refer to the dual variables corresponding to
the strategyproofness constraints, and we denote the dual variable that represent the strategyproofness of agent i between
the profiles v and v! by Aj yk yi. By this representation, we consider only such pairs of profiles vk and v! where only
agent i's valuation changes. The y variables are the dual variables corresponding to the constraint that the SCF must add
to unity, and we denote the dual variable corresponding to value profile v as y,. Dual variables i and 8§ corresponds to
the budget balance and the maximum inefficiency constraints. Since SCF and budget balance constraints are equalities, y
and p are unrestricted, while A and § are non-negative. Additionally, in the primal problem the payment variable p;’s were
unrestricted, hence in the dual the corresponding constraints are equalities.

We now provide a dual feasible solution, which is represented with respect to the reduced set of dual variables. Using
symmetry according to Lemma 3, we reduce the number of valuation profiles. We number the profiles from 0 to 80 in the
following way: for the valuation (—0.5, —0.5) of agent 1, all possible valuations of agent 2 from (—0.5, —0.5) to (0.5,0.5) (9
profiles) are listed, and then the valuation of agent 1 is moved to (—0.5, 0). Due to symmetry, setting a primal variable f;(v)
to a certain value also fixes 3 other variables that are agent-swapped or alternative-swapped or both-swapped versions of
this variable. Denote the reduced set of valuation profiles by V. This also reduces the dual variables y, w, 8 from 81 to 27
independent variables. However, for the A variables we need to list all of them since they correspond to constraints that
involve two valuation profiles. Consider the following set of dual variables (numbers of v and v’ correspond to the valuation
profile numbers in the listing discussed above):

i v v| X
1 11 21|4/7 v y
1 12 21|4/7 71 2/7 v i
1 30 66/1/14 LA -

6| 3/28 6|—1/14
1 52 16|2/7

7| 1/7 7| 1/7
1 57 30|1/7

8| 2/7 8| 4/7
1 60 33|3/14

10|—1/28 11| —4/7
1 68 32|2/7

11| 2/7 12| —4/7
1 78 15|4/7

14|-3/14 14| 3/14
2 12 16|47

19| —4/7 24| 2/7
2 14 10|1/14 24| —1/7
2 18 26|4/7
2 20 19(3/14

All other entries of the variables that are not shown in the list above are zero. Note that for only the A variables, the
valuation profiles listed go beyond the index 27, but for all other dual variables they are represented by the 27 independent
variables listed in V.

We claim that this is a feasible solution of the dual. The proof requires an exhaustive verification for each of the in-
equalities in the constraint set of the dual. However, we provide a few cases to give an insight how this example is
picked. Consider, the variables A(1,52,16) = 2/7 and A(1,68,32) = 2/7. Note that, v?* = ((0,0.5), (0.5,0)) = v°? and
v68 = ((0.5, 0), (0, 0.5)) is an alternative swapped version of v24. Also, none of the other variables involve any agent or
alternative or both swap of this profile in the example we gave. Therefore, now we need to concentrate on the column
fp(v®*) in the matrix of Equation (28). Note that the matrix of Equation (28) is also reduced on the column and the
rows. On the column, each of the f and p columns are reduced to |Vg|, and on the rows, only the strategyproofness con-
straints retain the original number, but the SCF, budget balance and maximum inefficiency constraints reduce to |Vg| in
size. Carrying out the product with the terms we get 0.5 x 2/7 + 0 x 2/7 = 1/7. While inspecting other variables, we find
y (v¥*) = —1/7. Hence the sum of the products on the column f,(v%*) gives 1/7 — 1/7 = 0 which satisfies the inequality.
This is not an isolated case, in all the columns fyx(v) (the numbers of such variables are reduced because of symmetry), the
examples are chosen such that the sum of the non-zero products in the SP constraints section and one non-zero product in
the SCF constraints section add up to a non-positive number (for example, repeat the same argument for v’8 and v'9).

Similarly, consider the column py(v!?): the variable A(2, 12, 16) = 4/7 gets multiplied with —1 in this column since the
constraint for agent 2 in the profile v!? gives a —1 coefficient for p,(v12). However, the variable u(v'?) = —4/7 which is
multiplied with 1 in this column, and we can inspect that no other product is non-zero on this column. Hence the sum of
the products is —8/7 which is non-positive, and satisfies the dual constraint.

The easiest thing to verify is the last column, where the sum of the §, for the reduced set of v’s add to unity (2/7 +
1/7 + 4/7). Therefore, the example provided is a dual feasible solution. We compute the objective value of the solution:

8y max w'(x
Z Vv + Z Vxe{a,b} (%)

veVg veVg
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This completes the proof of the theorem. O
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