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Abstract—The speed and accuracy with which robots are
able to interpret natural language is fundamental to realizing
effective human-robot interaction. A great deal of attention
has been paid to developing models and approximate inference
algorithms that improve the efficiency of language understand-
ing. However, existing methods still attempt to reason over a
representation of the environment that is flat and unnecessarily
detailed, which limits scalability. An open problem is then
to develop methods capable of producing the most compact
environment model sufficient for accurate and efficient natural
language understanding. We propose a model that leverages
environment-related information encoded within instructions to
identify the subset of observations and perceptual classifiers
necessary to perceive a succinct, instruction-specific environ-
ment representation. The framework uses three probabilistic
graphical models trained from a corpus of annotated instruc-
tions to infer salient scene semantics, perceptual classifiers, and
grounded symbols. Experimental results on two robots operat-
ing in different environments demonstrate that by exploiting
the content and the structure of the instructions, our method
learns compact environment representations that significantly
improve the efficiency of natural language symbol grounding.

I. INTRODUCTION

The ability for robots to perform complex tasks is inher-
ently linked to the richness of their environment models.
Advances in sensor technology, machine perception, and
natural language understanding provide a wealth of data that
can be infused into these models. These innovations raise
new questions with regards to how to assimilate, manage,
and utilize this abundance of knowledge. A fundamental
problem is how to reason over this rich information in a
manner that enables robots to efficiently plan in diverse
environments of varying scales and complexities. Consider
the human-robot teaming scenario illustrated in Figure 1, in
which a user instructs the mobile robot to “navigate to the
nearest red ball.” If we assume that the robot has access
to knowledge bases (e.g., campus-level maps) and various
sensor measurements (e.g., images, laser scans, audio, etc.)
that it has accumulated over time, the problem becomes one
of situating or “grounding” the instruction in the context
of the perceived environment. With a few exceptions [1-5],
contemporary methods attempt to fuse the knowledge bases
and sensor measurements into a single, flat representation of
the environment (i.e., the “world model”) that expresses all
metric [6-12] as well as semantic [4, 5, 13—16] knowledge
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Fig. 1. Our framework learns to build a minimal representation of the
environment sufficient to interpret a given natural language instruction. In
this example, (a) a mobile robot is directed to “navigate to the nearest ball
in the lab.” Traditional methods interpret the instruction in the context of (b)
an exhaustive world model, whereas our method maintains (c) a compact
world model sufficient to ground the provided instruction.

gleaned from the observations. There are three fundamental
limitations to this approach.

First, a consistent, high fidelity model of the environment
is expensive to maintain in terms of both compute and
memory storage. Second, searching over dense models is
computationally prohibitive in the context of both planning
and natural language understanding [17-19], with costs as
high as exponential in the size of the model [17]. More
generally, it is unnecessarily detailed for most tasks. Ideally,
one would reason over the most compact representation
of the environment necessary to understand the instruction.
However, this representation can not be inferred until after
the instruction is received. Third, in situations in which
concepts are taught or evolve in-situ from human demon-
strations, previous interpretations of the environment may
become incorrect or deficient, necessitating a means of
revisiting these models as needed.

We propose a framework that explicitly reasons over



the relevance of the observations and perceptual classifiers
available, so as to learn a task-relevant, scalable environment
representation sufficient for planning and natural language
understanding. Underlying this method is a learned proba-
bilistic model that can be readily adapted based upon the
difficulty of the task and the complexity of the environment.
Importantly, the method infers an efficient environment rep-
resentation online by leveraging a learned model of saliency.
This model extracts characteristics of the representation from
free-form utterances to “lazily” reason over the small subset
of available knowledge pertinent to the task. Specifically,
we build upon recent work on adapting perception pipelines
from natural language instructions [20] to infer subsets of
observations that we use to construct instruction-specific
representations of the environment. These induced represen-
tations are more efficient to search, yet still express the
correct hierarchies and affordances necessary to perform
the task. In scenarios where humans can interactively teach
robots to classify objects in-situ, past observations of such
objects could be added to the world model given utterances
that reference the object.

The central contribution of this paper is a framework that
exploits three probabilistic graphical models in the form of
Distributed Correspondence Graphs [18] to adaptively model
the environment representation in a task-specific manner.
These models are trained from examples of how language
maps to the relevant scene semantics, perceptual classifiers,
and the symbols used to ground language-based instructions.
Experimental results demonstrate that the ability to dynam-
ically adapt perception and observation models significantly
improves the computational efficiency of natural language
symbol grounding.

II. RELATED WORK

Existing language understanding methods reason over a
flat, unified symbolic model of the world that expresses
the spatial, semantic, and/or topologic properties of the
environment through a representation that is assumed to be
globally consistent. In practice, these models are typically
constructed by running a state-of-the-art SLAM algorithm [6,
7, 10, 11, 21], which provides flat, globally metric models
of the environment that are limited to spatial information.
Semantic and topologic properties are then manually injected
to realize a representation suitable for language grounding.
Localization and mapping methods that attempt to jointly
reason over spatial, semantic, and topologic properties of
the environment have also been proposed [4, 5, 14-16, 22—
24]. With few exceptions [22], however, these methods still
attempt to maintain a single globally consistent environment
representation, which is both unnecessarily detailed for lan-
guage grounding and also resource (e.g., memory) intensive.

Given a natural language utterance, grounding meth-
ods [18, 25, 26] attempt to associate each word in the
utterance with its corresponding referent in this environment
model and the robot’s symbolic action space. Semantic
parsing-based methods [27-29] similarly map natural lan-
guage to meaning representations, typically in the form

of a lambda calculus. Early work in grounding [30, 31]
employs manually engineered correspondences and features
between words in a flat representation of the environment.
Modern day methods [17-19, 26, 32] take a statistical
approach to language grounding (and similarly for inverse
grounding [33-35]) that employs probabilistic models that
relate words to their corresponding referents according to
the hierarchical structure of language, enabling the resolution
of complex free-form language. These models are typically
learned from annotated natural language corpora as well
as through interaction with humans [29, 36, 37]. Proba-
bilistic grounding models have been shown to be effective
at interpreting cooking instructions [38], learning spatial
relations in semantic maps [5, 15], and directing mobile
manipulators [39], among others.

These methods perform inference over the entire set
of state and action symbols, resulting in a computational
complexity that is proportional to the power set of objects,
regions, and constraints. This limits inference to simple tasks
with a few interchangeable constraints or requires access to a
set of predefined environment-specific behaviors. To improve
scalability, Howard et al. [18] developed the Distributed
Correspondence Graph (DCG) model that separates inference
across conditionally independent constituents of the graph. In
effect, this distributes inference across multiple factors in a
graphical model, transforming the computational complexity
from exponential to linear in the number of symbols. Chung
et al. [19] propose the Hierarchical Distributed Correspon-
dence Graph (HDCG), which improves the efficiency of
inference by learning to construct a more efficient approx-
imation of the space of relevant symbols for probabilistic
language grounding. Paul et al. [40] describe a method that
partitions the joint distribution into concrete and abstract
factors. The algortihm performs inference in two stages per
phrase. In the first stage, distributions of concrete symbols
are inferred and used to inform sparse approximations of the
abstract symbolic representation that are more efficient to
search. In the second stage, distributions of abstract symbols
are inferred and joined with the concrete symbols to represent
the meaning of each phrase.

III. TECHNICAL APPROACH

The problem of natural language understanding is com-
monly framed as inference over a learned distribution that
associates linguistic elements with their corresponding sym-
bolic representation of the robot’s state and action spaces.
More specifically, inference involves reasoning over a rep-
resentation 'y that symbolizes objects, places, constraints,
actions, trajectories, and others concepts expressed by the
robot’s world model. The set of symbols forms a discrete
and finite space in which the instruction can be grounded.
The distribution over groundings is conditioned over a parse
of the utterance A as well as a world model Y, expressing
environment knowledge that may be known a priori Y
or extracted from multimodal observations zi.; using the
classifiers in the robot’s perception pipeline P

Y, = f(Z1:t7P7 To)- (D



Natural language understanding then follows as maximum a
posteriori (MAP) inference over I

I'' = argmax p(Ts|A, Yy). 2)
Y1.-.Yn €l

Several contemporary approaches [17, 18, 40] formulate this
problem as probabilistic inference in a factor graph with a
hierarchical structure dictated by the compositional nature
of the utterance, symbolic representation, and environment.
This enables the model to reason about the meaning of partic-
ular phrases in terms of the symbolic grounding space based
upon their child phrases, and a model of the environment.
The parameters of the grounding model (e.g., feature weights
in a log-linear model) are learned from annotated corpora
that express the meaning of each phrase in the context of
the child groundings and phrases.

In practical settings, the the space of groundings I';, the
environment Y, is complex, and the free-form instructions
A may be complex and diverse, making exact inference
computationally intractable. To address this, the Distributed
Correspondence Graph [18] proposes an approximate factor-
ization of the grounding distribution that affords an efficient
inference
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Formally, DCG inference involves searching for the most
likely assignment of boolean correspondence variables
®% [41] in the context of the groundings v;; € I's, phrases
A; € A, child correspondences ®.;, and the world model
Y, by maximizing the factorization in Equation 3. In such
model, a correspondence variable ¢;; being true expresses
the fact that the corresponding grounding +;; matches the
associated phrase in the command.

The ability to ground free-form instructions is inherently
linked to the richness of the robot’s environment represen-
tation Y,. However, building exhaustively detailed world
models using all available knowledge bases and observa-
tions z1.; is computationally expensive, particularly in large-
scale, unstructured environments. The runtime of common
language understanding models such as G* are exponential in
the cardinality of the symbol space |T's| [18]. DCG improves
this complexity to being linear in the size of the world model,
however the cost of inference still inhibits real-time human-
robot interaction.

In practice, a large fraction of the objects and their corre-
sponding symbols that comprise the inferred world model are
typically inconsequential to the meaning of the utterance. In
such cases, there exists a compact environment representa-
tion Y that is sufficient to interpret the utterance, providing
a significant improvement in the computational efficiency of
inference relative to the standard model (Equation 3).

We propose a probabilistic model that exploits natural
language in order to guide the generation of these compact
world models Y. Integral to this approach is the ability to
infer a small, succinct subset of perceptual classifiers P* € P

in a manner that dynamically adapts the robot’s perceptual
capabilities according to the current task

P~ f(P,A), 4
resulting in the compact world model
T: ~ f (Z11t7P*7 TO) 5

We further observe that not all observations are necessary
to produce this compact representation Y;. For instructions
in which the context of the observation may be evident (e.g.,
“drive to the nearest red ball in the hallway”), samples out-
side of these semantically classified regions (i.e., hallways)
can be pruned from the space of observations. As the robot
drives through the environment, a real-time scene classifier
produces a semantic label (i.e., a scene category) that will
be associated with all of the observations (from all available
sensors) and pose measurements. The ability to assign a label
to the current region in real-time allows us to treat such
information as an observation produced by a virtual sensor
(i.e., the scene classifier).

We define a minimal set of observations z* € z.; that,
based on their semantic labels, are used to construct the
compact representation that is sufficiently detailed to contain
all symbols necessary to be expressed by the natural language
symbol grounding model

z" =~ f (214, A)
’r: ~ f(z*7P*7T0) .

(6a)
(6b)

Using the subsampled set of observations to construct a
compact representation for symbol grounding transforms the
expression for natural language inference (Eqn. 3) to
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This inference problem requires that we learn three mod-
els (Fig. 2): an adaptive perception model, an observation
filtering model, and a natural language symbol grounding
model. The process for training these models begins with
the natural language symbol grounding module, in which
symbols that represent objects, spatial relationships, contain-
ers, constraints, actions, and other types are associated with
language [18, 40]. The process of training the observation
filtering and adaptive perception models requires one to fit
the minimum set of semantic labels and perceptual clas-
sifiers. Such classifiers are the ones that extract the most
compact environment representation for each example that
will not prune out any of the annotated ground-truth symbols
from the corpus of instructions. This process yields three
separate corpora with common instructions, but different
symbolic representations and annotations that we use to train
the three distinct models.
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Fig. 2. The system architecture for language-guided observation filtering,
adaptive perception, and natural language symbol grounding. The three
natural language understanding models that are learned from the annotated
instructions are highlighted in bold.

IV. EXPERIMENTAL SETUP

Figure 2 illustrates the software architecture that we
implemented for experimental evaluation of the proposed
algorithm. In this architecture, the robot stores the sensors
measurements in the observation filtering module. When the
human provides a textual instruction, we convert the text
into a parse tree A that is provided to the three natural
language understanding modules. The scene semantics natu-
ral language understanding module extracts the salient scene
semantics I', pertaining to the instruction. The observations
filtering module then extracts a subset of observations z*
(Eqn. 6a) based on the inferred scene semantic label(s). The
perception natural language understanding module extracts
the symbols representing the classifiers (Eqn. 4) that are
necessary to detect the objects that are relevant to the natural
language instruction. This information is then passed to the
adaptive perception node that extracts an approximation of
the environment model Y; (Eqn. 6b) from z* using the
sub-sampled classifiers P*. The symbol grounding natural
language understanding module uses the parse tree and
the world model approximation to extract a distribution of
symbols that represents the robot behavior I's (Eqn. 7).

All of the natural language understanding modules are
implemented as Distributed Correspondence Graphs [18]
with symbolic representations and features adapted for each
of the scene semantics, perception, and grounding domains.

We trained the natural language understanding modules
with a synthetic corpus of annotated examples consistent
with example robot instructions, such as “navigate to the
nearest cone in the parking lot” or “navigate to the farthest
blue ball.” Approximately 500 instructions were annotated
for the scene semantic, perception, and grounding models in
accordance with their symbolic representation. The software
was integrated onto two Clearpath Robotics Husky A200
Unmanned Ground Vehicles (Fig. 1) and used for dataset
collection at two distinct sites. Visual observations were
collected using the RealSense D435 RGB-D sensor. Robot
localization was performed using laser-scan matching with a
planar LIDAR sensor.

In these experiments, we use eight semantic labels such
as “kitchen,” “laboratory,” “parking lot,” etc., which are
associated with sensor observations. To detect the semantics
of the scene, we use a YOLO object detector [42] trained
on the COCO dataset [43]. Object detections are passed
to a scene classifier. The scene classifier then assigns a
semantic label to each observation based on an object co-
occurrence model that relates objects and scene classes.
Objects that are not characteristic of any particular scene
(e.g., person, cat, or horse) are ignored. The perception
pipeline within in the adaptive perception node contains
multiple elements including a YOLO-based object detector, a
noise removal filter that refines the segmented object clusters,
a 3d bounding box detector, an LUV color space-based color
detector, and a 3-DOF pose detector. We limit the sensing
range to 3.5m to avoid processing noisy point cloud data.

The experiments were designed to explore the impact of
observation filtering and adaptive perception on the task
of mobile robot instruction following. We quantify the
performance of the system using metrics of computational
efficiency of perception for symbol grounding under the
assumption of lazy evaluation of the observations.

V. RESULTS

This section presents results highlighting the performance
of different aspects of the learned models in our proposed
architecture. First, we highlight the computational efficiency
of adaptive perception applied in the navigation domain.
Second, we demonstrate how observation filtering reduces
the number of observations we need to reason over in order
to extract task-relevant objects. Later, we demonstrate the
efficiency gains achieved by combining these two strategies
in order to generate compact world representations.

A. Adaptive Perception

In previous experiments [20], we observed that language
grounding was faster in environments inferred by adaptive
perception than non-adaptive perception. Also the adaptive
perception was found to be faster than its counterpart. To
verify the predicted behavior of the adaptive perception
pipeline, we analyzed its impact on the runtime of perception
by evaluating it on the datasets collected at two diffrent sites
for six different instructions. Table I presents the results
demonstrating the impact of adaptive perception (AP) on
the perception runtime against the standard baseline (B) that
corresponds to the standard approach of invoking all classi-
fiers and observations. Table II shows the impact of adaptive
perception on the compactness of the approximated world
representations. Consistent with previous evaluations [20],
reducing the cardinality of the world model improves the
runtime of language grounding.

Figure 3 demonstrates the impact of adaptive perception
for the example instruction “drive to the nearest cup in the
kitchen.” In this particular example, the model is able to inde-
pendently evaluate which object detectors should be engaged
to construct an instruction-specific world model. By using the
information contained within the instructions, our method



(b) adaptive perception: detecting only cups

Fig. 3. Impact of adaptive perception for the command “drive to the
farthest cup in the kitchen.” A standard approach requires generating and
reasoning over (a) an exhaustive map generated using all of the available
object detectors, resulting in a map with 37 objects and a runtime of 408s.
In contrast, our adaptive method generates (b) a more compact map only
using detectors relevant to the command, resulting in a map with 11 objects
and a runtime of 225s.

results in a 36% reduction in the time required to build an
environment representation for inferring the instruction “go
to the nearest cup in the kitchen.” This demonstrates how
inferring the classifiers useful for generating task-relevant
compact representations can reduce the runtime requirements
of robot perception. As we have seen [20], the reduction in
runtime is proportional to the sparsity of classifiers necessary
to extract a sufficient detailed environment model that is
suitable for the grounding of specific instructions.

As more complex detectors are considered (e.g., ICP-
based point cloud matching), we expect to find that these
differences will become increasingly significant. For exam-
ple, an operator performing service on a truck may require a
robot to “turn the top-left screw on the back panel by forty
five degrees” at one point during an activity, while it may
also ask the same robot to “unload the truck of all of the
pallets” at a later time. The computational requirements of
the multitude of classifiers necessary to generate a consistent
interpretation of the environment that is sophisticated enough

TABLE I
IMPROVEMENT IN THE PERCEPTION RUNTIME AT SITES 1 & 2

(runtime in seconds)

Instruction Site B OF AP OF+AP
“go to the farthest umbrella in the hallway” 1 401 60 242 55
“go to the nearest suitcase in the parking lot” 2 306 136 220 99
“go to the farthest cup in the kitchen” 1 401 146 225 75
“go to the nearest keyboard in the office” 2 306 74 222 46
“go to the nearest ball in the hallway” 1 401 59 217 38
“go to the farthest ball in the lab” 2 306 67 206 48

TABLE II
IMPROVEMENT IN THE REPRESENTATION COMPACTNESS AT SITES 1 & 2

(# of detected objects)
Instruction Site B OF AP OF+AP

37 4 2 2

“go to the farthest umbrella in the hallway” 1
“go to the nearest suitcase in the parking lot” 2
“go to the farthest cup in the kitchen” 1
“go to the nearest keyboard in the office” 2 36 29 3
“go to the nearest ball in the hallway” 1
“go to the farthest ball in the lab” 2

~N = WO N

to perform both of these tasks may be too burdensome for
an robot to extract in real-time. We hypothesize that as the
interactions approach such diversity and complexity, a model
that extracts the salient information from the command and
constructs a representation suitable for natural language sym-
bol grounding will outperform non-adaptive representations
of the environment.

B. Observation Filtering

To explore the impact of observation filtering, we eval-
uated the runtime performance of perception on the same
six instructions explored for the adaptive perception exper-
iment. Table I presents the results that reveal the impact of
observation filtering (OF) against the standard baseline (B).
This result demonstrates how removing observations inferred
to be unnecessary to extract the meaning of the natural
language instruction can improve the runtime performance of
robot perception. The results demonstrate a 55% reduction in
runtime for the instruction “go to the nearest suitcase in the
parking lot” over the baseline. The improvement is a function
of the diversity of scene labels across all observations.
Table II shows the impact of observations filtering on the
compactness of the approximated world representation. In
this case the improvement is a function of the distribution of
objects across different regions in the world.

C. Observation Filtering with Adaptive Perception

The last model that we considered combines observation
filtering with adaptive perception. The results in Table I
show the improvement of observation filtering with adaptive
perception (OF+AP) against the standard baseline (B). As
expected, combining both of these approaches reduces the
time required to extract a suitable world model for natural
language symbol grounding in all six scenarios. An example
is depicted in Figure 4. In the best case, we observed a 90%
improvement in runtime performance for the instruction “go



(a) exhaustive environment model

(b) semantic scene labels

(c) compact environment model inferred for the
command “drive to the farthest cup in the kitchen”

(d) exhaustive environment model

Fig. 4.

(e) semantic scene labels

(f) compact environment model inferred for the
command “drive to the nearest ball in the lab”

A visualization of environment representations for Site 1 (top) and Site 2 (bottom). The renderings in (b) and (e) depict the scene labels. The

standard approach of employing all observations and object classifiers results in (a), (d) an exhaustive representation of the environment. In contrast,
inferring the set of observations and detectors relevant to the command yields (c), (f) compact environment models that afford more efficient grounding.

to the nearest ball in the hallway.” Table II lists the number
of objects extracted by the perception pipeline. Reducing
the number of objects significantly improves the runtime of
symbol grounding, which is at best linear [18, 19] and at
worst exponential [26] in the size of the world model.

VI. CONCLUSIONS

In this paper, we presented a novel framework that im-
proves the efficiency of natural language understanding by
generating and reasoning over a compact, instruction-specific
world model. Underlying the framework are three primary
methods that exploit the structure of language to facilitate
inference. First, we use language reduce the set of all
observations available to the robot by extracting semantic
labels for the context in which the salient observations
occur. Second, language is used to infer a subset of per-
ceptual classifiers that extract a compact but sufficiently
complex environment model that is suitable for interpreting
the meaning of the instruction. Third, language is used in
the context of the compact environment representation to
infer the symbolic meaning of the instruction. Experimental
results demonstrate how adaptive perception and observation
filtering improve the computational efficiency of inference
without affecting the accuracy of language grounding. In
ongoing work, we are exploring methods to improve the
robustness of semantic label classification for observations,
including per-pixel semantic classification approaches.

This work also presents a number of interesting areas of
future research. In the examples considered here, we did not
exploit prior knowledge about the environment. However,

one can easily extrapolate how using past compact repre-
sentations to seed future models might mitigate the need to
re-classify all objects for every instruction. A model that does
not discard the information, but incrementally builds a rich
spatial-semantic environment model over time is likely to be
highly effective and efficient for human-robot interaction in
complex environments with diverse tasks. Training and eval-
uating the performance of language models that use corpora
collected from studies involving human-robot interaction and
more complex tasks, robots, and environments that exploit
differences in scale remain as future work. Such additional
experiments would further characterize the performance of
the proposed model and enrich our understanding of how
to best construct efficient, hierarchical representations of
environments for multi-modal human-robot interaction.
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