Geoinformatica (2019) 23: 105-161
https://doi.org/10.1007/510707-018-00338-7

@ CrossMark

An overlapping Voronoi diagram-based system
for multi-criteria optimal location queries

Ji Zhang' - Po-Wei Harn? - Wei-Shinn Ku' - Min-Te Sun? . Xiao Qin' - Hua Lu*.
Xunfei Jiang®

Received: 26 October 2017 / Revised: 9 June 2018 / Accepted: 30 November 2018 /
Published online: 9 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

This paper presents a novel Multi-criteria Optimal Location Query (MOLQ), which can be
applied to a wide range of applications. After providing a formal definition of the novel
query type, we propose an Overlapping Voronoi Diagram (OVD) model that defines OVDs
and Minimum OVDs (MOVDs), and an OVD overlap operation. Based on the OVD model,
we design advanced approaches to answer the query in Euclidean space. Due to the high
complexity of Voronoi diagram overlap computation, we improve the overlap operation by
replacing the real boundaries of Voronoi diagrams with their Minimum Bounding Rectan-
gles (MBR). Moreover, if there are changes to a limited number of objects, re-evaluating
queries over updated object sets would be expensive. Thus, we also propose an MOVD
updating model and an advanced algorithm to incrementally update MOVDs to avoid the
high cost of query re-evaluation. Our experimental results show that the proposed algorithms
can evaluate the novel query type effectively and efficiently.

Keywords Voronoi diagram - Optimal location query

1 Introduction

Numerous optimal location queries considering a wide range of criteria have been exten-
sively studied. As an example of location decision making problems, Multi-criteria Optimal
Location Query, or MOLQ in short, was proposed to find a location by taking multiple fac-
tors (e.g., distance and reputation) into account [56]. Specifically, given a family of object
sets in different types, the query returns an optimal location, which minimizes the total
weighted distance from the location to one object in each type.

Making residential location decisions is a typical example of MOLQ that finds home
locations with maximum residential satisfaction [36]. In order to attract more customers, an
optimal location would be selected for minimizing the total distance from the location to a

P< Xunfei Jiang
jiangxu@earlham.edu

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-018-00338-7&domain=pdf
mailto: jiangxu@earlham.edu

106 Geoinformatica (2019) 23:105-161

<3,1> <2, 4>
School 2 Supermarket 1 6
S5 & 2\
"
. 2 C ity 2
7N S\ ommunity
Z =
| m Community 1 3

Community 3

<2, 2>y & 5 10 <3,2>
<1, 3> ,kk
g i i b2 School 1
Supermarket 2 | J choo

Gas Station 2 Gas Station 1

Fig. 1 Anexample of residential location selection. The object weights are indicated as < w’, w® >. Smaller
weights indicate higher preference

supermarket, an elementary school, and a gas station. Figure 1 displays a simple example.
There are two schools, two gas stations, and two supermarkets in the city. Their locations
are indicated by symbols. The figure also shows three potential community locations. Lines
connect communities to their closest gas station, school, and supermarket, respectively. The
numbers on the lines indicate the distance between two locations in Euclidean space. If
the optimal location for a new community is the place that minimizes the total distance to
its closest school, gas station, and supermarket, the best place is Community 1, the total
distance (16) of which is shorter than that of Community 2 (19) or Community 3 (18).

Tradeoffs of multiple factors are actually considered in real residential location selec-
tion [47]. The importance of schools, gas stations, and supermarkets varies greatly among
people. For example, some people may prefer living near a school because it is convenient
to drive their children to school. In addition, objects of a particular type are considered dif-
ferently. When selecting a school, the ones that provide higher quality programs are more
attractive than others. In order to take these differences into consideration, a rype weight w'
and object weight w° are associated with each object. Providing objects with weights in the
location selection allows users to prioritize objects based on their preference. If the weights
< w', w? > customized by users are as indicated in Fig. 1 (smaller weights indicate higher
preference), the best choice is Community 3 (59), which has the smallest sum of weighted
distance to the nearest school (5 x 3 x 1 = 15), gas station (8 x 1 x 3 = 24), and super-
market (5 x 2 x 2 = 20). We assume that the weighted distance of a community and an
object is calculated as the product of the distance and the two weights. Instead of associat-
ing a single weight with an object, a type weight and object weight are set individually in the
example because various weight functions are allowed to be applied to the rype weight and
object weight individually in the query. This will be described in Section 3. In the example,
a multiplicatively-based weight function is applied to both type weight and object weight.
Appropriately selecting the factors and their weight values is another interesting problem.
More discussions can be found in [36, 47]. We focus mainly on the novel query type in this
paper.

The proposed query is challenging due to the following reasons. First, the query searches
an optimal location in the entire search space. There are no candidate locations available
for the query. Second, the computational complexity of the query grows exponentially with
larger input data sets. The cost of examining all object combinations would be considerably
high. Third, various indexing methods have been proposed for the evaluation process of
spatial queries. For example, Voronoi-Quad-tree (or VQ-tree in short) was developed to

@ Springer

Geoinformatica (2019) 23:105-161 107

improve the response time of k Nearest Neighbor (kKNN) query, reverse kNN query, and
closest pair query on road networks [10]. However, MOLQ allows users to specify the input
object weights and type weights as preferences, which might be greatly varied in queries.
Therefore, if Voronoi diagrams are used, they have to be dynamically generated according
to object locations and such varying weights. Building any indices on the Voronoi diagrams
at run-time would be expensive for query processing.

Therefore, motivated by properties of Voronoi diagrams, we propose an Overlapped
Voronoi Diagram (OVD) model, which integrates location information and object weights
w? of spatial objects by overlapping the Voronoi diagrams generated from the objects.
With the OVD model, the closest objects of different types to a particular location can be
efficiently retrieved without checking all combinations of objects.

To efficiently answer the query in Euclidean space, we design two solutions based on
the OVD model in two steps. First, the proposed solutions generate an OVD from input
objects. Due to the difference in dominance regions of objects, a Real Region as Boundary
(RRB) solution calculates the real overlapping region of two Overlapping Voronoi Regions
(OVRs); while a Minimum Bounding Rectangle as Boundary (MBRB) solution approxi-
mates the overlapping region by using Minimum Bounding Rectangles (MBRs) for avoiding
high cost of OVR overlapping computation. Then, by utilizing Fermat-Weber techniques,
our solutions iterate all potential OVRs, and produce the global optimal location as the result
of the query. Additionally, due to a surprisingly large number of OVRs output by RRB or
MBRB methods, we propose a cost-bound iterative algorithm (Algorithm 5) that is able to
significantly reduce the computational complexity of the original iterative method [48] (See
Section 8.1.2).

Moreover, the object location or weights may vary over time in applications. The quality
of programs in a school may be re-evaluated every year. More positive or negative reviews
to a supermarket may be continuously posted. If there are changes in a limited number
of objects, re-evaluating MOLQs over updated object sets by using either RRB or MBRB
would be considerably expensive due to high cost of Voronoi diagram overlapping oper-
ations. Therefore, we propose a new problem, which focuses primarily on updating the
result of MOLAQ if locations, object weights, or type weights of objects are changed. After
providing a formal definition of the MOLQ updating problem, we demonstrate a baseline
approach, which incrementally updates Voronoi diagrams of input object sets that contain
updated objects and generates a new MOVD by overlapping the Voronoi diagrams. To avoid
re-computing MOVDs, we propose an MOVD updating model, in which the object insertion
and deletion operations are defined to incrementally update MOVDs. Based on the updating
model, we propose an advanced MOVD-based incremental updating approach, which only
updates the Overlapping Voronoi Regions (OVRs) inside the dominance regions of updated
objects and the neighbor OVRs of the objects. We further analyze the object updating
algorithms over ordinary MOVDs (which are generated from ordinary Voronoi diagrams).

The contributions of this study are summarized below:

1. We formulate a novel Multi-criteria Optimal Location Query (MOLQ) that is able to
find optimal locations comprehensively by considering multiple criteria.

2. We build an OVD model, and analyze its properties and overlap operations systemati-
cally.

3. After introducing a Sequential Scan Combinations (SSC) solution as a baseline, we
propose a Real Region as Boundary (RRB) solution and a Minimum Bounding Rect-
angle as Boundary (MBRB) solution based on the OVD model. RRB and MBRB can
efficiently evaluate the novel query type in Euclidean space.

@ Springer

108 Geoinformatica (2019) 23:105-161

0OVD/MOVD Model (Section 5)

/\

Sequential Scan Combinations VD'baSEd.|"CfemENta| UPdating
Algorithm as a Baseline Algorithm asa Baseline
(Section 6.1) (Section 7.1)
‘ MOVD Incremental Updating Model ‘
‘ RRB ‘ ‘ MBRB ‘ (Section 7.2)

MOVD-b‘ased Solutions MOVD Incremental Updating
(Section 6.2-6.5) Algorithms (Section 7.3)

Solutions for MOLQ Problem (Section 6) A Solution for MOLQ Update Problem (Section 7)

Fig.2 The structure of this paper

4. We identify a novel Multi-criteria Optimal Location Query (MOLQ) updating problem.

5. We build an MOVD updating model, and propose an MOVD-based incremental updat-
ing approach to efficiently address the MOLQ updating problem. We analyze the
computational complexity of our proposed object updating algorithms over ordinary
MOVDs. The computational complexity of object insertion operation over an MOVD
is bounded by 3 x I, where I denotes the average number of OVRs in the Voronoi
dominance region of the new object. In the worst case, the computational cost becomes
O (n?), where n indicates the number of objects in each object type.

6. We evaluate the performance of the proposed solutions through extensive experiments
with real-world data sets.

The rest of this paper is organized as follows. Section 2 surveys related works. The pro-
posed query and relevant mathematical tools utilized in our solutions are formally defined
in Section 3. As Fig. 2 displays, the OVD/MOVD model is detailed in Section 5. After pre-
senting a baseline solution for MOLQ query, we illustrate two MOVD-based solutions in
Section 6. We create an MOVD updating model and propose a MOVD incremental updat-
ing solution for the MOLQ updating problem in Section 7. The experimental validation of
our designs is presented in Section 8. We conclude the paper in Section 9.

2 Related work

In this section, we review works related to reverse nearest neighbor queries, optimal location
queries, and incremental methods for Voronoi diagrams.

2.1 Reverse nearest neighbor query

Korn and Muthukrishnan [29] proposed the influence set notion based on reverse near-
est neighbor (RNN) queries. They presented a precomputation-based approach for solving
RNN queries and an R-tree based method (RNN-tree) for large data sets. In order to decrease
index maintenance costs in [29], Yang and Lin [51] presented the Rdnn-tree which combines
the R-tree with the RNN-tree and leads to significant savings in dynamically maintaining the
index structure. The solutions in [29, 51] can be employed to evaluate both the monochro-
matic RNN query and the bichromatic RNN query; however, these precomputation-based
techniques incur extra maintenance costs for data updates. Therefore, several solutions

@ Springer

Geoinformatica (2019) 23:105-161 109

without precomputation were proposed. For discovering influence sets in dynamic environ-
ments, Stanoi et al. [39] presented techniques to process bichromatic RNN queries without
precomputation. The design is to dynamically construct the influence region of a given
query point g where the influence region is defined as a polygon in space which encloses
all RNNs of ¢. For the monochromatic RNN query, Tao et al. [41] developed algorithms
for evaluating RKNN with arbitrary values of k on dynamic multidimensional data sets
by utilizing a data-partitioning index. The algorithms were later extended to support con-
tinuous RKNN searches [42], which return the RkNN results for every point on a line
segment.

There are some other works related to RNN query evaluation. Retrieving RNN aggrega-
tions (such as COUNT or MAX DISTANCE) over data streams was introduced in [30]. Yiu
et al. [53] proposed pruning-based methods to find RNNs in large graphs. The algorithms
for efficient RNN search in generic metric spaces were presented in [43]. The techniques
require no detailed representations of objects and can be applied as long as the similarity
between two objects can be computed and the similarity metric satisfies the triangle inequal-
ity. Cheema et al. [6] studied the problem of continuous monitoring of reverse k nearest
neighbor queries in Euclidean space as well as in spatial networks. Parisa et al. [19] investi-
gated a novel Continuous Maximal Reverse Nearest Neighbor (CMaxRNN) query on spatial
networks. The query assumes that objects would frequently change their locations. Instead
of calculating the optimal network location by time, their method incrementally updates
the MaxRNN query results on spatial networks. Choudhury et al. [8] studied a bichromatic
reverse k nearest neighbor queries on spatial-textual datasets. The query returns an opti-
mal location and a set of keywords, which maximize the size of bichromatic reverse spatial
texture k nearest neighbors (MaxBRSTANN). While the aforementioned approaches work
well for R(k)NN queries, they cannot be utilized to evaluate the unique query type stud-
ied in this paper for the following reasons. First, R(k)NN queries find objects from a given
object set; while no optimal location candidates are given in MOLQ queries. Second, RNN
queries only consider two types of objects; but MOLQ queries may take more than two
types of objects into account. Third, the distance between objects in two types is used in
object selection in R(k)NN queries; but MOLQ queries evaluate the total sum of distance
between a location and many objects.

2.2 Optimal location query

One group of optimal location queries (OLQ) is defined with an optimization function
which maximizes the influence of a facility. Given a set of sites, a set of weighted objects,
and a spatial region Q, the optimal-location query defined in [14] returns a location in Q
with a maximum influence based on the L; distance, where the influence of a location is
the total weight of its RNNs. Xia et al. [49] proposed pruning techniques based on a met-
ric named min Exist DN N to retrieve the top-f most influential sites according to the total
weights of their RNNs inside a given spatial region Q. The Optimal Location Selection
(OLS) search was introduced in [18], which retrieves target objects in a target object set
Dp that are outside a spatial region R but have maximal optimality with a given data object
set D4 and a critical distance d.. Here, The optimality of a target object b € Dp located
outside R is defined as the number of the data objects from D4 that are inside R and have
distances to b not exceeding d,.

Another group of location optimization queries is defined with a different optimization
function which minimizes the average distance between a client and the nearest facil-
ity. Zhang et al. [54] proposed the Min-Dist Optimal Location Query (MDOLQ). Given

@ Springer

110 Geoinformatica (2019) 23:105-161

a set S of sites, a set O of weighted objects, and a spatial region O, MDOLQ returns a
location for building a new site in @, which minimizes the average distance from each
object to its closest site according to the L distance. They provide a progressive algorithm
that quickly suggests a location, tell the maximum error the outcome may have, and con-
tinuously refine the result. When the algorithm finishes, the exact answer can be found.
Because user movements are usually confined to underlying spatial networks in practice,
Xiao et al. [50] extended OLQ to support queries on road networks. They designed a uni-
fied framework that addresses three variants of optimal location queries. By observing that
users can only choose from some candidate locations to build a new facility in many real
applications, Qi et al. [37] introduced the Min-dist Location Selection Query (MLSQ) based
on the studies in [50, 54]. Given a set of clients and a set of existing facilities, MLSQ finds
a location from a given set of potential locations for establishing a new facility where the
average distance between a client and her nearest facility is minimized. MND, a method
for efficiently solving MLSQ, employs a single value to describe a region that encloses the
nearest existing facilities of a group of clients. MND can achieve close performance to the
fastest common methods without extra indices. Chen et al. [7] re-visited the optimal location
query problem based on road networks. They introduced a novel idea of nearest location
component in their method, and applied it to three types of problems, namely the optimal
multiple-location query problem, the optimal location query on 3D road networks, and the
optimal location query problem with another objective. Yao et al. [52] proposed a unified
framework to address three variants of optimal location queries. Moreover, the framework
was extended to support the incremental monitoring of the query results when the loca-
tions of facilities and clients have been changed. Liu et al. [31] investigated the optimal
location queries for finding more than one new server or facilities. And they also devel-
oped an approximation algorithm for the cases when a large number of new servers needed
to set up. However, these studies differ from the proposed query type in definition and
optimization functions. Consequently, we cannot use them for answering our novel query

type.

2.3 Incremental methods for Voronoi diagram

A natural way to construct a Voronoi diagram is to incrementally insert objects to the
Voronoi diagram [21]. The object insertion operation of Voronoi diagram is a process that
finds a new Voronoi cell enclosing the new point. The process often consists of walking
through the neighbors of the new point and splitting Voronoi cells of the neighbors. Ohya et
al. studied the order of object insertions and developed an improved incremental construc-
tion method that finds an optimal insertion order in a pre-processing stage [34]. Sugihara
and Iri focused on the topological structure of objects rather than their numerical values, and
proposed a method for generating Voronoi diagrams from millions of objects [40]. Guibas
and Stolfi proposed a Voronoi diagram construction method and an object insertion method
by using the Voronoi dual and Delaunay triangulation. The computational complexity of the
two methods are O(nlogn) and O (n) in average cases [22]. Guibas et al. developed a ran-
domized incremental construction algorithm, which randomizes the insertion sequence of
objects [23]. The computational complexity of their method is bounded by O (nlogn) for
any collection of objects regardless of their distribution. The incremental construction algo-
rithms have been applied to many applications [1, 17, 20, 24]. Object deletion operation of
Voronoi diagram is largely the reverse of the object insertion process with specific difficul-
ties. Devillers presented that Heller’s algorithm is false, and proposed an efficient algorithm
with cost O(nlogn) for vertex deletion operation in a planar Delaunay triangulation by

@ Springer

Geoinformatica (2019) 23:105-161

11

Table 1 Symbolic notations

Symbol Meaning

P; An object set of a particular type

G An object group

P} A spatial object in P;

w', w° Type weight and object weight

¢l ¢° A type weight function and an object weight function
|S| The number of elements in the set S

€ An error bound

n A distance bound

y A stopping rule used in iterative approaches

dE(,) Euclidean distance between two objects

dav () The distance between two objects on the road

E A family of object sets or groups

R The search space

VD(P;) Voronoi diagram of P;

Dom(p;) Dominance region of p; in a Voronoi diagram

ovVD An overlapped Voronoi diagram

OVR An overlapped Voronoi region

MOVD A minimum overlapped Voronoi diagram

S A subdivision of a search space

V,E,F A Set of vertices, edges and faces in a subdivision
w A set of boundary points in a subdivision

B, 5 Object insertion and deletion operators over a family of object sets
+, = Object insertion and deletion operators over MOVDs
52 MOVD overlapping operator

utilizing ear elimination, where n indicates the degree of the deleted vertex [11]. Mostafavi
et al. improved the method by considering the empty circumcircle property of the Delaunay
triangulation [32]. They found that any triangle removed by the method must be empty of
vertices except the deleted point. Dinis and Mamede utilized the sweep line technique in his
Voronoi diagram updating algorithms, in which an object can be added or deleted in linear
time [12].

3 Preliminaries

A spatial object is defined by the triple < I, w’, w® >, where [is its location in the search
space, and w' and w? are the type weight and object weight associated with the object.
Without loss of generality, w’ and w® are positive numbers. Smaller values indicate higher
preference. E = {Py, ..., P,} denotes a family of object sets, where P; = { pl.l, s p;”}
denotes a set of objects of a particular type. G = {p{, ..., p,}, where p{ € Py, ..., p; € Py,
denotes an object group, in which the objects are in different types. ¢’ and ¢ are monotonic
weight functions applied to type weight and object weight. Notations used in this paper are
summarized in Table 1.

@ Springer

112 Geoinformatica (2019) 23:105-161

Fig.3 An example of ordinary
Voronoi Diagrams

3.1 Voronoi diagram
3.1.1 Ordinary Voronoi diagram

Given a set of objects P; = { pil, ..., p"}, the ordinary Voronoi diagram V DO (P;) is defined
as a collection of dominance regions {Dom 9 (pi) | pi € P;}, each of which is dominated
by an object p. All locations in Dom?(pj') are closer to p{ than other objects. d EC,)
denotes the distance between two points in Euclidean space.

Dom®(py = (11dE(, pt1) < dE(, p}.D),u # v, pt, p! € P;} (1

Figure 3 shows an example of ordinary Voronoi diagrams, which is generated by eight
objects (generators) in Euclidean space. The dominance region of p; is highlighted by the
shaded polygon. By the properties of Voronoi diagrams, p; is closer to any object in the
shaded polygon than other generators (e.g., p2).

An incremental updating method for Voronoi diagrams was proposed to avoid high cost
of Voronoi diagram re-generation if only a small number of objects are added to or removed
from the initial object set [21]. Figure 4 shows an example of inserting a new generator into
an ordinary Voronoi diagram. An object p’ in the dominance region of p; (Dom(py)) is
added to the object set P. We observe that the bisector line of p; and p’ intersects with the
boundary of Dom(p1) at two points b1 and b4. The bisector line decomposes Dom (p1) into
two sub-regions, which will become Dom(p1) and a part of Dom(p’) in the new Voronoi
diagram. In addition, if the bisector line is extended at one end, say b1, the line will go into
Dom(pg). Then, the bisector line of p’ and pe can be created to specify the boundary of
Dom(pg) and Dom(p’) in the new Voronoi diagram. The process continues until Dom (p’)
is produced. Any boundary inside Dom(p’) is removed in the process. The details of the

Fig.4 An example of object
insertion over a Voronoi diagram

@ Springer

Geoinformatica (2019) 23:105-161 113

deletion method can be found in [35]. The computational complexity of the insertion and
deletion operations over Voronoi diagrams is linear to the number of neighbor Voronoi cells
of inserted/deleted objects in average cases. The insertion and deletion methods can also be
easily applied to weighted Voronoi diagrams.

3.1.2 Weighted Voronoi diagram

In a weighted Voronoi diagram, generators have different weights reflecting their variable
properties. Given a set of objects P; = { pil, ..., pi*} and a weight function ¢, the domi-
nance regions are measured by weighted distance. The generation methods for ordinary or
weighted Voronoi diagrams can be found in [2, 35].

vDY(P) = {(Dom"(p")|p’ e P;} where
Dom™ (p)y = {11 ¢(d(l, pt.D), pw’) <c(d(l, pl.l), p’w’),u#v, p*, p!e P}
2

3.2 Fermat-Weber point

Given a point group G = {p{, ..., p;} in a d-dimensional space R, the Fermat-Weber point
is the point ¢ which minimizes the following cost function [5]:

c(qg,G)= Y, pf.wf x d(q, pi.l) 3)
p;eG

The point exists for any point set and is unique except in the event that all the points lie
on a single line [25]. In the non-collinear case, the cost function is strictly convex [45].

The solution to the three-point Fermat-Weber problem has been proposed in [27]. In the
collinear case of any point set, an optimal point can be found in linear time [5]; however,
to the best of our knowledge, if the number of points is greater than three, no exact solu-
tion has been reported for non-collinear cases. Instead, an iterative approach is used as an
approximate solution proposed in [45, 48]. This approach converges monotonically to the
unique optimal location during iterations.

The iterative approach starts with an arbitrary location g (g0 ¢ G) in R?. In each
iteration, a new location ¢; = f(gi—1, G) is produced based on a location g;_; found
before the iteration. According to the monotonic convergence property, g; is closer to
the Fermat-Weber point than ¢;_1; hence, theoretically, the Fermat-Weber point is located
at lim,, f"(qo, G), which indicates a location obtained after infinite iterations. The
function f is described below.

s S(q) x pil}yif G
£(g.G) = 2 peclsi@ x piltifq ¢ C @
q Otherwise
where
-1
s _ _plw p;‘;.w’
8@ = g prn <)3 d(q.p 1))

p?,/eG

i

Three stopping rules for the iterative method are widely adopted. Uster and Love devel-
oped a generalized bounding method, by which the result is limited within a specified
rectangular distance to the optimal location [44]. Verkhovsky and Polyakov adopted the

@ Springer

114 Geoinformatica (2019) 23:105-161

difference of the costs between two successive iterations as the stopping rule in their exper-
iments [46]. Setting an acceptable deviation from the cost of the optimal location as the
stopping rule is widely used in applications [38]. For example, given an error bound €, the
location after the n'" iteration I”, and the optimal location [®°, the iteration procedure will
stop when

c(l",G)—c(I*°,G)
s <€ ©®
is satisfied, where ¢(I*°, G) is approximated by a lower bound of the cost at [":
I o o 1= pl L xellv—pf L]
Ib(l") = Z IT}VIH Z p;-w dam, p*) N
k=1 pieG '

4 Problem definition
4.1 Definition of multi-criteria optimal location query (MOLQ)
4.1.1 Weighted distance of two points

Given a point ¢, a spatial object p, a type weight function ¢’, and an object weight function
¢?, weighted distance considers the distance between two points d(., .) and the weights of
p. The formal definition is as follows:

WD(q, p,s", ¢ =¢"(c°(d(q, pl), pw’), pw") ®)

Here, d(.) is the distance between two locations in Euclidean spaces.
4.1.2 Weighted distance from a query point to an object group

Given a point ¢, an object group G = {p{, ..., py}, a type weight function ¢’, and object
weight functions o = {¢7, ..., ¢/}, we define the weighted distance from ¢ to G as the sum
of WD(q, p;, ¢!, ¢?), where pi € G, ¢ € o. The formal definition is

WGD(‘L Ga §ts(7) = Z WD(q;pfa §t7 §10) (9)
pieG,¢leo

4.1.3 Minimum weighted distance from a query point to object groups

Given a point g, a family of object sets E = {Py, ..., P,}, a type weight function ¢’, and
object weight functions o = {¢7, ..., ¢;}, we define the minimum weighted distance from
q to object combinations of E as:

MWGD(q,E,¢',0) =min({WGD(q, G,¢",0) |G € P| X ... x P,}) (10)
4.1.4 Multi-criteria optimal location query (MOLQ)

Given a family of object sets E = {Py, ..., P,}, a type weight function ¢’, and object
weight functions o = {7, ..., ¢/} where ¢/ is applied to an object p; € P;, the pur-
pose of the query is to find an optimal location / in the search space R that minimizes
MWGD(,E, ¢', o). There is no candidate location provided for the query.

MOLQE, ¢',0) =1, wherel satisfies the condition

MWGD(,E, ¢',0) = min{MWGD(',E, ¢', o) | I e R}) an

@ Springer

Geoinformatica (2019) 23:105-161 115

In the example of MOLQ shown in Fig. 1, the query receives three object sets E =
{Pschool> Psupermarket» PGasstation}- Multiplicatively-based functions are used as type and
object weight functions. The weighted distance between a location g and an object p can be
calculated as WD(q, p, ¢', ¢°) =d(gq, p.l) x p.w® x p.w'. An object group is an object
set containing a school, a supermarket, and a gas station. Equation 9 represents the weighted
distance from a location ¢ to all objects in an object group. Equation 10 finds an optimal
object group from { P x ... x P, }, which minimizes the weighted distance from ¢ to an object
group. MOLQ (11) aims to find an optimal location and an object group, which minimize
the weighted distance from the location to all objects in the object group. In the example,
Community 3 is the best location in the search space, because the distance from Community
3 to the object group G = {School 2, Supermarket 2, Gas Station 2} is shorter than the
distance from any other location to any object group.

4.2 Definition of multi-criteria optimal location query updating problem

To define MOLQ updating problem, we first introduce object insertion and deletion opera-
tions over object sets as two types of object updating operations over a family of object sets.
Then, given a family of object sets, E = {Py, ..., P,}, the query result MOLQ(E, ¢', o),
and a set of changes on E, the MOLQ updating problem can be defined as a process that
finds the result of MOLQ after the changes have been applied to E. The changes on E are
abstracted by a set of object insertion or deletion operations on [E. Any updates on a partic-
ular object (e.g., the changes in its location, type weight, or object weight) are equivalent to
deleting the object from E and then adding it back with new attributes.

4.2.1 Object updating to a family of object sets

Object insertion operation Given a family of object sets E = { Py, ..., P,} and an object ¢
(# P, € E, g € P;), we assume there exists an object set P; € E, in which the objects are in
the same type with g. Then we define the process of inserting g to E as follows:

E' =EB{q}={P1,... PjU{q}, ..., Py} 12)

If P; does not exist, then ¢ is the only object in its type. This is a case of MOLQ
overlapping, in which the MOLQ of {q} is overlapped with the MOLQ of E.

If an object set Q ={q1, ..., qx} is given to insert into E, the insertion process is equivalent
to sequentially inserting each object in Q to E. Note that there must exist one and only
one object set in [E, which contains objects in the same type with the newly inserted object.
Objects in Q can be in different types. We define the process that inserts an object set Q to
IE as follows (H is left associative):

E=EBQ=EB{q:)B..0{q (13)

Object deletion operation The object deletion is an inverse operation of the object inser-
tion H. Given a family of object sets E = {Py, ..., P,} and an object pl’.< € P;, the object
deletion operation that removes pl’? from E is defined as follows:

E =EB{pl} = (P, ... P\ (P}, s Pu) (14)
Deleting a set of objects O = {q1, ..., q«} from E can be completed by removing each

object in Q from E. Every objects in Q must be contained by an object set in [E. Objects in

@ Springer

116 Geoinformatica (2019) 23:105-161

Q can be in different types. The formal definition of deleting Q from E can be presented as
(H is left associative):

E=EBQ=EB{¢}3..8{g%) (15)
4.2.2 Multi-criteria optimal location query updating problem

We assume that the MOLQ has been addressed over a family of object sets. Each object
is assigned with an object weight and a type weight. However, for any reasons, there are
changes applied to a small number of objects, and the MOLAQ is required to be re-evaluated
over the updated object sets. Thus, the multi-criteria optimal location query updating prob-
lem can be defined as follows: given a set of object sets E = {Py, ..., P,}, a type weight
function ¢’, and object weight functions o = {¢{, ..., 7}, where ¢7 is applied to an object
pi € Pletl = MOLQ(E, ¢!, o) be the answer to the MOLQ query, Q be a set of objects
updated to [E, then the multi-criteria optimal location query updating problem is to find an
optimal location /’, which minimizes the total weighted distance from !’ to one object in
each type after updating Q to E.
If Q is inserted into [E, then

MOLQ@E B Q, ¢', o) =1', iflsatisfies the condition

MinD¥ (', E B Q, ¢', o) =min(MinDJ! (", EB Q, ¢', o) |I" € R}) (16)
If Q is deleted from E, then
MOLQ®E B Q, ¢', o) =1', ifl satisfies the condition a7

MinDY (', E B Q, ¢', 0) = min((MinD¥ (1", E B Q, ¢', o) |I” € R})

It is worth noting that any change on an object is equivalent to deleting the object from E
and adding it back with new attributes. The object insertion operation only applies to Q if,
Vg; € Q, there must exist an object set P; € [E, which contains objects in the same type of
gi. The object deletion operation only applies to Q if every object in Q must be in an object
set of [E. The query result over updated object sets could be / or a better location.

5 OVD and MOVD models

Before describing our MOVD-based solutions, we will first introduce the OVD and
MOVD models. In this section, we start with a simple OVD example which provides a
basic understanding of the model. Then, we formally define OVD and Minimum OVD
(MOVD) and systematically analyze their properties, which not only highlight the differ-
ence from and relationship with Voronoi diagrams, but also provide correctness analyses of
our MOVD-based solutions. More OVD/MOVD properties will be provided in Appendix
A.1-A.3.

We use the OVD model in Euclidean space as an example for better illustration in this
paper; however, the model can be easily extended to road networks or other search spaces.

5.1 An OVD example
Figure 5a and b display two ordinary Voronoi diagrams generated by schools and super-
markets, respectively. The shaded areas in the figures are dominance regions of generators

p3 and g;. Figure 5c shows an OVD that overlaps the two ordinary Voronoi diagrams.
Apparently, the OVD is comprised of a number of overlapped regions, each of which is

@ Springer

Geoinformatica (2019) 23:105-161 117

(a) Schools (b) Supermarkets (¢) An OVD

Fig.5 Ordinary Voronoi diagrams and OVDs in Euclidean space

generated by overlapping two ordinary Voronoi polygons. For example, the doubly shaded
area in Fig. 5c is the overlapped region in both shaded regions of two ordinary Voronoi dia-
grams. According to the properties of Voronoi diagrams, p3 and g are the closest school
and supermarket to any locations in the doubly shaded region.

As an introductory example, all schools and supermarkets are assumed to be of equal
weight in Fig. 5. An example of assigning different weights to objects in an OVD will be
presented in Fig. 8 in Section 6.

5.2 Overlapped Voronoi diagram definition
5.2.1 Overlapped Voronoi diagram (OVD)

Given a family of object sets E = {Py,..., P,} and a set of Voronoi diagrams V =
{VD(P;) | P € E}, where V D(P;) can be either an ordinary or a weighted Voronoi dia-
gram generated by P; in the search space R, Overlapped Voronoi Diagram (OVD) is a set
of Overlapped Voronoi Regions (OVR),

OVDE)={OVR; |1 <)<t} (18)
where OV R; is
OVR(p{,...p;) =1{l|l € Dom(p}), ..., | € Dom(p}), p{ € Py,p;, € P} (19)

Take Fig. 5c for example, MOV D{P, Q}) = {OVR(p1,4q1), ..., OVR(ps, q1), -

OVR(p1,45)s --» OVR(ps, g5)}-
InEq. 18, =[] P.cE | P;|, which denotes the number of OVRs in OV D(E). This will
be further discussed in Theorem 7.

Property 1 An OVD may have one or more empty set OVRs (e.g., OVR; = {).
By definition, an OV R is the intersection of dominance regions from different Voronoi
diagrams. These dominance regions may not overlap each other (see the dominance regions

of p; in Fig. 5a and g5 in Fig. 5b). If this is the case, no location falls into both dominance
regions, thus their overlapping region is an empty set.

@ Springer

118 Geoinformatica (2019) 23:105-161

5.2.2 Minimum OVD (MOVD)

A Minimum Overlapped Voronoi Diagram (MOVD) is an OVD in which all empty OVRs
have been removed. An OVD is an MOVD fif it does not have any empty OVRs. The formal
definition of MOVD is:

MOVD(E) =OVDE)\{OVR; € OVD(E) | OVR; = ¢} (20)

In the extreme case that E is an empty set, no Voronoi diagrams overlap, and the search
space is not decomposed into subregions. We define this case as:

MOVD@) =0VD@®) = (R} (21)

6 MOVD-based algorithms in Euclidean space

After introducing the OVD model, we now propose our MOVD-based algorithms for the
query in Euclidean space in this section. In particular, we first present a sequential scan
combination algorithm as a baseline solution. Then, we illustrate the framework of our
MOVD-based solutions in Section 6.2. Two algorithms for OVD overlapping operations,
RRB and MBRB, are presented in Sections 6.3 and 6.4, respectively. Finally, we describe
a cost-bound approach to optimize the cost of solving a large number of Fermat-Weber
problems. In this research we mainly focus on applying the properties of OVD and MOVD
models to answer the proposed novel query type. The proposed algorithms primarily rely
on main memory for data storage.

6.1 Sequential scan combinations algorithm

One basic algorithm to solve MOLQ is to sequentially check optimal locations of all
object combinations. Given E = {Py, ..., P,}, the optimal locations I’s of all combina-
tions {p{, ..., p,}, where p{ € P, .., p; € P,, in Euclidean space can be calculated by
a Fermat-Weber method. The answer to the query is the best location among these I’s.
We call this algorithm the Sequential Scan Combinations (SSC) algorithm. The computa-
tional complexity of SSC is O(u x [] P.cE | P;|), where w denotes the cost of finding the
optimal location with a given object combination. The detailed steps of SSC are shown in
Algorithm 1.

Algorithm 1 SSC(E, ¢’, o)

1: Ubound = o0

2:1=<0,0>

3: for < pY,pj...p, >€ Py x ... X P, do
4: Calculate the optimal location /; of < p{, ..., p; >
5: Cost =WGD(l1, {p}, ... pi}. ¢", 0)
6: if Cost < Ubound then

7: Ubound = Cost

8: =1

9: end if

10: end for

11: return /

@ Springer

Geoinformatica (2019) 23:105-161 119

In Euclidean space, since the computation of SSC is expensive, we can set an upper
bound to reduce the complexity of the algorithm by filtering out a portion of combina-
tions whose optimal locations cannot be the answer. For example, two combinations (object
groups), G| and G, will be evaluated sequentially in SSC. We assume the optimal loca-
tion of G is at /1. The weighted distance from /1 to G is denoted by d;. Before processing
Gy =< p‘l’, p%..., p, >, we first set d; as an upper bound and calculate the optimal location
Iy of < p{, p5 >, which costs much less than computing an optimal location of multiple
points. If the weighted distance from /; to < p’f, pj > is greater than dj, the weighted
distance from any location to G, must be greater than d;. Thus, calculating the optimal
location of G can be avoided. During SSC processing, the upper bound is initialized to
infinity and will be reduced to the total weighted distance of the best solution found so
far.

6.2 Framework of the MOVD-based solutions in Euclidean space

Figure 6 illustrates the framework of our solutions in Euclidean space. The inputs of the
solution are Point of Interest (POI) data sets (P; € E), object weight functions ¢ =
{¢7, .., v}, and a type weight function ¢!. The result is an optimal location of the query in
the search space.

In the evaluation system, the query is sequentially processed by three modules.
In particular, based on POIs of particular types and the object weight functions, VD
Generator generates Voronoi diagrams that are the basic MOVDs used in the next
step (see Theorem 10). Then, a new MOVD is produced by overlapping the basic
MOVDs with MOVD Overlapper (see Eq. 44). A significant number of impossible
object combinations are filtered out, which reduces the computation cost in the next
step. Finally, Optimizer sequentially scans OVRs in the new MOVD, finding a locally
optimal location in each OVR, and returns the best of these locations as the query
result.

Essentially, two solutions are proposed in Fig. 6, illustrated by two paths from the VD
Generator to the Optimizer. The solutions apply either Real Region as Boundary (RRB) or
Minimum Bounding Rectangle as Boundary (MBRB) approaches in the MOVD Overlapper.
The RRB approach provides real boundaries of OVRs in the new MOVD by calculating the
overlapping regions, which is expensive if the regions are complex. The MBRB approach

POI Data Sets LVDG . ‘
. enerator
{Pll seey Pn}
{VD(P4),..., VD(Pn)}
Object Weight } 7777777777 RN : T
Functions | 2. MOVD Overlapper \ }
I
g=1{¢,..,C% v I
Gl } RRB MBRB \
I | (Algorithms 2 & 3) | | (Algorithms 2 & 4) }
Type Weight | N o |
Function -~ MOVD ({Py,..., Po})
S 3. Optimizer (Algorithm 5 }—» An Optimal
P (Alg) Location
Query Inputs Evaluation System Result

Fig.6 Framework of the MOVD-based solution in Euclidean space. The paths of RRB and MBRB solutions
are indicated by solid and dashed arrows, respectively

@ Springer

120 Geoinformatica (2019) 23:105-161

can avoid the real region calculation, but it produces false positives that would incur unnec-
essary calculation while overlapping the next MOVD. Which approach performs better
depends on the number and the complexity of MOVDs generated by the VD Generator. The
two MOVD overlapping approaches will be described in the following two subsections. A
cost-bound approach that can reduce the complexity of finding locally optimal locations
in Optimizer will be presented in Section 6.5. The Voronoi diagram generation approaches
used in the VD Generator can be found in [2, 16].

6.3 RRB approach

In this subsection, we describe the RRB approach for MOVD overlapping operations. Since
basic MOVDs are identical to Voronoi diagrams (see Theorem 10), the generation methods
of which have been extensively studied, we will mainly focus on the process of creating
an MOVD from two MOVDs. Moreover, MOVDs or Voronoi diagrams are special types of
maps or subdivisions. A method that computes the overlay of two subdivisions is presented
in [9, 15]. However, the method primarily focuses on the subdivisions that consist of line
segments. Extending the method to overlap arbitrary subdivisions is non-trivial. Therefore,
the RRB approach is proposed as a general design of MOVD overlapping operation. For a
better explanation, the overlapping of two basic MOVDs is illustrated by the simple example
in Fig. 7.

A plane-sweep-based algorithm is designed in the RRB approach. As the typical plane
sweep approach [2, 16], the RRB approach maintains an event queue and two sweeping
statuses. The event queue consists of a number of event points that are the maximum and
minimum values of projections of OVRs on the y axis. These maximum and minimum
points are called start and end points, which indicate that when the sweeping line arrives at
these points, the corresponding OVR starts or ends its intersection with the sweeping line.
The event points of both MOVDs are sorted by their y-coordinates in descending order. The
sweeping line vertically scans the plane from top to bottom, so that the start point of an
OVR will be reached before its end point. The status structures are set up to record OVRs
that intersect with the sweeping line. Two status structures are maintained individually and
respectively for MOVDs. To efficiently detect if OVRs in the two status structures are over-
lapped, we also calculate the range (minimum and maximum values) of projections of OVRs

A\

Status —H 11 Status |- {H

Fig.7 Overlapping two MOVDs in Euclidean space

@ Springer

Geoinformatica (2019) 23:105-161 121

on the x axis. The event points and the projection on the x axis are pre-determined before
the overlap calculation.

During the sweeping process, when an end point is arrived at, the corresponding OVR
is removed from the status structure. When the sweeping line reaches a start point, the
corresponding OVR is inserted into the status structure. Moreover, overlapping regions of
the new OVR and OVRs in the other status structures are required to be detected. The
detection process first identifies potential OVRs, the range of which overlaps with the new
OVR on the x axis. Then, the overlapped region of the two OVRs is calculated. The details
are described in Algorithms 2 and 3.

The essential idea of the algorithms is that the minimum and maximum values on the
x and y axes are an outer boundary of OVR. Two OVRs cannot overlap each other if the
area inside their outer boundaries does not overlap. Overlapped outer boundary detection
significantly reduces overlapping region calculation by avoiding the overlapping of two
OVRs (e.g., regions of p; and g5 in Fig. 7), which are actually far away from each other.

As shown in Algorithm 2, the overlap operation receives two MOVDs as input param-
eters and produces a new MOVD. From lines 1-2, Result, Event Queue, Status, and
Status’ are initialized to be empty sets. Status keeps the status for MOV D(E), and
Status’ for MOV D(E’). Then, in lines 3-4, events are inserted into Event Queue and
sorted. Finally, from lines 5-12, all events are iteratively handled by Algorithm 3.

Algorithm 2 Overlap(M OV D(E), MOV D(E"))

. Result = J, Event Queue =
. Status = &, Status’ = &
: Push events of MOV D(E) and MOV D(E’) into Event Queue
Sort(Event Queue)
: while (Event Queue #) do
e = Event Queue.pop()
if (e is from MOV D(E)) then
EventHandler(e, Status, Status’, Result)
else
EventHandler(e, Status’, Status, Result)
end if
: end while
: return Result

YRR

—_ e
W N = O

Algorithm 3 describes the event handler that receives the following four parameters. e is an
event object. Current is the status structure of MOVD from which the event occurs. Other
refers to the other status structure. Result is the MOVD produced by the overlap operation.
As shown in Fig. 9, an MOVD manages a list of OVRs, each of which is represented as
<region, pois >, where region maintains the shape of the OVR and pois is a list of
objects associated with the OVR. If a start event occurs, the corresponding OVR is first
inserted into the Current status. Then, potentially overlapped OVRs in Other are detected
by comparing their Rangex with the current OVR. Rangex denotes the range of possible
x-coordinates of OVRs. If their Rangex overlap, the overlapped region is calculated in
line 5. If the newly generated overlapped region is not empty, a pair of the region and its
associated pois will be appended to Result. In the second branch, an end event takes place
(in line 13) and the corresponding OVR is removed from Current.

@ Springer

122 Geoinformatica (2019) 23:105-161

Algorithm 3 EventHandler(e, Current, Other, Result)

1: if e is a start event then

2 Insert e.ovr into Current

3 for ovr € Other do

4 if Rangex(e.ovr) n Rangex(ovr) # & then
5: region = e.ovr.region N ovr.region

6 if region # ¢ then

7 pois = e.ovr.pois U ovr.pois

8 Result.append(< region, pois >)

9: end if

10: end if

11: end for

12: else

13: Remove e.ovr from Current /* e is an end event */
14: end if

15: return

It is worth noting that a general overlapping approach is not presented; however, the RRB
approach can be modified to be a general approach used for the OVD model if line 7 is
removed and only region is appended to Result in line 8. pois contains the additional
information for our specific query type. Algorithm 3 does not specify any methods for over-
lapping region calculation in line 5. The reason is that the shape of OVRs in a general model
is difficult to predict. The case is worse after overlapping because the OVRs become more
complex. Furthermore, overlap methods for regions vary greatly as well. The overlap meth-
ods for polygons are different from the ones for circles (Voronoi cells could be circles in
multiplicatively Voronoi diagrams, see Fig. 8b). The overlap methods applied in the model
cannot be determined until the shapes of regions have been decided. We will discuss this
issue in Section 6.4.

The RRB approach is an output-sensitive algorithm, the complexity of which depends
on the size of the results, or more exactly the number of OVRs existing in the new MOVD.
We use the average size of MOVDs in the analysis instead of the number of objects, the
number of object types, or the complexity of Voronoi diagrams, because (1) the inputs of the
RRB approach are two MOVDs; (2) the complexity of MOVDs depends on both the number
of Voronoi diagrams overlapped and the complexity of the Voronoi diagrams; (3) Voronoi
diagrams may vary greatly due to the variety of sizes of input data sets and the ways of
measuring distance. Thus, the computational complexity of operation & in the worst case is

4n x 1g(4n) +2 x 2n x 1g(2n) + 0 x n*> = O(n?) (22)

where 6 denotes the cost of region overlapping computation and » indicates the number of
OVRs in the input MOVDs. Specifically, the first part at the left side of Eq. 22 calculates
the cost of sorting all events in order at line 4 of Algorithm 2. There are 4n events in total,
and sorting them in order takes 4n x 1g(4n) time. Then, the second part at the left side of
Eq. 22 indicates the cost of maintaining status structures by inserting/deleting OVRs. There
are 2n start and end events handled by Algorithm 3. If status structures are organized as
a balanced search tree that sorts OVRs in order by their start x-coordinates, inserting or
deleting an OVR from the status can be completed in O(Ign) time. Thus, the total cost
of maintaining the status is 2 x 2n x 1g(2n) as well. If status structures record the start
and end x-coordinates of OVRs, a range specified by the points that are either immediately

@ Springer

Geoinformatica (2019) 23:105-161 123

*(4)

(a) Additively (b) Multiplicatively (c) An OVD of two
weighted Voronoi dia-
grams.

Fig.8 Weighted Voronoi diagrams in Euclidean space (the numbers indicate weights)

smaller than the minimum or greater than the maximum x-coordinate of the current OVR
can be figured out in O (Ign) time. The OVRs, whose event points are located at the range,
are potentially required to overlap the current OVR. Moreover, let 6 be the cost of OVR
overlapping computation, the cost of calculating the overlapped regions is 6 x n?, because
there could be n? OVRs in the output MOVD.

6.4 MBRB approach

According to the variety of weight functions specified in the query inputs, various Voronoi
diagrams are generated by the VD Generator. In addition to the ordinary Voronoi diagrams,
two typical weighted Voronoi diagrams are displayed in Fig. 8. The generation methods of
additively and multiplicatively Voronoi diagrams have been presented in [4, 13, 28, 33].

| An MOVD in RRB
| OVR | Region, <pi',--pn
IOVRm Region,, [p¥,...pn >

L — = ———

| OVR, [MBR; |<p¥,.p2

| OVRn, | MBRy, [<Pns-Pn >

Fig.9 Data structure

@ Springer

124 Geoinformatica (2019) 23:105-161

More practical Voronoi diagrams, such as network Voronoi diagrams, can be found in [2,
35].

Although the generation methods of weighted Voronoi diagrams have been extensively
studied, efficiently maintaining the shape of OVRs is difficult since they are not in regular
shapes. In general, their boundaries have to be modelled by a number of curves. More
importantly, overheads of overlapping region calculation would be highly expensive due to
the complexity of boundary representation.

Algorithm 4 MBRBHandler(e, Current, Other, Result)

1: if e is a start event then

2 Insert e.ovr into Current

3 for ovr € Other do

4 if Rangex(e.ovr) (| Rangex(ovr) # & then
5: mbr =e.ovr. MBR () ovr.MBR

6 pois = e.ovr.pois U ovr.pois

7 Result.append(< mbr, pois >)

8 end if

9: end for

10: else

11: Remove e.ovr from Current /* e is an end event */
12: end if

13: return

To overcome this difficulty, we propose the MBRB approach that combines Algorithm 2
with an alternative event handler, MBRBHandler, for the overlap operation. The MBRB
approach is motivated by an observation that the shapes of OVRs are not used in Optimizer.
Instead, the POI locations and their weights are the criteria for optimal location selection;
therefore, we set the Minimum Bounding Rectangles (MBR) of OVRs as their shapes in
this approach. Two OVRs will be treated as overlapped if their MBRs are overlapped. This
approach is able to significantly reduce the cost of the overlap operation by simplifying
boundary maintenance and avoiding real region overlapping calculation (line 5 in Algo-
rithm 3 is replaced by line 5 in Algorithm 4); however, the approach suffers from the issue
that unnecessary OVRs (false positives which are not really overlapped) would be appended
to the new MOVD.

The data structure used in MBRBHandler is shown in Fig. 9. An OVR is indicated as
<MBR, pois>, where an M BR is comprised of minimum and maximum points on the
x and y axes, and pois is a list of objects associated with the OVR. The MBRBHandler
is described in Algorithm 4. In particular, the new MOVD (Result) is initialized to be
an empty set in Algorithm 2. When a start event occurs, the MBRBHandler only detects
whether two MBRs are overlapped. If this is the case, the MBRs are overlapped and the
objects associated with the two OVRs are merged. The new OVR is appended to Result.
The final branch remains unchanged.

Compared to the RRB approach, the complexity of region overlapping 6 decreases in
constant time, but the size of output / increases, the performance impact of which is difficult
to evaluate. The upper bound of I is n?; therefore, the complexity of the MBRB approach
becomes O (n?) in the worst case.

It is worth noting that the MBRB solution is correct because the results of the MBRB
approach are a “superset” of the results of the RRB approach. First, given any element

@ Springer

Geoinformatica (2019) 23:105-161 125

Fig. 10 Optimal locations \
\
OVR« \ OVR,
*L / > ~ -
k P s/ * SO -
-k S
\ » Ll
\ |
\ |
\ L

< vregion, pois > generated by the RRB approach, there must be an element <
mbr, pois > in the result set of the MBRB solution, where mbr contains all locations in
region. The MBRB solution does not discard any location from the search space of the
RRB solution. Second, the MBRB solution preserves all object groups (pois) generated by
the RRB solution. If two regions are overlapped, their MBRs must overlap each other, and
their associated object group is output by the MBRB solution.

Moreover, the basic principle of our solutions is that the search space is decomposed into
a number of OVRs, in which a locally optimal location is found by Optimizer; however, the
shapes of OVRs are not calculated in the MBRB approach. How does the MBRB solution
determine an optimal location in an OVR?

The MBRB solution does not limit the locally optimal location in a particular OVR.
Instead, we look for it in the entire search space. As shown in Fig. 10, if an optimal location
Ly is found in OV Ry, Ly will undoubtedly be appended to the candidate list. If the optimal
location L; is outside of OV R;, according to Theorem 8, L; must be located in another
OVR, for example OV R;, which must have an optimal location L ;. L; must be identical
or better than L;. Appending both of them to the candidate list does not change the global
optimum since only the best one will be returned as the query result. Thus, appending L; to
the candidate list does not change the global optimum.

6.5 A cost-bound approach in optimizer

An optimal location ¢ that minimizes MW G D(q, E, ¢', o) is found in the third step of the
proposed framework. The framework does not specify a weight function for type weight
calculation; however, we mainly focus on a multiplicatively-based weight function, which
is one of the practical methods used in real applications. For example, the residential loca-
tion selection problem displayed in Fig. 1 uses a multiplicatively-based weight function. If
other weight functions are required in queries, a specific algorithm in the Optimizer module
is needed (See Fig. 6). The proposed cost-bound approach that utilizes the Fermat-Weber
techniques can be used for cases of additively-based and multiplicatively-based weight func-
tions, because the case of the additively-based weight function is a simplified case of the
multiplicatively-based weight function, in which all type weights are fixed at 1.

If the type and object weight functions can be combined and represented by a
multiplicatively-based weight function (e.g., applying multiplicatively-based weight func-
tions to both type and object weights), the problem of finding an optimal location in
each OVR in Euclidean space is converted into a typical Fermat-Weber problem in a d-
dimensional space. The objects associated with OVRs are the points in the Fermat-Weber
problem. The weights of the points are specified by the type weight function ¢’. The

@ Springer

126 Geoinformatica (2019) 23:105-161

object weights are integrated into the distance from locations to the points. As mentioned
in Section 3.2, the problem has been solved theoretically. The optimal location in three-
point cases and multiple-collinear-point cases can be found in constant and linear time,
respectively. An approximate iterative approach has been proposed for other cases [48].

In the RRB and MBRB approaches, we observe that a large number of OVRs will be
created by MOVD Overlapper (see Theorem 7). The number of the Fermat-Weber problems
increases rapidly when the number of objects grows. A basic approach is to sequentially
calculate the optimal locations of these Fermat-Weber problems and select the best one as
the query result; however, applying the iterative method to the Fermat-Weber problems is
very expensive. Therefore, we propose a cost-bound approach in which an optimal cost is set
as a global lower bound. During the processing of a Fermat-Weber problem, a local lower
bound of the cost in each iteration will be calculated. If the local lower bound is greater
than the global lower bound, no matter how many iterations will be processed, its local
optimal cost cannot be better than the global lower bound. Thus the following iterations can
be avoided, even though the stopping condition has not been satisfied.

Algorithm 5 CostBoundApproach(E, ¢/, o, y)

1: Cbound =00,l=<0,0>

2: for G; € E do

3 Initialize /; to the center of G;

4: if |G;| = 3 or G; is a collinear case then

5: Calculate the optimal location /; of G;

6 else

7 Let G; =< p{, p5,.... py >

8 Calculate the optimal location [’ of < pi', p§ >
9: if WGD(', {p{, p3}, ¢', 0) > Cbound then
10: Continue
11: end if

12: repeat

13: l; =f(;, G;) /*Iterating, see Eq. 4%/

14: Lbound =10b(l;) /* see Eq. 7 */
15: until y is satisfied or Lbound = Cbound
16: end if

17: Cost = WGD(l;, G, ¢', o)
18: if Chbound > Cost then
19: Cbound = Cost

20: =1

21: end if

22: end for

23: return /

As shown in Algorithm 5, the proposed cost-bound approach receives a set of object groups
E = {Gy, ..., G,}, a type weight function ¢’, object weight functions o, and a stopping
condition y. The distance from a location to points is calculated by their Euclidean distance
and o. The number of points in the Fermat-Weber problems (|G;|, 1 < i < n) is unneces-
sarily fixed. In particular, the global lower bound, Cbound, is initialized to infinity (in line
1) and reduced to the minimum cost of the optimal location found so far (in line 19). The

@ Springer

Geoinformatica (2019) 23:105-161 127

algorithm sequentially checks the Fermat-Weber problems, each of which have a local opti-
mal location found in lines 4-16. In the branch of the iterative method inside the loop, an
optimal location of the first two points in Gj; is first detected in lines 8-11. If a better result
of G; potentially exists, a local lower bound is calculated in each iteration in line 14. If the
local lower bound is greater than Chound, the iteration will stop in line 15. The complexity
of Algorithm 5 is O(n x |E|), where o denotes the average number of iterations pro-
cessed for Fermat-Weber problems. The Cost-bound approach can also be used in the SSC
solution.

6.6 Correctness of RRB and MBRB solutions
Theorem 1 The proposed RRB and MBRB solutions work correctly to MOLQ queries.

The correctness of RRB and MBRB solutions are supported by the following points.
1. RRB and MBRB can produce MOVD based on the input datasets because the MOVD
overlapping operator @ is closed under the MOVD space (See Theorem 19). Two or more
MOVD can be overlapped by using é. 2. Any MOVD fully covers the entire search space
(See theorem 8). RRB and MBRB consider all possible location in the search space during
the query evaluation. 3. For a specific OVR, any Fermat-Weber method is used for locating
an optimal location as a sub-optimal location; and the global optimal result is returned by
comparing all of these sub-optimal locations.

In the worst case, the computational complexity of RRB and MBRB solutions is O (n%),
where n denotes the number of objects in each type, and k denotes the number of object
types(See Theorem 7).

7 MOLQ updating algorithms

In this section, we first present a baseline approach to address the Multi-Criteria Optimal
Location Query updating problem by incrementally updating Voronoi diagrams. The query
result can be obtained by feeding the newly generated Voronoi diagrams into MOVD-based
solutions. Then, we develop an MOVD-based incremental updating model in Section 7.2.
Differing from the MOVD model that studies MOVD generation methods and properties of
the MOVD overlapping operation, the proposed MOVD updating model explores updating
operations over MOVDs when there are changes in input object sets. Finally, due to high
cost of the MOVD overlapping operation, we propose an advanced solution that incremen-
tally updates MOVDs in Section 7.3. Theoretically, all types of MOVDs can be processed by
the proposed object insertion and deletion algorithms; however, we mainly investigate ordi-
nary MOVDs generated by ordinary Voronoi diagrams for simplicity and better illustration
in this paper. Our methods can be extended to other types of MOVDs. After a new MOVD
is generated, the global optimum can be found by comparing the local optimal locations in
updated OVRs with the last query result.

7.1 Voronoi-diagram-based incremental updating approach
Similarly with the MOVD-based solutions, an intuitive approach that utilizes the MOVD
Overlapper and Optimizer can be used to address the MOLQ updating problem. In particu-

lar, the approach updates Voronoi diagrams by applying changes to the Voronoi diagrams of
initial object sets [21-23, 34, 40]. These Voronoi diagrams are assumed to be preserved as

@ Springer

128 Geoinformatica (2019) 23:105-161

intermediate results when MOLQ was evaluated using MOVD-based solutions [56]. Then,
MOVD Overlapper is used to overlap the updated Voronoi diagrams. Either the Real Region
as Boundary (RRB) or Minimum Bounding Rectangle as Boundary (MBRB) solution can
be employed as an MOVD overlapping approach. Last, Optimizer outputs the global optical
location as the query result by utilizing Fermat-Weber techniques to sequentially scan all
OVRs in the newly generated MOVD.

However, the approach suffers from high cost of MOVD overlapping operations (in
MOVD Overlapper). First, the cost of MOVD generation is high; the computational com-
plexity of the RRB approach depends on the complexity of Voronoi diagrams and the
number of Voronoi diagrams overlapped. Second, although the MBRB approach can avoid
real region calculation during the overlapping process, a large number of false positives are
produced as a side effect, which may incur significant overhead in both the overlapping pro-
cess over the next Voronoi diagram and Optimizer. The false positives are the regions that
cannot have any global optimal location, but output as candidates to the next step. Third,
in the final step, Optimizer sequentially scans all the regions in the MOVD produced by
MOVD Overlapper, and selects the best one as the query result. But, in some cases, there
are only a limited number of objects updated; most of the local optimal locations are not
changed in the new query. Therefore, to reduce the cost of query re-evaluation, we proposed
an efficient MOLQ updating solution that updates the MOVD without MOVD overlapping
calculation.

7.2 MOVD incremental updating model

Before introducing our advanced solution, we developed an MOVD incremental updating
model by investigating MOVDs over two binary operators. The model not only demon-
strates the properties of MOVD updating operations, but also provides theoretical basis for
our proposed solution.

7.2.1 MOVD updating space

Given a family of object sets U = {Uj, ..., U,} (assume there are n object types in the
universal object sets), the MOVD updating space is

UMOVD)={MOVDE) |E={Py,.., Py}, Py CUj,.., P, CU,} (23)

U(M OV D) includes all possible MOVDs generated by any combination of objects in
U. For simplicity, M OV D({ P;}) is a simple form of MOV D(E) if VP; € E, P; # P},
P; = (. By the definition of the MOVD model, M OV D({#}) = R (the entire space).

Theorem 2 The number of MOVDs existing in U(M OV D) is

n (Ui

wwovo) =[] ('U,”) 24)

i1 \j=o >/

Since the MOVD is unique with a given family of object sets, the number of MOVDs
in the updating space is equal to the number of possible object combinations existing in U.

Given an object set P; € U;, Z‘filo (Ilf ‘) specifies the total number of ways of picking j
objects from U;. If j = 0, then P; = §. If U contains n object sets, then, |[U(M OV D)| is

equal to the product of the number of object combinations in each object set.

@ Springer

Geoinformatica (2019) 23:105-161 129

7.2.2 Object insertion and deletion operations over MOVDs

We define two binary operators + and — for object insertion and deletion operations over
MOVDs, respectively. The binary operators receive an MOVD and an object sets inserted
or deleted to the MOVD, and return a new MOVD. + is an inverse operation of —. An
MOVD can be either the left operand or the right operand of the two operators; however,
for simplicity and better explanation, we assume that an MOVD is always used as the left
operand, and + and — are left associative in this paper. + and - can be defined as follows.

MOVD(E)+ Q =MOVD(EH Q)
MOVD(E) =~ Q = MOVD(EH Q) (25)

Theorem 3 Changing the order of + and — does not change the result if updated object
sets do not have common objects. Moreover, first performing set operations on updated
object sets could reduce the cost of MOVD updating operations by minimizing the size of
the operands.

MOVD(E)4—Qi;Qj=MOVD(E) = Q0 + 0; fOinQ;=0 (26)
MOVD(E) + Qi = Q; = MOVD(E) + (0:\Q;) ~ (2;\0i) 7

Proof 1f there exists an object p in Q; N Q;, either side of Eq. 26 is invalid. If p € E, we
cannot perform MOV D(E) + Q;; if p ¢ E, — is invalid.

If0;NQ; =0 let Qi ={gl....q"} and Q; = {q}, > ¢}, by the definitions of
object insertion and deletion operations in Eqs. 12 and 14 (and the properties of union and
complement operations over sets), we can get

MOVD(E)+ Q; = Q; = MOVD(E)B{q/} B ..B {g/"} B{q}} B..B{g"}
= MOVD(E)B{¢}}B..B{¢!} B {g} @ .. B {¢]"}

=MOVD(E) - Q; + 0; (28)

If3p € Q; N Q;, then
MOVD(E) + Qi =~ Q; = MOVD(E) + (Qi\{p}) = (2;\{r}) 29)
So, Eq. 27 can be proven by applying all objects in Q; N Q; to Eq. 29. Equation 27 is
useful to eliminate shared objects in Q; N Q ; before updating MOV Ds. O

Theorem 4 Sequentially inserting/deleting object sets into/from an MOVD is equivalent to
updating them at one time if there is not any object shared by any two object sets.

MOVD(E)+ Q1+ .4+ Q.= MOVD(E) + (Q1 U ... U Qy)
MOVD(E) = Q1 =~ ...~ Q, = MOVD(E) = (Q1 U ... U Q)
FOinQj=0, 1<i,jsn i#]j (30
This can be easily proven by using the definitions of object insertion and deletion oper-
ations in Eqgs. 12 and 14 (and the properties of union and complement operations over

sets).

Theorem 5 Closure: the universal MOVD updating space is closed under operators + and

@ Springer

130 Geoinformatica (2019) 23:105-161

’ Object Datasets for Updating
Q

1. MOVD Updater

Insertion || Deletion

I MOLQ (£, ¢, o)

Object Datasets
={P, ..., P} MOVD(E)
Object Weight MOVD (EF Q)
Functions
0 ={G) ., Ga}
Type Weight Function G ‘—» 2. Updating Optimizer MOLQ (EFQ, S, o)
Query Inputs Evaluation System Result

Fig. 11 Framework of MOVD-based incremental updating approach

By definition, the results returned by + and — are still MOVDs, which are elements of
|U(M OV D)|. Thus, |U(MOYV D)| is closed under + and —.

By combining with the MOVD overlapping operator @, the order of the MOVD updating
and overlapping operations is not important, because if MOV D(E;) and MOV D(E) are
overlapped first, the changes applied to MOV D(E; U E;) include the changes to both
MOVD(E;)and MOV D(E)).

Theorem 6 The relation to the MOVD overlapping operator @. Let Q = {q1, ..., qn}, then,
by using the properties of union and complement operations over sets, we can get

(MOVD(E;)) +Q)®MOVD(Ej) =(MOVD(E; B Q))® MOV D(E)
= (MOVD(E; B{qi}...EB{g.})) ® MOVD(E})
=MOVD((E; B{q}.. B{g.}) UE))
=MOVD((E; UE;) @ {q}... B {g.})
=(MOVD(E;))® MOVD(E;))+ Q

(3D

(MOVD(E;) = Q)®MOVD(E;) = (MOVD(E;EQ)) ®MOVD(E;)
= (MOVD(E; B{q}.. E{qn}))®M0VD(Ej)

:MOVD((E,E{cn} .B{q.}) VE;)

=MOVD((E; v Ej) H{qi}.. E{qn})

= (MOVD(E;)®MOVD(E;)) = Q

(32)
7.3 MOVD-based incremental updating approach

We now propose an advanced MOVD-based incremental updating approach in this sub-
section. We will first describe the framework of the solution, and then illustrate the object
insertion and deletion algorithms. We assume that the MOVD of input object sets E is
preserved by MOVD-based solutions in the process of query evaluation last time. Thus,
MOV D(E) and Voronoi diagrams of objects in each type are additional inputs to our
proposed solution.

@ Springer

Geoinformatica (2019) 23:105-161 131

7.3.1 Framework of MOVD-based incremental updating approach

As defined in Section 4.2, the MOLQ updating problem receives a family of object sets [E,
object weight functions o, a type weight function ¢’, a set of objects Q needed to update,
and the query result, MOLQ(E, ¢', o), as inputs, and returns an optimal location after
O has been applied to E. In addition, M OV D(E) and basic Voronoi diagrams V D(P;),
P; € E, are additional inputs of our approach. As shown in Fig. 11, we evaluate the MOLQ
updating problem in two steps: (1) MOVD Updater applies the changes to MOV D(E)
by utilizing the MOVD incremental updating model; (2) Updating Optimizer sequentially
scans OVRs in the new MOVD, and returns the global optimum as the query result. The
cost-bound approach that finds the global optimal location by scanning all OVRs in the
MOVD can also be used in Updating Optimizer; however, unnecessary scans in unchanged
OVRs can be avoided in the following two cases: (1) MOLQ(E B Q,¢’,0) = I’ (or
MOLQ(EBQ, ¢', o) =1')if I’ is the best local optimal location in updated OVRs and [’ is
better than M O L Q(E, ¢', o), because in this case, any location in unchanged OVRs cannot
be better than I’; (2) Let ovr be the OVR where the query result M OLQ(E, ¢’, o) locates,
if there is no change to ovr (Q does not contain any object in the object group of ovr or
that of ovr’s neighbor OVRs), then MOVD(EH Q, ¢',0) (or MOVDEB Q, ¢!, 0)) is
either MOLQ(E, ¢', o) or the best local optimal location in updated OVRs. In this case,
ovr is not changed, MOLQ(E, ¢', o) is the optimal location in unchanged OVRs. Thus,
the global optimum is the better one between the best location in unchanged OVRs and the
one in updated OVRs. In other cases, Updating Optimizer has to scan all the OVRs to find
the global optimal location.

7.3.2 Object insertion algorithm

Inserting a new object to an MOVD may include adding new OVRs to the MOVD, updating
the boundaries of existing OVRs, and removing OVRs from the MOVD. Figure 12 shows
an example, in which an object ¢ is inserted into an M OV D({ P, Q}). We assume that g is
in the same type with objects in Q. The green polygon indicates the dominance region of
q after ¢ is inserted into M OV D({Q}) (which is equivalent to the Voronoi diagram of Q).
To efficiently update the MOVD, the fundamental idea of our MOVD insertion algorithm
is that we only update the OVRs that overlap the dominance region of ¢ (Dom(g)). In
particular, all OVRs in the input MOVD can be categorized into three groups: (1) there is

Fig. 12 An example of MOVD
insertion operation

@ Springer

132 Geoinformatica (2019) 23:105-161

Fig. 13 An example of MOVD
deletion operation

no change in the OVRs outside Dom(q) (e.g., OV R_p, 4, > remains unchanged during the
insertion since it does not overlap the green polygon, Dom(q), in Fig. 12); (2) the OVRs
(e.g., OVR_) 4,>) inside Dom(q) are removed from the MOVD, because the entire space
in the OVRs is dominated by the new object g; (3) boundaries of the OVRs that overlap
Dom(q) are updated. When a new object ¢ is inserted into M OV D(Q), the dominance
regions of ¢’s neighbor generators are updated. For example, OV R, 4,> is decomposed
into two sub-regions by the line segment from w; to wy. The sub-region inside Dom/(q)
becomes a new OV R_, 4~ inserted into the input MOVD, and the other sub-region is
OV R_.p, 4> with a new boundary.

The details of our MOVD insertion algorithm are presented in Algorithm 6. The
algorithm receives an MOV D(E) and a new object g as inputs, and it returns a new
MOV D(E H {q}). The new MOVD is abstracted by M in the algorithm. Initially, we find
MOV D({Q}) and the nearest generator g; € Q from ¢. Then, we create the bisector line of
q and g; (Byg;), which intersects with Dom(g;) at two points by, b;. Take Fig. 12 for exam-
ple, the new object g locates in Dom(q3), and B4, indicates a new boundary of Dom(g3).
Moreover, By, also intersects with M OV D(E) at other points (e.g., Byq; intersects with
the boundary (red line segments) of Dom(p4) at two points wi and wy). These two points
help us to identify OVRs, the boundaries of which have to be updated due to the change of
Dom(g3). With the first bisector line By, , we start generating the dominance region of ¢
by visiting its neighbor generators and creating bisector lines between ¢ and the generators.
For example, we iterate the four line segments of the green polygon (Dom(gq)) in counter
clockwise order. Since b; is on the bisector line of g3 and g, we can easily find g as a new
neighbor generator of ¢, and the bisector line from b; to b,,. We continue the process until
reaching by, one end of the first bisector line (from line 5 to 21). In the while loop from line
12 to 21, b always points to one end of the new bisector line (at line 11 and 20), and the loop
is terminated when b is equal to b, at line 12. When each bisector line is visited, we also
mark the intersection points with M OV D(E) (e.g., wi and w») at line 8 and 17. Then, we
use these intersection points to update the boundaries of OVRs overlapping with Dom(g)
in function OV R_Update at line 22. In OV R_Update, each overlapped OVR is decom-
posed into two sub-regions (OV R, 4,> is decomposed into two sub-regions by line from
wi to wy); the one inside Dom(q) is appended to an OVR set OV Rs_In_Dom_P. The
details of OV R_U pdate will be described in Algorithm 7. Third, all the OVRs in Dom(q)
are removed from M (at line 25). These OVRs are also kept in OV Rs_In_Dom_P (at line
26) because they contain the region of overlapping multiple dominance regions. If these

@ Springer

Geoinformatica (2019) 23:105-161 133

OVRs are discarded, after obtaining Dom(q), we have to sequentially overlap Dom(g) on
the dominance regions of objects in other types, the cost of which could be high. In addition,
it is worth noting that the union of the OVRs in OV Rs_In_Dom_P is equal to Dom(q).
Finally, in the for loop from line 29 to 32, we iterate all OVRs in OV Rs_In_Dom_P, and
replace old objects in object groups of the OVRs with g. These OVRs may share object
groups, because they might be separated by the dominance regions of two generators in the
old MOV D({Q}), but they become sub-regions in Dom(q) after ¢ is inserted. Thus, we
check the OVRs in OV Rs_In_Dom_P, and merge them if necessary (at line 31). After the
check, all OVRs are added to M as new OVRs (at line 33). More analysis of the object
insertion operation to an MOVD will be provided in Appendix A.4.

Algorithm 6 MOVD_Insert(M OV D(E), q)

1: M=MOVD(E)

2: OVRs_In_Dom_P =

3: Find MOV D({Q}) where Q contains objects in the same type with g

4: Let g¢; € Q be the nearest generator from ¢

5. Create the bisector line B(g, g;);

6: Let by and b, be the two points where B(q, g;) intersects the boundary of Dom/(g;)

7. if B(q, ¢;) intersects the boundary of OVRs € MOV D(E) then

8: Mark the intersection points on the line segment Ly, p,

9: end if

10: Add Lp,p, to Dom(q)

11: b =b;

12: while (b # by) do

13: Let g; be the generator where Dom(q;) intersects B(q, g;) at by

14: Create the bisector line B(q, q;);

15: Let b; and b, be the two points where B(q, ¢;) intersects with the boundary of
Dom(p;)

16: if B(q, q;) intersects the boundary of OVRs € MOV D(E) then

17: Mark the intersection points on the line segment Ly, p,

18: end if

19: Add Ly, p, to Dom(q)

20: b:bu,btzbm%':q.i

21: end while

22: OVR_Update(M, Dom(q), OV Rs_In_Dom_P)
23: for ¥V ovr e MOV D(E) do

24: if ovr is inside Dom(q) then

25: Remove ovr from M

26: Append ovr to OV Rs_In_Dom_P
27 end if

28: end for

29: for VY ovr € OV Rs_In_Dom_P do

30: Replace g € Q with g in the object group of ovr
31: Merge ovrs if their object groups are the same
32: end for

33: Append all OVRs in OV Rs_In_Dom_P to M

34: return M

@ Springer

134 Geoinformatica (2019) 23:105-161

The boundaries of OVRs that overlap with Dom(q) (except for OVRs inside Dom(q))
are updated in OV R_Update in Algorithm 7. In particular, the intersection points and two
ends of bisector lines on the boundary of Dom(q) had been marked when Dom(q) was
created in Algorithm 6. OV R_U pdate iterates every two consecutive marked points in the
counter clockwise order. For each iteration, let m; and m ; be two marked points, and / be
the line segment from m; to m; on the boundary of Dom(g), any point d on [must be
in the OVR that overlaps Dom(q). So, we use d to find the OVR (at line 5 and 6), and
update its boundary with / (at line 8). In addition, the old OVR is decomposed into two sub-
regions. The one outside Dom(q) becomes the new region of the OVR; the other region
inside Dom(q) is appended to OV Rs_In_Dom_P (at line 9). For example, OV R_, 4, is
divided by the line from b; and w3. The sub-region above the line becomes the new region
of OVR_p, 4,>, and the other sub-region is inserted into OV Rs_In_Dom _P.

Algorithm 7 OVR _Update(M, Dom(q), OV Rs_In_Dom_P)

1: /* Marked points include the intersection points and two ends of bisector lines */
2: for every two consecutive marked points on the boundary of Dom(q) in counter
clockwise order do

Let m; and m ; be two consecutive marked points

Let [be the line segment from m; to mj on the boundary of Dom/(q)

Pick a random point d on [

Find ovr € M where d € ovr

Use [to decompose ovr into two sub-regions

Update the boundary of the sub-region outside Dom(q) with [

Append the other sub-region inside Dom(q) to OV Rs_In_Dom_P
10: end for
11: return

R A

7.3.3 Object deletion algorithm

Similarly with the object insertion operation, deleting an object from an MOVD may include
adding, deleting, and updating OVRs. For example, we assume that p3 is deleted from
MOV D{P, Q}), which is shown in Fig. 13. In the deletion process, the OVRs inside
Dom(p3) are first removed, because all these OVRs are sub-regions of Dom(p3), which
is removed in the updated MOVD. Then, to fill the space of Dom(p3) in the new MOVD,
the neighbor OVRs of Dom(p3) (e.g., OVR_p, 4> and OV R_p, 4) are visited, and
their dominance regions are updated. For every OVR inside Dom(p3), we also calculate
the overlapping regions of the OVR and the boundary of updated M OV D({P}), and insert
the overlapping regions to the MOVD as new OVRs. In the region overlapping calculation,
an OVR could be decomposed into multiple OVRs, because Dom (p3) will be decomposed
into a number of sub-regions by re-calculating the dominance regions of p3’s neighbor
generators in P.

The deletion algorithm is described in Algorithm 8. The algorithm receives an
MOV D(E) and a deleted object ¢ as inputs, and returns M OV D(E H {g}). The result is
abstracted by M in the algorithm. In particular, we first iterate all OVRs inside Dom/(q),
and delete them from M (at line 5). Before appending the OVRs to a temporary set
Removed_OV Rs, g is removed from object groups of the OVRs (at line 6). Then, we
incrementally update M OV D({Q}) by using a Voronoi diagram updating method (at line
9) [35]. The dominance regions of ¢’s neighbor generators are updated in the process. We

@ Springer

Geoinformatica (2019) 23:105-161 135

also append the updated OVRs in MOV D({Q}) to a temporary set Updated_OV Rs. In
the for loop from line 11 to 17, the overlapping regions of the updated dominance regions
and OVRs in Removed_OV Rs are calculated. If any overlapping region is not an empty
set, we create a new OVR for the region; the object group of the new OVR is the union of
object groups of the two input OVRs (line 12 to 16). Finally, we merge two OVRs in M if
their object groups are the same. It is worth noting that only updated OVRs and their neigh-
bor OVRs are visited in the merging process, because other OVRs are not changed. Take an
MOV D{P, Q}) in Fig. 13 for example, we assume p3 is deleted from the MOVD. First,
OVR_p;41>» OVR_p, 43>, and OVR_), 4.~ are removed from the MOVD, and kept
in Removed_OV Rs. Then, MOV D({P}) is incrementally updated; green line segments
inside Dom (p3) indicate new boundaries of dominance regions of p3’s neighbor generators
(p1, P2, 4, ps, and pe). Since OV R, 4, is further decomposed into two sub-regions by
the new Dom(ps) and Dom(pe); we calculate the new overlapping regions at line 13, and
append the new OVRs to M at line 15. Object groups of the new OVRs are also updated
by replacing p3 with the corresponding generators. Last, we merge the new OVRs to their
neighbor OVRs if their object groups are the same. A sub-region of OV R, 4,~ is merged
with OV R_ s 4,~ after p3 is deleted.

Algorithm 8 MOVD _Delete(M OV D(E), q)

: M=MOVD(E)
: Removed_OVRs =, New_ OV Rs =, Updated_OV Rs =
: QO be the object set containing ¢
for V ovr inside Dom(q) do
Remove ovr from M
Remove g from the object group of ovr
Append ovr to Removed_OV Rs
: end for
: Incrementally update MOV D({Q})
: Let Updated_OV Rs to a set of updated OVRs in the updating process at line 9
: for Yovr; € Updated_OV Rs, ovry € Removed_OV Rs do
if ovr; N ovry # & then
region = ovry N ovry
os =ovr1.Objects U ovry.Objects
Append a new OVR < region, os > to M
end if
: end for
: for updated OVRs in M do
Merge two OVRs if their object groups are the same.
: end for
: return M

R I Y

RO R e e e e e e e
P 2 - AN > ol

As we expect, the proposed object insertion and deletion algorithms only process the
OVRs that require changes. In general, given an object ¢ inserted into or deleted from
an MOV D(E), there are two steps in the two proposed algorithms. We first update
MOV D({Q}) with ¢ and then apply the changes to M OV D(E) by using the new domi-
nance regions in M OV D({Q}). The computational complexity of the process depends on
a number of factors, such as the location of ¢, the size and object distribution of Q, and
the OVR density and distribution of MOV D(E). To simplify our analysis, we use I to

@ Springer

136 Geoinformatica (2019) 23:105-161

denote the average number of OVRs (in M OV D(E)), which overlap with the updated dom-
inance regions in M OV D({Q}), and C to denote the average number of neighbor OVRs
of a given OVR. Then, the computational complexity of the insertion and deletion algo-
rithms are O(C x I) in average cases, because there are / OVRs inserted into, removed
from, or updated in M OV D(E), and each of them is detected to merge with their neigh-
bor OVRs. In for loop from line 11 to 17 in M OV D _Delete algorithm, the cost of testing
the overlapping region of ovr; and ovr, is the product of size of Updated_OV Rs and
Removed_OV Rs. Since Updated_OV Rs and Removed_OV Rs maintain the neighbor
OVRs of g in MOV D({Q}) and the OVRs inside Dom(g) in M OV D(E); the number of
OVRs in Updated_OV R and Removed_OV Rs can be represented by C and I respec-
tively. Thus, the computational complexity of the for loop is also O (C x I') in average cases.
Moreover, in the worst case, all OVRs in M OV D({Q}) could be updated in the process,
and the computational complexity becomes O (C x |M OV D(E)|), where MOV D(E)| =
n!MOVDEI 4 denotes the number of objects in object set O, and | E| denotes the number
of object sets in E.

8 Experimental validation

In this section, we evaluate the performance of the OVD model and MOLQ solutions
with real-world data sets in Euclidean spaces. We implemented our proposed SSC (See
Section 6.1), RRB (See Section 6.3), MBRB (See Section 6.4), VD-IU (See Section 7.1),
and MOVD-IU (See Section 7.3) in C++. Specifically, SSC is used as a baseline solution,
and RRB and MBRB are two advanced MOVD-based solutions for MOLQ queries. VD-IU
and MOVD-IU are a baseline solution and an advanced MOVD-based solution for MOLQ
update queries. All data was loaded into the main memory (except explicitly specified) dur-
ing the execution of the simulations. All the experiments were conducted on a CentOS 6.5
Linux server equipped with two Intel Xeon E5-2660 v2 2.20 GHz processors and 128 GB
of memory. All results were recorded after the system model reached a steady state.

In our experiments, the data sets were downloaded from GeoNames.! We retrieved the
largest five object types, 230,762 streams (ST M), 225,553 churches (C H), 200,996 schools
(SCH), 166,788 populated places (P PL), and 110,289 buildings (BLDG), in the United
States. By default, the type weight w' and object weight w? are randomly generated from
0 to 10. The multiplicatively-based weight functions are used as ¢’ and o. GPC library? is
used for polygon overlapping calculation.

8.1 MOLQ in Euclidean space
8.1.1 MOLQ evaluation in Euclidean space

We evaluate the solutions for MOLQ queries with three and four object types that are pop-
ular applications in the real world. The type weights are randomly generated from O to 10.
We use the largest object types, E = {STM, CH, SCH} for the three-type case and E =
{STM,CH, SCH, PPL} for the four-type case. The objects are randomly selected from
the data sets.

Thttp://www.geonames.org/
http://www.cs.man.ac.uk/~toby/gpc/

@ Springer

http://www.geonames.org/
http://www.cs.man.ac.uk/~toby/gpc/

Geoinformatica (2019) 23:105-161 137

Fig. 14 MOLQ with three object 6
types in Euclidean space 10 SSC '

10 ’ G
e | |
10
4 8 12 16 20
Number of Objects in Each Type (K)

Figure 14 displays the performance of SSC, the proposed RRB and MBRB solutions.
The cost-bound approach is used in all the three solutions. As Fig. 14 shows, RRB and
MBRB run 24-48 times and 22-51 times faster than SSC, respectively, because they avoid
a significant number of object combinations. Overlapping Voronoi diagrams is a process
of filtering out combinations that cannot be the closest objects of any location. Another
observation is that MBRB takes only 1/2 of the execution time of RRB over datasets of four
thousand objects in each type. But when the datasets grow larger, MBRB suffers from more
overhead of maintaining and processing false positives. The evidence has been shown in
Figs. 17 and 20.

In the query with four object types, only approximate results can be provided by the three
approaches. The error bound € is set to be 0.001. Figure 15 shows the execution time of the
three solutions, in which the RRB solution has the best performance (14 times faster than
SSC and 150% faster than MBRB, on average). Although the execution time of overlapping
process in the MBRB approach is slightly shorter than RRB as shown in Fig. 20b, the
overhead of maintaining false positives makes MBRB expensive in both overlapping the
next Voronoi diagram and Fermat-Weber calculation (finding an optimal location in each
OVRs). In the general cases, the overlapping process takes nearly 90% of execution time in
the query evaluation.

8.1.2 Cost-bound approach evaluation in Euclidean space

We evaluate the basic (Original) and cost-bound (CB) approaches by varying the number of
Fermat-Weber problems and the error bound €. The basic approach sequentially calculates

Fig. 15 MOLQ with four object 7
types in Euclidean space 10 SSC T

4 8 12 16 20
Number of Objects in Each Type (K)

@ Springer

138 Geoinformatica (2019) 23:105-161

Fig.16 CB h evaluati igi
ig approach evaluation Time (S)Ongmal
250 CB

200
150
100
50 6.001
0" e
8§ o1 e (107

Fermat Weber Problems (100K)

the optimum locations of all Fermat-Weber problems, and selects the best location for the
result. The number of points in each Fermat-Weber problem is fixed to 5. The coordinates
and type weights (from O to 10) of points are randomly generated. The iterative method for
a Fermat-Weber problem will stop when the deviation from the optimal cost is less than the
error bound ¢ (see Section 3.2) [38].

Figure 16 displays the execution time of the two approaches. As either the problem size
increases or € decreases, the execution time of both approaches rises. Obviously, the growth
rate of the original approach is higher than the cost-bound approach because a significant
number of unnecessary iterations can be avoided by setting a cost bound, which makes the
cost-bound approach more efficient (60 to 517 times faster than the original approach), even
though it has to pay extra overhead on lower bound calculation in each iteration.

8.1.3 Overlapping two Voronoi diagrams in Euclidean space

Two overlap approaches, RRB and MBRB, on two ordinary Voronoi diagrams are evaluated
with various data set sizes. The Voronoi diagrams are generated by two object sets, which
are randomly selected from ST M and C H. Their sizes are indicated by the x and y axes in
Figs. 17, 18 and 19.

From Fig. 17, we observe that the execution time of the overlapping process in MBRB
is shorter than that of RRB. In particular, the speedup of MBRB ranges from 3 times in
two 10K data sets to 7.9 times in two 160K data sets. The reason is that the regions of
OVRs generated by RRB are determined by real region overlapping calculation (polygon
overlapping calculation in this experiment). The complexity of overlapping two polygons
is proportional to the number of vertices in the polygons, which is more expensive than the
MBR detection (rectangle overlapping calculation) that can be completed in constant time
in MBRB. Also, Fig. 18 shows the evidence that due to replacing real regions of OVRs
with their MBRs, MBRB generates around 322% more OVRs, on average, than RRB. Two
OVRs that are not really overlapped with each other may be determined to be overlapped

Fig. 17 Execution time Time (s) R
B

CH (10K)

STM (10K)

@ Springer

Geoinformatica (2019) 23:105-161 139

Fig. 18 Number of OVRs OVRs (K) RRB
10°
10*
10°} -
=
10}

CH (10K)

STM (10K)

by the MBR detection. However, Fig. 19 shows that the memory consumption of MBRB
is very close to that of RRB. Although MBRB generates more OVRs, the regions (MBRs)
of which can be represented by two points, all vertices of polygons have to be recorded in
RRB. According to Fig. 19, the total number of points managed by the MBRB approach is
close to RRB.

8.1.4 Overlapping multiple Voronoi diagrams in Euclidean space

In this experiment, we examine the overlap operation by varying the number of Voronoi
diagrams. These Voronoi diagrams are generated by objects randomly selected from E =
{STM,CH, SCH, PPL, BLDG}. For object type selection, we follow the sequence in
E (ie., E={STM, CH} for the two-type case, E = {STM, CH, SC H} for the three-type
case, and so on). In addition to performance evaluation, we explore the availability of the
overlap operation, which is described by the maximum size of objects in a particular number
of object types that can be processed with around 1 GBytes memory. All data is assumed to
be loaded into the main memory.

Figure 20a demonstrates the availability of the overlap operation by varying the num-
ber of object types. When the number of object types increases, the maximum numbers of
objects in both RRB and MBRB approaches drop rapidly, from 107 objects in two types to
10* objects in four types. The more Voronoi diagrams overlap, the more OVRs are gener-
ated, which requires more memory. Moreover, the dropping rate of the MBRB approach is
higher than RRB because the MBRB approach consumes more memory when the number
of object types is greater than three, as shown in Fig. 20d.

Figure 20b, c, and display corresponding execution time, the number of OVRs, and
memory consumption of both approaches with parameters that lie on the availability lines
(in Fig. 20a). Due to different data sizes and the number of object types configured in
the two groups of evaluation, we conduct another group of experiments that evaluate the

Fig. 19 Memory consumption Mem (MB) RRB

CH (10K)

STM (10K)

@ Springer

—
Ey
o

Geoinformatica (2019) 23:105-161

%)
by 120 ‘ ,
z 10 RRB —+—
= 100 | RRB*
5 I MBRB 3
E 10!t 2 60 |
5 20 X
i b 0
3 1 2 3 4 5 2 3 4 5 6
Number of Object Types Number of Object Types
(a) Availability of types. (b) Execution time.
4
10 ‘ ‘ ‘ 2000
10y e — 1500 | K
g 107} E 1000 r *1&
> 5]
© ol RRB —— = 500! RRB ——
10
RRB* RRB*
MBRB % MBRB -
100 B e 0 S
1 2 3 4 5 1 2 3 4 5 6
Number of Object Types Number of Object Types

(¢) Number of OVRs. (d) Memory consumption.

Fig.20 Varying number of object types in Euclidean space

RRB approach with the parameters used in MBRB evaluation for fair comparison. The
experimental results are highlighted by RRB*.

As we expect, the MBRB approach always produces relatively larger set of OVRs than
RRB*, as shown in Fig. 20c. The more OVRs generated by MBRB than RRB* increase
from 4.4 times in two object types, 19 times in four object types, to 24 times in five object
types, since the false positives in the overlapping process will be fed in the next overlapping
process, which generates more false positives. Moreover, a turning point in terms of exe-
cution time is observed between 3 and 4 in Fig. 20b because the computation complexity
induced by a surprisingly large number of OVRs dominates the entire process in the MBRB
approach, which has a greater impact than the benefits obtained from the region overlapping
calculation. The drop of the execution time of RRB* indicates that RRB will outperform
MBRB with the same parameters if objects in four types are considered in the query.

8.1.5 Scalability with object types
To evaluate the scalability of RRB and MBRB solutions for MOLQ over datasets of multiple
object types, we develop disk-based RRB and MBRB approaches, in which OVRs in large

MOVDs are sequentially read from or written to disk in the MOVD overlapping operation.
We use the largest ten object types from our datasets in the experiments.

@ Springer

Geoinformatica (2019) 23:105-161 141

Fig.21 MOLQ with varied

: RRB + X
b d
object types 103 IMBRB -~
- X
107
= 1
10" ¢
10°

2 4 6 8 10
Number of Object Types

Figure 21 shows the execution time of MOLQ queries by using the disk-based RRB
and MBRB solutions. The number of object types varies from 2 to 10, and the number of
objects in each object type is fixed at 1000. As more types of objects are considered in the
query, disk-based MBRB solution takes much longer for the query than RRB solution. An
interesting observation is that MBRB outperforms RRB over datasets of two or three object
types if OVRs are kept in memory; but the disk-based MBRB is twice as slow as the disk-
based RRB. The reason is that MBRB suffers from extra I/O cost of reading and writing
false positives. Moreover, we also conduct a group of experiments, in which we fix the
number of object types at five and vary the number of objects in each object type from 0.5
K to 2.5 K. The execution time of disk-based MBRB and RRB is displayed in Fig. 22. RRB
also outperforms MBRB and the difference becomes larger as data cardinality increases.

8.1.6 Summary

We have evaluated the performance of the RRB and MBRB solutions in Euclidean space.
Which method performs better depends on the number of object types and the size of object
set in each type. The MBRB solution outperforms the RRB solution in queries with rel-
atively small types of objects (< 3) and small number of objects (< 10*) in each type,
because there are only a limited number of false positives generated during the overlapping
operation by MBRB. The computational cost on the false positives does not dominate the
entire query evaluation. But, if there are more than three object types, and each data set
contains ten thousands of objects, RRB becomes a better solution in terms of the execution
time and memory consumption. The growth rate of the execution time of the RRB solution

Fig.22 MOLQ with varied 150 : :
object cardinality in each object RRB —+
type 120 IMBRB % X
é/ 90 ¢ ><
e 60 X
30 | !

05 1 15 2 25
Number of Objects (K)

@ Springer

142 Geoinformatica (2019) 23:105-161

Fig.23 Update 100 STM objects 4 ‘ 80 <
by varying object types = VD-IU e
g MOVD-IU - [
8 3| VDIU-OVRs ¥ 160 g
2 MOVD-IU-OVRs {1 ©
Q Q
g | | =
e 2 _. !
g ge 2

5 1t T 20
g B X E
(0)==2 : : 0 =z

1 2 3 4
Number of Object Types

is much lower than the ones of the MBRB solution when receiving larger data sets. More-
over, if there are more than five object types in input datasets, disk-based RRB solution is
a better solution, which suffers from less cost in both overlapping computation and loading
OVRs from disk.

8.2 MOLQ updating in Euclidean space

We also evaluate the performance of our MOVD-based Incremental Updating (MOVD-IU)
approach over various data sets. We implemented our proposed algorithms and the Voronoi-
diagram-based Incremental Updating solution (VD-IU) in C++ [26, 55, 56]. VD-IU uses
RRB solution for fair comparison, because the RRB solution and MOVD-IU produce real
regions of OVRs in MOVDs. All experimental results are presented in figures with double
y axes. MOVD-IU and VD-IU indicate the execution time of MOVD-IU and VD-IU in the
experiments, and MOVD-IU-OVRs and VD-IU-OVRs display the number of OVRs updated
by the two methods.

8.2.1 MOLQ updating evaluation in Euclidean space

We first evaluate the performance of updating 100 objects over MOLQ by using VD-IU
and MOVD-IU. The initial datasets have two, three, or four object types in the experiments,
and the number of objects in each type is fixed at 1000. An object update is completed by
an object deletion and an object insertion in both methods. The 100 updated objects are

Fig.24 Randomly update 100
objects by varying object types

.J;

VD-IU 80

MOVD-IU
31 VD-IU-OVRs
MOVD-TU-OVRs

(HIF S
3

Execution Time (Second)
[}
N
=)
Number of Updated OVRs (K)

Number of Object Types

@ Springer

Geoinformatica (2019) 23:105-161 143
Fig. 25 ‘Insert 100 STM objects 15 : : 200 @
by varying dataset cardinality =y VD-IU o
g MOVD-IU> e
g 127 VD-IU-OVRsx | 100 >
2 MOVD-IU-OVR{"} []] et
g 9r <1120 3
<
8= 3
=
= 6 B w0 5
. P ot
g= N)
= K (-
8 37 ’ K 40 0
8 N > - =)
i gg%% X E
0 : 0 Z.

Number of Objects in Each Type (K)

randomly selected from either STM object set or all object sets, the results of which are
displayed in Figs. 23 and 24, respectively.

A similar pattern is observed from the two figures. As more object types are considered
in MOLQ, updating objects takes longer because more OVRs are generated and maintained
by the two methods. If the number of objects in each type is fixed, the area of the dom-
inance regions of objects is also fixed. Thus, with higher density of OVRs in an MOVD,
more OVRs should be, in general, updated in an object insertion or deletion process. The
evidence is shown by VD-IU-OVRs and MOVD-IU-OVRs in the figures. Moreover, another
observation is that the difference in the execution time of the two methods becomes larger as
more object types are considered in the query. Even though MOVD-IU updates more OVRs
than VD-IU, MOVD-IU still run, on average, 32% faster than MOVD-IU because MOVD-
IU avoids OVR overlapping operations in object insertion. The boundaries of OVRs are
updated when the dominance regions of inserted objects are re-calculated by using Voronoi
diagram updating algorithms. In object deletion, the number of times overlapping opera-
tions are performed is linear to the number of updated OVRs in MOVD-IU; while VD-IU
(RRB is used) is output-sentitive, which may suffer from quadratic cost at the worst case.

8.2.2 Effect of dataset cardinality
In this subsection, we focus primarily on the MOLQ evaluation over object insertion and

deletion operations by varying dataset cardinality. We select STM, SCH and PPL objects;
the number of objects in each type varies from 1000 to 5000. There are 100 objects randomly

Fig.26 Delete 100 STM objects 10 ‘ ‘ 200 <

by varying dataset cardinality = VD-IU e
5 3 MOVD-IU < | 160 &
3 VD-IU-OVRs ¥ g
) MOVD-IU-OVRs -] =
Q 6t 1120 2
£ 5
[l
= 4 X80 5
g e)
5 2 I B
l}j % e £

1 2 3 4 5
Number of Objects in Each Type (K)

@ Springer

144 Geoinformatica (2019) 23:105-161
Fig.27 Randomly insert 100 15 ‘ ‘ 200 &
objects by varying dataset = VD-IU D
cardinality g 12 MOVD-IU ¢ 160 £
3 VD-IU-OVRs ¥ 2
2 MOVD-IU-OVRs {-] i
o 9 r 120 o
= g

H
= 6 H8 o
S 3 B a0 3
Lﬁ %;;;;;‘.% """""""""""""""""""""" g
0 0 Z.

1 2 3 4 5
Number of Objects in Each Type (K)

inserted into or deleted from STM datasets in each group of experiments. The experimental
results are displayed in Figs. 25 and 26, respectively.

As we expect, VD-IU and MOVD-IU take longer to answer MOLQ with 100 objects
inserted/deleted over larger datasets. The execution time of VD-IU grows 2.14 times, on
average, faster than MOVD-IU due to large number of OVRs generated by RRB approach
(used by VD-IU) and high cost of polygon overlapping operations. MOVD-IU does not
perform polygon overlapping operations and only merges OVRs if they are in the dominance
region of inserted objects and share object groups. On the other hand, there are more OVRs
updated by MOVD-IU in object insertion because the growth rate of the OVR density is
higher than the falling rate of area of dominance regions of inserted objects as datasets grow.

A similar patten is also observed in Figs. 27 and 28, which display the experimental
results of randomly inserting/deleting 100 objects into/from three datasets. The types of
updated objects are randomly selected from STM, SCH, and PPL datasets. With larger
datasets, MOVD-IU saves more time (around 47%) than VD-IU. Moreover, there is no dif-
ference between object insertion and deletion in VD-IU, which always overlaps Voronoi
diagrams after objects are updated. However, it is interesting that the growth of execution
time of object insertion is slower than that of object deletion in MOVD-IU, but the object
insertion suffers from updating more OVRs than object deletion. The reason is that MOVD-
IU may perform overlapping calculation when objects are deleted, and the number of times
the overlapping calculation is performed goes up proportionally to the number of updated
OVRs.

Fig.28 Randomly delete 100 10 ‘ ‘ 200 <

objects by varying dataset = VD-IU e

cardinality g 3 MOVD-IU > 160 &
3 VD-IU-OVRs ¥ 2
23 MOVD-IU-OVRs -] =
Q 6 120 o
£ L2
Il p
= 4 ~Leo 5
g A -
3 2t x 40 8
& e B £

1 2 3 4 5

@ Springer

Number of Objects in Each Type (K)

Geoinformatica (2019) 23:105-161

Fig.29 Insert STM objects by
varying the number of inserted
objects

Fig.30 Delete STM objects by
varying the number of deleted
objects

Fig.31 Randomly insert objects
by varying the number of
inserted objects

Fig.32 Randomly delete objects
by varying the number of deleted
objects

Execution Time (Second) Execution Time (Second) Execution Time (Second)

Execution Time (Second)

145

25 ‘ : 250 &
VD-IU X

MOVD-IU X 2

2 VD-IU-OVRs ¥ | 200 z
MOVD-IU-OVRs [o
1.5t 1150 3
— <

=)

Ly X7 1100 5
05 -H]1S0 B
gj g 5
0 o0 150 o z

0
50 100 150 200 250
Number of Inserted Objects

1.25 ‘ | . s
VD-1IU g

| i &1 200 £
VD-IU-OVRs % 2
MOVD-IU-OVRs [e

075 | | £
e -‘.é"

0.5 | . e
X 2

025 t >< = s
< %ﬁ x [] g
Y an B e e A O

2.5

2 L

1.5

l L

0.5

0

50 100 150 200 250
Number of Deleted Objects

‘ : 300 &

VD-IU =
MOVD-IU > |, &
VD-IU-OVRs ¥ 5
MOVD-IU-OVRs [et
F 1,180 @&
> =

X e 5

L >< é ><< 60 g

50 100 150 200 250

Number of Inserted Objects

1.25 ‘ ‘ 300 &
VD-IU <

Ll MOVD-IU x| o, &
VD-IU-OVRs ¥ g
MOVD-IU-OVRs 3 et

0.75 | ST 180 B
o Z

0.5 t 1120 S
X N s

7] —

0.25 | - K 60 é
...... ‘?_ﬁ F%D 2

0 0
50 100 150 200 250

Number of Deleted Objects

@ Springer

146 Geoinformatica (2019) 23:105-161

8.2.3 Effect of number of updated objects

We also evaluate the efficiency of MOVD-IU and VD-IU to update MOLQ by varying the
number of objects inserted into or deleted from initial datasets. We select STM, SCH and
PPL objects; the number of objects in each type is fixed at 1000. The number of updated
objects is varied from 50 (5% of objects in a type) to 250 (25%). From Figs. 29 and 30, both
methods need more time for MOLQ updating as there are more objects inserted or deleted.
In the updating process, VD-IU maintains Voronoi diagrams of objects and generates an
MOVD after all objects have been updated; while MOVD-IU updates the MOVD in each
object change. Because the cost of updating Voronoi diagrams is lower than that of updating
MOVD, the benefit of using MOVD-IU will be offset by updating relatively large object sets.

Figures 31 and 32 shows the execution time and the number of updated OVRs when
objects are randomly inserted into or deleted from all three datasets. An interesting obser-
vation is that VD-IU outperforms MOVD-IU in terms of execution time when more than
250 objects are deleted from initial datasets. Although the updated OVRs by MOVD-IU is
much less than the ones by VD-IU, MOVD-IU has to update OVRs whenever an object is
inserted or deleted, but VD-IU only computes the MOVD once.

9 Conclusion

In this research, we formulate a novel optimal location selection problem. In addition to
the Sequential Scan Combinations (SSC) method, we propose a Minimum Overlapped
Voronoi Diagram (MOVD) based Real Region as Boundary (RRB) approach that efficiently
answers the query. To minimize the costs of region overlapping, we propose the Mini-
mum Bounding Rectangle as Boundary (MBRB) approach that uses Minimum Bounding
Rectangles (MBRs) as the boundaries of Overlapped Voronoi Regions (OVRs), since over-
lapping two rectangles is much cheaper than overlapping two arbitrary regions. We also pro-
posed advanced solutions to efficiently address the novel query in Euclidean space. We demons-
trated the excellent performance of the proposed approaches through extensive simulations.

Moreover, we extend the original Multi-criteria Optimal Location Query (MOLQ) to
MOLQ updating query. After providing a formal definition of MOLQ updating problem,
we proposed an MOVD-based updating model and an advanced solution that incrementally
updates objects to the MOVD generated in the last query evaluation. We further analyze
the computational complexity of the object insertion and deletion algorithms over ordinary
and general MOVDs. The efficiency of the proposed approach has been evaluated over
real-world datasets.

For the future work, we plan to extend our solutions to MOLQ on road networks.

Acknowledgments This research has been funded in part by the U.S. National Science Foundation grants
11S-1618669 (III) and ACI-1642133 (CICI).

Appendix
A.1 More OVD/MOVD properties
A number of OVD/MOVD properties can be derived from the OVD/MOVD definitions.

These properties are the basis of the OVD/MOVD model utilized in our MOVD-based
solution.

@ Springer

Geoinformatica (2019) 23:105-161 147

Theorem 7 MOV D(E)| < |0VD(E)| = []p g |Pi-

By Eq. 19, OVRs are generated by a combination of selected Voronoi regions. The num-
ber of OVRs in OV D(E) is the product of the number of Voronoi regions in these Voronoi
diagrams. Because all the possible empty sets have been removed, the size of M OV D(E)
is less than or equal to OV D(E).

Theorem 8 Any MOVD fully covers the entire search space R.

OVR;eMOV D(E)

U OVR; =R (33)

Proof This theorem can be proved by contradiction. Assume that 3¢ € R, but g ¢
MOV D(E). Then, by the property of Voronoi diagram, VP; € E, 3p; € P;, g € Dom(p;).
By the definition of MOVD (19), ¢ € MOV D(E), which contradicts with the assumption
that ¢ ¢ M OV D(E). This completes the proof. O

A.2 Algebraic structure of MOVD

After theoretically introducing the OVD/MOVD model, we will mainly focus on the overlap
operation. We create an algebraic structure of MOVD by exploring MOVD space under the
overlap operation and discuss its properties. The implementation details of the operation
will be presented in Section 6.

A.2.1 MOVD space

MOVD space is a universal set of MOVDs that are fed into and produced by the over-
lap operation. Given a universal set of object sets E = { Py, ..., P,}, the universal set of
MOVD(E) is defined as

UMOVDE)) = {MOVD(E;) | E: < E} (34)

Take E = {Py, P>} for example, E; is a subset of E. E; could be @, {P1}, { P2},
or {P;, P>}. So, the universal space of MOVDs of E is {MOV D(@), MOV D({P}),
MOVD({P}), MOVD{Py, P})}.

Theorem 9 The overlapping area of two different OVRs is a subset of their common
boundaries.

Proof By Eq. 19, an OVR is the overlapping region of {Dom(p{), ..., Dom(p,)}. If we
have two OVRs from an OVD such that OVR = (1 ,s¢(pu. . puy Dom(p;), and OVR' =

ﬂp:/e{pu/ o) Dom(pf/) , then the overlapping area of OV R and OV R’ is
S e{pl . pl

O VRN OVR'
=((1 Dom(p})) M(N Dom(p; "))
pielpy..py} pf/e{p'f/,...,p};/} 35)

=1 (om(p}) N Dom(p}))

@ Springer

148 Geoinformatica (2019) 23:105-161

According to the properties of Voronoi diagrams, Dom(p;) N Dom(pf/), where p} #
pf/, ri pf/ € P;, is either their common boundaries or an empty set. Moreover, if OV R
and OV R’ are different, there must exist a p; and pf/ that are different. The boundaries
of an OVR are comprised of the boundaries of corresponding Voronoi regions. Hence, the
overlapping region of OV R and OV R’ is a subset of their common boundaries. O

Theorem 10 When E is made up of only one object set E = { P}, then
MOVD(E) = OVD(E) = VD(P) (36)

Proof This theorem is straightforward. If [E has only one object set P, there is no other
Voronoi diagram overlapped on V D(P). Obviously VD(P) does not have any empty
regions. OV D(E) and M OV D(E) are identical to V D(P). This theorem not only states an
extreme case of definitions, but also highlights basic units in the OVD/MOVD model. All
OVDs are generated from these building blocks. O

Theorem 11 Given a type weight function ¢', object weight functions o ={s?, ..., ¢/}, and a
pointq in OVR (p{, ..., p;), the total weighted distance from q to the corresponding object
group G = {pY, ..., p;} is the minimum weighted distance from q to all object combinations
G', where G' € P; x ... X P,.

WGD (¢, G, ", o) = min(

{WGD(q,G',¢",0)|G' e Py x..x P, }) (37)

Proof If VD(P) is generated by P; and the weight function ¢f € o, a point ¢ in
OVR(pY{, ..., py) must fall in Dom(p{) of V.D(Py) so that p} is the closest point in Pj to
g. WD(q, pY{, ¢', ¢7) is the minimum weighted distance from ¢ to any points in P;. We
can get the same result in other sets P; € [E. After summing them up, we obtain Theorem 11
that WGD(q, G, ¢', o) has the minimum distance. O

Theorem 12 An OVR may have one or more generators, or may not have any generators.

Proof The overlapping operation decomposes Voronoi cells into smaller subregions. A gen-
erator can only fall in one subregion, and other subregions do not have any generators. It is
possible that two generators from two Voronoi diagrams may be in the same subregion. For
example, in Fig. 5c, p1 and ¢ are in the top-left subregion, and the doubly shaded subregion
does not have any generators. O

Theorem 13 (M OV D(E)| is bigger than or equal to |V D(P;)|, where P; € E.
[MOVD(E)| = |VD(F)| (38)

Proof Overlapping two Voronoi diagrams is a process in which one Voronoi diagram is
decomposed by another Voronoi diagram. Each Voronoi region is divided into a number
of subregions, unless two Voronoi regions from different VDs are exactly the same, or one
region contains the other. In these extreme cases, the Voronoi region remains unchanged.
Thus, after overlapping Voronoi diagrams, the number of overlapping regions in an MOVD
is either greater than or equal to the basic Voronoi diagrams. O

@ Springer

Geoinformatica (2019) 23:105-161 149

Theorem 14 The number of MOVDs existing in the universal space is as follows:

IE|
[uMmovD®)| =3 (7 (39)
i=0

Proof By definition, MOVD space consists of a number of MOVDs, each of which is gener-
ated by a subset of [E; thus the number of MOVDs in the space equals the number of subsets
in [E, which is presented as Eq. 39. The case that i equals O indicates a special subset, the
empty set, defined in Eq. 21. O

A.3 @ operation properties
By properties of the union operation on sets, we can obtain the following three laws.

Theorem 15 Idempotent Law
MOVD(E;))® MOVD(E;) = MOV D(E;) (40)

Proof By the idempotent law of union operation on sets, MOV D(E; | J E;) is equal to
MOV D(E;). Thus, overlaying two identical MOVDs produces the MOVD itself. O

Theorem 16 Commutative Law

MOVD(E;) & MO VD(E;) = 41)
MOVD(E;) & MOV D(E;)

Proof By the commutative law of union operation on sets, MOV D(E; | J E;) is equal to
MOV D(E;|J E;). Thus, swapping two operands does not change the result. O

Theorem 17 Associative Law

(MO VD(E;)) ® MOVD(Ej)) @ MOVD(Ey) =

MOVD(E;)) ® (MOVD(E;) ® MOV D(Ey)) “2)

Proof By the associative law of union operation on sets, MOV D ((E; |J E;) U Ex)
is equal to MOV D(E; |J(E; | Ex)). Thus, @ operation can be performed in any order
without ambiguity. O

Corollary 1 MOVD(E;), where E; C E, is unique.
Proof According to the commutative and associative laws of operation @, the order of
overlapping Voronoi diagrams does not cause the result to change. Thus MOVD(E;) is

unique. O

Theorem 18 M OV D(¥) is an identity element.

@ Springer

150 Geoinformatica (2019) 23:105-161

Proof MOV D(¥) equals {R} such that it leaves MOVDs unchanged under operation .
The following equation can be easily proved by the definition of &.

MOVD(E;)) @ MOVDW)=MOVD(E;) (43)
O

Theorem 19 Closure: the universal MOVD space of & is closed under operation .

Proof By definition, given any MOVD(E;) and MOVD(E), where E;, E; C [, the result
of overlapping them is MOVD(E; U E}). E; U E; is still a subset of E, so the result is an
element of UM OV D(E)). O

Definition 1 Sequential Overlap Operations

> MOVD(E;)) = MOVD(E|)®..® MOVD(E,)

=1 n (44)
=MOVD(J E)
i=1
Definition 2 Partial Order
If MOVD(E;)) =MOVD(E;) ® MOV D(Ey) then,
MOVD(E,-)>M0VD(EJ-) (45)

MOV D(E;) > MOV D(Ey)

The partial order definition formalizes a comparison model for evaluating how much
information MOVDs maintain. In Eq. 45, MOV D(E;) is generated by MOV D(E;) and
MOV D(Ey). MOV D(E;) has more information (i.e., objects) than either M OV D(E) or
MOV D(Ey). We use > to denote the relationship.

Theorem 20 MOVD(E;)) & MOVD(E;) = MOVD(E) if MOVD(E) >
MOV D(E)).

Proof The following equation proves Theorem 20 by applying the partial order definition
that decomposes MOV D(E;) into MOV D(E;) and MOV D(Ey), and the commutative
and idempotent laws of operation . O

MO VD(E;) ® MOV D(E;)
= MOVD(E;)®MOVD(Ey) ® MOV D(E))
= MOVD(E;)® MOV D(E,;) ® MOV D(Ey) (46)
= MOVD(E;) ® MOV D(Ey)
= MOVD(E;)

A.4 Analysis of object insertion operation to an MOVD
Since MOV D(E) would be more complex than M OV D({Q}), the proposed algorithms

would be dominated by updating M OV D(E) rather than updating M OV D({Q}) in most
cases. To accurately estimate the cost of MOVD updating algorithms, we further explore

@ Springer

Geoinformatica (2019) 23:105-161 151

the object insertion operation over ordinary MOVDs (generated from ordinary Voronoi dia-
grams) after M OV D({Q}) has been updated. An alternative OVR merging method can be
used in the insertion algorithm, the computational complexity of which is bounded at 3 x [
(See Corollary 3). In addition, we also find that the computational complexity of the object
deletion algorithm over general MOVDs can be bounded at O (1), where I denotes the num-
ber of OVRs in the dominance region of the deleted object, because every updated OVR is
only needed to merge with at most one of its neighbor OVRs (See Theorem 22).

In this section, all the following theoretical analysis and examples are presented in a 2-
dimensional space; however, they can be extended to higher-dimensional spaces in similar
methods. We use S to denote a subdivision of a search space R. We assume that S can be
abstracted by a set of vertices and line segments. V, £, and F are used to denote the sets of
vertices, edges, and faces in S. V* and £* indicate vertices and edges of S in a convex set
C. F* contains faces of S overlapping C.

Lemma 1 Given a convex set C in a search space and a subdivision S of the space, let VW*
be the set of intersection points of S and C, V* be the vertices of SinC (V* ={v eV |v
is inside C}), and JF* be the set of faces overlapped with C (F* = {f € F | f overlaps C}),
if the degree of all vertices of S is 3 (deg(v) = 3, v € V), then [W*| + |V*| < 2(|F*| —1).

Lemma 1 cannot be applied to non-convex sets because a line of the subdivision may
intersect with the boundary of a non-convex set at two or more points. |VV*| may go up to
infinity in extreme cases, and the upper bound of W*| 4+ |V*| does not exist. Figure 33
shows an example of Lemma 1, in which the search space is decomposed by an ordinary
Voronoi diagram. We assume that the degree of all vertices in the figure is 3. The figure
also shows a convex polygon C as an example of convex sets, which intersects with the
subdivision at W* = {wq, wy, w3, wa}. v1 and vy are two vertices inside C (V* = {vy, v2}).
The faces overlapping C are F* = {Dom(p3), Dom(p3), Dom(ps), Dom(pe)}.

Proof We prove this lemma using Euler’s formula, which states that v —e 4 f =2 is always
held for any connected planar graph with v vertices, e edges, and f faces. As shown in
Fig. 34, we create a space R’, which is limited by the boundary of the convex polygon C. All
edges inside the polygon are edges in the space R’. v and v, are two inner vertices in R/,

Fig.33 An example of Lemma 1

@ Springer

152 Geoinformatica (2019) 23:105-161

Fig.34 The convex polygon C is
converted to a planar graph

and wy, wy, w3, and w4 are four vertices on the boundary of R’. Euler’s formula cannot be
applied directly to the subdivision in R” due to the existence of half-infinite edges [3]. Thus,
we create an extra verteX v, Which connects to the boundary points W*, to convert the
subdivision to a connected planar graph. Since each edge connects two vertices, the number
of edges is equal to the half of the total degree of all vertices in R’ (the number of edges is

* s . s
2w |+3|V2 [+deg(voo) y Thep, according to Euler’s formula,

(W*| + [VF + 1) — 2|W*‘+3\V2*|+deg(voo) LF =2 47

where “1” indicates the vertice v, and deg(vso) = |VW*|. Finally, we obtain [W*|+|V*| =
2()]F*| — 1) by simplifying (47). Moreover, the convex set C may intersect with the sub-
division at vertex v, instead of wy, and there is one less boundary point in this case. To
take the case into account, v, is considered as an inner vertex because its degree is 3; while
the degree of boundary points is always 2. Therefore, 2(|F*| — 1) is an upper bound of
[W*| 4+ |V*|, and this concludes the proof. O

Take Fig. 33 for example, there are four boundary points W* = {wi, wa, w3, wa}),
two inner vertices (V* = {v1, v2}), and four faces (F* = {Dom(p>), Dom(p3), Dom(ps),
Dom(pe)}) overlapping with C. Thus, Lemma 1 is held in this example.

Theorem 21 Given a subdivision S in a search space, a convex set C, and a space R’ in C,
the degree of vertices in the subdivision would range from 3 to k. Let V;* denote the set of
vertices with degree i inside C, where 3 < i < k (|V*| = Zf:3 V), and F* be the set of
faces overlapping C, then

k
IV + [V <2(F* = 1) = > (G =3) x [V (48)
i=3

Proof Similarly with the proof with Lemma 1, Euler’s formula can be applied to the cases
presented in Theorem 21 by adding v... The difference is that the degree of vertices inside
C may be greater than 3; but the degree of boundary points in W* are still fixed at 2, and
deg(veo) = |W*| is also held. Thus, the total degree of vertices and boundary points is

@ Springer

Geoinformatica (2019) 23:105-161 153

2IW*| +deg(vso) + Zf:3 (i x |V¥|), and the number of edges in R’ is the half of the total
degree. According to Euler’s formula, we get

* k - *
(W*| + [V*] 4 1) — 2V Ees@oe b0 OVID |y e g 49)

Moreover, there might be less boundary points in WW* in the cases when C intersects with S
at inner vertices. Thus, after simplifying (49), we get (48), and this concludes Theorem 21.
O

Theorem 21 studies the relation between vertices and faces in the overlapping region of
a convex set and a subdivision. In Corollary 2, we will explore a specific case that a convex
polygon overlaps a subdivision, and analyze the upper bound of the number of vertices and
edges in the overlapping region.

Corollary 2 Given a subdivision S of a search space, in which the degree of vertices ranges
from 3 to k, let F* be the set of faces overlapping a convex polygon C of m vertices, then
the convex polygon contains at most m + 2(|F*| — 1) vertices and m + 3(|F*| — 1) edges.

Proof Similarly, we first create a vertex v to convert the subdivision in the convex polygon
to a connected planar graph. vy is connected to all boundary points in WW* in the convex
polygon, shown in Fig. 34. According to Theorem 21, we can get an upper bound of WW*|+
|V*| in Eq. 48. Then, we create a new graph that consists of the inner vertices in V*, inner
edges, boundary points in WW*, vertices of C, and the boundary of C. vy is not included in
the graph. For example, the new graph in Fig. 34 is made up of all vertices and edges in C
and on the boundary of C. The degree of inner vertices ranges from 3 to k; the degree of
boundary points is always 3 in the graph (w; connects to w», v, and b;), and the degree
of vertices of the polygon ({b1, b, b3, ba, bs}) is 2. Then, the total degree of all vertices in
the new graph is 2m + 3|W*| + Zf:3 (i x |V¥]). Thus, the number of edges in the graph
is
2mA3WHYE G x|V

le] 5
= 4 VBV (G=3) X V) D

<m+
k

=m+3(F* - 1) — 23((" =3) x Vi

<m+3(F -1

2
3x[2(F* = D)= Y b5 ((=3)x |V DI+ b5 (=3) x|V} D)
Z 3 o Z 3 (50)

By Theorem 21, the total number of vertices in C is

k
WA+ IV +m <m+2(1F| = D) = 2 (G =3) x [V)) =m +2(F* = 1) (51)

i=3

Equations 50 and 51 conclude Corollary 2. Equations 50 and 51 are also held in cases if any
point in YW* happens to be a vertex of C, because the two upper bounds do not change in
the cases. O

Since each boundary point breaks a line on the boundary of C into two line segments,
and the number of sides of C is equal to the number of vertices of C, so the number of line

@ Springer

154 Geoinformatica (2019) 23:105-161

segments on the boundary of C is m + |W*|, and the number of inner edges inside C (the
line segments on the boundary are excluded) is

k
lel = (m + W™ < 3(1F*| = 1) — 2(G = 3) x [V]]) — V¥ (52)

1=

If Corollary 2 is applied to the proposed MOVD updating operations, we can get the fol-
lowing corollary, in which MOVDs are considered as examples of subdivisions in a search
space and the dominance region of an updated object is a convex polygon in ordinary
MOVDs.

Corollary 3 Given an MOV D(E), a Voronoi diagram VD(Q) (Q € E), and an object
q that is needed to insert into or delete from MOV D(E), let Dom(q) be the dominance
region of q after the insertion or before the deletion, then Dom(q) contains at most

m+2(|F* = 1) — (%(i =3) x [VF|) vertices, and
i (53)
m+3(F*—1)— (Z(i —3) x [VF]) edges

i=3

where m is the number of vertices of Dom(q), F* denotes the set of OVRs overlapping
Dom(q) in MOV D(E), and V} indicates the set of vertices with degree i inside Dom(q).
The upper bound of the number of inner edges in Dom(q) (derived from Eq. 52) is

k
3(F =D = 3G =3) x V) = IW*] < 31F7| (54)

i=3

In addition to the analysis of the computational complexity of the proposed MOVD
updating algorithms in Sections 7.3.2 and 7.3.3, Corollary 3 provides us with an upper
bound of the computational complexity of ordinary MOVD updating. In the object insertion
operation, the dominance region of an inserted object ¢ and its neighbor OVRs are found
by detecting the boundary points. The cost of the detection process is proportional to the
total number of the boundary points and the number of vertices of Dom(q). When merg-
ing OVRs in the final step, we have analyzed the cost of one possible method that checks
every pair of neighbor OVRs. The cost of the method is O(C x I), where C denotes the
average number of neighbor OVRs of a given OVR, and I denotes the average number of
OVRs in Dom(q). However, an alternative OVR merging method (for ordinary MOVDs)
is iterating all the edges in Dom(g). Two OVRs will be merged if they share an edge and
their group objects. Thus, the cost of the second OVR merging method is proportional to
the number of inner edges in Dom(q), the upper bound of which is 3 x I specified in
Eq. 54.

If an object p is deleted from an MOVD, the computational complexity of the object
deletion algorithm is also bounded by O(C x I) at average cases, because every OVR
inside Dom(q) is detected to merge with its neighbor OVRs outside Dom(g). If two OVRs
have the same object group, they are merged in the deletion operation (See line 19 in Algo-
rithm 8). However, we observe that, for any given OVR inside Dom(q), there is at most one

@ Springer

Geoinformatica (2019) 23:105-161 155

neighbor OVR outside Dom(q) needed to merge with the given OVR. All other neighbor
OVRs inside Dom(p) cannot share object groups with the given OVR, because they have
been associated with different objects before deletion.

Lemma 2 Given an MOV D(E), where E = { P, ..., P,}, and an object pl’-c e P, P,eE,
ifpf.‘ is deleted from MOV D(E), then ¥ ovr inside Dom (pf.‘), there is at most one OVR
needed to merge with ovr at line 19 in Algorithm 8.

Proof When the algorithm reaches line 19, given two updated OVRs, ovr and ovr’, there
are two possible cases: (1) both ovr and ovr’ are in Dom(pl/f). In this case, ovr and ovr’ are
not merged, because they cannot share an object group. By the definition of MOVD, ovr
and ovr’ are two OVRs before deletion; there must exist an object type j (j # i); p‘;- in the
object group of ovr is different from p; in the object group of ovr’. Moreover, since there is
not any object in P; removed during the deletion operation, pj and p; are still in the object
groups of ovr and ovr’ after deletion. Thus, ovr and ovr’ cannot be merged in the deletion
operation. (2) if ovr is inside Dom(pl’?) but ovr’ is outside Dom(pf), Theorem 2 is also
held, and the proof is by contradiction as follows. We assume that ovr is needed to merge
with two OVRs, ovr’ and ovr”, outside Dom(pl’.‘). Apparently, object groups of the three
OVRs are the same after deletion. The deleted object pl’.‘ is not in the object group of ovr’
or ovr”, and object groups of ovr’ and ovr” do not change during the deletion. However,
ovr’ and ovr” are two OVRs outside Dom (pl’.‘) before deletion; by the definition of MOVD,
the object group of ovr’ must be different from that of ovr”, which contradicts with our
assumption. Thus, there is at most one OVR needed to merge with ovr, and this concludes
the proof. O

Moreover, from line 11 to 17 in Algorithm 8, we calcuate the boundaries of OVRs after
q is removed from M OV D({Q}). The neighbor OVRs of ¢ in MOV D({Q}) are kept in
Updated_OV Rs and all OVRs of MOV D(E) inside Dom(q) are in Removed_OV Rs.
Calculating the overlapping region of each pair of these OVRs are not necessary. The over-
lapping relation among these OVRs can be established when M OV D({Q}) is updated in
line 9 and 10, because the new boundaries of OVRs in Updated _OV Rs will go inside the
OVRs in Removed_OV Rs if they overlap with each other. Thus, we can obtain Lemma 3.

Lemma 3 Given an MOV D(E) and an object pf deleted from M OV D(E), the number
of times the overlapping region is calculated at line 12 in Algorithm 8 is [MOV D(E)]| in
the worst case, where |M OV D(E)| denotes the number of OVRs in MOV D(E).

With Lemma 2 and 3, we get Theorem 22 as follows.

Theorem 22 Given an MOV D(E) and an object pl(‘ deleted from MOV D(E), the
computational complexity of Algorithm 8 is |MOV D(E)| in the worst case, where
IMOV D(E)| = n', n denotes the number of objects in each type and t denotes the number
of object types.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

156 Geoinformatica (2019) 23:105-161

References

1. Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM
Comput Surv 23(3):345-405
2. Aurenhammer F, Klein R, Lee D-T (2013) Voronoi diagrams and delaunay triangulations. World
Scientific Publishing Co Inc
3. Bajaj CL (1988) The algebraic degree of geometric optimization problems. Discret Comput Geom
3:177-191
4. Boissonnat J-D, Delage C (2005) Convex Hull and Voronoi diagram of additively weighted points. In:
ESA, pp 367-378
5. Chandrasekaran R, Tamir A (1990) Algebraic optimization: the Fermat-Weber location problem. Math
Program 46:219-224
6. Cheema MA, Zhang W, Lin X, Zhang Y, Li X (2012) Continuous reverse k nearest neighbors queries in
euclidean space and in spatial networks. VLDB J 21(1):69-95
7. Chen Z, Liu Y, Wong RC-W, Xiong J, Mai G, Long C (2014) Efficient algorithms for optimal location
queries in road networks. In: SIGMOD conference, pp 123-134
8. Farhana M, Choudhury J, Culpepper S, Sellis T, Cao X (2016) Maximizing bichromatic reverse spatial
and textual K nearest neighbor queries. PVLDB 9(6):456-467
9. de Berg M, Cheong O, van Kreveld M, Mark O (2008) Computational geometry: algorithms and
applications, 3rd edn. Springer
10. Demiryurek U, Shahabi C (2012) Indexing network Voronoi diagrams. In: The 17th International
conference on database systems for advanced applications, DASFAA, pp 526-543
11. Devillers O (2002) On deletion in Delaunay triangulations. Int] Comput Geom Appl 12(03):193-205
12. Dinis J, Mamede M (2011) Updates on Voronoi Diagrams. In: ISVD, pp 192-199
13. Dong P (2008) Generating and updating multiplicatively weighted Voronoi diagrams for point, line and
polygon features in GIS. Comput Geosci 34(4):411-421
14. Du'Y, Zhang D, Xia T (2005) The optimal-location query. In: SSTD, pp 163-180
15. Finke U, Hinrichs KH (1995) Overlaying simply connected planar subdivisions in linear time. In:
Proceedings of the eleventh annual symposium on computational geometry. ACM, pp 119-126
16. Fortune S (1986) A sweepline algorithm for Voronoi diagrams. In: Proceedings of the second annual
symposium on computational geometry. ACM, pp 313-322
17. Fortune S (1992) Numerical stability of algorithms for 2D delaunay triangulations. In: Proceedings of
the eighth annual symposium on computational geometry, pp 83-92
18. Gao Y, Zheng B, Chen G, Li Q (2009) Optimal-location-selection query processing in spatial databases.
IEEE Trans Knowl Data Eng 21(8):1162-1177
19. Ghaemi P, Shahabi K, Wilson JP, Banaei-Kashani F (2012) Continuous maximal reverse nearest
neighbor query on spatial networks. In: ACM SIGSPATIAL, pp 61-70
20. Green PJ, Sibson R (1978) Computing Dirichlet tessellations in the plane. Comput J 21(2):168-173
21. Green PJ, Sibson R (1978) Computing Dirichlet tessellations in the plane. Comput J 21(2):168-173
22. Guibas L, Stolfi J (1985) Primitives for the manipulation of general subdivisions and the computation of
Voronoi. ACM Trans Graph (TOG) 4(2):74-123
23. Guibas LJ, Knuth DE, Sharir M (1992) Randomized incremental construction of Delaunay and Voronoi
diagrams. Algorithmica 7(1):381-413
24. Guibas LJ, Stolfi J (1985) Primitives for the manipulation of general subdivisions and computation of
Voronoi diagrams. ACM Trans Graph 4(2):74-123
25. Haldane JBS (1948) Note on the median of a multivariate distribution. Biometrika 35:414-415
26. Harn P-W, Ji Z, Sun M-T, Ku W-S (2016) A framework for updating multi-criteria optimal location
query. In: ACM SIGSPATIAL
27. Jalal G, Krarup J (2003) Geometrical solution to the fermat problem with arbitrary weights. Annals OR
123(1-4):67-104
28. Karavelas MI, Yvinec M (2002) Dynamic additively weighted Voronoi diagrams in 2D. In: ESA, pp
586-598
29. Korn F, Muthukrishnan S (2000) Influence sets based on reverse nearest neighbor queries. In: SIGMOD
conference, pp 201-212
30. Korn F, Muthukrishnan S, Srivastava D (2002) Reverse nearest neighbor aggregates over data streams.
In: VLDB, pp 814-825

@ Springer

Geoinformatica (2019) 23:105-161 157

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

49.

50.
51,

52.

53.

54.

55.

56.

Liu R, Fu AW-C, Chen Z, Huang S, Liu Y (2016) Finding multiple new optimal locations in a road
network. In: ACM SIGSPATIAL

Mostafavi MA, Gold C, Dakowicz M (2003) Delete and insert operations in voronoi/delaunay methods
and applications. Comput Geosci 29(4):523-530

Mu L (2004) Polygon characterization with the multiplicatively weighted Voronoi diagram. Prof Geogr
56(2):223-239

Ohya T, Iri M, Murota K (1984) Improvements of the incremental method for the Voronoi diagram with
computational comparison of various algorithms. J Oper Res Soc Japan 27(4):306-336

Okabe A, Boots B, Sugihara K, Chiu SN (2000) Spatial tessellations: concepts and applications of
Voronoi diagrams. Probability and statistics, 2nd edn. Wiley, NYC

Pagliara F, Preston J, David S (2010) Residential location choice: models and applications. Springer

Qi J, Zhang R, Kulik L, Lin D, Xue Y (2012) The min-dist location selection query. In: ICDE

Morris JG, Love RF, Wesolowsky GO (1988) Facilities location models and methods

Stanoi I, Riedewald M, Agrawal D, El Abbadi A (2001) Discovery of influence sets in frequently updated
databases. In: VLDB, pp 99-108

Sugihara K, Iri M (1992) Construction of the Voronoi diagram for’one million’generators in single-
precision arithmetic. Proc IEEE 80(9):1471-1484

Tao Y, Papadias D, Lian X (2004) Reverse kNN search in arbitrary dimensionality. In: VLDB, pp 744—
755

Tao Y, Papadias D, Lian X, Xiao X (2007) Multidimensional reverse k NN search. VLDB J 16(3):293—
316

Tao Y, Yiu ML, Mamoulis N (2006) Reverse nearest neighbor search in metric spaces. IEEE Trans
Knowl Data Eng 18(9):1239-1252

Uster H, Love RF (2002) A generalization of the rectangular bounding method for continuous location
models. Comput Math Appl 44(1-2):181-191

Vardi Y, Zhang C-H (2001) A modified Weiszfeld algorithm for the Fermat-Weber location problem.
Math Program 90:559-566

Verkhovsky BS, Polyakov YS (2003) Feedback algorithm for the single-facility minisum problem. Ann
Europ Acad Sci 1:127-136

Weisbrod G, Ben-Akiva M, Lerman S (1980) Tradeoffs in residential location decisions: transportation
versus other factors. Transp Polic Decis-Making, 1(1)

Weiszfeld E, Plastria F (2009) On the point for which the sum of the distances to n given points is
minimum. Annals OR 167(1):7-41

Xia T, Zhang D, Kanoulas E, Du Y (2005) On computing top-t most influential spatial sites. In: VLDB,
pp 946-957

Xiao X, Yao B, Li F (2011) Optimal location queries in road network databases. In: ICDE, pp 804-815
Yang C, Lin K-I (2001) An index structure for efficient reverse nearest neighbor queries. In: ICDE, pp
485-492

Yao B, Xiao X, Li F, Wu Y (2014) Dynamic monitoring of optimal locations in road network databases.
In: VLDB, pp 697-720

Yiu ML, Papadias D, Mamoulis N, Tao Y (2006) Reverse nearest neighbors in large graphs. IEEE Trans
Knowl Data Eng 18(4):540-553

Zhang D, Du Y, Xia T, Tao Y (2006) Progressive computation of the min-dist optimal-location query.
In: VLDB, pp 643-654

JiZ, Ku W-S, Jiang X, Qin X, Sun M-T, Lu H (2015) A framework for multi-criteria optimal location
selection. In: ACM SIGSPATIAL

Ji Z, Ku W-S, Sun M-T, Qin X, Lu H (2014) Multi-criteria optimal location query with overlapping
Voronoi diagrams. In: EDBT, pp 391-402

@ Springer

158 Geoinformatica (2019) 23:105-161

Ji Zhang is a Ph.D student in the Department of Computer Science and Software Engineering at Auburn
University. He received the B.S. and M.S. in Computer Science from Huazhong University of Science and
Technology (HUST), Wuhan, China in 2004 and 2007. He worked as a software engineer in Huawei Tech-
nologies from 2007 to 2010. His research interests include file and storage systems, parallel and distributed
systems, and geographic information systems.

Po-Wei Harn is currently an engineer at Institute for Information Industry, Taiwan. He received his B.S.
degree in Mathematics in 2013 and M.S. degree in Computer Science and Information Engineering in 2015,
both from National Central University, Taiwan. His research interest is in spatial algorithm design and
analysis.

@ Springer

Geoinformatica (2019) 23:105-161 159

Wei-Shinn Ku received his Ph.D. degree in Computer Science from the University of Southern California
(USC) in 2007. He also obtained both the M.S. degree in Computer Science and the M.S. degree in Electrical
Engineering from USC in 2003 and 2006, respectively. He is a professor with the Department of Computer
Science and Software Engineering at Auburn University. His research interests include data management
systems, mobile computing, and cybersecurity. He has published more than 100 research papers in refereed
international journals and conference proceedings. He is a senior member of the IEEE and a member of the
ACM SIGSPATIAL.

It

Min-Te Sun received his B.S. degree in Mathematics from National Taiwan University in 1991, the M.S.
degree in Computer Science from Indiana University in 1995, and the Ph.D. degree in Computer and Infor-
mation Science from the Ohio State University in 2002. Since 2008, he has been with the Department of
Computer Science and Information Engineering at National Central University, Taiwan. His research interests
include distributed algorithm design and wireless network protocol development.

@ Springer

160 Geoinformatica (2019) 23:105-161

Xiao Qin received the B.S. and M.S. degrees in Computer Science from the Huazhong University of Science
and Technology, Wuhan, China, and the Ph.D. degree in Computer Science from the University of Nebraska-
Lincoln, Lincoln, in 1992, 1999, and 2004, respectively. For three years, he was an Assistant Professor with
the New Mexico Institute of Mining and Technology, Socorro, NM. Currently, he is an Associate Professor
with the Department of Computer Science and Software Engineering, Auburn University, Auburn, AL. His
research interests include parallel and distributed systems, storage systems, fault tolerance, real-time systems,
and performance evaluation.

Hua Lu is an associate professor in the Department of Computer Science, Aalborg University, Denmark.
He received the BSc and MSc degrees from Peking University, China, and the PhD degree in computer
science from National University of Singapore. His research interests include database and data management,
geographic information systems, and mobile computing. He has served as PC cochair or vice chair for ISA
2011, MUE 2011 and MDM 2012, demo chair for SSDBM 2014, and PhD forum cochair for MDM 2016.

@ Springer

Geoinformatica (2019) 23:105-161 161

Xunfei Jiang is an Assistant Professor in the Department of Computer Science at Earlham College. She
received the B.S. and M.S. degrees in Computer Science from Huazhong University of Science and Tech-
nology (HUST), China, in 2004 and 2007. Then she joined Digital Video Networks Co., Ltd. in 2007 and
Cisco Systems (Shanghai) Video Technology Co., Ltd. in 2010. She received the Ph.D. degree in the Depart-
ment of Computer Science and Software Engineering at Auburn University in 2014. Her research interests
include parallel and distributed systems, energy-efficient storage systems, thermal modeling, thermal-aware
task scheduling and data placement, and hybrid data storage systems.

Affiliations

Ji Zhang' - Po-Wei Harn? . Wei-Shinn Ku' - Min-Te Sun3 . Xiao Qin' - Hua Lu® -
Xunfei Jiang®

Ji Zhang
jizhang@auburn.edu

Po-Wei Harn
poweiharn @iii.org.tw

Wei-Shinn Ku
weishinn@auburn.edu

Min-Te Sun
msun@csie.ncu.edu.tw
Xiao Qin
xqin@auburn.edu

Hua Lu
luhua@cs.aau.dk

Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849,
USA

Institute for Information Industry, Taipei, 106, Taiwan

Department of Computer Science and Information Engineering, National Central University, Taoyuan,
320, Taiwan

Department of Computer Science, Aalborg University, Aalborg, Denmark
5 Department of Computer Science, Earlnam College, Richmond, IN 47374, USA

@ Springer

mailto: jizhang@auburn.edu
mailto: poweiharn@iii.org.tw
mailto: weishinn@auburn.edu
mailto: msun@csie.ncu.edu.tw
mailto: xqin@auburn.edu
mailto: luhua@cs.aau.dk

	An overlapping Voronoi diagram-based system for multi-criteria optimal location queries
	Abstract
	Introduction
	Related work
	Reverse nearest neighbor query
	Optimal location query
	Incremental methods for Voronoi diagram

	Preliminaries
	Voronoi diagram
	Ordinary Voronoi diagram
	Weighted Voronoi diagram

	Fermat-Weber point

	Problem definition
	Definition of multi-criteria optimal location query (MOLQ)
	Weighted distance of two points
	Weighted distance from a query point to an object group
	Minimum weighted distance from a query point to object groups
	Multi-criteria optimal location query (MOLQ)

	Definition of multi-criteria optimal location query updating problem
	Object updating to a family of object sets
	Object insertion operation
	Object deletion operation

	Multi-criteria optimal location query updating problem

	OVD and MOVD models
	An OVD example
	Overlapped Voronoi diagram definition
	Overlapped Voronoi diagram (OVD)
	Minimum OVD (MOVD)

	MOVD-based algorithms in Euclidean space
	Sequential scan combinations algorithm
	Framework of the MOVD-based solutions in Euclidean space
	RRB approach
	MBRB approach
	A cost-bound approach in optimizer
	Correctness of RRB and MBRB solutions

	MOLQ updating algorithms
	Voronoi-diagram-based incremental updating approach
	MOVD incremental updating model
	MOVD updating space
	Object insertion and deletion operations over MOVDs

	MOVD-based incremental updating approach
	Framework of MOVD-based incremental updating approach
	Object insertion algorithm
	Object deletion algorithm

	Experimental validation
	MOLQ in Euclidean space
	MOLQ evaluation in Euclidean space
	Cost-bound approach evaluation in Euclidean space
	Overlapping two Voronoi diagrams in Euclidean space
	Overlapping multiple Voronoi diagrams in Euclidean space
	Scalability with object types
	Summary

	MOLQ updating in Euclidean space
	MOLQ updating evaluation in Euclidean space
	Effect of dataset cardinality
	Effect of number of updated objects

	Conclusion
	Appendix 1
	A.1 More OVD/MOVD properties
	A.2 Algebraic structure of MOVD
	A.2.1 MOVD space
	A.3 operation properties
	A.4 Analysis of object insertion operation to an MOVD
	References
	Affiliations

