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This research presents a new turbulence generation
method based on stochastic wavelets and tests various
properties of the generated turbulence field in both the
homogeneous and inhomogeneous cases. Numerical
results indicate that turbulence fields can be generated
with much smaller bases in comparison to synthetic
Fourier methods while maintaining comparable
accuracy. Adaptive generation of inhomogeneous
turbulence is achieved by a scale reduction algorithm,
which greatly reduces the computation cost and
practically introduces no error. The generating
formula issued in this research could be adjusted
to generate fully inhomogeneous and anisotropic
turbulence with given RANS data under divergence-
free constraint, which was not achieved previously
in similar research. Numerical examples show that
the generated homogeneous and inhomogeneous
turbulence are in good agreement with the input data
and theoretical results.

1. Introduction
Turbulence generation has been an important research
topic in the study of fluid mechanics for decades.
Prior to the emergence of Direct Numerical Simulation
(DNS) and Large Eddy Simulation (LES) in fundamental
turbulence research, an explicit synthesis scheme was
constructed to study turbulence-related phenomena.
Kraichnan [16] proposed a divergence-free synthesis
method using random wavelets and applied it to
diffusion and particle dispersion in Homogeneous
Isotropic Turbulence (HIT). Subsequent improvement
and modification soon turned it into a viable tool for both
theoretical research and acoustic-related computation
(Juves [13], Fung et al. [8]). With the increase of
computational power, DNS and LES became more
practical and successfully enabled people to acquire
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greater insights into complex flow phenomena (Rogallo and Moin [26], Moin and Mahesh [21]).
Meanwhile, turbulence generation techniques were gradually modified to generate high-fidelity
inlet boundary conditions for DNS and LES, as well as interface generation in Detached Eddy
Simulation (Spalart [30]), rather than used directly for turbulent flow prediction. The Synthetic
Random Fourier Method (SRFM) has become one of the most important methods for inflow
turbulence generation.

However, despite its wide application in turbulence-related research, SRFM suffers from
several drawbacks. The use of a Fourier basis is not natural for the representation of
inhomogeneous turbulence because of its global properties. Although Le et al. [18] proposed
a transform to map isotropic homogeneous turbulence generated from SRFM to a general
turbulence field with a given Reynolds stress, the transformed turbulence field is no longer
incompressible(Wu [32]). Moreover, SRFM uses a set of global Fourier bases for all wavenumbers,
which leads to very large computational costs.

At the same time, wavelet noise tools were gradually developed for fluid simulation in the
Computer Graphics area and the movie industry. Perlin [22] constructed a widely used turbulence
function that could describe the band-limited noise. The form of Perlin Noise was very close
to a series of random wavelets. Cook and DeRose [4] rigorously constructed a band-limited
wavelet noise upsampling and downsampling procedure. Bridson et al. [2] used Perlin Noise
as the vector potential to generate an incompressible flow field. Kim et al. [15] constructed a high-
resolution incompressible flow field based on the wavelet noise of Cook and DeRose [4]. As a new
mathematical tool developed in the 1980s, wavelets exhibit many delicate and fine properties.
Similar to Fourier series, wavelet series can provide a complete basis for the L2 function space.
Unlike the Fourier transform, which can only extract global frequency (wavenumber) information
from functions, the wavelet transform can contain both frequency (wavenumber) and location
information, which is an appropriate tool for inhomogeneous turbulence(Farge [6]).

In this research, a turbulence generation method based on stochastic wavelets is developed
and tested in both homogeneous and inhomogeneous cases. The turbulence generation method
is proposed in Sec.2, including the generation formula, boundary condition treatment, input
spectrum and scale reduction algorithm. Numerical results are presented in Sec.3 for both
isotropic homogeneous turbulence and fully developed channel flow to validate its accuracy. A
comprehensive discussion and analysis of the proposed method are made in Sec.4. A proof for
the Reynolds Stress preservation of this method is presented in Sec.5.

2. Methodology

(a) Turbulence Generation Process

(i) Generation of static turbulence field

The model presented in this work provides a way for generating inhomogeneous stochastic
turbulent velocity field based on RANS data. Previous research(Shur et al. [28], Lund et al. [20])
has suggested that the fluctuation velocity field could be expressed in the following form:

u = A · (∇×M) (2.1)

where u = (u, v, w) denotes the fluctuation velocity. u is constructed in the manner of equation
Eq.2.1 so that the corresponding second order momentum 〈uu〉 is equal to the Reynolds stress
tensor. A(x) corresponds to the Cholesky decomposition of the Reynolds stress tensor R(x)(Jarrin
et al. [12], Shur et al. [28]) :

R = ATA (2.2)

where AT denotes the transpose of A. M = (Mx,My,Mz) is the vector potential field. The∇×M
term is constructed to be divergence free as suggested in Shur et al. [28]. In Kim et al. [15], the
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vector potential field was constructed using wavelet noise as described in Cook and DeRose [4].
Similarly M is decomposed into a sum of wavelet modes:

M(x) =
∑
|k|∈K

Ni∑
xp

qxp,kOxp,k(ωxp,kΨk(x− xp)) (2.3)

Here xp = (xp, yp, zp) is the position of the wavelet basis in physical space, k = (kx, ky, kz)

is the wavenumber corresponding to the wavelet basis, as defined in Perrier et al. [23], and
K = {l1, l2, ..., lM} is a series of magnitudes of the wavenumber vectors. For each li, k is randomly
chosen on a sphere of radius li in the spectral space. This construction coincides with the nature
of the energy spectrum function, i.e. E(l) is the turbulent kinetic energy distributed on a sphere
of radius l in the spectral space. xp is the location of Ni randomly distributed wavelets. The
number Ni for each wavenumber li is determined using the following expression deducted from
uniformly distributed wavelets:

Ni = [|Ω|
( li
k0

)3
] (2.4)

where Ω represents the flow domain. ωxp,b = (ω1
xp,b, ω

2
xp,b, ω

3
xp,b) is a random vector series

assumed to be normally distributed with the following statistics:

〈ωixp,k〉= 0 (2.5)

〈ωixp,kω
j
xp,k
〉= δij (2.6)

Ψ(x) is the 3D wavelet basis function constructed using the following tensor-product formulation:

Ψk(x− xp) =ψ(
kx
k0

(x− xp))ψ(
ky
k0

(y − yp))ψ(
kz
k0

(z − zp)) (2.7)

From the analytical result in Deriaz and Perrier [5], Ψk(x− xp) in the above form may not provide
a complete basis of L2(R3). However, the basis function above is chosen because of its localization
in both physical and spectral space, which offers an appropriate tool for the description and
synthesis of turbulence (Farge [6]). A wavelet function with sufficiently high order cancellation
is chosen as the 1D wavelet function ψ(·) as stated in Farge [6] and Perrier et al. [23]. k0 is the
Fourier wavenumber of the wavelet function where its Fourier spectrum reaches its peak, i.e.:

F{ψ(x)}(k0) =max
k∈R

F{ψ(x)}(k) (2.8)

The wavelet function ψ(x) is localized in both physical and spectral space, which represents a
local structure of the turbulent field with a certain bandwidth of wavenumbers. k0, as defined
in Eq.2.8, characterizes the most energetic wavenumber of such a local structure. O in Eq.2.3 is
a random rotation matrix in 3-dimensional space, i.e. O∈ SO(3). An efficient way of generating
uniformly distributed random rotations is from Stuelpnagel [31], where a random rotation matrix
is generated by setting:

O =

 1− 2c2u − 2d2u 2bucu − 2audu 2budu + 2aucu
2bucu + 2audu 1− 2b2u − 2d2u 2cudu − 2aubu
2budu − 2aucu 2cudu + 2aubu 1− 2b2u − 2c2u


where au, bu, cu, du are the components of a unit quaterion:

au =
a

|q| , bu =
b

|q| , cu =
c

|q| , du =
d

|q|

corresponding to a random quaternion q = a+ bi + cj + dk with coefficients a, b, c, d∼N(0, 1).
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qxp,k is a series of normalized weights to maintain the local spectrum property of RANS data:

qxp,k =

√
E(l)∆l

2ktcl
(2.9)

Here E(l) represents the local energy spectrum, which is a known function used as input. A
variety of different spectrums can be used as the input spectrum to characterize multiscale
features of the turbulence field. ∆l is the difference between two neighboring wavenumber
magnitudes in K from Eq.2.3. kt is the turbulent kinetic energy with the following relation:

kt =

∫∞
0
E(l) dl (2.10)

The coefficient cl is determined using a Monte Carlo method:

cl =
Ni
|Ω| 〈

∫
S

∂

∂x
Ψk dV 〉=

Ni
|Ω| 〈

∫
S

∂

∂y
Ψk dV 〉=

Ni
|Ω| 〈

∫
S

∂

∂z
Ψk dV 〉 (2.11)

where the ensemble average〈·〉 is performed on the random variable k. This ensemble average
diverges without restriction on k. In real flow problems, flow domains with finite size can
only contain wavelet modes with finitely large support; this prevents any component of k from
approaching zero and removes the singularity in Eq.2.11. S = supp(Ψk) is the support set of the
tensor-product basis function. It should be noted that depending on the choice of wavelet basis
ψ(·), Ψk may not be compactly supported, in which case S is the effective support set of function
Ψk in the numerical sense, which could be defined as follows:

S = {(x, t)||Ψk(x, t)|< δ} (2.12)

where δ is a small positive number.
The construction of the system using Eq.2.1, 2.2, 2.3, 2.4, 2.7, 2.9 coincides with the multi-scale

and inhomogeneous nature of turbulence, which needs further explanation. It has been stated
clearly in multiple literatures that wavelets are good tools for performing energy decomposition
to find possible atoms in physical-spectral space(Farge [6], Farge and Schneider [7]). In Eq.2.3 the
velocity vector potential M is decomposed into a series of wavelet basis Ψk(x− xp) with its own
characteristic wavenumber k and position xp. Each wavelet mode represents a vortex structure
localized both around the position xp in physical space and the wavenumber k in spectral
space. Each Ψk(x− xp) is equipped with a random rotation matrix Oxp,k to make sure Eq.2.3
is invariant under rotation. Summation on position xp indicates a layer of vortices with same
magnitude of characteristic wavenumber at different position. The whole fluctuation velocity
field is a superposition of layers of local structures with different magnitudes of wavenumbers.
The preservation of the Reynolds Stress tensor in the construction of Eq.2.1, 2.2, 2.3 is justified in
the Appendix

This construction of the fluctuation velocity field resembles the Synthetic Eddy Methods (SEM)
used to generate the inlet flow conditions of LES in previous research (Jarrin et al. [12], Poletto
et al. [24], etc.). However, unlike the wavelet functions used in this research, the spectral and
physical space properties of functions used to generate structures of different scales in SEM
remain unknown. Also, the number of modes with different scales used in eddy synthesis often
needs to be determined by experience and tests. Eq.2.4 gives a quantitative representation of the
number of wavelet modes in this system, which comes from the density of wavelets used to
completely cover each scale in wavelet theory(Hernández and Weiss [9], Deriaz and Perrier [5]).
Intuitively speaking, Eq.2.4 indicates that a turbulence field of larger size needs more wavelet
modes to cover it. Also, there are much more small-scale structures with higher wavenumber
than large-scale structures with lower wavenumber.

Many previous research approaches have constructed the multi-scale system of turbulence
using a Fourier basis(Fung et al. [8], Juves [13]), and successfully simulated isotropic
homogeneous turbulence from it. However, in general cases of anisotropic inhomogeneous
turbulence, such a construction encounters serious problems. Since Fourier bases are global,
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covering the whole turbulence field, the construction procedure in Fung et al. [8] is not applicable
for generation of turbulence with anisotropy and inhomogeneity. Billson et al. [1], Shur et al.
[28] modified a Fourier based reconstruction system so that it could be used to generate
inhomogeneous turbulence by multiplying each Fourier basis with a weighting function which
quantifies the distribution of turbulent kinetic energy on each scale locally. However, such
a modification changes the properties of Fourier basis and causes aliasing between different
wavenumbers. In this research, this problem is solved by using random wavelets which are local
in both spectral space and physical space rather than a random Fourier basis.

(ii) Generation of dynamic turbulence field

For high Reynolds number turbulence, structures of large and small scales might behave
differently according to their own kinematic and dynamic properties; accordingly, they need to
be dealt with differently(Pope [25], Fung et al. [8], Lafitte et al. [17]). Large scale contains most of
turbulent kinetic energy of the whole turbulence field, while small scale include inertial subrange
and viscous subrange. The separation of large and small scales can be achieved by introducing a
cutoff wavenumber kc. However, previous research on turbulence generation indicates that such
kc might be difficult to determine a priori. Here kc is determined with the following relation:

kc = 2ke (2.13)

where ke is the wavenumber where the maximum energy spectrum occurs. The magnitudes of
wavenumbers in K in Eq.2.3 can be separated into large scales and small scales. For large scales,
time advance is achieved by advection induced by the mean velocity field U computed from the
RANS model and a random Gaussian advective velocity Wk(Fung et al. [8], Poletto et al. [24]):

xp(t) = x0 +

∫ t′
0

U(t′) + Wk(t
′) dt′ (2.14)

where x0 is the initial position of a large scale mode. It is reasonable to assume that Wk has a zero
mean and a variance equal to that of the velocity field of mode k:

〈W2
i,k〉=

E(l)∆l

2kt
〈uiui〉 (2.15)

where l= |k|, i= 1, 2, 3 represents the three space coordinates and does not imply summation on
repeated index.

For small scales structures, Fung et al. [8] and Lafitte et al. [17] suggest that small scale vortices
are advected by large scale structures and the mean velocity field. A similar formula as Eq.2.15
can be written as follows:

xp(t) = x0 +

∫ t′
0

U(t′) + ul(t
′) dt′ (2.16)

where ul represents the large scale velocity field. For the small scale basis, Eq.2.1, 2.2, 2.3 still
hold. However, to predict the right Lagrangian decorrelation process, the basis function Ψxp,k is
modified to the following shape:

Ψk(x− xp, t) =ψ(
kx
k0

(x− xp))ψ(
ky
k0

(y − yp))ψ(
kz
k0

(z − zp))ψ(
ωk
k0
t− φp) (2.17)

where φp is a random phase, randomly distributed in the support set of the function ψ(ωk
k0
t) with

uniform distribution. ωk is a time frequency related to the wavenumber k. Generally, structure
with a small wavenumber varies in a slow frequency and vice versa. In the inertial subrange,
it is assumed that energy at each wavenumber k is spread over a range of frequency around
a characteristic frequency related to the characteristic wavenumber. Thus for each characteristic
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wavenumber k a random frequency ωk is generated with the following distribution:

fω =
1√

2πσω(k)
e
−(ω−$(k))2

2σ2ω(k) (2.18)

where σω(k) =$(k) = ε
1
3 |k|

2
3 are the variance and mean of the random frequency ωk(Leslie and

Leith [19])

(iii) Incompressible condition modification

The system Eq.2.1, 2.2, 2.3, 2.9 does not satisfy incompressible condition as the result
of transformation Eq.2.1. Previous Synthetic Random Fourier Methods(SRFM) all suffer
this problem. Some modified SRFM could unify divergence-free constraint, anisotropy and
inhomogeneity, but they often involve some special parameter, which largely undermines their
generality(Wu [32], Smirnov et al. [29], Huang et al. [10], Castro and Paz [3], Yu and Bai [33]). A
slight modification of formulas allows to generate inhomogeneous turbulence field which satisfies
divergence-free constraint. The modified formulas are as follow:

u =∇×M (2.19)

M(x) =
∑
|k|∈K

Ni∑
xp

qxp,kOxp,k(ωxp,kΨk(x− xp)) (2.20)

qxp,k =

√
E(l)∆l

2cl
(2.21)

〈ωixp,k〉= 0 (2.22)

〈ωixp,kω
j
xp,k
〉= 3

2

kt(xp)− δijRij
kt(xp)

(2.23)

The system Eq.2.19 to 2.23 is incompressible. Also, it considers the inhomogeneity and isotropy
of turbulence field. However, this construction does not preserve full Reynolds stress, only
preserves normal Reynolds stress distribution.

(b) Boundary Conditions
For a large enough flow domain, the boundary conditions for such turbulence generation have
no influence on the inner regions away from the boundary. However, in order to retain flow
properties near the boundary, modes near the boundary need to be treated differently. For
periodic boundaries (Fig.1a), modes on the boundary are separated into different parts and
added to the opposite boundaries. Such treatment maintains the exact same velocity value on
the opposite boundaries.

For no-slip boundaries, modes are restricted to the interior of the domain (Fig.1b). In this way,
the velocity and second-order moments on the boundary are exactly zero. Also, the characteristic
length of modes near the wall boundary is strictly restricted by its distance from the boundary,
which automatically creates a damping effect near the boundary.

(c) Input Spectrum

(i) Isotropic case

For high Reynolds number turbulence, the homogeneous isotropic hypothesis is assumed to hold
locally. Thus the von Karman-Pao spectrum can be used to obtain spectral information of the
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A B 

C D 

D’ C’ 

B’ 
F 

E 

F’ 

Mode	1 Mode	2 

(a) Periodic Boundary (b) No-slip Boundary

Figure 1: Boundary Conditions: (a) and (b) show the treatment on periodic and no-slip
boundaries, respectively. In (a), circles in the plot are supports of different modes. Mode 1 is
separated into A, B, C, D parts across the boundary. A stays at its location and B, C, D are
shifted to opposite sides (B′, C′, D′). Mode 2 is separated into E, F parts across the boundary.
E stays at its location and F ′ is shifted to the opposite side (F ′). In (b), supports of modes are
restricted in the domain so that velocities are exactly 0 on boundary.

turbulence field. The von Karman-Pao spectrum is given by (Juves [13], Saad et al. [27]):

E(k) = α
u′2

ke

(k/ke)
4

[1 + (k/ke)2]17/6
exp

[
− 2
( k
kη

)2]
(2.24)

where kη = ε1/4ν−3/4 is the Kolmogorov length scale corresponding to the viscous dissipation
length-scale. ε is the turbulence dissipation rate from the RANS data. α is determined from
normalization of Eq.2.10:

α=
55

9
√
π

Γ ( 56 )

Γ ( 13 )
≈ 1.453 (2.25)

ke is the wavenumber related to the most energetic eddies, could be determined by:

ke =
√
π
Γ ( 56 )

Γ ( 13 )

1

L
≈ 0.746834

L
(2.26)

L= u′3/ε is the integral length-scale which could be computed from the RANS data.

(ii) Wall turbulence case

Eq.2.20 defines a wavenumber ke related to the energy containing structures which could lead to
a length scale le related to ke:

le =
2π

ke

le corresponds to the size of the most energetic eddies. In regions near the wall, le should not be
larger than double the distance to the wall(Shur et al. [28]):

le 6 2dw
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where dw is the distance to wall. In regions far away from wall, where damping effect is not
important, the expression for ke returns to the isotropic von-Karman spectrum. Thus a modified
expression for ke which considers the wall effect is as follows:

ke =max(
√
π
Γ ( 56 )

Γ ( 13 )

1

L
,
π

dw
)

(d) Spatial-Spectral decomposition
Eq.2.3 gives a decomposition of the velocity potential field in both physical and spectral space;
this allows for a large reduction of the computational cost of reconstruction of the turbulence
field, especially for anisotropic inhomogeneous turbulence. Consider a fully developed channel
flow, the simulation result of which is shown in Section 3.2(Fig.7). Such a flow is basically 1
dimensional, in which case all turbulence quantities are only functions of y. Eq.2.19 defines the
turbulent kinetic energy (TKE) distribution in spectral space, i.e. E(k, kt). Thus, a spatial-spectral
distribution of TKE is defined as follows:

E(k, y) =E(k, kt(y))

and satisfies the following normalization condition:

kt(y) =

∫∞
0
E(k, kt(y)) dk

This distribution of channel flow (Fig.2) gives a special insight into the energy distribution and
flow structure of the turbulence field. For the majority of the flow field, in regions far away from
the wall, most of the turbulent kinetic energy is concentrated in a very narrow area of spectral
space which only contributes a small portion of the computational cost in the simulation. In the
turbulent boundary layer near the wall, the distribution of the TKE in spectral space becomes
very wide and considerably increases computation costs. Based on the generation method from
Section 2.1, a scale-reduction algorithm is designed to cut off unnecessary computation while still
capturing the energetic structures in the flow field. We define the error e representing the energy
loss ratio in order to reduce computational cost:

e= 1− ket
kt

Define two boundary curves Γ1(y), Γ2(y) as follows:∫Γ e2 (y)
Γ e1 (y)

E(k, y) dk= ket (y)

The generation process only needs to be applied in a small band of physical-spectral space (Fig.2)
between Γ1 and Γ2 to reconstruct most of the TKE up to an error e.

3. Numerical Results

(a) Isotropic homogeneous turbulence

(i) Spatial structure

The generation of isotropic homogeneous turbulence is an important way to validate various
properties of turbulence synthesis models. An isotropic homogeneous turbulence case is
computed in order to verify the model constructed in the Methodology section. Because the
RANS type model cannot compute the kt and ε of isotropic homogeneous turbulence, such
data is obtained from previous DNS results (Kaneda et al. [14]). The spectrum of generated
turbulence with different modes and different resolutions are compared with the von-Karman
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(a) spatial-spectral distribution of TKE

0.0 0.5 1.0 1.5 2.0
Y

0
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100

150

200

k

Γ1

Γ2

kc

(b) Cut off boundaries

Figure 2: Channel flow: (a) presents the TKE distribution in Physical-Spectral space. (b) shows the
regions and cutoff bounds for turbulence generation. The generation process is only conducted
in the yellow and blue regions using different time-advance procedures, as proposed in Sec.ii.
The yellow part is the large scale generation with smaller wavenumber. The blue part is the small
scale with large wavenumber. The white-colored area is discarded in the generation process.

spectrum(Fig.3). The wavenumbers of modes are generated with the following formula(Juves
[13]):

kn = exp[ln k0 + ndk],= 0, 1, 2, .....M

where k0 is the first wavenumber of the sequence and dk is a parameter to control the distances
between wavenumbers. Another quantity that could be used to examine the spatial structure of
the generated turbulence is the structure function defined as follow:

D11(r, 0, 0) = 〈[u(x+ r, y, z, t)− u(x, y, z, t)]2〉

D22(0, r, 0) = 〈[u(x, y + r, z, t)− u(x, y, z, t)]2〉

D33(0, 0, r) = 〈[u(x, y, z + r, t)− u(x, y, z, t)]2〉

From previous theoretical and experimental research(Fung et al. [8],Ishihara et al. [11],etc.), the
second order structure function has the following form in the inertial subrange:

D11 =D22 =D33 =C′ε
2
3 r

2
3

where C’ is a constant. In Fung et al. [8] the value of C′ is equal to 1.7. Numerical results of D11,
D22 and D33 are compared with theoretical solutions (Fig.4). The energy spectrum results and
second order structural function results indicate that this turbulence generation method gives
the right spatial turbulence structure in the homogeneous isotropic cases. The iso-surfaces of the
numerical results are shown in Fig.5.

(ii) Time correlation

Eulerian autocorrelation is defined as follow:

REuu(τ) = 〈u(t)u(t+ τ)〉

REvv(τ) = 〈v(t)v(t+ τ)〉

REww(τ) = 〈w(t)w(t+ τ)〉
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10 modes, n=97
15 modes, n=193
Von-Karman spectrum
kM for 10 modes case
kM for 15 modes case

Figure 3: Spectrum of generated turbulence: In this simulation kt = 0.5, ν = 7× 10−4, ε= 0.0849

are nondimensional parameters from previous DNS results. kmin is the cutoff wavenumber of the
original simulation representing the largest scale. k0 = 0.3, dk = 0.2 for wavenumber generation.
The result shows good agreement with the input spectrum within the range of wavenumbers
of modes used in the turbulence generation algorithm. As the number of modes increases, the
spectrum range that can be accurately captured gets larger. kM is the largest wavenumber used
used in the turbulence generation algorithm. Normally kM 6 kN . kN is the Nyquist wavenumber
of the mesh.
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(a) 10modes, n=97
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D11

D22

D33

C ′ε
2
3r

2
3

(b) 15 modes, n=193

Figure 4: Second order structure functions of simulations with different number of modes and
grid points. Dashed lines are theoretical results with constant C′ = 1.7. The simulation shows
good agreement compared with theoretical results in the inertial subrange.
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(a) Isosurface of u (b) Isosurface of v

(c) Isosurface of w (d) Isosurface of vorticity magnitude

Figure 5: Isosurface results of isotropic homogeneous turbulence generation

Normalized Eulerian autocorrelation can be computed as follow:

RE,N11 (τ) =
REuu(τ)

REuu(0)

RE,N22 (τ) =
REvv(τ)

REvv(0)

RE,N33 (τ) =
REww(τ)

REww(0)

Eulerian frequency spectrums are defined as the Fourier transform of Eulerian autocorrelation:

ΦEuu(ω) =

∫
R
REuu(τ) e

−iωτ dτ

ΦEvv(ω) =

∫
R
REvv(τ) e

−iωτ dτ
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ΦEww(ω) =

∫
R
REww(τ) e

−iωτ dτ

Fung et al. [8],Ishihara et al. [11] suggest that for isotropic homogeneous turbulence the Eulerian
frequency spectrum in the inertial subrange can be approximated as follows:

ΦEuu(ω) =ΦEvv(ω) =ΦEww(ω)≈CEε
2
3 〈u21〉ω−

5
3

where CE = 0.46 is a constant from Ishihara et al. [11]. Results of Eulerian autocorrelation and
frequency spectrum are shown in Fig.6.

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

R

RE,N
uu

RE,N
vv

RE,N
ww

(a) Normalized Eulerian autocorrelation

10−1 100 101

ω

10−3

10−2

10−1

100

Φ

ωmin

Φuu

Φvv

Φww

CEε
2
3〈u2

1〉ω−
5
3

(b) Eulerian frequency spectrum

Figure 6: Eulerian temporal and frequency properties of simulation results. Frequency spectrums
are compared with analytical results from previous studies. ωmin is the lower boundary of
the frequency inertial subrange. It can be observed that the Eulerian frequency spectrums of
numerical results approximate the theoretical solution in the inertial subrange, especially at the
high frequency range.

(b) Fully Developed Turbulent Channel Flow
The RANS data of the channel flow shown in Fig.2 was computed using the Reynolds Stress
Model to obtain the full Reynolds stress and turbulence dissipation rate (Fig.7). The turbulent
boundary layer was fully resolved, including several grid points in the viscous sublayer. This
RANS data is used as input data for turbulence generation. The residual of RSM simulation results
are provided in Table.1.

Table 1: Residuals

Equation Continuity U momentum V momentum W momentum k equation
Residual 1.23× 10−6 2.04× 10−6 7.04× 10−9 6.61× 10−9 2.3044× 10−6

Equation ε 〈uu〉 〈vv〉 〈ww〉 〈uv〉
Residual 5.81× 10−6 5.59× 10−6 5.72× 10−6 5.68× 10−6 5.44× 10−6
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(a) Geometry setup
0.0 0.5 1.0 1.5 2.0

Y
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−0.002
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0.004
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0.010

〈u
u
〉

〈uu〉
〈vv〉
〈ww〉
〈uv〉

(b) RANS data

Figure 7: Channel flow: (a) is geometry setup of this channel flow, X is the streamwise direction
of the channel flow. Z = 0 and Z = 3π are periodic boundaries. Y = 0 and Y = 2 are no-slip
boundaries. Gradient of mean turbulence field only exist on Y direction, whileX and Z direction
are uniform. (b) is RANS data of this channel flow from Reynolds Stress Model simulation.

Fig.8 shows the TKE reconstruction at different wavenumbers. It can be observed that most
of the turbulent kinetic energy was fully reconstructed except for the very high wavenumber
case (k= 81.34). Also, for each wavenumber, the energy of generated turbulence fluctuation
concentrates in a neighborhood around the wavenumber of specific wavelet basis function, which
is a result of Eq.2.7, 2.8. The reconstruction process is done in separated regions because of
different time-advance schemes in Section 2.1.2. For k= 40.00 and k= 81.34, there is a region
in which the reconstructed energy is 0. This is due to the fact that the TKE at this wavenumber
only contributes to the very small portion of total TKE in this region; thus it is cutoff by the
algorithm described in Section 2.4. This portion of the TKE can be accurately reconstructed, but
the computation cost will increase significantly and the result does not change much. At very
high wavenumbers (Fig.8g, 8h), although the characteristic wavenumber of the wavelet mode is
still below Nyquist wavenumber (in this case, kN=120), some part of the energy of the wavelet
mode goes beyond kN , which cannot be captured by the mesh in this case.

Fig.9 shows the comparison of the Reynolds stress from the RANS data and the reconstructed
Reynolds stress. It can be observed that the reconstructed 〈uu〉, 〈vv〉, 〈ww〉, 〈uv〉 agree with the
RANS data. It should be noticed that the RANS data used in Fig.9 is slightly different from the
data in Fig.7. We define reconstruction ratio as follows:

γ =

∫kN
0 E(k, y) dk

kt(y)

γ represents the part of the turbulent kinetic energy that could be resolved for the given mesh.
The resolvable Reynolds stress 〈uu〉γ is defined as follows:

〈uu〉γ = γ〈uu〉

〈uu〉γ represents the best approximation to the Reynolds stress given a mesh of Nyquist
wavenumber kN . The reconstructed Reynolds stress in Fig.9 shows good agreement with 〈uu〉γ

from the RANS data.
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(d) k= 7.38
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(f) k= 40.00
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(g) k= 81.34
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Figure 8: Reconstruction of the TKE at different wavenumbers. Left column: spatial distribution of
TKE at certain wavenumbers. Red line: Input energy at certain k. Blue line: reconstructed energy
of large scale at k. Green line: reconstructed energy of small scale at k. Right column: spectral
distribution of the TKE. IE: Input Energy. RE: Reconstructed Energy.



15

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

0.0 0.5 1.0 1.5 2.0
Y

0.000

0.001

0.002

0.003

0.004

0.005

0.006

〈w
w
〉

〈uu〉γ from RANS data
〈uu〉 from generation

(a) 〈uu〉
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(b) 〈vv〉
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(c) 〈ww〉
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Figure 9: Reconstruction of Reynolds stress distributions: The reconstructed Reynolds stress is
compared with resolvable Reynolds stress from the RANS data. The four main reconstructed
Reynolds stresses all show good agreement with the resolvable Reynolds stresses.

Iso-contours of 3 total velocity components U , V , W are shown in Fig.10. Large-scale spatial
structures are distributed near the centering line of the channel. Near the wall, turbulence
structures get smaller and the damping effect of the boundary starts to dominate. The V and
W components are close to 0, with some random fluctuation distributed in the cross-section.

4. Conclusion and Discussion
In this paper, a new method of turbulence generation is proposed and evaluated in both the
homogeneous and inhomogeneous turbulence cases. Various properties of the generated isotropic
homogeneous turbulence show good agreement with both the input data and the theoretical
results, including spatial, spectral and frequency properties. The generated fully developed
channel flow shows desired spectral and spatial characteristics for different wavenumbers.
Preservation of Reynolds Stress for this method is verified through both theoretical deduction
and numerical simulation.

Comparison of characteristics of the Stochastic Wavelet Method and SRFM in homogeneous
and inhomogeneous turbulence synthesis is listed in Tab.2. The number of modes of different
wavenumbers used in turbulence synthesis with Stochastic Wavelet Model is far smaller than that
required by SRFM. Also, this new method could fully preserve normal Reynolds stress as well as
incompressibility in inhomogeneous and anisotropic turbulence, which could not be achieved
with SRFM. Moreover, the computational cost of the Stochastic Wavelet Model could be largely
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(a) Iso-contour of U (b) Iso-contour of V

(c) Iso-contour of W

Figure 10: Iso-contour of different total velocity components of generated fully developed
turbulent channel flow

reduced without much loss of the turbulent kinetic energy, leading to far less computation cost in
comparison with SRFM.

This method exhibits great potential in both scientific computing research and industrial
application. Effective and low-cost inlet boundary generation is important for high-fidelity
turbulence simulation (DNS, LES) and has become an important research topic recently. In
addition, the interface between the RANS region and the LES region in zonal Detached Eddy
Simulation also requires turbulence synthesis from RANS data. The Stochastic Wavelet Method
proposed in this paper provides a new approach to synthesize turbulence fluctuation fields with
desired spectral and statistical properties other than which are not attainable using traditional
SRFM under divergence-free constraint. Also, this method could further be applied to Computer
Graphics and the movie industry to generate realistic fluid flows in animations with very low
computation cost.
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Homogeneous Inhomogeneous
ReL Mode Number Reτ Reynolds Stress Incompressibility Mode Number

SFRM 723 5000 400 Preserved Not Preserved 500 - 5000
SWM 4206 10-20 141900 Preserved Preserved 15-30

Table 2: Comparison of SFRM and Stochastic Wavelet Model simulation results

5. Appendix
Consider the turbulence field in a finite domain Ω of size |Ω|. To prove the preservation of the
Reynolds stress tensor in scheme outlined by Eq.2.1, 2.2, 2.3, we first prove v =∇×M satisfies:

〈vv〉= I

Proof:

v =∇×
∑
|k|∈K

Ni∑
xp

qxp,kOxp,k(ωxp,kΨk(x− xp))

Since curl is a linear operator and is invariant under rotation, we have:

v =
∑
|k|∈K

Ni∑
xp

qxp,kOxp,k(∇× (ωxp,kΨk(x− xp)))

Rewriting the above in index form yields:

vi =
∑
|k|∈K

Ni∑
xp

qxp,k(Oxp,k)ilεlmn∂m(ωxp,kΨk(x− xp))n

=
∑
|k|∈K

Ni∑
xp

qxp,k(Oxp,k)ilεlmn(ωxp,k)n∂mΨk(x− xp)

〈vivj〉= 〈
∑
|k1|∈K

Ni∑
xp1

∑
|k2|∈K

Ni∑
xp2

qxp1,k1
qxp2,k2

(Oxp1,k1
)il(Oxp2,k2

)jr

εlmnεrst(ωxp1,k1
)n(ωxp2,k2

)t∂mΨk1
(x− xp1)∂sΨk2

(x− xp2)〉

=
∑
|k1|∈K

Ni∑
xp1

∑
|k2|∈K

Ni∑
xp2

qxp1,k1
qxp2,k2

〈(Oxp1,k1
)il(Oxp2,k2

)jr〉

εlmnεrst〈(ωxp1,k1
)n(ωxp2,k2

)t〉〈∂mΨk1
(x− xp1)∂sΨk2

(x− xp2)〉

For p1 6= p2 or k1 6= k2, 〈(ωxp1,k1
)n(ωxp2,k2

)t〉= 0. Therefore:

〈vivj〉=
∑
|k|∈K

Ni∑
xp

q2xp,k〈(Oxp,k)il(Oxp,k)jr〉εlmnεrst

〈(ωxp,k)n(ωxp,k)t〉〈∂mΨk(x− xp)∂sΨk(x− xp)〉

Moreover, xp is uniformly distributed in the flow domain; thus the following holds:

〈∂mΨk(x− xp)∂sΨk(x− xp)〉= 〈
∫
Ω
∂mΨk∂sΨk dx〉

By construction (see Eq.2.7), ∂sΨk is symmetric along all three axes and therefore satisfies:

〈
∫
Ω
∂mΨk∂sΨk dx〉= ck

Ni
δms
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where ck is defined in Eq.2.11. Noting that 〈(ωxp,k)n(ωxp,k)t〉= δnt and substituting into the
expression for 〈vivj〉, we have:

〈vivj〉=
∑
|k|∈K

Ni∑
xp

q2xp,k〈(Oxp,k)il(Oxp,k)jr〉εlmnεrstδntδms
ck
Ni

=
∑
|k|∈K

Ni∑
xp

2q2xp,k〈(Oxp,k)il(Oxp,k)jr〉δlr
ck
Ni

=
∑
|k|∈K

Ni∑
xp

2q2xp,k〈(Oxp,k)il(Oxp,k)jl〉
ck
Ni

=
∑
|k|∈K

Ni∑
xp

2q2xp,kδij
ck
Ni

= δij
∑
|k|∈K

E(l)∆l

2kt
→ δij

as ∆l→ 0, lmax→∞, lmin→ 0. Thus, for enough large K, the following holds:

〈vv〉= I

From this, it follows that:
〈uu〉= 〈(Av)(Av)〉

= A(vv)AT

= AAT = R
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