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Abstract

In this paper we develop and analyze the stochastic collocation method for solving the time-dependent metamaterial Maxwell’s
equations subject to random coefficients and random initial conditions. We provide a rigorous regularity analysis of the solution
with respect to the random variables. To our best knowledge, this is the first theoretical results derived for the stochastic
metamaterial Maxwell equations. The rate of convergence is proved depending on the regularity of the solution. Numerical results
are presented to confirm the theoretical analysis. We also demonstrate that the backward wave propagation phenomenon still exists
in random metamaterial.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, solving stochastic partial differential equations (SPDEs) has been a very hot topic research in
scientific computing. One of the main reasons is that model uncertainty is ubiquitous in many complex physical
systems. Examples include uncertainties appearing in the mechanical properties of many biomaterials, polymeric
fluids or composite materials, initial data for weather forecasting, and wave and fluid propagate through heterogeneous
random media, etc. For PDE models, input uncertainties appear in coefficients, forcing terms, boundary and initial
condition data, geometry, etc (cf. [1—4]). In electromagnetics, the fluctuations in the producing process (such as the
lithography) of electromagnetic materials allow us to treat the permittivity and permeability as uncertain parameters
(e.g., [5,6]). In simulating signal propagation in corrugated coaxial cables [7], the physical domain has some
uncertainty.
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Due to the high dimensionality of stochastic solutions, it is very challenging to efficiently solve SPDEs with
uncertain inputs. Through the great efforts of many researchers, two numerical methods become quite popular in
solving SPDEs. One is the stochastic Galerkin method [8—11], which shows fast convergence rates with increasing
order of expansions, provided that the solution of the underlying differential equation is sufficiently smooth in the
random space. However, the system of equations resulting from the stochastic Galerkin methods is coupled and
quite expensive to solve especially for problems requiring high-dimensional random spaces. Another popular method
is the so-called stochastic collocation method (cf. [12,13]) by taking advantage of the strength of Monte Carlo
methods and the stochastic Galerkin methods. The stochastic collocation method achieves fast convergence when the
solutions are sufficiently smooth in the random space. More importantly, the stochastic collocation method is simple
in implementation and the system of resulting equations is decoupled and hence is efficient to solve. So far, both the
stochastic Galerkin method and the stochastic collocation method have been widely used to solve various problems,
such as elliptic problems (e.g., [14—17]), parabolic equations (e.g., [ 18]), hyperbolic equations (e.g., [19,20]), random
Helmholtz problem [21], and conservation laws (e.g., [22,23]), etc. More details can be found in recent review
articles [11,24,25] and monographs [26-28].

Compared to many papers published for other problems, there are not many existing works on numerical methods
for solving stochastic Maxwell’s equations. In 2006, Chauviére et al. [6] solved the time-dependent Maxwell’s
equations by using both the stochastic Galerkin method and stochastic collocation method. Detailed comparisons of
both methods are made for uncertainties caused by physical materials, by the source wave and by the physical domain.
In 2015, Benner and Schneider [5] described several techniques for uncertainty quantification for the time-harmonic
Maxwell’s equations by using stochastic collocation method. The existence and uniqueness of stochastic Maxwell
equations with additive noise were investigated in [29], and multi-symplectic difference method was proposed and
analyzed for solving them [30]. However, how uncertainty propagates through the stochastic Maxwell’s equations
and what regularity we can expect is not investigated yet as Chauviére et al. pointed out [6, p. 774]. One of the main
purposes of this paper is to fill this gap.

The rest of the paper is organized as follows. In Section 2, we first present detailed regularity analysis of the
metamaterial Maxwell’s equations with respect to random variables. Then we establish the convergence analysis for
the stochastic collocation method developed to solving this model. Numerical results are presented in Section 3 to
support our theoretical analysis. We conclude the paper in Section 4.

2. Maxwell’s equations with random coefficients

Letx € D C R? be the spatial coordinate, ¢ be the time variable from set [0, T'], and ({2, A, P) be a complete
probability space, whose event space is {2 (w € {2 is the event) and is equipped with o-algebra A, and P is a
probability measure. Furthermore, we let p(y) : I' — R™ be a bounded joint probability density function of an
R?-valued random variable y = [y;(®), ..., ya(®)], w € 2, whose image I" := II*_ I,, I, = y,(2) € R.

Consider the stochastic Maxwell’s equations in metamaterials [31]: Find the random electric field E(x, t, y),
magnetic field H(x, t,y), induced electric field J(x, ¢, y) and magnetic fields K(x,t,y) : D x (0,T) x {2 — R3
such that P-almost everywhere in 2, i.e., almost surely (a.s.) satisfy the following equations:

€@, y()E=V xH—J, (1)
ux, y(w))o,H =—-V xE — K, (2

1 ) Ley@ o )
€(x, y(@)w3, (x, y()) €(x, y(@))ws, (x, y())

1 3K I(x, y(@)) _

K+ K=H, 4
nx, y(w)ws,, (x, y()) e, y(w)ws,, (x, y())
subject to random initial conditions

E(x,t =0,y(w) = Eo(x,y(w)), Hx,1=0,y()) = Hyx,yw)), )
Jx,t =0,y(w) =Jox,y(@), K, t=0,yw)=Kox,yw)), (6)

and the perfect conducting (PEC) boundary condition:

nxE=0, on dD, @)
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where Ey, Hy, Jo and K, are some given functions. To accommodate the uncertainty or randomness of the material,
we assume that the permittivity €, permeability , electric plasma frequency w,., magnetic plasma frequency w,,
electric damping frequency I',, and magnetic damping frequency I',,, are all random. Here and below, n denotes the
unit outward normal vector on the boundary 3D, where D C R? is a bounded polyhedral domain with a Lipschitz
boundary. For simplicity, we denote d,; the jth derivative with respect to variable s, e.g., s = ¢ and y. We like to
emphasize that here and below V is only for spatial variable x.

To solve problem (1)—(7), we use the Lagrange interpolation approach by following [32,33,12]. We first choose
a set of Gauss—Lobatto collocation points {yk}ﬁfi,“)d € I', where N + 1 denotes the number of collocation
points in each random variable space. We then solve the following system of equations at each collocation point

yj,jzl,...,(N—I-l)d:

€,y )E®, 1:y) =V x Hx, 1:y;) — J(x. 1:y;), "
a0 e iy, = By (10)
G(x,yj)a)%e(x,yj) t s by Y E(x,yj)a)%,e(x,yj) s by Yy s Y5),
! i Lux.y) - .
K, £y, + Kee,tiy) = Hex 13 y), (11)

wx,y w3, (x, ;) px, y s, (e, y;)

subject to the initial conditions

E(x,t =0,y;) = Eox,y;)), H(x,1=0,y;)=Hx,y;) (12)
Jee.t =0,y)) =Jox.y)). K@x,1=0,y;)=Kx.y)), (13)
and the PEC boundary condition:
n x E(x, t;¥y;)=0, on dD, (14)
i.e., we can simply denote the approximate solution as
(N+1)? (N+1)¢
EN(e,t5)= ) B, 6:30L0), HY x50 = ) Hex, 1 30L:0), (15)
k=1 k=1
(N+1)? (N+1y¢
Ty = ) Ja nyoLw), KV @ sy = Y K, 5 y0Lu), (16)
k=1 k=1

where L;(y) are the tensor-product Lagrange interpolation polynomials. In Remark 2.1, we show that u™ (x, t;y) is
just the interpolation of u, denoted as I,f,u = ,(f:,rl)du(x, t;y)Ly(y), whereu =E, H,J, K.

To prove the convergence rate of this scheme, we first need to establish the regularity for the solution of our model
problem (1)—(7). To simplify the notation and make the proof clear, sometimes we drop the explicit dependence of all

physical parameters on x and y.
Remark 2.1. To justify that EN(x,1;y) = IVE, HY(x, t;y) = IZH, J¥(x, t;y) = I J and KN (x, 1;y) = I3 K, we
denote the errors

ENGe,t;y)) =E"(x,1;9,) — E(x,t;y;), H (x,t;y;)) = H"(x, 1;y,) — H(x, 1;)),

JVee sy =V ny) —Jx sy, KNG ny) =KV (x,ny;) — K, 1 y)).

Choosing y = y; in (1)—(7) and subtracting the resultants from the corresponding equations of (8)—(14), we can
see that EN (x, £y, H" (x, Lyi), IV, t; y;) and KN(x,1; y;) satisfy the following equations:

e,y NOENx,1;3) =V x HY(x, 1;3,) = JV(x, 1;y)), (17)
wee,y ) HN (e, 15y) =~V x EV(x, t;y;) — KV (x, 13y, (18)
1 L(x,y;)

IV, ty)) + TV, t5y) = ENx, 1;y)), (19)

€,y (x,y;) €,y (x,y;)
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1 - Fm s Jj
0 kY iy + 7
p(x, y ey, (x,y ;) w(x,y s, (x,y;)

subject to the zero initial conditions

KV, t;y)) =H (x,1;9)), (20)

EV@x,t=0,y) =H"(x,1 =0,y;) =0, 1)

JV,t=0,y)=K"(x,t =0,y;) =0, (22)
and the PEC boundary condition:

nxEV(x,t;y;))=0, on dD. (23)

Multiplying (17)-(20) by E¥(x, 1 = 0,y;), HV(x, t;y;), J¥(x, t;y;) and KV (x, 1; y ), respectively, and integrating
over D, we can easily see that (cf. proof of Lemma 3.12 in [31]):

1d JN kN
I, ~v2 I, anv2
+/ (—§|JN| +—2|KN|)=0. (24)
p \ €w5, ey,
Integrating (24) from ¢ = 0 to ¢ and using the zero initial conditions, we easily have

JN RN
(nf BN 1320 + IVEHN 132 ) + | —=— N ||L2(D)+||ﬂ||izw) (t,y,) =0,

which leads to
ENx,t =0,y) =H"(x,t =0,y,) =J"(x.,t =0,y,) =K (x,t =0,y;) =0
These justify that EN (x, ;y) = IZE, HY (x, t;y) = INH, JV (x, t;y) = I3J and KN (x, 1; y) = I K.

2.1. Regularity analysis

Lemma 2.1. For problem (1)—(7) and any t € [0, T], we have

1 1
WIE? + uix, y)|H)? + 4 K12 ) (r)dxd
/F/Dp(v) <E(x WIE|" + ux, y)|H| E(x’y)w‘%e(x’y)lll M(x’y)w%m(x’y)l |>(l) xdy

1 1
= / / o) | €@, »)IEol* + u(x, y)|Hol* + —2|.10|2 + —|KQ|2 dxdy.
rJo €, y)w;,(x,y) px, y)ws,, (x, y)

Proof. Multiplying (1)—(4) by 2p(0)E, 2p(y)H, 2p(y)J and 2p(y)K, respectively, then integrating over D and I", and
adding the resultants, we have

4 / / pO) | €@, MIEP + n(x, y) HI* + ! 1>+ ! IK|* ) dxdy
dt Jr Jp ’ ’ (e, y)w?, (x,y) e, y)ad, (x,y)
I(x,y) 2 Iy(x,y) 2
2 K dxdy =0, 25
+/r/D p@)(e(x Yoy, (x, y)'J| +M(x,y)w%,m(x,y)| |> e @

where in the last step we used the PEC boundary condition (7) in the following identity

./;"/ZJp(Y)E'VXH_/;/D’O@)H'VXE:‘/F/;D,O(Y)waEzo.

Integrating (25) with respect to ¢ from ¢ = O to ¢ concludes the proof. [
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Lemma 2.2. Denote

1 1 1
Cinax1 = 2max <— a) +F2 a) + Z—v2 )

9
DxT \ €L ezw%,e Wrok,

Then for problem (1)—(7) and any t € [0, T], we have

1
/ / p) | €Ge, MIBE + px, I H|* + —————10.J I’
rJo €(x, y)w2, (x,y)

+—————|8,K* ) (t)dxdy
nx )l (. y) )

1 1
< c,nax1/ / p) (mv x Ho|* + €|V x Eo* + €|Eo|* + p|Hol* + —1Jol* + — |K0|2> dxdy.
rJo €Ew Hw

pe pm

Proof. Taking the time derivative of (1)—(4), we obtain

€x, y(w))0;(0,E) =V x (0,H) — 9,J, (26)
nx, y(w)o:(0:H) = =V x (6;E) — 9;K, (27)
! 0,00+ —YO) gy g (28)
€(x, y(w)?,(x, y(w)) €(x, y(w) 2, (x, y(w))
! 3,(8,K) + Lnxy@)  op_op (29)
uix, .V(w))wpm(xd’(w)) /L(x,y(w))a)gm(x,y(a)))

Multiplying (26)—(29) by 2p(y)o.E, 2p(y)o:H, 2p(y)d:J and 2p(y)d;K, respectively, then integrating over D and
I', and adding the resultants, we have

d 1
— / / p) | €. MIE + ux. y)|o,HI* + 101> + ——————9,K[* | dxdy
dt Jr Jp wu(x, y)ws,,

e(x, y)a)f,e

I(x,y) 2 Lu(x,y) 2
; ——9,K|" | dxd
1, p(”(e(x e I e, w ') o
= [ [ 20019 x @m0k -V x @B am =~ [ [ 200mx @80 =0, (30)
r'JD I JoD

where in the last step we used integration by parts and the PEC boundary condition (7).
Integrating (30) with respect to ¢ from ¢ = 0 to ¢, then using the governing equations (1)—(4) and the Cauchy—
Schwarz inequality, we have

1
/ / py) (e(x,y)IBtEl2 + jux, )0 H| + 0. J1” + —2|31K|2> (1)dxdy
rJo w(x, y)ws,

e(x, y)w?,

1
< / / p) | €,y Eol* + puix, y)|9:Hol* + |0:Jol* + —————10:Ko|* | dxdy
rJo w(x, y)ws,

1
e(x, y)w?,

// [ (IV x Hol* + o|? )+—(|V><Eo| + [Kol*)

21 Jol? + |Eo) +

— (I Kol* + |Ho|2):| dxdy

pm

// [—(MIVXHol + €|V x Eo’) + 2w, + I7) - —5 1ol

[76
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2
+2w), + ) - Kol + —— - €lBol + —=— - u|Ho|* | dxdy
Uw? JIRD)
pm PF pm
2 2 1 2 1 2 2 2
< Conax1 p | LIV x Hol* + €|V x Eo]* + —- o> + ——|Ko|* + €|Eo|* + pu|Hol* | . 31)
rJo €Wy, Ky,

which concludes the proof. [J

In the rest of the paper, we will use the following Gronwall inequality a lot.
Lemma 2.3. If Q(t) satisfies % < coQ + dy for some constant cy # 0 and dy, then we have

: d
0(1) < e'(Q(0) + =), V120,
Co
Theorem 2.1. Denote constant C,:

Ay, (€w?,) Ay, (naw?,,) de B
cl—max<|)—”|+|ay,F| | 2P 1dy, Dl |2, 25 )
DxI’ e(l)p pm € 125

Then foranyt € [0, Tlandi =1, ...,d, we have

1
| P €luBP + uldy HE + 5P + 10, KP | (0dxdy
e e,

1
<e01'/ / p() <e|a B+ oy HP? + — 19y J | o Iay,-K|2> (0)dxdy
pe pm

Cit 2 2 2 2 1 2
+e (1 + Cinax1) p | €IV X Eo|” + |V x Ho|” + €|Eo|” + u|Ho|” + —1Jol
rJo ewpe
1
+— |K0|2) :
Proof. Differentiating (1)—(4) with respecttoany y; (i =1, ..., d), we obtain

€0;(3y,E) — V x (0y,H) 4 0,,J = —0y,€ - O,E, (32)
wo (dy,H)+V x (0y,E) 4+ 0, K = =0y, - 9,H, (33)
0y J) + I - 0y, — €, 0y, E = 0y, (€} JE — 9y, T, - J, (34)
0,0y, K)+ I}, - 0, K — ;m) 0y, H = 0, (/La) oH — 0, 1y - K. (35)

Multiplying (32)—(35) by 2p(y)9,,E, 20(y)d,,H, %ayij and %BWK, respectively, then integrating over D and
I', and adding the resultants, we have ! !

1
f/p(v) (ela E* + o, H|? + - — 19, J1” + — |ayiK|2> dxdy
pe ,LL(,()pm
Lex,y) 2 Ly(x,y) 2
P+ ———————10,,K|* | dxd
// p(v)(e(x Yy (x oy 7! (X, y)ws, (x, ! l) e

Ay, (€w?,)
gE Ay, J — O I J'3>va
ew?

pe pe

=//2,0(y) [—ayl.e-atE-ay,.E—ayl.M-a,H-ay,.HJr
rJp

2

8( wzm) 8 Fm
G Oy g k- 2K g K (36)
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where in the last step we used the following identity:

/ / POV x 3 H -3, E -V x 0, E -0, H) = —/ / p)(n x 0,E - 0, H) =0
rJD I JaD

By the Cauchy—Schwarz inequality, it is easy to see that

//2p(_y)8V168,E 0,E = /fz ) 2. Jea,E - Jeo, E
< max( 25 [ [ o) (el + el EI)

I'xD

ffzp(y)ayiua,H.ayinf / 2p@).ﬂ.ﬁatH-ﬁayiH
< max(|] =~ O |)//p(y> wldHI* + p|dy,H|?) .

I'xD

Similarly, we can obtain

(o) o2,
[ N . I)//p(v)(elEl oy,
rJbD Ewpe a)Pe

9, ?
/pr(y)-”(M—?”’")H-ayiKsma ( ”(“ ’"")I)f/ LK),
rJp Moy, I'xD H@pm

] /200) ”eJEkJ<nmﬂthD/a/ mw(UI+H&ﬂ)
rJo €w?

pe

fpr(y)- iln g, K < max(d,, T, |>/f p(” (KP + 13, KP).
rJbD

2
Hw pm pm

Denote constants C, and C3 as follows:

8, (€a?,) By, (ua’,) de  dyu
szmax<| > = - r |, 10y, Lel, 10y, Il ) C3=max<|)T’|,|)?>,

DxI" 6a)pe wam DxI’

Let us introduce the notations

1
ENGo(r) = f / ) <e|E| P P |K|2) (t)dxdy,
e /’La)pm

17

and

1
ENG(1) = / / p() <e|8y,.E|2+u|ay,.H|2+ 10y J1* +
rJp E€Ew

pe pm

|ay,.K|2> (1)dxdy.
Substituting (37)—(41) into (36), we have
d
TENGI(1) < GENGo(®) + CLENG (D) + C3 / / p) (€1E + nld.HI?) .
I'JD

Applying the Gronwall inequality stated in Lemma 2.3 to (42) and Lemmas 2.1-2.2, we have

ENG (1)

IA

IA

it [ENG1(0> + (1 + Crax1) (ENGo(0) +/ / p(elV x Eol* + u|V x H0|2))} :
rJD

which concludes the proof. In the last step we used the fact that C;, < C;and C3 < C;. O

(37

(38)

(39)

(40)

(41)

(42)

1
Cit {ENGI(O) + = |:C2ENG0(0) + C3Cmart (ENGO(O) +/ / p(€|V x Eo)® 4 u|V x H0|2)>“
1 rJD
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Remark 2.2. If the physical parameters €, i, Iy, Iy, @pe, @pm are independent of y;, then C; = C, = C3 = 0.
Hence from (42) we easily see that Theorem 2.1 becomes

1
| 00) | €0y EF + uloy HI + 10, 4 2210, K | (6 xdy
©pe pey

pm

1
//p(y) <e|ayE| + w|dy, HI? + - — 19y, J I +Mw2 |ay,.K|2> (0)dxdy.
pe

pm

In the more general case, Theorem 2.1 shows that if the following initial conditions are L? bounded:

1
/ / p0) (e|ahE| +ulo, HE + 0,07 +— |ay,K|2> (O)dxdy < C,
pe

pm

1 1
[ [ o (€19 x Bl + 19 x Hl? + €lBoP + wiHol + — Vol + ——[Kof* | = €
rJo €w?, Hew?,

then the solution (E, H, J, K) of (1)—(7) is also L? bounded:

1
//,o(y) €9y, E)* + u|dy, H|? + - —10y,J* + ——19,,K|* | (1)dxdy < Ce“"".
pe K@y,

This boundness guarantees that the mean squared error is O(N ') when the stochastic collocation method is used to
solve the model problem (1)—(7). For details see Theorem 2.4 proved later.

To prove higher order convergence, we need to show that higher derivatives with respect to the random variables
are L? bounded. Below we just present the proofs of L? boundness for the second-order derivatives, which depend on
the estimates of V x u, V x du and V x d,.u foru = E, H, J, K. These estimates will be proved in the following
three lemmas.

V(ew

Lemma 2.4. Denote the constant C{ = maxp, 7 <|

pe)|+|VF| | wa:)|+|vr 112, |W|).Thenforany
tel0,T)landi =1, ...,d, we have

1
//p(y)(eleE| + ulV x H? + — IV x JP? + —
pe po

pm

IV x K|2> (t)dxdy

% 1 1
< T2+ Cpan) [ [ ) (9 Bl 4 41V X HP + — 1V x Jof + |V x Ko
rJo €Wy, Ky,

. 1
+eclf<1+cml>/ / ) (€|E0|2+M|Ho|2+e 7
IrJD

@p

1
ol = |Ko|2> .

pm

Proof. Taking V x of (1)—(4), and using the identity V x (¢pu) = ¢V x u + V¢ x u for any scalar function ¢ and
vector function u, we obtain

€ (VXE)—V X (VxH)+V xJ=—-Ve x 0,E, (43)
nd(VxH) +V x(VxE)+VxK=-Vux ,H, (44)
8,(VxJ)+FerJ—ew2VxE:V(ewz)xE—VFexJ, 45)
WV x K)+ I,V x K — pw’, V x H=V(uw?,)x H—VI, xK. (46)
Denote
ENG;(t) = / / o(y) (ew x E|> + u|V x H*> + 12 IV x J)* + |V x K|2> (1)dxdy.
rJo €Wy, pm
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Multiplying (43)—(46) by 2p(y)V x E,2p(y)V x H, 2'0 @)V x J and 22 @) V x K, respectively, then integrating over

o pm

D and I', and adding the resultants, we have

—ENG3(t)+/ / 2p(y) Le(x.y) |V><J|2+M|VXK|2 dxdy
€(x, ), (x,y) e, y)oi, (x,y)

=/f(VxVxHQpVxE—VxVxE~2pVxH)
rJo

—f/(Vexa,E)-zvaE—//(wxa,H)-zvaH

2p 2 2p
— (VI xK)- ——V x K+ V(pw,,) x H - —
rJo Ky, rJo Ky,

Using integration by parts, (1), and boundary conditions n x E = 0 and n x J = 0, we obtain

/foVxHQpVxE:// nx(VxH)~2pVxE+//VxHoZpVxVxE
rJo rJap rJp

//V(ewf,e)xE- 2’; VxJ (47)

€ws,

;
VxK:= ZErr,-.
i=1

:// nx(e8,E+J)-2,0VxE+//VxH~2pVxVxE://VXH-Z,OVXVXE,
rJap rJo rJp

which leads to Err; = 0.
By the Cauchy—Schwarz inequality and the identity

u xv=|ul-|v|sinf, where? isthe angle between u and v,

we have

\Y%
Err, = —/ / 2—6 X /p€dE - JpeV x E

(maX|—|)<//06|31EI +//p6|V><EI>
DxI’

Similarly, we can obtain

Err3<<max|—|><//pmafH|2 //prHF)
DxI” M

Erry < (max|VL)) / f L (P +19 % JP).
DxT D €Wp,

2
Errsf(Lnax| pe)l)(//ﬂdEl +// |V><J|>
DxI' €Wpe pe
DxI’ )
Err; < (max| Ve pm)l) (/ / pulH|? +f/
DxI'  MWpy

Denote constants C5 and C5 as follows:

V(ew?,) V(uwi,) Ve V
cgzmax<| N P VL VT, ), C§=max<|—| |—“|).
DxT €EWpe KW pm DxT € M

IA

Recall the notation

1
ENG(1) = / f p) | €lEI® + pulH? ——IK[* ) ()dxdy,
rJp a)pm
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and substitute the above estimates into (47), then we have
%ENG3(t) <C;-ENGyt)+ Cf-ENG;3(t)+ C; /F /D p®) (€ld,E* + nld.H|?)
< C}-ENGs(t) + C; - ENG((0) 4 C3Crax1i(ENGo(0) + /F /D p(e|V x Eo|* + |V x Hy|?)), (48)

where we used Lemmas 2.1-2.2 in the last step.
Applying the Gronwall inequality (cf. Lemma 2.3) to (48) and the facts that C; < C} and C; < CY, we have

ENGs(t) < e“1 |:ENG3(0) + (1 + Craxt (EN G(0) + / f p(e|V x Eo|* 4+ u|V x H0|2))]
IrJD

X 1 1
secﬂ(1+cmax1)/ / P<6|E0|2+M|H0|2+ —Wol* + — |K0|2>
rJD E€Ew

pe Hw pm

« 1 1
et Coant) [ [ 0 (€lV X BP 4 w1V x HoP + — 1V x Jol +—— IV x Kol ).
rJp ewpe 'u“wpm
which concludes the proof. [J

Remark 2.3. Similar remark as Remark 2.2 holds true. More specifically, if the physical parameters €, t, I'e, I'n, @pe,
wpm are independent of the spatial variable x, then C{ = C; = C5 = 0. In this case, Lemma 2.4 just becomes

1 1
//,o(y) (eIVxE|2+M|VxH|2+ —V xJP+ —; |V><K|2> (1)dxdy
rJo ewpe u“wpm

1
//,o(y) €|V x E* + u|V x H)? + - —|V x JI + ——IV x K|* | (0)dxdy.
pe u“wpm
Lemma 2.5. Denote constants C4 and Cs as
Ve v 0y Ve  wmVi  V(ua?) V(ew?,)
c4=max(| | | o |22 e | 2 VT 2 4 VL
DxI’ €M M/ ER € n K@ pm €EWpe
- V(ew?,) V(uwi,)
Cs=maX(w O M|+|Vﬂnll P 20
DxI’ 12 €EWpe MWD pm
Then foranyt € [0, T]landi =1, ...,d, we have
1
/ / p) | €IV x JEP* + u|V x 9,H|> + —|V x 9.J> + IV x 8,K|* | (t)dxdy
rJp Ewpe pm

Cut CsCaxi 2 2 1 2

<ev(l+——I P | €IV X E|” + n|V x 0,H|” + ——|V x 8,J|
Cy rJo €Wy,
+ IV x 9,K| ) (0)
Hw pm
2 2 2 2 1 2 1 2
+ P | €IV X Eo|” + u|V x Ho|” + €|Eo|” + plHo|” + ——|Jol” + ——|Ko|” ) ].
rJp Ewpe wpm
Proof. Taking 9, of (43)—(46), we obtain

€0;(Vx0,E)—V x(Vxo,H)+V x 9,] =—Ve x 9,(0,E), 49)
wo,(VxoH)y+V x(VxE)+V x0,K=-Vu x 09,(0,H), (50)

(V x 9J) + IV x 8,J — €0,V x 4E = V(ewy,) x 0,E — VI, x dJ, (51)
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8,(V x 3,K)+ I,V x 3,K — Mwimv x O,H = V(uwf,m) x H — VI, x 3,K. (52)
Denote
1 1
ENG4(1) = / / ) (ew < QE* + plV x HI? + —— |V x 8J + ——|V x a,K|2> (t)dxdy,
rJo Ewpe a)pm
and
1 1
ENGs(1) = / / pO) €10 EP + wldHP + —8J > + ——|8,K|* | ()dxdy.
r'JD 6wpe /’La)pm

Multiplying (49)—(52) by 2p(y)V x 0,E, 2p(y)V x 0,H, %V x d,;J and
pe

over D and I, and adding the resultants, we have

d Fe(xvy) 2 Fm(x’y) 2
—ENGt—i—//Z Y g P+ — |V x 9K ) dxd
a"NO* |, p@)(e(x,y)wf,e(x,y)| i M(x,y)wf,,,,(x,y)I I | dedy

jﬁ %1)1 V x 0;K, respectively, then integrating

=//(VxVx8,H~2pVxBtE—Vxan,EQpan,H)
rJo

- f / Ve x 8,(8,E) - 2pV x ,E —/ / Vi x 9,(8,H) - 20V x 8,H
I JD rJD

2 2
_ / /(vrg x ,J) - ‘; V x a,J+/ / V(ew?,) x O - p2 V x 8,] (53)
rJp Ga)pe rJp 6a)[le
2 2 U
— [ [or k) 22wk [ [ Vaod) <o 22w xak =Y Em,
rJo Ky, rJp MW pm i=1

Using integration by parts, (1), and boundary conditions n x E = 0 and n x J = 0, we obtain

//VxVxB,HQ,onB,E

rJo

:/f nx(antH)Qpan,E—i-//antHoZpVxan,E
rJop rJo

:f/ nx(e8,zE+8,J)-2pVx8,E+//VXB,HQ,OVXVXB,E
rJap rJo

://VXB,HQ,OVXVXB,E,
rJo

which leads to Err; = 0.
Using (1) and the Cauchy—Schwarz inequality, we have

\Y
Errzz—f/—ex(an,H—B,J)'Zpan,E
rJp €

Ve WpeVE P
- 2 V x 0,H) - V x 3,E 2L a.J) - V x 0,E
/FfDG_wxa/_pu X 0.H) - /pEV x 0, +fF/D X e

Ve 2 2
(max|——1) [ | (Y x EP + ulV x o,H)
DxI' €\/€UL Jr JD

wp Ve
+ (max| D) o
DxT € rJo

Using (2) and the Cauchy—Schwarz inequality, we can obtain

IA

1 2 2
> [0, J|” + €|V x 0,E|” | .
€w?,

v
Err3=//—MX(VXB,E+8,K)-2,0VX8,H
rJp M

\%
< (max| —2

DxI' MA/€ML

|)/ / p (€IV x QE* + u|V x 0,H|”)
I'JD
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+ (max| 22" “D// (
DxI’

Similarly, by the Cauchy—Schwarz inequality, we have

Erry < (max|VFe|)// P (
DxT D €Wy,
w?,)
Errs < (max| el //pda,EF // —IV xaJI*).
DxT  €Wpe €W,
Erre < (max|VFm|)/ / 5
max P
(I’L pm
Err; < (max|————|) puIBtHI + IV x 0,K|*
DxI' M®pm D MW pm

Substituting the above estimates into (53) and using the notations ENG4(t) and ENGs(t) and Lemma 2.2, we
have

|0:KI* + u|V x 8, H| )

0,17 + 1V x 8,J1%),

(1a.K* + |V x 8,K|*),

d
EENG4(t) < C4-ENG4(t)+Cs- ENGs(t)
< C4- ENG4(1) + C5Cax1[EN Go(0) + / / p(elV x Eol* + 1|V x Hol»)]. (54)
I'JD
Applying the Gronwall inequality (cf. Lemma 2.3) to (54), we have

Cy CSCmaxl 2 2
ENG4(t) < % | ENG4(0) + C—(ENGO(O) + p(€|V x Eol> + u|V x Hy|%))
4

CS Cmaxl
Cy

<1+ )[(ENG4(0)+ENG0(0)+/ / p(e|V x Eol* 4+ |V x Hol*))],

which concludes the proof. [

Remark 2.4. If the physical parameters €, i, Iy, Iy, @pe, @py are independent of the spatial variable x, then the
constants C4 = Cs = 0. In this case, Lemma 2.5 simply reduces to

1
/ / p) | €IV x JEP* + u|V x 9,H|> + —|V x 9.J> + IV x 8,K|*) (t)dxdy
rJp Ewpe pm
/ / o(y) <e|v x &E|? 4+ u|V x 8,H|? + - —|V x 3J* + . IV x 8,K|2) (0)dxdy.
p pm

Theorem 2.2. Denote constants Ce 1, Cp 2, Co 3, Co.a and Ce as

Ve wpe Ve (0y,€)Ve V(ay,€) 0y, € Vi
Con = max | | —=|+ = — |+ = F—I+I——I+I-— ,
DxT €n € € € € nEN
Vi @pm VI Oy, )V V(0y, 1) Dy, 1 Ve
C62—max< |+ |+ |+ | —— | + | 2= + | ),
H/E€R jz iz iz iz KU
V(ew?,) V(d,,(ew?,)) 3y, (ew?,)
c6,3=max(|vre|+| PE2| o |2 o | 2L 4 V@, L)+ 18y, Tl ]
DxI’ wpe Ewpe 6(Upe
V(uw?,) — V@, (no?,)) 3, (no?,)
Coa = max [ |VI,| + | | | o | 2 4 [V (@, D)l + 18y, Dl ]
DxI' WOpm MW pm MW pm

Cs = max (C6,17 Cs,2, Ce 3, C6,4) , Cp=C¢+Cs+Ci+CT.
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Then foranyt € [0,T]andi =1, ...,d, we have
1 2
e |V x 0, J" + >

pe pm

1
—IV x 0, J* + —
Ewpe ,bL(,()pm

f / o) (e|v x 3y, E[* + u|V x 3, H|* + |V x 8).I.K|2) (1)dxdy
r'JD

< eclztcls[/ / P <5|V x 0y, El* + |V x d, H|* + IV x 8}'iK|2> (O)dxdy
rJo

2 2, |1 2 1 2
+ p | €lEol” + ulHo|” + ol + ——IKol" | dxdy
rJop €w Hw

2
pe pm

1 1
b [ [ o€V X B 4 IV x P+ 19 xS+ 1V x Kol | dady
rJo €('()pe I'prm
1 2
IV B 4
Ea)pe (,()pm

+ / / p <5|V x &E|* + n|V x 8,H|* + |V x BtK|2) (0)dxdy
IrJD

1 1
+ / / p<e|ay,.E|2+u|ay,.H|2+ |ay,.J|2+M—2|ay,.K|2> (0)dxdy].
r'JD

ew%e w?,
where constant C13 > 0 depends on parameters €, |1, Wpe, @pm, I'e and Iy, but is independent of t.
Proof. Taking V x of (32)—(35), we obtain

€0;(Vx 0,,E) =V x(Vx09,,H)+V x9,J

= —Ve x 8,E — V(d,.€) x yE — (3,,€)8,(V x E), (55)
wd (V x 3, H)+V x (V x 3, E)+ V x 3, K

= —Vu x dy,H — V(@y,1) x 3,H — (3,,11)9,(V x H), (56)
(V x 0y J) + IV x 0y, J — €,V x 0, E = =V I, x dy,J + V(ew;,) x 0y,E

+ V(0 (€w?,)) x E + (dy, (€’ )V x E — V(dy, ) x J — 3y, )V x J, (57)
(VX 0,K)+ I,V x 9, K — paw>, V x 0, H = =V I, x 9, K + V(uw,,) x 3, H

+ V(0 (nw,) x H + 3y, (nwi, NV x H =V (3, I,) x K = (3, T,,))V x K. (58)

Denote
1
ENGe(t) = / / p®) | €IV x 0y, EI* + |V x 8y, H)> + —-|V x 9, J|°
rJo B ea)pe

+

2
pm

|V x ByiK|2) (H)dxdy.

Multiplying (55)-(58) by 2pV x d,,E, 2pV x 3, H, %V x 0y,J and uil,z),m V x 9,,K, respectively, then integrating
over D and I', and adding the resultants, we have

d I(x,y) 2 Ln(x,y) 2
L ENG(t) + 200) [ |V x 3, P+ ——22 T |V x 0, KI* ) dxdy
dt rJbD e(xsy)wpg(xsy) l/«(x7y)wpm(x,Y)

= / /(V x Vx0,H-2pV x03,E—V xV x09,E-20V x93, H)
rJo
— / / Ve x 0y, E -2pV x 0y, E —/ /[V(ay[e) x OE + 09y,€ - 0;(V x E)] - 2pV x 9,,E
rJo rJo

- / / Vi X, H - 2pV x 0, H —/ /[V(B),iu) X 8H + dy, 11 - 0,(V x H)]-2pV x 0, H
IJD IrJD
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/ / —V I, x dy,J + V(ew?,) x 0, E + V(3 (ew?,) x E+ 3y, (ew’,) -V x E

2
= V(0,1 % J = @0, L)V < 1+ —5

pe
+ / / [—V Iy % 0y,K + V(uw,,) x 0y, H + V(y,(nwy,)) x H+ 0y, (uw,,) -V x H
rJD
7

V x 8,K =Y Err;. (59)

pm i—1

V x dy,J

—V(3y, I) x K — (3, [,,)V x K] -

Below we will estimate each Err; of (59). First, using integration by parts, (32), and boundary conditionsn X E = 0
and n x J = 0, we obtain

/ / V xV xd,H-2pV x93, E
rJo ’
= / / nx(Vxad,H)-2pV x 8yl.E+/ / V x0,H-20V xV x09,E
; D
= / / n x (€0, E + 09y,J + 0,,€0,E) - 2pV x ayl,E—i—/ / V x0y,H-2pV x V x 03,,E
rJo

=//Vx8yiH-2pVxVx8yiE,
D

which leads to Err; = 0.
Using (32) and the Cauchy—Schwarz inequality, we have

Erry = — //—X(VXBH 0y,J — 0,,€0,E) -2pV x 0, E
D

IA

(max|

|)// (eIV x 8y,E|* + u|V x 3,,HI?)
T € /€N

+ (max| @peV |)// ( 19y, J1” +e|any,E|>
DxI"
dy,€)Ve
+(r7na§|%|)/ / p (€1E* + €|V x 3,E|).
DxT € rJo
By the Cauchy—Schwarz inequality, we can obtain
V(ay €)
— X /pedE - \/peV x 3,,E — 4/ €0,(V x E)- /peV x 3, E
0y, €
@azlﬁof / p (|E* + €|V x dy,E| )

DxI’

Errs

IA

+(max| . |)/ / (€13:(V x E)* + €|V x 3,,E|?).
Similarly, by (33) and the Cauchy—Schwarz inequality, we have
\Y%
Erry = / / B (VX 8, E + 3, K + 8, nd,H) - 2pV x 0, H
r

< (max|

DxT M«/EM

(max| |)[ / < 18y, K|* 4+ 11|V x 8y, H| )
DxI"

(9 v,.u) w
x| LY [ (lHE 4 9 x 0, HE)
DxT 1% rJo

|)f/ (eIV x 3y,E|* + u|V x 3,,H|?)
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By similar arguments, we have

V(1)
Errs < (LDna%l—yD/ / 0 (,u|8,H|2 + u|V x Byl.H|2)

+(maX|LI)/ / (113:(V x H)* + |V x 3, HI?),

DxI” M

Erre < (max|VI, |)/ / ( )
DxI’

y:

66()
w?%,)
+(glax| Cpe |)// <e|8}lE|2 )
DxI" ewpe
V(@
+(Lna | ( y:(ea)pe))D/ / ( |E|2 |V % 3y,-J|2)
DxI" € pe O)pe
+ (max 0y (cape) I)// (eIV><E|2 )
D><['
o+ (max| V (3, F>|>// ( ; IVXay,-JF)
ea)pe
+ (max|a, F|)// ( 12 |V><8y,.J|2),
ea)pe

1
Erry < (Lna§|Vﬂ,1|)/ / ( |9y, K|* + |V x a,,.K|2>
DxT nw? om

+ (max| ’”’")|)// (may,HF
DxI" Ma)pm

Vo,
+ (max| Y@ ) (wa’"))l) / / g <M|H|2 "
MW pm rJo

DxI’

Ay, (nw?,,
+ (max| 2 |>// IV x HP +
D><F HW pm
1
+@a§|V(ay,.Fm)|)//p — K> + ——|V x 3, K|’
DxI’ rJop :u’wpm l"l’wpm

1 1
+(g1a§|8yifm|)[fp > IV x K> + > IV x 3,.K|* | .
DxI’ rJp H’wpm l’l’wpm

Let us introduce the notations:

Yi Vi

Vi

and

Vi

)

IV x ay,.K|2>

pm

Vi

(dy,€)Ve V(@y€), (3y,m)Vi V(@y, 1) dy € Dy
c7=max(| o — |4 | ] |+ |2 ), Cg =max | [, |2
DxTI’ € 12 M DxT € "
Ve . V(ew?,) V(pnw,)
C9=max<wp L |22 M|+IVF|| P20 220,
DxT 128 €Wpe K@ pm
(ew ) dy, (nw?,)
cm—max(| T 18y, T, 18y, Tl )
DxT” €EWpe MWD pm
V(dy, (ew? e)) V(y, (ne?,,))
Cn—max(l M e | (D, Tl [V, D)l ) -
DxI’ Ewpe MW pm
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Substituting the above estimates into (59) and using the notation EN G(t), we have
d
T ENGs(1) = Co - ENGs(1) + C7 f / p (0B + |3, HI)
rJo

+cg/ / p (€18:(V x E) + 1]3,(V x H)|?)
rJp

1 1
+C9//,0 €|y, E* + |dy, H)> + —5-19,,J 1> + —5— 9, K’
rJp €wy, How

pm

1 1
+C10//p €|V x E|> + u|V x H* + IV x J|> + IV x K|?
rJo ew? na?

pe pm

2 2 1 2 1 2
+C p|€lEl" + ulHI” + —-JI"+ ——IK|" | . (60)
rJbp Ew w

pe H pm

Applying Lemmas 2.2, 2.5, Theorem 2.1, Lemmas 2.4 and 2.1 to the Cy, Cg, Cy, C1o and Cy; terms, respectively,
we obtain

d
L ENGo(t) < Co- ENGo(t) + CrCant / / P(e]V x ol + uIV x Hol + €lEof> + ulHol?
I"JD

dt
1 1 CCITL(IX
+— o’ + — |K0|2)dxdy+cgec4f(1+;)[//p(elearEleruIVthle
EwW w C4 rJp
pe pm
1
+—5 IV x 0 I + —5—|V x ,K|*)(0)dxdy
€Wy, K@,
2 2 2 2 1 2 1 2
+ p €IV X Eo|” + |V x Ho|” + €|Eo|” + u|Ho|” + —=1Jol” + ——1Kol" |]
Ir'JpD ewpe I'prm
Cat 2 2 1 2 1 2
+Coe [ | | p|eldyEP + uldyH? + — 10,01 + ——10,,KI* | (0)dxdy
rJp €Wy, Hwy,,
2 2 2 2 1 2 1 2
+ (1 + Ciax1) p\ €IV X Eol” + u|V x Ho|” + €|Eo|” + u|Ho|” + —-1Jol” + ——1Ko|" |]
IrJpD ea)pe I’prm
Cit 2 2 1 2 1 2
+C10€ ! [(2+Cmaxl) 1Y 6|VXE0| +H4|VXHO| + B |VXJ0| + 2 |VXKO|
rJo €wy,, Hwy,,,
2 2 1 2 1 2
+ (14 Cuax) | [ o €lEol + ulHo* + —5Wol? + —5— Kol |1
IrJpD Ewpe a)pm
2 2 1 2 1 2
+Cny p  €lEol® + nlHol? + — ol + —— Ko [* ] . ©1)
rJop €Wy, pm

Using Lemma 2.3 to (61) and absorbing those constants in (61), we conclude the proof. [J

With Lemmas 2.4-2.5 and Theorem 2.2, we can prove the boundness of the second derivative with respect to the
random variables.

Theorem 2.3. Denote the following constants:
02€  2(3y€)? 20, € 2,00y, €
014,1=max<|—” |+ /= + | —=|+ ||,
DxT € € €Jen €

2l 23y )2 20y, 14 200 Oy, [
Crap = max (|2 | 4 | =20 o | 2 | T2 )
DxT \ M ® €I n
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eay_ZFe 2€ah[’e 8 Z(Ewie) 28 v_(Ea)ze)
Cl4,3=ma><(| = AT
DxT e I, €W pe € e
d2(nwy,) 20, (nw?,)
Crag = max (19,2 12] + 120y Il + 1= 4 | — 2 ),
Dx HWpm M@ pm

Cis =max (Cia1, Cis2, C1a3. Cias) . Cis = Cis+ Cpp + Co.
Then foranyt € [0,T]andi =1, ...,d, we have

ffp(v)(elé‘ 2B + 9, zHl

1
< eC'S’CzO[/ / P <E|V X Oy E + IV x 0y HP 4 |V x 8,

pe pm

// ClEol” + plHoP + — Lol + —— Kol? | dxdy
[7‘3 Cl)pm
1

—IV x Jol” +
W, Dy

2) (1)dxdy

|V x ayiK|2> (0)dxdy

€|V x Eo|* + u|V x Hy|* + |VxK0|2> dxdy
€

1
€IV x EI> + |V x 0,H|> + —-|V x 3.J|* +
€wy, o

|V x atK|2) (0)dxdy

€[0y, E* + 1119, H|? + -

//
b

where constant Coo > 0 depends on parameters €, L, Wpe, ©pm, Lo and I, but is independent of t.

1
—10,,JI* +Mw2 |ay,.K|2> (0)dxdy

PE pm

AA/—\/—\

2) (0)dxdy],

Proof. Differentiating (32)—(35) with respecttoany y; (i = 1, ..., d), we obtain

€(0,2B) = V x (9, H) + 8,00 = =300, E = 2(3,,€)0,,,E, (62)
13, H) + V x (0,2E) + 02K = —(3,210)3H — 2(3,,11)0,,,H, (63)
0,320+ Td,2J — e, F

—@2 T = 20y, T3y, + (32} DE + 20y, () )0, E, (64)

3,(3 2K) + I, 3 2K ,LLa)pmayzH
= _(8)'1'2 I')K — 2(0y, 15,)0,, K + (Byiz(ua)lz)m))H + 20,, (;La)im)ayiH. (65)

Denote

NGy = [ [ o) <e|ay,zE|2+ma‘.zH|2 |a\,.zK|2) (dxdy.
F D 1 1 1

pm

Multiplying (62)~(65) by 2p(y)d, 2E 2p(1d, 2H Zp @)8 J and 2”@) 8 2K respectively, then integrating over D and

I', and adding the resultants, we have

d Tex,y) Ln(x,y) 2
—ENG 2 _ ———————102K|" | dxd
dr 7(”+/pfa g @)(e(x,y)w e L et ') e

=— / / (0,26))E - 2p3 2E — / / (20,,€)3,E - 2pd 2E
rJp ' . rJo !
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- / / (8,213 H - 209 2 H — f / 20y, 103,y H - 299 2 H

82F 20,, I,
// - 2,08ylzJ f/ yl.J~2p8yi2J
pe

8 2(6&) ) 28)7 (ewpe)
// E'2,03y_2.]+/-/ ——— 0,E-2pd2J

3 2F 29
f/ ———K-2p3:K — /f il =9y, K - 2p9, 2K
D Mw,,m D wam

0,2 (1)) 20, (n?,,)
f/ 2 UH 209 2K+// P H - 2p9 K.
Hwy,,, nws,, i

By the Cauchy—Schwarz inequality, we have

3 26
Err; < (max| |)/ / p(e|d,E|? +6|3 2E| ).
DxI’

Similarly, by (32) and the Cauchy—Schwarz inequality, we have

0y, €
Err, = —/ / 2>—'(v x Oy H — 8,,.J — 0y, €0,E) - 2pd 2 E

IA

|>f / PULIY x B, H + €ld 2 EP)

(max|

DxI’ 6«/
20 pe 0y, ) )
+ (max| ~22¢%iE ) p(—= 3y, JI* + €0 2E[*)
DxI” € rJp G(,()pe Vi

2(3y, €)?
+ (max) 22 [ [ ptetnr +eio
DxI" € rJp ot

Similarly, by (33) and the Cauchy—Schwarz inequality, we have

dy,
Erry = / / 2L“(v x 3y, E + 0, K + 0y, w0, H) - 2p0 o H

= (maXI I)/ / Pp(e|V x 3y, E* + |, zHI )

DxTI’ M
+ (max| 22emOutt / / p(—2|ay,.K|2 + uldHI%)
DxI 1% rJp Moy, !
2(dy, p)?
a4 [ [ pGuia P + i P
DxI' M rJp .
Similarly, by the Cauchy—Schwarz inequality, we have

dy2
Erry < (max|
DxI’

1) / / p(uld.HI* + 123 ,2H|?),
rJo !

63},2116 0
Errs < (max|]—t—|) / / —— (> + 1,2J1%).
DxT Fe rJbp G(Upe Vi

2€0y, I, 0
Errg < (max|—’|) 5
DxT D ea)pe

Bz(ea) o)
Err; < (max| ) / / p(e|E* +

€EWpe

8y1( ie) 2
Errg < (max| ——— |) ,0(€|3y,E|

DxI’ €EWpe

(191 + |a,gJ|2),

41

(66)
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Errg < (max|3 zF |)/ /
pm

Erry = (max|28 le)/ /

a z(;uo
Erryp < (max|———— |)/ / pu
DxT

MW pm

(K|* + |9, 2K| ),

K| + 19, 2K| ),

29 ’i(l’l’ m 1
Erry < (max| 2 H%m),) / / P13y HP + —— 13 .KP).
DxI’ K@ pm rJpD lu“wpm !
Denote the following constants:
9,26 2(3 e am 23, )
C16=maX(| |+ 1=, | |+ 1—=5=1],
DxI' 12 12
d2(ca?,) Byz(uwim) €T,
Ci7 = max | |— L 1= | |——], 10,2 Ll | 5
DxTI €EWpe K@ pm I, !
20y, (ew?,) 20, (na?,) 26, I, 2 e 0y €
C18:maX(| M PO | | 2 | 129y, T
DxT €EWpe K@ pm I, €

20y, € 20y 14
Cio=max || ——=I|.|—=I]).
DxT \ € /€U /e

Substituting the above estimates into (66), we obtain

d
TENGI(0) = Ciy - ENGo(D) + Cig f / p(e|E|* + p|d,H|*)
rJD

2 2 1 2 1 2
+Ci | | pElER + plHP + —- P + ——IKP)
rJo €w nows,.

pe p

+C18f f p(€|dy, EI* + ploy,HI> + —[0,,J* + 13y, K|*)

IrJD pe pm

+C19/ / p(€|V x 3y, E|* + n|V x dy,H|?). (67)
IrJD

Applying Lemmas 2.2, 2.1, Theorems 2.1, and 2.2 to the Cy4, C17, C13 and Ci9 terms, respectively, then using the
Gronwall inequality (cf. Lemma 2.3) to the resultant, we conclude the proof. [

Remark 2.5. By similar techniques, we believe that if the random parameters are smooth enough, then higher
derivatives with respect to the random vector y can be proved to be bounded similarly as stated in Theorems 2.1-2.3.
Since the proofs will become quite technical and are similar, we skip the proofs for higher derivatives.

2.2. Convergence analysis

To prove the convergence estimate for the stochastic collocation method, let us first recall the following
interpolation error estimates.

Lemma 2.6 ([34, p. 289-290]). Let I},u denote the polynomial of degree N that interpolates u at the (N + 1) Gauss,
or Gauss—Radau, or Gauss—Lobatto points {y j}j‘\]:o’ ie., I X}u(y) = Z?’zou(y DL ;j(y). Then we have the interpolation
error in the L*-norm:

||M_Ii‘\;u||L2(—],l) < CN7m|u|Hm(_1’l), Yuce Hm(_l, 1) with m > 1, (68)
and the interpolation error in the H'-norm:

lu — Iyl gy < CN”—%—"“|u|Hm(,LD, Yue H™(—1, D) withm > 1> 1. (69)
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For the Gauss—Lobatto interpolation, we have the following optimal error estimate:
||(M_IX}M)/||L2(—1,1) < CNl_m|M|Hm(71!1), Yue Hm(_l, ])Wlthm > 1. (70)

Below are the extension of the above interpolation results to tensor product interpolation.

Lemma 2.7. Let Iyu = 1 ,{}‘ -1 ,f}du denote the d-dimension tensor product polynomial of the 1-D interpolation
polynomial of degree N that interpolates u at the (N + 1) Gauss, or Gauss—Radau, or Gauss—Lobatto points {y j}j.vzo.
Then we have the interpolation error in the L?-norm [34, (5.8.20)]:

||M—INM||L2(F)SCNimlule(['), VMEHm(F) with m >d/2 (71)

For the Gauss—Lobatto interpolation, we have the following optimal error estimate [34, (5.8.21)]:

lu = Ivullgi ) < CNl_m|u|Hm(p), Yue H"(I)withm > (d + 1)/2. (72)
To present the error estimate, recall that the mean (or expectation) of a function u is defined by
Elul = / / pMu(x, t, y)dxdy, (73)
rJo
and its mean square is defined by
1/2
Mlu] = ( / / pOlulx. 1, y)|2dxdy) . (74)
rJo

Theorem 2.4. Let (E, H) be the solution of (1)-(7), and (EN, HV) be the stochastic collocation solution of (15). If
the assumptions of Theorems 2.1 and 2.2 are satisfied, then the following mean and mean square errors hold: For any
0<t<T,

MIE —EN]+ M[H — H" ]+ M[V x (E — EM)] + M[V x (H—H"Y)] < C;N~", (75)
ENE —EN]+ E[H —HY |1+ E[V x (E—EY)] + [V x (H—HY)] < CyN~ . (76)

Here and below Cr is a constant depending on T but independent of N. Furthermore, if the assumptions of
Theorem 2.4 are satisfied, then we have the following higher error estimates: Forany 0 <t < T,

MIE —EN1+ M[H —HM + E[[E—EV)\+ E[[H-HY|] < C;N 2. (77)
Finally, if the assumptions of Theorem 2.4 are satisfied, for the Gauss—Lobatto interpolation, we have the error
estimate for the derivative of the solution with respect to the random variables: Forany0 <t <T,and j = 1,...,d,

M3y, (E = EM)] + M(d,,(H — H")] + 113, (E — EV)[] + £[19,,(H — HY)[] < CN ™", (78)

Proof. For any fixed x, using (68) of Lemma 2.5 for u = E and u = H with m = 1, respectively, we have
2 2
/ (e, MIEE, 15 3) = B¥ .1 )" + p0)ute, )G, 15 3) = HY (e, 15 9)[") dy
r

< CN’ZfF (PeCx, MIKE + p(y)(x, y)3,H|*) dy. (79)

Similarly, using (68) of Lemma 2.5 foru = V x E and u = V x H with m = 1, respectively, we have
2 2
f (,O(y)e(x, IV x (E@x, 15 y) = EY(x, 1; )"+ p(nu, IV x Hx, 1, y) = HY (x, 15 )| )dy
r

<CN? /F (P(Me@, VNV x E)* + p(0)lx, )|y (V x H)*) dy. (80)

Adding (79) and (80) together, then integrating the resultant with respect to x over D and using Theorems 2.1
and 2.3, we complete the proof of (75).

The estimates (77) can be proved similarly by using (68) of Lemma 2.5 with m = 2 and the higher regularity
obtained in Theorem 2.3.
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Similarly, using (70) of Lemma 2.5 with m = 2, and the higher regularity proved in Theorem 2.3, we obtain the
proof of (78).

Finally, the mean errors follow from the standard inequality |u||,1 < C]lu|;2 and the estimates (75), (77)
and (78). O

With the above interpolation estimate, we can show that the overall errors for solving the metamaterial Maxwell’s
equations by the classical Yee scheme (cf. [35]) are estimated as follows. Denote the electric field solution of Yee
scheme for any fixed random vector y as EV, and E}, , for the electric field solution of the fully-discrete solution with
stochastic collocation method imposed. Denote the discrete L>-norm over the physical space D as |-| 12py (cf. [35]).
Then we can obtain the discrete mean square error as following:

2 2 2
([ pelE = EY aliis) = ([ 20eE ~ BV, 4 1BY = B} o )
r I
< CIN™" + (h* + (A0, @81)

where we used the error estimate of Yee scheme and Theorem 2.4. The error estimate for other variables can be
bounded similarly.

3. Numerical results

To justify our theoretical analysis, here we present some numerical results carried out for the metamaterial model
in T M, mode, whose governing equations are:

po e OE e (82)
ot 0x> !
,U«OBHX2 = 9E _ + & (83)
ot 9x, 2 ’
9E  dH,, 0H, o &4
€— = - — s
%90 T om | om &3
aJ
o= €w’E — T,J + g4, (85)
9Ky _ 2H., — Ky + (86)
9t = Row,, 1y, mBxy 85,
K,
TZ = /’LOw,anxz - Fmez =+ g6, 87)

where g; (1 < i < 6) are added source terms used to construct exact solutions for checking convergence rates. The
parameters (o, €o, L, I, @, and w, are functions of spatial variable x and random vector &.
Example 1. In this test, we choose the following parameters:

€(x,§) =1+ 0.01(sin(w (§1x1 + E2x02 — 1)) + cos((&3x1 + §ax2 — 1)) + exp(—E&sx1 — §6x2)),

mo(x, &) = 1+ 0.01(sin(rr (§1x1 + E2x2 — 1)) + exp(—&3x1 — &4x2) + cos( (§5x1 + E6x2 — 1)),

Te(x, &) = + 0.01(cos( (&1x1 4 &axz — 1)) + sin(w (&3x; + E4x2 — 1)) + exp(—&sx; — E6x2)),

Ly(x,§) = +0.01(cos( (§1x1 + &xx2 — 1)) + exp(—&3x1 — E4x2) + sin(rw (§5x1 + E6x2 — 1)),

we(X, &) = 7 + 0.01(exp(—&1x1 — &2x2) + cos(mw (§3x1 + §ax2 — 1)) + sin(w (§sx1 + Sex2 — 1)),

wn(X,§) = 4 0.01(exp(=&1x1 — §2x2) + sin(rw (§3x1 + &axz — 1)) + cos(w (§5x1 + §6x2 — 1)),
where &; (1 <i < 6) are uniform independent random variables on [0, 1].

In our tests, we use Yee scheme (cf. [35]) to solve the T M, model on physical domain [0, 1]? and time domain
[0, 1] with the exact solution given as

H,, = sin(wwx; + po) cos(wxz + o) exp(—mt),
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Table 1

Errors of the solutions when the analytic solutions are infinitely smooth in both random and spatial variables.
Mesh 1/5 1/10 Rate 1/20 Rate 1/40 Rate
EllHy, — H;’l 11 9.51281E—03 2.25052E—03 2.0796 4.90362E—04 2.1390 1.16331E—04 2.1259
M[|Hy, — H;‘l 1 9.51281E—03 2.25090E—03 2.0794 4.90442E—-04 2.1389 1.16353E—04 2.1258
EllH,y, — Hi’z 11 9.51281E—03 2.25462E—03 2.0770 4.91154E—-04 2.1378 1.16533E—04 2.1252
M(|Hy, — Hj'zl] 9.51281E—03 2.25498E—03 2.0768 4.91231E—-04 2.1377 1.16554E—04 2.1251
ElE — Ei’] 11 1.14777E—-02 2.33418E—03 2.2978 5.27242E—04 22221 1.26109E—04 2.1670
MI|E — Ei’l 1 1.14777E-02 2.33587E—03 2.2968 5.27710E—04 2.2215 1.26237E—04 2.1666
EllKy, — Kfc’l 1 8.77292E—03 1.71711E-03 2.3531 3.72208E—04 2.2794 8.73870E—05 2.2154
MI[|Ky, — K;?l 1 8.77292E—03 1.71767E—03 2.3526 3.72326E—-04 22792 8.74154E—05 2.2153
ElKy, — K)f’z 1 8.77292E—03 1.71711E-03 2.3531 3.72208E—-04 2.2794 8.73870E—05 2.2154
MKy, — Ki’zl] 8.77292E—03 1.71767E—03 2.3526 3.72326E—-04 2.2792 8.74154E—05 22153
EllJ — J;’l ] 1.71215E—-02 3.95199E—-03 2.1152 9.11318E—04 2.1159 2.18246E—04 2.0998
MIJ — le] 1 1.71215E—02 3.95296E—03 2.1148 9.11584E—04 2.1156 2.18302E—04 2.0997

H,, = —cos(mwxy + po) sin(wxz + o) exp(—7wt),
E = sin(wx; 4 €p) sin(wx, + €p) exp(—mt),
K, = 7t sin(;rx1) cos(mwxy) exp(—rt),
K,, = -t cos(mrxy) sin(mwx,) exp(—mt),
J = 7%t sin(zrx;) sin( x) exp(—mt).

To test the convergence rate, we vary the partition size in the x; and x, directions ., = h,, = h from 1/5 to 1/40,
and time step size from 1/10 to 1/80. We set time partition equals two times of spatial to guarantee the stability. In
the same time, the partition numbers in random space vary from 1 to 8. We present the errors of all six components
(H,, Hy,, E, K,,, K,, J) in the discrete £[-] and M|-] in Table 1. We can see clearly that all solutions show second
order convergence which agrees with our theoretical result, since in this case the exact solution is infinitely smooth in
both random and spatial variables and the overall error is dominated by the numerical scheme error.

In Fig. 1, we present one sample magnetic field and its mean and variance obtained by solving the same
problem by a 20 x 20 spatial uniform partition on [0, 1]>. We set the initial conditions and boundary values
using the above exact solution and no added source functions. Fig. 1 is obtained with the random vector § =
(0.8147,0.9058, 0.1270, 0.9134, 0.6324, 0.0975), and shows that the mean magnetic field is similar to the sample
field in this case.

Example 2. This example is used to test the convergence rate when the solution has limited regularity in the random
variables. For simplicity, we use the same exact solution as Example 1 except H,, being given as:

. V2 V2
H, = sin(mwx; + po) cos(wxa + o) exp(—mt) + (61 — T)msgn & — 5| m= 1,2.

We choose number +/2/2 to avoid the case that some interpolation point falls at this cusp point. The corresponding
source terms are obtained by plugging the exact solution into the governing equations. It is easy to check that the exact
solutions are infinitely smooth except that H, (I') € H m+1/2=¢("y when m = 1, 2, respectively.

To investigate the convergence rate, we initialize the partition number for x;, x,, ¢ and & as 10, 20, 40 and 2
respectively to make a uniform spatial and temporal partition and use a Gauss—Lobatto points for each random space.
Then we double all partition numbers three times. The numerical results of original solutions are given in Tables 2
and 3 form = 1 and m = 2, respectively. Table 2 shows that the error of H,, is about O(N ~13) in both mean and
mean square norm defined earlier, and errors of other solutions are still O(N ~2) due to their infinite smoothness. This
is consistent with our theoretical analysis. When m = 2, all the solutions have O(N ) convergence, which shows



46 J. Li et al. / Comput. Methods Appl. Mech. Engrg. 335 (2018) 24-51

(Hl‘laH12) ’ (E[Hzl]PE[I{Izz]) .
1'// VN T 1” / I J l ; J i ¢ ; } 4 } 4 4 ‘v A
///l/} xx\i*\\ O A A
///// \\\\\ :///////lil\\\‘::
0sE =22 ) ) N e S R R R B NN
////:?éf \ﬁ&k\\\\ R A A A NN
/.A//////J \\\\\\\\ - - " o W S S S / ' N NN e e e -
08 ===« 4 v/ | | \ N == 06— ——— - - < T T 1
~ [ == -  ~ / N e e e | ~ e —— — — — — o~ - . - - - - .- -
8 - I T 8 I, LIt
Q4Fr=—=—~—~~"~ N\ } /S 7 m o = = = Db b~~~ N N Nt S e e
b=~} /7 7 7 7 7 = e~~~ NN Nt S s e e
RN NN A A e~ N NN N A
AN NN A NN NN e
02F2~IIN N ) A (IR S B B I ARt
<~ A\ "\ A <~~~ VA rrrr s .-
\\\'}} f{/// \\\\’\ﬁr} ;%7/11,
0.\\\ Pt 0_\x\TT [ R AR
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X Z
(a) The random magnetic field. (b) The mean magnetic field.
(V[Hq,],V[Ha,))
1f R ]
[ e ]
LU S R S A S B )
08} N ]
o6f - oo
S S
04F o
02r ©
0_ . -‘v . ' |‘| ' !}l 1 ' ,‘. . .4
0 0.2 0.4 0.6 0.8 1
z

(c) The variance of magnetic field.

Fig. 1. Comparison of a random sample of magnetic field and its mean and variance obtained with £ = (0.8147, 0.9058, 0.1270, 0.9134,
0.6324, 0.0975).

clearly by the results stated in Table 3. Notice the rate of H,, is limited to 2 due to the 2nd convergent rate of the
FDTD scheme. We also plotted the variances of the electric fields at variance times in Fig. 2.

Example 3. In this example, we solve a classic example showing the backward wave propagation in metamaterials
(cf. [36,35]). This example assumes that a metamaterial slab of size [0.024, 0.054] m x [0.002, 0.062] m is located
inside a vacuum of size [0, 0.07] m x [0, 0.064] m. An incident source wave is imposed as E field and excited at line
x = 0.004 m ranging from y = 0.025 m to y = 0.035 m. The source wave varies in space as exp(—(x —0.03)?/(50h)?)
where & is the partition size in space, and in time as:

0 t<Oort > Q2m+KT,
F) = g1(t) sin(wot) 0<t<mT,
sin(wyt) mT, <t <m+k7T,
g2(t) sin(wot) (m+KT, <t <@m+KT,
where

gi(t) = 10x; — 15x} +6x7,  x; =t/mT,
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Table 2

Errors of the solutions when Hy, € H3/2=<(I).
N 2 4 Rate 8 Rate 16 Rate
EllHy, — H;’l 11 2.544284E—01 5.899390E—02 1.8103 1.560676E—02 1.6431 6.047332E—-03 1.3678
M[|Hy, — H;‘l 11 2.972258E—01 7.969676E—02 1.6161 2.654922E—02 1.4797 1.024674E—02 1.3735
EllH,y, — Hle] 9.506088E—06 1.570312E—05 0.9623 5.537782E—06 1.7153 1.456298E—06 1.9270
M(|Hy, — Hj'zl] 1.576924E—-05 1.125031E—-05 1.1302 5.549302E—-06 1.4701 1.465709E—06 1.9207
EllKy, — Ki_’l 1 6.473112E—04 1.479130E—04 2.0982 3.443082E—05 2.0817 8.255164E—06 2.0603
MKy, — Kﬁl 1 6.473390E—04 1.479207E—04 2.0982 3.443912E—-05 2.0816 8.255810E—06 2.0606
EllKx, — K)f’2 1 5.212914E—-04 1.306984E—04 2.0072 3.209770E—05 2.0099 8.057718E—-06 1.9940
MI[|Ky, — K;,g 11 5.213384E—-04 1.307129E—-04 2.0070 3.211124E—-05 2.0095 9.062296E—06 1.9938
ElE - E" 1.291961E—04 4.004254E—05 1.9222 9.690372E—06 2.0176 2.442342E—06 1.9883
MI|E — E"|] 1.297785E—04 4.008978E—05 1.9236 9.704608E—06 2.0176 2.445378E—06 1.9886
ENJ =M 1.206363E—03 3.078828E—04 1.9984 7.689780E—05 2.0120 1.892578E—05 2.0226
M = J"] 1.206383E—03 3.078850E—04 1.9984 7.690346E—05 2.0119 1.892703E—05 2.0226

Table 3

Errors of the solutions when Hy, € H3/2=¢(I).
N 2 4 Rate 8 Rate 16 Rate
ElHy, — H.ﬁl 11 4.707117E-02 6.770013E—03 2.7029 7.617172E—04 2.5807 1.891617E—04 2.0096
M[|Hy, — Hfl 11 5.827503E—-02 8.021087E—03 2.6621 1.028223E—03 2.5124 2.463826E—04 2.0612
E[lHy, — H)f’z 1 2.053239E—-05 3.153899E—06 1.9998 1.204564E—06 1.7503 2.786668E—07 2.1119
M([|Hy, — Hf.'zl] 2.361496E—05 3.209744E—06 2.0270 1.213414E—06 1.7048 3.020466E—07 2.0062
EllKy, — Kf}l 1 3.563472E—-04 8.236230E—-05 2.0961 2.025432E—-05 2.0996 4.483891E—-06 2.1754
MKy, — K)f‘l 11 3.563567E—04 8.236546E—05 2.0961 2.025525E—-05 2.0996 4.484184E—06 2.1754
ElKy, — K)f’z 1 3.563472E—04 8.236230E—05 2.0961 2.025432E—-05 2.0996 4.483891E—06 2.1754
M[|Ky, — K)’}zl] 3.563567E—04 8.236546E—05 2.0961 2.025525E—-05 2.0996 4.484184E—06 2.1754
E[E — EM 8.567125E—05 1.922316E—05 2.0511 4.694926E—06 2.0016 1.198734E—06 1.9696
MI|E — E"|] 8.570607E—05 1.923237E—-05 2.0509 4.697663E—06 2.0013 1.199810E—06 1.9691
ENJ =M 4.566191E—04 1.075776E—04 2.0366 2.599359E—-05 2.0100 6.630678E—06 1.9709
MIIJ = J"] 4.566465E—04 1.075871E—04 2.0366 2.599465E—05 2.0100 6.631424E—06 1.9708

() =1 —(10x3 — 15x5 4 6x3),

Xo=(t—m+KkT,)/mT,

here T, = 1/fo and wy = 27 fp. In this simulation, m = 2, k = 100, f, = 30 GHz.

This model is solved on a uniform mesh with time step size T = 107'3 s = 0.1 ps and 12 perfectly matched layer
(PML) imposed around the physical domain. For details can refer to our previous work [35]. We use the following
random parameters for our simulation:

co(x,£) = L1 x 107 (1 + & + &),

po(x, £) =107°/(1 + & + &),

Tu(x, &) = 10%(1 + 107*(&; — 0.5)),

TL(x, &) = 10%(1 4+ 107*(&4 — 0.5)),
(X, €) = 21v/2 x 3 x 10'°(1 4 107*(&5 — 0.5)),
we(X, £) = 21v/2 x 3 x 10'°(1 4 107*(&6 — 0.5)).

The obtained electric field at various time steps are plotted in Fig. 3, which shows that as the source wave enters
the metamaterial slab, the wave propagates backward due to the negative refractive index of the metamaterial and
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Fig. 2. Example 2. The variances of electronic fields at t = 0.25 (Top left), t = 0.5 (Top right), = 0.75 (Bottom left) and = 1 (Bottom right).

propagates forward after the wave moves out the metamaterial subdomain. This example shows that the backward
wave propagation phenomenon still exists in the random metamaterial.

4. Conclusions

In this paper, we first establish the regularity analysis for the time-dependent Maxwell’s equations in Drude
metamaterial with respect to the random variables. Using the regularity result, we prove the error estimate for the
stochastic collocation method developed to solve this model. Extensive numerical results are presented to justify
the theoretical analysis. We also demonstrate the backward wave propagation phenomenon happened when the
electromagnetic wave travels in the random metamaterial. We expect that similar results to the Drude model can
be obtained for other metamaterial models too [31]. In the future, we plan to develop more efficient stochastic
collocation method and even stochastic Galerkin method to Maxwell’s equations. We will explore more practical
wave propagation problems in random media and random inputs.
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