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Abstract

In this paper we develop and analyze the stochastic collocation method for solving the time-dependent metamaterial Maxwell’s
equations subject to random coefficients and random initial conditions. We provide a rigorous regularity analysis of the solution
with respect to the random variables. To our best knowledge, this is the first theoretical results derived for the stochastic
metamaterial Maxwell equations. The rate of convergence is proved depending on the regularity of the solution. Numerical results
are presented to confirm the theoretical analysis. We also demonstrate that the backward wave propagation phenomenon still exists
in random metamaterial.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, solving stochastic partial differential equations (SPDEs) has been a very hot topic research in
scientific computing. One of the main reasons is that model uncertainty is ubiquitous in many complex physical
systems. Examples include uncertainties appearing in the mechanical properties of many biomaterials, polymeric
fluids or composite materials, initial data for weather forecasting, and wave and fluid propagate through heterogeneous
random media, etc. For PDE models, input uncertainties appear in coefficients, forcing terms, boundary and initial
condition data, geometry, etc (cf. [1–4]). In electromagnetics, the fluctuations in the producing process (such as the
lithography) of electromagnetic materials allow us to treat the permittivity and permeability as uncertain parameters
(e.g., [5,6]). In simulating signal propagation in corrugated coaxial cables [7], the physical domain has some
uncertainty.
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Due to the high dimensionality of stochastic solutions, it is very challenging to efficiently solve SPDEs with
uncertain inputs. Through the great efforts of many researchers, two numerical methods become quite popular in
solving SPDEs. One is the stochastic Galerkin method [8–11], which shows fast convergence rates with increasing
order of expansions, provided that the solution of the underlying differential equation is sufficiently smooth in the
random space. However, the system of equations resulting from the stochastic Galerkin methods is coupled and
quite expensive to solve especially for problems requiring high-dimensional random spaces. Another popular method
is the so-called stochastic collocation method (cf. [12,13]) by taking advantage of the strength of Monte Carlo
methods and the stochastic Galerkin methods. The stochastic collocation method achieves fast convergence when the
solutions are sufficiently smooth in the random space. More importantly, the stochastic collocation method is simple
in implementation and the system of resulting equations is decoupled and hence is efficient to solve. So far, both the
stochastic Galerkin method and the stochastic collocation method have been widely used to solve various problems,
such as elliptic problems (e.g., [14–17]), parabolic equations (e.g., [18]), hyperbolic equations (e.g., [19,20]), random
Helmholtz problem [21], and conservation laws (e.g., [22,23]), etc. More details can be found in recent review
articles [11,24,25] and monographs [26–28].

Compared to many papers published for other problems, there are not many existing works on numerical methods
for solving stochastic Maxwell’s equations. In 2006, Chauviére et al. [6] solved the time-dependent Maxwell’s
equations by using both the stochastic Galerkin method and stochastic collocation method. Detailed comparisons of
both methods are made for uncertainties caused by physical materials, by the source wave and by the physical domain.
In 2015, Benner and Schneider [5] described several techniques for uncertainty quantification for the time-harmonic
Maxwell’s equations by using stochastic collocation method. The existence and uniqueness of stochastic Maxwell
equations with additive noise were investigated in [29], and multi-symplectic difference method was proposed and
analyzed for solving them [30]. However, how uncertainty propagates through the stochastic Maxwell’s equations
and what regularity we can expect is not investigated yet as Chauviére et al. pointed out [6, p. 774]. One of the main
purposes of this paper is to fill this gap.

The rest of the paper is organized as follows. In Section 2, we first present detailed regularity analysis of the
metamaterial Maxwell’s equations with respect to random variables. Then we establish the convergence analysis for
the stochastic collocation method developed to solving this model. Numerical results are presented in Section 3 to
support our theoretical analysis. We conclude the paper in Section 4.

2. Maxwell’s equations with random coefficients

Let x ∈ D ⊂ R3 be the spatial coordinate, t be the time variable from set [0, T ], and (Ω ,A,P) be a complete
probability space, whose event space is Ω (ω ∈ Ω is the event) and is equipped with σ -algebra A, and P is a
probability measure. Furthermore, we let ρ(y) : Γ → R+ be a bounded joint probability density function of an
Rd -valued random variable y = [y1(ω), . . . , yd (ω)], ω ∈ Ω , whose image Γ := Π d

n=1Γn,Γn = yn(Ω ) ∈ R.
Consider the stochastic Maxwell’s equations in metamaterials [31]: Find the random electric field E(x, t, y),

magnetic field H(x, t, y), induced electric field J(x, t, y) and magnetic fields K(x, t, y) : D × (0, T ) × Ω → R3

such that P-almost everywhere in Ω , i.e., almost surely (a.s.) satisfy the following equations:

ϵ(x, y(ω))∂t E = ∇ × H − J, (1)

µ(x, y(ω))∂t H = −∇ × E − K, (2)
1

ϵ(x, y(ω))ω2
pe(x, y(ω))

∂t J +
Γe(x, y(ω))

ϵ(x, y(ω))ω2
pe(x, y(ω))

J = E, (3)

1
µ(x, y(ω))ω2

pm(x, y(ω))
∂t K +

Γm(x, y(ω))
µ(x, y(ω))ω2

pm(x, y(ω))
K = H, (4)

subject to random initial conditions

E(x, t = 0, y(ω)) = E0(x, y(ω)), H(x, t = 0, y(ω)) = H0(x, y(ω)), (5)

J(x, t = 0, y(ω)) = J0(x, y(ω)), K(x, t = 0, y(ω)) = K0(x, y(ω)), (6)

and the perfect conducting (PEC) boundary condition:

n × E = 0, on ∂ D, (7)
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where E0, H0, J0 and K0 are some given functions. To accommodate the uncertainty or randomness of the material,
we assume that the permittivity ϵ, permeability µ, electric plasma frequency ωpe, magnetic plasma frequency ωpm ,
electric damping frequency Γpe and magnetic damping frequency Γpm are all random. Here and below, n denotes the
unit outward normal vector on the boundary ∂ D, where D ⊂ R3 is a bounded polyhedral domain with a Lipschitz
boundary. For simplicity, we denote ∂s j the j th derivative with respect to variable s, e.g., s = t and y. We like to
emphasize that here and below ∇ is only for spatial variable x.

To solve problem (1)–(7), we use the Lagrange interpolation approach by following [32,33,12]. We first choose
a set of Gauss–Lobatto collocation points {yk}

(N+1)d

k=1 ∈ Γ , where N + 1 denotes the number of collocation
points in each random variable space. We then solve the following system of equations at each collocation point
y j , j = 1, . . . , (N + 1)d :

ϵ(x, y j )∂t Ê(x, t; y j ) = ∇ × Ĥ(x, t; y j ) − Ĵ(x, t; y j ), (8)

µ(x, y j )∂t Ĥ(x, t; y j ) = −∇ × Ê(x, t; y j ) − K̂(x, t; y j ), (9)
1

ϵ(x, y j )ω2
pe(x, y j )

∂t Ĵ(x, t; y j ) +
Γe(x, y j )

ϵ(x, y j )ω2
pe(x, y j )

Ĵ(x, t; y j ) = Ê(x, t; y j ), (10)

1
µ(x, y j )ω2

pm(x, y j )
∂t K̂(x, t; y j ) +

Γm(x, y j )
µ(x, y j )ω2

pm(x, y j )
K̂(x, t; y j ) = Ĥ(x, t; y j ), (11)

subject to the initial conditions

Ê(x, t = 0, y j ) = E0(x, y j ), Ĥ(x, t = 0, y j ) = H0(x, y j ), (12)

Ĵ(x, t = 0, y j ) = J0(x, y j ), K̂(x, t = 0, y j ) = K0(x, y j ), (13)

and the PEC boundary condition:

n × Ê(x, t; y j ) = 0, on ∂ D, (14)

i.e., we can simply denote the approximate solution as

EN (x, t; y) =

(N+1)d∑
k=1

Ê(x, t; yk)Lk(y), HN (x, t; y) =

(N+1)d∑
k=1

Ĥ(x, t; yk)Lk(y), (15)

JN (x, t; y) =

(N+1)d∑
k=1

Ĵ(x, t; yk)Lk(y), KN (x, t; y) =

(N+1)d∑
k=1

K̂(x, t; yk)Lk(y), (16)

where Lk(y) are the tensor-product Lagrange interpolation polynomials. In Remark 2.1, we show that uN (x, t; y) is
just the interpolation of u, denoted as I y

N u =
∑(N+1)d

k=1 u(x, t; yk)Lk(y), where u = E, H, J, K.

To prove the convergence rate of this scheme, we first need to establish the regularity for the solution of our model
problem (1)–(7). To simplify the notation and make the proof clear, sometimes we drop the explicit dependence of all
physical parameters on x and y.

Remark 2.1. To justify that EN (x, t; y) = I y
N E, HN (x, t; y) = I y

N H, JN (x, t; y) = I y
N J and KN (x, t; y) = I y

N K, we
denote the errors

ÊN (x, t; y j ) = EN (x, t; y j ) − E(x, t; y j ), ĤN (x, t; y j ) = HN (x, t; y j ) − H(x, t; y j ),

ĴN (x, t; y j ) = JN (x, t; y j ) − J(x, t; y j ), K̂N (x, t; y j ) = KN (x, t; y j ) − K(x, t; y j ).

Choosing y = y j in (1)–(7) and subtracting the resultants from the corresponding equations of (8)–(14), we can
see that ÊN (x, t; y j ), ĤN (x, t; y j ), ĴN (x, t; y j ) and K̂N (x, t; y j ) satisfy the following equations:

ϵ(x, y j )∂t ÊN (x, t; y j ) = ∇ × ĤN (x, t; y j ) − ĴN (x, t; y j ), (17)

µ(x, y j )∂t ĤN (x, t; y j ) = −∇ × ÊN (x, t; y j ) − K̂N (x, t; y j ), (18)
1

ϵ(x, y j )ω2
pe(x, y j )

∂t ĴN (x, t; y j ) +
Γe(x, y j )

ϵ(x, y j )ω2
pe(x, y j )

ĴN (x, t; y j ) = ÊN (x, t; y j ), (19)
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1
µ(x, y j )ω2

pm(x, y j )
∂t K̂N (x, t; y j ) +

Γm(x, y j )
µ(x, y j )ω2

pm(x, y j )
K̂N (x, t; y j ) = ĤN (x, t; y j ), (20)

subject to the zero initial conditions

ÊN (x, t = 0, y j ) = ĤN (x, t = 0, y j ) = 0, (21)

ĴN (x, t = 0, y j ) = K̂N (x, t = 0, y j ) = 0, (22)

and the PEC boundary condition:

n × ÊN (x, t; y j ) = 0, on ∂ D. (23)

Multiplying (17)–(20) by ÊN (x, t = 0, y j ), ĤN (x, t; y j ), ĴN (x, t; y j ) and K̂N (x, t; y j ), respectively, and integrating
over D, we can easily see that (cf. proof of Lemma 3.12 in [31]):

1
2

d
dt

(
∥
√

ϵÊN
∥

2
L2(D) + ∥

√
µĤN

∥
2
L2(D) + ∥

ĴN

√
ϵωpe

∥
2
L2(D) + ∥

K̂N

√
µωpm

∥
2
L2(D)

)
(y j )

+

∫
D

(
Γe

ϵω2
pe

|ĴN
|
2
+

Γm

µω2
pm

|K̂N
|
2
)

= 0. (24)

Integrating (24) from t = 0 to t and using the zero initial conditions, we easily have

1
2

(
∥
√

ϵÊN
∥

2
L2(D) + ∥

√
µĤN

∥
2
L2(D) + ∥

ĴN

√
ϵωpe

∥
2
L2(D) + ∥

K̂N

√
µωpm

∥
2
L2(D)

)
(t, y j ) ≤ 0,

which leads to

ÊN (x, t = 0, y j ) = ĤN (x, t = 0, y j ) = ĴN (x, t = 0, y j ) = K̂N (x, t = 0, y j ) = 0.

These justify that EN (x, t; y) = I y
N E, HN (x, t; y) = I y

N H, JN (x, t; y) = I y
N J and KN (x, t; y) = I y

N K.

2.1. Regularity analysis

Lemma 2.1. For problem (1)–(7) and any t ∈ [0, T ] , we have∫
Γ

∫
D

ρ(y)

(
ϵ(x, y)|E|

2
+ µ(x, y)|H|

2
+

1
ϵ(x, y)ω2

pe(x, y)
|J|

2
+

1
µ(x, y)ω2

pm(x, y)
|K|

2

)
(t)dxdy

≤

∫
Γ

∫
D

ρ(y)

(
ϵ(x, y)|E0|

2
+ µ(x, y)|H0|

2
+

1
ϵ(x, y)ω2

pe(x, y)
|J0|

2
+

1
µ(x, y)ω2

pm(x, y)
|K0|

2

)
dxdy.

Proof. Multiplying (1)–(4) by 2ρ(y)E, 2ρ(y)H, 2ρ(y)J and 2ρ(y)K, respectively, then integrating over D and Γ , and
adding the resultants, we have

d
dt

∫
Γ

∫
D

ρ(y)

(
ϵ(x, y)|E|

2
+ µ(x, y)|H|

2
+

1
ϵ(x, y)ω2

pe(x, y)
|J|

2
+

1
µ(x, y)ω2

pm(x, y)
|K|

2

)
dxdy

+

∫
Γ

∫
D

2ρ(y)

(
Γe(x, y)

ϵ(x, y)ω2
pe(x, y)

|J|
2
+

Γm(x, y)
µ(x, y)ω2

pm(x, y)
|K|

2

)
dxdy = 0, (25)

where in the last step we used the PEC boundary condition (7) in the following identity∫
Γ

∫
D

ρ(y)E · ∇ × H −

∫
Γ

∫
D

ρ(y)H · ∇ × E = −

∫
Γ

∫
∂ D

ρ(y)H · n × E = 0.

Integrating (25) with respect to t from t = 0 to t concludes the proof. □
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Lemma 2.2. Denote

Cmax1 := 2 max
D×Γ

(
1

ϵµ
, ω2

pe + Γ 2
e , ω2

pm + Γ 2
m,

1
ϵ2ω2

pe
,

1
µ2ω2

pm

)
.

Then for problem (1)–(7) and any t ∈ [0, T ] , we have∫
Γ

∫
D

ρ(y)

(
ϵ(x, y)|∂t E|

2
+ µ(x, y)|∂t H|

2
+

1
ϵ(x, y)ω2

pe(x, y)
|∂t J|

2

+
1

µ(x, y)ω2
pm(x, y)

|∂t K|
2

)
(t)dxdy

≤ Cmax1

∫
Γ

∫
D

ρ(y)

(
µ|∇ × H0|

2
+ ϵ|∇ × E0|

2
+ ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2

)
dxdy.

Proof. Taking the time derivative of (1)–(4), we obtain

ϵ(x, y(ω))∂t (∂t E) = ∇ × (∂t H) − ∂t J, (26)

µ(x, y(ω))∂t (∂t H) = −∇ × (∂t E) − ∂t K, (27)
1

ϵ(x, y(ω))ω2
pe(x, y(ω))

∂t (∂t J) +
Γe(x, y(ω))

ϵ(x, y(ω))ω2
pe(x, y(ω))

∂t J = ∂t E, (28)

1
µ(x, y(ω))ω2

pm(x, y(ω))
∂t (∂t K) +

Γm(x, y(ω))
µ(x, y(ω))ω2

pm(x, y(ω))
∂t K = ∂t H. (29)

Multiplying (26)–(29) by 2ρ(y)∂t E, 2ρ(y)∂t H, 2ρ(y)∂t J and 2ρ(y)∂t K, respectively, then integrating over D and
Γ , and adding the resultants, we have

d
dt

∫
Γ

∫
D

ρ(y)

(
ϵ(x, y)|∂t E|

2
+ µ(x, y)|∂t H|

2
+

1
ϵ(x, y)ω2

pe
|∂t J|

2
+

1
µ(x, y)ω2

pm
|∂t K|

2

)
dxdy

+

∫
Γ

∫
D

2ρ(y)

(
Γe(x, y)

ϵ(x, y)ω2
pe(x, y)

|∂t J|
2
+

Γm(x, y)
µ(x, y)ω2

pm(x, y)
|∂t K|

2

)
dxdy

=

∫
Γ

∫
D

2ρ(y) [∇ × (∂t H) · ∂t E − ∇ × (∂t E) · ∂t H] = −

∫
Γ

∫
∂ D

2ρ(y)n × (∂t E) · ∂t H = 0, (30)

where in the last step we used integration by parts and the PEC boundary condition (7).
Integrating (30) with respect to t from t = 0 to t , then using the governing equations (1)–(4) and the Cauchy–

Schwarz inequality, we have∫
Γ

∫
D

ρ(y)

(
ϵ(x, y)|∂t E|

2
+ µ(x, y)|∂t H|

2
+

1
ϵ(x, y)ω2

pe
|∂t J|

2
+

1
µ(x, y)ω2

pm
|∂t K|

2

)
(t)dxdy

≤

∫
Γ

∫
D

ρ(y)

(
ϵ(x, y)|∂t E0|

2
+ µ(x, y)|∂t H0|

2
+

1
ϵ(x, y)ω2

pe
|∂t J0|

2
+

1
µ(x, y)ω2

pm
|∂t K0|

2

)
dxdy

≤

∫
Γ

∫
D

ρ

[
2
ϵ

(|∇ × H0|
2
+ |J0|

2) +
2
µ

(|∇ × E0|
2
+ |K0|

2)

+
2

ϵω2
pe

(Γ 2
e |J0|

2
+ |E0|

2) +
2

µω2
pm

(Γ 2
m |K0|

2
+ |H0|

2)

]
dxdy

=

∫
Γ

∫
D

ρ

[
2

ϵµ
(µ|∇ × H0|

2
+ ϵ|∇ × E0|

2) + 2(ω2
pe + Γ 2

e ) ·
1

ϵω2
pe

|J0|
2
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+ 2(ω2
pm + Γ 2

m) ·
1

µω2
pm

|K0|
2
+

2
ϵ2ω2

pe
· ϵ|E0|

2
+

2
µ2ω2

pm
· µ|H0|

2

]
dxdy

≤ Cmax1

∫
Γ

∫
D

ρ

(
µ|∇ × H0|

2
+ ϵ|∇ × E0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2
+ ϵ|E0|

2
+ µ|H0|

2

)
, (31)

which concludes the proof. □

In the rest of the paper, we will use the following Gronwall inequality a lot.

Lemma 2.3. If Q(t) satisfies d Q
dt ≤ c0 Q + d0 for some constant c0 ̸= 0 and d0, then we have

Q(t) ≤ ec0t (Q(0) +
d0

c0
), ∀ t ≥ 0.

Theorem 2.1. Denote constant C1:

C1 = max
D×Γ

(
|
∂yi (ϵω

2
pe)

ϵωpe
| + |∂yiΓe|, |

∂yi (µω2
pm)

µωpm
| + |∂yiΓm |, |

∂yi ϵ

ϵ
|, |

∂yi µ

µ
|

)
.

Then for any t ∈ [0, T ] and i = 1, . . . , d, we have∫
Γ

∫
D

ρ(y)

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)
(t)dxdy

≤ eC1t
∫
Γ

∫
D

ρ(y)

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)
(0)dxdy

+ eC1t (1 + Cmax1)
∫
Γ

∫
D

ρ

(
ϵ|∇ × E0|

2
+ µ|∇ × H0|

2
+ ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2

+
1

µω2
pm

|K0|
2

)
.

Proof. Differentiating (1)–(4) with respect to any yi (i = 1, . . . , d), we obtain

ϵ∂t (∂yi E) − ∇ × (∂yi H) + ∂yi J = −∂yi ϵ · ∂t E, (32)

µ∂t (∂yi H) + ∇ × (∂yi E) + ∂yi K = −∂yi µ · ∂t H, (33)

∂t (∂yi J) + Γe · ∂yi J − ϵω2
pe∂yi E = ∂yi (ϵω

2
pe)E − ∂yiΓe · J, (34)

∂t (∂yi K) + Γm · ∂yi K − µω2
pm∂yi H = ∂yi (µω2

pm)H − ∂yiΓm · K. (35)

Multiplying (32)–(35) by 2ρ(y)∂yi E, 2ρ(y)∂yi H,
2ρ(y)
ϵω2

pe
∂yi J and 2ρ(y)

µω2
pm

∂yi K, respectively, then integrating over D and
Γ , and adding the resultants, we have

d
dt

∫
Γ

∫
D

ρ(y)

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)
dxdy

+

∫
Γ

∫
D

2ρ(y)

(
Γe(x, y)

ϵ(x, y)ω2
pe(x, y)

|∂yi J|
2
+

Γm(x, y)
µ(x, y)ω2

pm(x, y)
|∂yi K|

2

)
dxdy

=

∫
Γ

∫
D

2ρ(y)

[
−∂yi ϵ · ∂t E · ∂yi E − ∂yi µ · ∂t H · ∂yi H +

∂yi (ϵω
2
pe)

ϵω2
pe

E · ∂yi J −
∂yiΓe

ϵω2
pe

J · ∂yi J

+
∂yi (µω2

pm)

µω2
pm

H · ∂yi K −
∂yiΓm

µω2
pm

K · ∂yi K

]
, (36)
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where in the last step we used the following identity:∫
Γ

∫
D

ρ(y)(∇ × ∂yi H · ∂yi E − ∇ × ∂yi E · ∂yi H) = −

∫
Γ

∫
∂ D

ρ(y)(n × ∂yi E · ∂yi H) = 0.

By the Cauchy–Schwarz inequality, it is easy to see that∫
Γ

∫
D

2ρ(y)∂yi ϵ∂t E · ∂yi E =

∫
Γ

∫
D

2ρ(y) ·
∂yi ϵ

ϵ
·
√

ϵ∂t E ·
√

ϵ∂yi E

≤ max
Γ×D

(|
∂yi ϵ

ϵ
|)
∫
Γ

∫
D

ρ(y)
(
ϵ|∂t E|

2
+ ϵ|∂yi E|

2) , (37)∫
Γ

∫
D

2ρ(y)∂yi µ∂t H · ∂yi H =

∫
Γ

∫
D

2ρ(y) ·
∂yi µ

µ
·
√

µ∂t H ·
√

µ∂yi H

≤ max
Γ×D

(|
∂yi µ

µ
|)
∫
Γ

∫
D

ρ(y)
(
µ|∂t H|

2
+ µ|∂yi H|

2) . (38)

Similarly, we can obtain∫
Γ

∫
D

2ρ(y) ·
∂yi (ϵω

2
pe)

ϵω2
pe

E · ∂yi J ≤ max
Γ×D

(|
∂yi (ϵω

2
pe)

ϵωpe
|)
∫
Γ

∫
D

ρ(y)(ϵ|E|
2
+

1
ϵω2

pe
|∂yi J|

2), (39)∫
Γ

∫
D

2ρ(y) ·
∂yi (µω2

pm)

µω2
pm

H · ∂yi K ≤ max
Γ×D

(|
∂yi (µω2

pm)

µωpm
|)
∫
Γ

∫
D

ρ(y)(µ|H|
2
+

1
µω2

pm
|∂yi K|

2),∫
Γ

∫
D

2ρ(y) ·
∂yiΓe

ϵω2
pe

J · ∂yi J ≤ max
Γ×D

(|∂yiΓe|)
∫
Γ

∫
D

ρ(y)
ϵω2

pe
(|J|

2
+ |∂yi J|

2), (40)∫
Γ

∫
D

2ρ(y) ·
∂yiΓm

µω2
pm

K · ∂yi K ≤ max
Γ×D

(|∂yiΓm |)
∫
Γ

∫
D

ρ(y)
µω2

pm
(|K|

2
+ |∂yi K|

2). (41)

Denote constants C2 and C3 as follows:

C2 = max
D×Γ

(
|
∂yi (ϵω

2
pe)

ϵωpe
|, |

∂yi (µω2
pm)

µωpm
|, |∂yiΓe|, |∂yiΓm |

)
, C3 = max

D×Γ

(
|
∂yi ϵ

ϵ
|, |

∂yi µ

µ
|

)
,

Let us introduce the notations

E N G0(t) =

∫
Γ

∫
D

ρ(y)

(
ϵ|E|

2
+ µ|H|

2
+

1
ϵω2

pe
|J|

2
+

1
µω2

pm
|K|

2

)
(t)dxdy,

and

E N G1(t) =

∫
Γ

∫
D

ρ(y)

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)
(t)dxdy.

Substituting (37)–(41) into (36), we have

d
dt

E N G1(t) ≤ C2 E N G0(t) + C1 E N G1(t) + C3

∫
Γ

∫
D

ρ(y)
(
ϵ|∂t E|

2
+ µ|∂t H|

2) . (42)

Applying the Gronwall inequality stated in Lemma 2.3 to (42) and Lemmas 2.1–2.2, we have

E N G1(t)

≤ eC1t
{

E N G1(0) +
1

C1

[
C2 E N G0(0) + C3Cmax1

(
E N G0(0) +

∫
Γ

∫
D

ρ(ϵ|∇ × E0|
2
+ µ|∇ × H0|

2)
)]}

≤ eC1t
[

E N G1(0) + (1 + Cmax1)(E N G0(0) +

∫
Γ

∫
D

ρ(ϵ|∇ × E0|
2
+ µ|∇ × H0|

2))
]

,

which concludes the proof. In the last step we used the fact that C2 ≤ C1 and C3 ≤ C1. □
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Remark 2.2. If the physical parameters ϵ, µ,Γe,Γm, ωpe, ωpm are independent of yi , then C1 = C2 = C3 = 0.
Hence from (42) we easily see that Theorem 2.1 becomes∫

Γ

∫
D

ρ(y)

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)
(t)dxdy

≤

∫
Γ

∫
D

ρ(y)

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)
(0)dxdy.

In the more general case, Theorem 2.1 shows that if the following initial conditions are L2 bounded:∫
Γ

∫
D

ρ(y)

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)
(0)dxdy ≤ C,

∫
Γ

∫
D

ρ

(
ϵ|∇ × E0|

2
+ µ|∇ × H0|

2
+ ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2

)
≤ C,

then the solution (E, H, J, K) of (1)–(7) is also L2 bounded:∫
Γ

∫
D

ρ(y)

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)
(t)dxdy ≤ CeC1t .

This boundness guarantees that the mean squared error is O(N−1) when the stochastic collocation method is used to
solve the model problem (1)–(7). For details see Theorem 2.4 proved later.

To prove higher order convergence, we need to show that higher derivatives with respect to the random variables
are L2 bounded. Below we just present the proofs of L2 boundness for the second-order derivatives, which depend on
the estimates of ∇ × u, ∇ × ∂t u and ∇ × ∂yi u for u = E, H, J, K. These estimates will be proved in the following
three lemmas.

Lemma 2.4. Denote the constant C∗

1 = maxD×Γ

(
|
∇(ϵω2

pe)
ϵωpe

| + |∇Γe|, |
∇(µω2

pm )
µωpm

| + |∇Γm |, |∇ϵ
ϵ

|, |
∇µ

µ
|

)
. Then for any

t ∈ [0, T ] and i = 1, . . . , d, we have∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × E|

2
+ µ|∇ × H|

2
+

1
ϵω2

pe
|∇ × J|

2
+

1
µω2

pm
|∇ × K|

2

)
(t)dxdy

≤ eC∗
1 t (2 + Cmax1)

∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × E0|

2
+ µ|∇ × H0|

2
+

1
ϵω2

pe
|∇ × J0|

2
+

1
µω2

pm
|∇ × K0|

2

)

+ eC∗
1 t (1 + Cmax1)

∫
Γ

∫
D

ρ(y)

(
ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2

)
.

Proof. Taking ∇× of (1)–(4), and using the identity ∇ × (φu) = φ∇ × u + ∇φ × u for any scalar function φ and
vector function u, we obtain

ϵ∂t (∇ × E) − ∇ × (∇ × H) + ∇ × J = −∇ϵ × ∂t E, (43)

µ∂t (∇ × H) + ∇ × (∇ × E) + ∇ × K = −∇µ × ∂t H, (44)

∂t (∇ × J) + Γe∇ × J − ϵω2
pe∇ × E = ∇(ϵω2

pe) × E − ∇Γe × J, (45)

∂t (∇ × K) + Γm∇ × K − µω2
pm∇ × H = ∇(µω2

pm) × H − ∇Γm × K. (46)

Denote

E N G3(t) =

∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × E|

2
+ µ|∇ × H|

2
+

1
ϵω2

pe
|∇ × J|

2
+

1
µω2

pm
|∇ × K|

2

)
(t)dxdy.
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Multiplying (43)–(46) by 2ρ(y)∇ × E, 2ρ(y)∇ × H,
2ρ(y)
ϵω2

pe
∇ × J and 2ρ(y)

µω2
pm

∇ × K, respectively, then integrating over
D and Γ , and adding the resultants, we have

d
dt

E N G3(t) +

∫
Γ

∫
D

2ρ(y)

(
Γe(x, y)

ϵ(x, y)ω2
pe(x, y)

|∇ × J|
2
+

Γm(x, y)
µ(x, y)ω2

pm(x, y)
|∇ × K|

2

)
dxdy

=

∫
Γ

∫
D

(∇ × ∇ × H · 2ρ∇ × E − ∇ × ∇ × E · 2ρ∇ × H)

−

∫
Γ

∫
D

(∇ϵ × ∂t E) · 2ρ∇ × E −

∫
Γ

∫
D

(∇µ × ∂t H) · 2ρ∇ × H

−

∫
Γ

∫
D

(∇Γe × J) ·
2ρ

ϵω2
pe

∇ × J +

∫
Γ

∫
D

∇(ϵω2
pe) × E ·

2ρ

ϵω2
pe

∇ × J (47)

−

∫
Γ

∫
D

(∇Γm × K) ·
2ρ

µω2
pm

∇ × K +

∫
Γ

∫
D

∇(µω2
pm) × H ·

2ρ

µω2
pm

∇ × K :=

7∑
i=1

Erri .

Using integration by parts, (1), and boundary conditions n × E = 0 and n × J = 0, we obtain∫
Γ

∫
D

∇ × ∇ × H · 2ρ∇ × E =

∫
Γ

∫
∂ D

n × (∇ × H) · 2ρ∇ × E +

∫
Γ

∫
D

∇ × H · 2ρ∇ × ∇ × E

=

∫
Γ

∫
∂ D

n × (ϵ∂t E + J) · 2ρ∇ × E +

∫
Γ

∫
D

∇ × H · 2ρ∇ × ∇ × E =

∫
Γ

∫
D

∇ × H · 2ρ∇ × ∇ × E,

which leads to Err1 = 0.

By the Cauchy–Schwarz inequality and the identity

u × v = |u| · |v| sin θ, where θ is the angle between u and v,

we have

Err2 = −

∫
Γ

∫
D

2
∇ϵ

ϵ
×

√
ρϵ∂t E ·

√
ρϵ∇ × E

≤ (max
D×Γ

|
∇ϵ

ϵ
|)
(∫

Γ

∫
D

ρϵ|∂t E|
2
+

∫
Γ

∫
D

ρϵ|∇ × E|
2
)

.

Similarly, we can obtain

Err3 ≤ (max
D×Γ

|
∇µ

µ
|)
(∫

Γ

∫
D

ρµ|∂t H|
2
+

∫
Γ

∫
D

ρµ|∇ × H|
2
)

,

Err4 ≤ (max
D×Γ

|∇Γe|)
∫
Γ

∫
D

ρ

ϵω2
pe

(
|J|

2
+ |∇ × J|

2) ,
Err5 ≤ (max

D×Γ
|
∇(ϵω2

pe)

ϵωpe
|)

(∫
Γ

∫
D

ρϵ|E|
2
+

∫
Γ

∫
D

ρ

ϵω2
pe

|∇ × J|
2

)
,

Err6 ≤ (max
D×Γ

|∇Γm |)
∫
Γ

∫
D

ρ

µω2
pm

(
|K|

2
+ |∇ × K|

2) ,
Err7 ≤ (max

D×Γ
|
∇(µω2

pm)

µωpm
|)

(∫
Γ

∫
D

ρµ|H|
2
+

∫
Γ

∫
D

ρ

µω2
pm

|∇ × K|
2

)
.

Denote constants C∗

2 and C∗

3 as follows:

C∗

2 = max
D×Γ

(
|
∇(ϵω2

pe)

ϵωpe
|, |

∇(µω2
pm)

µωpm
|, |∇Γe|, |∇Γm |

)
, C∗

3 = max
D×Γ

(
|
∇ϵ

ϵ
|, |

∇µ

µ
|

)
.

Recall the notation

E N G0(t) =

∫
Γ

∫
D

ρ(y)

(
ϵ|E|

2
+ µ|H|

2
+

1
ϵω2

pe
|J|

2
+

1
µω2

pm
|K|

2

)
(t)dxdy,



J. Li et al. / Comput. Methods Appl. Mech. Engrg. 335 (2018) 24–51 33

and substitute the above estimates into (47), then we have
d
dt

E N G3(t) ≤ C∗

2 · E N G0(t) + C∗

1 · E N G3(t) + C∗

3

∫
Γ

∫
D

ρ(y)
(
ϵ|∂t E|

2
+ µ|∂t H|

2)
≤ C∗

1 · E N G3(t) + C∗

2 · E N G0(0) + C∗

3 Cmax1(E N G0(0) +

∫
Γ

∫
D

ρ(ϵ|∇ × E0|
2
+ µ|∇ × H0|

2)), (48)

where we used Lemmas 2.1–2.2 in the last step.
Applying the Gronwall inequality (cf. Lemma 2.3) to (48) and the facts that C∗

2 ≤ C∗

1 and C∗

3 ≤ C∗

1 , we have

E N G3(t) ≤ eC∗
1 t
[

E N G3(0) + (1 + Cmax1)(E N G0(0) +

∫
Γ

∫
D

ρ(ϵ|∇ × E0|
2
+ µ|∇ × H0|

2))
]

≤ eC∗
1 t (1 + Cmax1)

∫
Γ

∫
D

ρ

(
ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2

)

+ eC∗
1 t (2 + Cmax1)

∫
Γ

∫
D

ρ

(
ϵ|∇ × E0|

2
+ µ|∇ × H0|

2
+

1
ϵω2

pe
|∇ × J0|

2
+

1
µω2

pm
|∇ × K0|

2

)
,

which concludes the proof. □

Remark 2.3. Similar remark as Remark 2.2 holds true. More specifically, if the physical parameters ϵ, µ,Γe,Γm, ωpe,

ωpm are independent of the spatial variable x, then C∗

1 = C∗

2 = C∗

3 = 0. In this case, Lemma 2.4 just becomes∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × E|

2
+ µ|∇ × H|

2
+

1
ϵω2

pe
|∇ × J|

2
+

1
µω2

pm
|∇ × K|

2

)
(t)dxdy

≤

∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × E|

2
+ µ|∇ × H|

2
+

1
ϵω2

pe
|∇ × J|

2
+

1
µω2

pm
|∇ × K|

2

)
(0)dxdy.

Lemma 2.5. Denote constants C4 and C5 as

C4 = max
D×Γ

(
|

∇ϵ

ϵ
√

ϵµ
| + |

∇µ

µ
√

ϵµ
| + |

ωpe∇ϵ

ϵ
| + |

ωpm∇µ

µ
|, |

∇(µω2
pm)

µωpm
| + |∇Γm |, |

∇(ϵω2
pe)

ϵωpe
| + |∇Γe|

)
,

C5 = max
D×Γ

(
|
ωpe∇ϵ

ϵ
| + |∇Γe|, |

ωpm∇µ

µ
| + |∇Γm |, |

∇(ϵω2
pe)

ϵωpe
|, |

∇(µω2
pm)

µωpm
|

)
.

Then for any t ∈ [0, T ] and i = 1, . . . , d, we have∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × ∂t E|

2
+ µ|∇ × ∂t H|

2
+

1
ϵω2

pe
|∇ × ∂t J|

2
+

1
µω2

pm
|∇ × ∂t K|

2

)
(t)dxdy

≤ eC4t (1 +
C5Cmax1

C4
)[
∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × ∂t E|

2
+ µ|∇ × ∂t H|

2
+

1
ϵω2

pe
|∇ × ∂t J|

2

+
1

µω2
pm

|∇ × ∂t K|
2

)
(0)

+

∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × E0|

2
+ µ|∇ × H0|

2
+ ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2

)
].

Proof. Taking ∂t of (43)–(46), we obtain

ϵ∂t (∇ × ∂t E) − ∇ × (∇ × ∂t H) + ∇ × ∂t J = −∇ϵ × ∂t (∂t E), (49)

µ∂t (∇ × ∂t H) + ∇ × (∇ × ∂t E) + ∇ × ∂t K = −∇µ × ∂t (∂t H), (50)

∂t (∇ × ∂t J) + Γe∇ × ∂t J − ϵω2
pe∇ × ∂t E = ∇(ϵω2

pe) × ∂t E − ∇Γe × ∂t J, (51)
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∂t (∇ × ∂t K) + Γm∇ × ∂t K − µω2
pm∇ × ∂t H = ∇(µω2

pm) × ∂t H − ∇Γm × ∂t K. (52)

Denote

E N G4(t) =

∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × ∂t E|

2
+ µ|∇ × ∂t H|

2
+

1
ϵω2

pe
|∇ × ∂t J|

2
+

1
µω2

pm
|∇ × ∂t K|

2

)
(t)dxdy,

and

E N G5(t) =

∫
Γ

∫
D

ρ(y)

(
ϵ|∂t E|

2
+ µ|∂t H|

2
+

1
ϵω2

pe
|∂t J|

2
+

1
µω2

pm
|∂t K|

2

)
(t)dxdy.

Multiplying (49)–(52) by 2ρ(y)∇×∂t E, 2ρ(y)∇×∂t H,
2ρ(y)
ϵω2

pe
∇×∂t J and 2ρ(y)

µω2
pm

∇×∂t K, respectively, then integrating
over D and Γ , and adding the resultants, we have

d
dt

E N G4(t) +

∫
Γ

∫
D

2ρ(y)

(
Γe(x, y)

ϵ(x, y)ω2
pe(x, y)

|∇ × ∂t J|
2
+

Γm(x, y)
µ(x, y)ω2

pm(x, y)
|∇ × ∂t K|

2

)
dxdy

=

∫
Γ

∫
D

(∇ × ∇ × ∂t H · 2ρ∇ × ∂t E − ∇ × ∇ × ∂t E · 2ρ∇ × ∂t H)

−

∫
Γ

∫
D

∇ϵ × ∂t (∂t E) · 2ρ∇ × ∂t E −

∫
Γ

∫
D

∇µ × ∂t (∂t H) · 2ρ∇ × ∂t H

−

∫
Γ

∫
D

(∇Γe × ∂t J) ·
2ρ

ϵω2
pe

∇ × ∂t J +

∫
Γ

∫
D

∇(ϵω2
pe) × ∂t E ·

2ρ

ϵω2
pe

∇ × ∂t J (53)

−

∫
Γ

∫
D

(∇Γm × ∂t K) ·
2ρ

µω2
pm

∇ × ∂t K +

∫
Γ

∫
D

∇(µω2
pm) × ∂t H ·

2ρ

µω2
pm

∇ × ∂t K :=

7∑
i=1

Erri .

Using integration by parts, (1), and boundary conditions n × E = 0 and n × J = 0, we obtain∫
Γ

∫
D

∇ × ∇ × ∂t H · 2ρ∇ × ∂t E

=

∫
Γ

∫
∂ D

n × (∇ × ∂t H) · 2ρ∇ × ∂t E +

∫
Γ

∫
D

∇ × ∂t H · 2ρ∇ × ∇ × ∂t E

=

∫
Γ

∫
∂ D

n × (ϵ∂t2E + ∂t J) · 2ρ∇ × ∂t E +

∫
Γ

∫
D

∇ × ∂t H · 2ρ∇ × ∇ × ∂t E

=

∫
Γ

∫
D

∇ × ∂t H · 2ρ∇ × ∇ × ∂t E,

which leads to Err1 = 0.

Using (1) and the Cauchy–Schwarz inequality, we have

Err2 = −

∫
Γ

∫
D

∇ϵ

ϵ
× (∇ × ∂t H − ∂t J) · 2ρ∇ × ∂t E

= −

∫
Γ

∫
D

2
∇ϵ

ϵ
√

ϵµ
× (

√
ρµ∇ × ∂t H) ·

√
ρϵ∇ × ∂t E +

∫
Γ

∫
D

2
ωpe∇ϵ

ϵ
× (

√
ρ

ϵω2
pe

∂t J) ·
√

ρϵ∇ × ∂t E

≤ (max
D×Γ

|
∇ϵ

ϵ
√

ϵµ
|)
∫
Γ

∫
D

ρ
(
ϵ|∇ × ∂t E|

2
+ µ|∇ × ∂t H|

2)
+ (max

D×Γ
|
ωpe∇ϵ

ϵ
|)
∫
Γ

∫
D

ρ

(
1

ϵω2
pe

|∂t J|
2
+ ϵ|∇ × ∂t E|

2

)
.

Using (2) and the Cauchy–Schwarz inequality, we can obtain

Err3 =

∫
Γ

∫
D

∇µ

µ
× (∇ × ∂t E + ∂t K) · 2ρ∇ × ∂t H

≤ (max
D×Γ

|
∇µ

µ
√

ϵµ
|)
∫
Γ

∫
D

ρ
(
ϵ|∇ × ∂t E|

2
+ µ|∇ × ∂t H|

2)
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+ (max
D×Γ

|
ωpm∇µ

µ
|)
∫
Γ

∫
D

ρ

(
1

µω2
pm

|∂t K|
2
+ µ|∇ × ∂t H|

2

)
.

Similarly, by the Cauchy–Schwarz inequality, we have

Err4 ≤ (max
D×Γ

|∇Γe|)
∫
Γ

∫
D

ρ

ϵω2
pe

(
|∂t J|

2
+ |∇ × ∂t J|

2) ,
Err5 ≤ (max

D×Γ
|
∇(ϵω2

pe)

ϵωpe
|)

(∫
Γ

∫
D

ρϵ|∂t E|
2
+

∫
Γ

∫
D

ρ

ϵω2
pe

|∇ × ∂t J|
2

)
,

Err6 ≤ (max
D×Γ

|∇Γm |)
∫
Γ

∫
D

ρ

µω2
pm

(
|∂t K|

2
+ |∇ × ∂t K|

2) ,
Err7 ≤ (max

D×Γ
|
∇(µω2

pm)

µωpm
|)

(∫
Γ

∫
D

ρµ|∂t H|
2
+

∫
Γ

∫
D

ρ

µω2
pm

|∇ × ∂t K|
2

)
.

Substituting the above estimates into (53) and using the notations E N G4(t) and E N G5(t) and Lemma 2.2, we
have

d
dt

E N G4(t) ≤ C4 · E N G4(t) + C5 · E N G5(t)

≤ C4 · E N G4(t) + C5Cmax1[E N G0(0) +

∫
Γ

∫
D

ρ(ϵ|∇ × E0|
2
+ µ|∇ × H0|

2)]. (54)

Applying the Gronwall inequality (cf. Lemma 2.3) to (54), we have

E N G4(t) ≤ eC4

[
E N G4(0) +

C5Cmax1

C4
(E N G0(0) +

∫
Γ

∫
D

ρ(ϵ|∇ × E0|
2
+ µ|∇ × H0|

2))
]

≤ eC4 (1 +
C5Cmax1

C4
)[(E N G4(0) + E N G0(0) +

∫
Γ

∫
D

ρ(ϵ|∇ × E0|
2
+ µ|∇ × H0|

2))],

which concludes the proof. □

Remark 2.4. If the physical parameters ϵ, µ,Γe,Γm, ωpe, ωpm are independent of the spatial variable x, then the
constants C4 = C5 = 0. In this case, Lemma 2.5 simply reduces to∫

Γ

∫
D

ρ(y)

(
ϵ|∇ × ∂t E|

2
+ µ|∇ × ∂t H|

2
+

1
ϵω2

pe
|∇ × ∂t J|

2
+

1
µω2

pm
|∇ × ∂t K|

2

)
(t)dxdy

≤

∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × ∂t E|

2
+ µ|∇ × ∂t H|

2
+

1
ϵω2

pe
|∇ × ∂t J|

2
+

1
µω2

pm
|∇ × ∂t K|

2

)
(0)dxdy.

Theorem 2.2. Denote constants C6,1, C6,2, C6,3, C6,4 and C6 as

C6,1 = max
D×Γ

(
|

∇ϵ

ϵ
√

ϵµ
| + |

ωpe∇ϵ

ϵ
| + |

(∂yi ϵ)∇ϵ

ϵ2 | + |
∇(∂yi ϵ)

ϵ
| + |

∂yi ϵ

ϵ
| + |

∇µ

µ
√

ϵµ
|

)
,

C6,2 = max
D×Γ

(
|

∇µ

µ
√

ϵµ
| + |

ωpm∇µ

µ
| + |

(∂yi µ)∇µ

µ2 | + |
∇(∂yi µ)

µ
| + |

∂yi µ

µ
| + |

∇ϵ

ϵ
√

ϵµ
|

)
,

C6,3 = max
D×Γ

(
|∇Γe| + |

∇(ϵω2
pe)

ϵωpe
| + |

∇(∂yi (ϵω
2
pe))

ϵωpe
| + |

∂yi (ϵω
2
pe)

ϵωpe
| + |∇(∂yiΓe)| + |∂yiΓe|

)
,

C6,4 = max
D×Γ

(
|∇Γm | + |

∇(µω2
pm)

µωpm
| + |

∇(∂yi (µω2
pm))

µωpm
| + |

∂yi (µω2
pm)

µωpm
| + |∇(∂yiΓm)| + |∂yiΓm |

)
,

C6 = max
(
C6,1, C6,2, C6,3, C6,4

)
, C12 = C6 + C4 + C1 + C∗

1 .
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Then for any t ∈ [0, T ] and i = 1, . . . , d, we have∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × ∂yi E|

2
+ µ|∇ × ∂yi H|

2
+

1
ϵω2

pe
|∇ × ∂yi J|

2
+

1
µω2

pm
|∇ × ∂yi K|

2

)
(t)dxdy

≤ eC12t C13[
∫
Γ

∫
D

ρ

(
ϵ|∇ × ∂yi E|

2
+ µ|∇ × ∂yi H|

2
+

1
ϵω2

pe
|∇ × ∂yi J|

2
+

1
µω2

pm
|∇ × ∂yi K|

2

)
(0)dxdy

+

∫
Γ

∫
D

ρ

(
ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2

)
dxdy

+

∫
Γ

∫
D

ρ

(
ϵ|∇ × E0|

2
+ µ|∇ × H0|

2
+

1
ϵω2

pe
|∇ × J0|

2
+

1
µω2

pm
|∇ × K0|

2

)
dxdy

+

∫
Γ

∫
D

ρ

(
ϵ|∇ × ∂t E|

2
+ µ|∇ × ∂t H|

2
+

1
ϵω2

pe
|∇ × ∂t J|

2
+

1
µω2

pm
|∇ × ∂t K|

2

)
(0)dxdy

+

∫
Γ

∫
D

ρ

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)
(0)dxdy],

where constant C13 > 0 depends on parameters ϵ, µ, ωpe, ωpm,Γe and Γm , but is independent of t .

Proof. Taking ∇× of (32)–(35), we obtain

ϵ∂t (∇ × ∂yi E) − ∇ × (∇ × ∂yi H) + ∇ × ∂yi J
= −∇ϵ × ∂t yi E − ∇(∂yi ϵ) × ∂t E − (∂yi ϵ)∂t (∇ × E), (55)

µ∂t (∇ × ∂yi H) + ∇ × (∇ × ∂yi E) + ∇ × ∂yi K
= −∇µ × ∂t yi H − ∇(∂yi µ) × ∂t H − (∂yi µ)∂t (∇ × H), (56)

∂t (∇ × ∂yi J) + Γe∇ × ∂yi J − ϵω2
pe∇ × ∂yi E = −∇Γe × ∂yi J + ∇(ϵω2

pe) × ∂yi E
+ ∇(∂yi (ϵω

2
pe)) × E + (∂yi (ϵω

2
pe))∇ × E − ∇(∂yiΓe) × J − (∂yiΓe)∇ × J, (57)

∂t (∇ × ∂yi K) + Γm∇ × ∂yi K − µω2
pm∇ × ∂yi H = −∇Γm × ∂yi K + ∇(µω2

pm) × ∂yi H
+ ∇(∂yi (µω2

pm)) × H + (∂yi (µω2
pm))∇ × H − ∇(∂yiΓm) × K − (∂yiΓm)∇ × K. (58)

Denote

E N G6(t) =

∫
Γ

∫
D

ρ(y)

(
ϵ|∇ × ∂yi E|

2
+ µ|∇ × ∂yi H|

2
+

1
ϵω2

pe
|∇ × ∂yi J|

2

+
1

µω2
pm

|∇ × ∂yi K|
2

)
(t)dxdy.

Multiplying (55)–(58) by 2ρ∇ ×∂yi E, 2ρ∇ ×∂yi H,
2ρ

ϵω2
pe

∇ ×∂yi J and 2ρ

µω2
pm

∇ ×∂yi K, respectively, then integrating
over D and Γ , and adding the resultants, we have

d
dt

E N G6(t) +

∫
Γ

∫
D

2ρ(y)

(
Γe(x, y)

ϵ(x, y)ω2
pe(x, y)

|∇ × ∂yi J|
2
+

Γm(x, y)
µ(x, y)ω2

pm(x, y)
|∇ × ∂yi K|

2

)
dxdy

=

∫
Γ

∫
D

(∇ × ∇ × ∂yi H · 2ρ∇ × ∂yi E − ∇ × ∇ × ∂yi E · 2ρ∇ × ∂yi H)

−

∫
Γ

∫
D

∇ϵ × ∂t yi E · 2ρ∇ × ∂yi E −

∫
Γ

∫
D

[∇(∂yi ϵ) × ∂t E + ∂yi ϵ · ∂t (∇ × E)] · 2ρ∇ × ∂yi E

−

∫
Γ

∫
D

∇µ × ∂t yi H · 2ρ∇ × ∂yi H −

∫
Γ

∫
D

[∇(∂yi µ) × ∂t H + ∂yi µ · ∂t (∇ × H)] · 2ρ∇ × ∂yi H
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+

∫
Γ

∫
D

[−∇Γe × ∂yi J + ∇(ϵω2
pe) × ∂yi E + ∇(∂yi (ϵω

2
pe)) × E + ∂yi (ϵω

2
pe) · ∇ × E

− ∇(∂yiΓe) × J − (∂yiΓe)∇ × J] ·
2ρ

ϵω2
pe

∇ × ∂yi J

+

∫
Γ

∫
D

[−∇Γm × ∂yi K + ∇(µω2
pm) × ∂yi H + ∇(∂yi (µω2

pm)) × H + ∂yi (µω2
pm) · ∇ × H

− ∇(∂yiΓe) × K − (∂yiΓm)∇ × K] ·
2ρ

µω2
pm

∇ × ∂yi K :=

7∑
i=1

Erri . (59)

Below we will estimate each Erri of (59). First, using integration by parts, (32), and boundary conditions n×E = 0
and n × J = 0, we obtain∫

Γ

∫
D

∇ × ∇ × ∂yi H · 2ρ∇ × ∂yi E

=

∫
Γ

∫
∂ D

n × (∇ × ∂yi H) · 2ρ∇ × ∂yi E +

∫
Γ

∫
D

∇ × ∂yi H · 2ρ∇ × ∇ × ∂yi E

=

∫
Γ

∫
∂ D

n × (ϵ∂t yi E + ∂yi J + ∂yi ϵ∂t E) · 2ρ∇ × ∂yi E +

∫
Γ

∫
D

∇ × ∂yi H · 2ρ∇ × ∇ × ∂yi E

=

∫
Γ

∫
D

∇ × ∂yi H · 2ρ∇ × ∇ × ∂yi E,

which leads to Err1 = 0.

Using (32) and the Cauchy–Schwarz inequality, we have

Err2 = −

∫
Γ

∫
D

∇ϵ

ϵ
× (∇ × ∂yi H − ∂yi J − ∂yi ϵ∂t E) · 2ρ∇ × ∂yi E

≤ (max
D×Γ

|
∇ϵ

ϵ
√

ϵµ
|)
∫
Γ

∫
D

ρ
(
ϵ|∇ × ∂yi E|

2
+ µ|∇ × ∂yi H|

2)
+ (max

D×Γ
|
ωpe∇ϵ

ϵ
|)
∫
Γ

∫
D

ρ

(
1

ϵω2
pe

|∂yi J|
2
+ ϵ|∇ × ∂yi E|

2

)
+ (max

D×Γ
|
(∂yi ϵ)∇ϵ

ϵ2 |)
∫
Γ

∫
D

ρ
(
ϵ|∂t E|

2
+ ϵ|∇ × ∂yi E|

2) .
By the Cauchy–Schwarz inequality, we can obtain

Err3 = −

∫
Γ

∫
D

2
∇(∂yi ϵ)

ϵ
×

√
ρϵ∂t E ·

√
ρϵ∇ × ∂yi E −

∫
Γ

∫
D

2
∂yi ϵ

ϵ

√
ρϵ∂t (∇ × E) ·

√
ρϵ∇ × ∂yi E

≤ (max
D×Γ

|
∇(∂yi ϵ)

ϵ
|)
∫
Γ

∫
D

ρ
(
ϵ|∂t E|

2
+ ϵ|∇ × ∂yi E|

2)
+ (max

D×Γ
|
∂yi ϵ

ϵ
|)
∫
Γ

∫
D

ρ
(
ϵ|∂t (∇ × E)|2 + ϵ|∇ × ∂yi E|

2) .
Similarly, by (33) and the Cauchy–Schwarz inequality, we have

Err4 =

∫
Γ

∫
D

∇µ

µ
× (∇ × ∂yi E + ∂yi K + ∂yi µ∂t H) · 2ρ∇ × ∂yi H

≤ (max
D×Γ

|
∇µ

µ
√

ϵµ
|)
∫
Γ

∫
D

ρ
(
ϵ|∇ × ∂yi E|

2
+ µ|∇ × ∂yi H|

2)
+ (max

D×Γ
|
ωpm∇µ

µ
|)
∫
Γ

∫
D

ρ

(
1

µω2
pm

|∂yi K|
2
+ µ|∇ × ∂yi H|

2

)
+ (max

D×Γ
|
(∂yi µ)∇µ

µ2 |)
∫
Γ

∫
D

ρ
(
µ|∂t H|

2
+ µ|∇ × ∂yi H|

2) .
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By similar arguments, we have

Err5 ≤ (max
D×Γ

|
∇(∂yi µ)

µ
|)
∫
Γ

∫
D

ρ
(
µ|∂t H|

2
+ µ|∇ × ∂yi H|

2)
+ (max

D×Γ
|
∂yi µ

µ
|)
∫
Γ

∫
D

ρ
(
µ|∂t (∇ × H)|2 + µ|∇ × ∂yi H|

2) ,
Err6 ≤ (max

D×Γ
|∇Γe|)

∫
Γ

∫
D

ρ

(
1

ϵω2
pe

|∂yi J|
2
+

1
ϵω2

pe
|∇ × ∂yi J|

2

)

+ (max
D×Γ

|
∇(ϵω2

pe)

ϵωpe
|)
∫
Γ

∫
D

ρ

(
ϵ|∂yi E|

2
+

1
ϵω2

pe
|∇ × ∂yi J|

2

)

+ (max
D×Γ

|
∇(∂yi (ϵω

2
pe))

ϵωpe
|)
∫
Γ

∫
D

ρ

(
ϵ|E|

2
+

1
ϵω2

pe
|∇ × ∂yi J|

2

)

+ (max
D×Γ

|
∂yi (ϵω

2
pe)

ϵωpe
|)
∫
Γ

∫
D

ρ

(
ϵ|∇ × E|

2
+

1
ϵω2

pe
|∇ × ∂yi J|

2

)

+ (max
D×Γ

|∇(∂yiΓe)|)
∫
Γ

∫
D

ρ

(
1

ϵω2
pe

|J|
2
+

1
ϵω2

pe
|∇ × ∂yi J|

2

)

+ (max
D×Γ

|∂yiΓe|)
∫
Γ

∫
D

ρ

(
1

ϵω2
pe

|∇ × J|
2
+

1
ϵω2

pe
|∇ × ∂yi J|

2

)
,

and

Err7 ≤ (max
D×Γ

|∇Γm |)
∫
Γ

∫
D

ρ

(
1

µω2
pm

|∂yi K|
2
+

1
µω2

pm
|∇ × ∂yi K|

2

)

+ (max
D×Γ

|
∇(µω2

pm)

µωpm
|)
∫
Γ

∫
D

ρ

(
µ|∂yi H|

2
+

1
µω2

pm
|∇ × ∂yi K|

2

)

+ (max
D×Γ

|
∇(∂yi (µω2

pm))

µωpm
|)
∫
Γ

∫
D

ρ

(
µ|H|

2
+

1
µω2

pm
|∇ × ∂yi K|

2

)

+ (max
D×Γ

|
∂yi (µω2

pm)

µωpm
|)
∫
Γ

∫
D

ρ

(
µ|∇ × H|

2
+

1
µω2

pm
|∇ × ∂yi K|

2

)

+ (max
D×Γ

|∇(∂yiΓm)|)
∫
Γ

∫
D

ρ

(
1

µω2
pm

|K|
2
+

1
µω2

pm
|∇ × ∂yi K|

2

)

+ (max
D×Γ

|∂yiΓm |)
∫
Γ

∫
D

ρ

(
1

µω2
pm

|∇ × K|
2
+

1
µω2

pm
|∇ × ∂yi K|

2

)
.

Let us introduce the notations:

C7 = max
D×Γ

(
|
(∂yi ϵ)∇ϵ

ϵ2 | + |
∇(∂yi ϵ)

ϵ
|, |

(∂yi µ)∇µ

µ2 | + |
∇(∂yi µ)

µ
|

)
, C8 = max

D×Γ

(
|
∂yi ϵ

ϵ
|, |

∂yi µ

µ
|

)
,

C9 = max
D×Γ

(
|
ωpe∇ϵ

ϵ
| + |∇Γe|, |

ωpm∇µ

µ
| + |∇Γm |, |

∇(ϵω2
pe)

ϵωpe
|, |

∇(µω2
pm)

µωpm
|

)
,

C10 = max
D×Γ

(
|
∂yi (ϵω

2
pe)

ϵωpe
|, |

∂yi (µω2
pm)

µωpm
|, |∂yiΓe|, |∂yiΓm |

)
,

C11 = max
D×Γ

(
|
∇(∂yi (ϵω

2
pe))

ϵωpe
|, |

∇(∂yi (µω2
pm))

µωpm
|, |∇(∂yiΓe)|, |∇(∂yiΓm)|

)
.
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Substituting the above estimates into (59) and using the notation E N G6(t), we have

d
dt

E N G6(t) ≤ C6 · E N G6(t) + C7

∫
Γ

∫
D

ρ
(
ϵ|∂t E|

2
+ µ|∂t H|

2)
+ C8

∫
Γ

∫
D

ρ
(
ϵ|∂t (∇ × E)|2 + µ|∂t (∇ × H)|2

)
+ C9

∫
Γ

∫
D

ρ

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)

+ C10

∫
Γ

∫
D

ρ

(
ϵ|∇ × E|

2
+ µ|∇ × H|

2
+

1
ϵω2

pe
|∇ × J|

2
+

1
µω2

pm
|∇ × K|

2

)

+ C11

∫
Γ

∫
D

ρ

(
ϵ|E|

2
+ µ|H|

2
+

1
ϵω2

pe
|J|

2
+

1
µω2

pm
|K|

2

)
. (60)

Applying Lemmas 2.2, 2.5, Theorem 2.1, Lemmas 2.4 and 2.1 to the C7, C8, C9, C10 and C11 terms, respectively,
we obtain

d
dt

E N G6(t) ≤ C6 · E N G6(t) + C7Cmax1

∫
Γ

∫
D

ρ(ϵ|∇ × E0|
2
+ µ|∇ × H0|

2
+ ϵ|E0|

2
+ µ|H0|

2

+
1

ϵω2
pe

|J0|
2
+

1
µω2

pm
|K0|

2)dxdy + C8eC4t (1 +
C5Cmax1

C4
)[
∫
Γ

∫
D

ρ(ϵ|∇ × ∂t E|
2
+ µ|∇ × ∂t H|

2

+
1

ϵω2
pe

|∇ × ∂t J|
2
+

1
µω2

pm
|∇ × ∂t K|

2)(0)dxdy

+

∫
Γ

∫
D

ρ

(
ϵ|∇ × E0|

2
+ µ|∇ × H0|

2
+ ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2

)
]

+ C9eC2t [
∫
Γ

∫
D

ρ

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)
(0)dxdy

+ (1 + Cmax1)
∫
Γ

∫
D

ρ

(
ϵ|∇ × E0|

2
+ µ|∇ × H0|

2
+ ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2

)
]

+ C10eC∗
1 t [(2 + Cmax1)

∫
Γ

∫
D

ρ

(
ϵ|∇ × E0|

2
+ µ|∇ × H0|

2
+

1
ϵω2

pe
|∇ × J0|

2
+

1
µω2

pm
|∇ × K0|

2

)

+ (1 + Cmax1)
∫
Γ

∫
D

ρ

(
ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2

)
]

+ C11

∫
Γ

∫
D

ρ

(
ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2

)
. (61)

Using Lemma 2.3 to (61) and absorbing those constants in (61), we conclude the proof. □

With Lemmas 2.4–2.5 and Theorem 2.2, we can prove the boundness of the second derivative with respect to the
random variables.

Theorem 2.3. Denote the following constants:

C14,1 = max
D×Γ

(
|

∂y2
i
ϵ

ϵ
| + |

2(∂yi ϵ)2

ϵ2 | + |
2∂yi ϵ

ϵ
√

ϵµ
| + |

2ωpe∂yi ϵ

ϵ
|

)
,

C14,2 = max
D×Γ

(
|

∂y2
i
µ

µ
| + |

2(∂yi µ)2

µ2 | + |
2∂yi µ

µ
√

ϵµ
| + |

2ωpm∂yi µ

µ
|

)
,
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C14,3 = max
D×Γ

(
|

ϵ∂y2
i
Γe

Γe
| + |

2ϵ∂yiΓe

Γe
| + |

∂y2
i
(ϵω2

pe)

ϵωpe
| + |

2∂yi (ϵω
2
pe)

ϵωpe
|

)
,

C14,4 = max
D×Γ

(
|∂y2

i
Γe| + |2∂yiΓm | + |

∂y2
i
(µω2

pm)

µωpm
| + |

2∂yi (µω2
pm)

µωpm
|

)
,

C14 = max
(
C14,1, C14,2, C14,3, C14,4

)
, C15 = C14 + C12 + C2.

Then for any t ∈ [0, T ] and i = 1, . . . , d, we have∫
Γ

∫
D

ρ(y)

(
ϵ|∂y2

i
E|

2
+ µ|∂y2

i
H|

2
+

1
ϵω2

pe
|∂y2

i
J|

2
+

1
µω2

pm
|∂y2

i
K|

2

)
(t)dxdy

≤ eC15t C20[
∫
Γ

∫
D

ρ

(
ϵ|∇ × ∂yi E|

2
+ µ|∇ × ∂yi H|

2
+

1
ϵω2

pe
|∇ × ∂yi J|

2
+

1
µω2

pm
|∇ × ∂yi K|

2

)
(0)dxdy

+

∫
Γ

∫
D

ρ

(
ϵ|E0|

2
+ µ|H0|

2
+

1
ϵω2

pe
|J0|

2
+

1
µω2

pm
|K0|

2

)
dxdy

+

∫
Γ

∫
D

ρ

(
ϵ|∇ × E0|

2
+ µ|∇ × H0|

2
+

1
ϵω2

pe
|∇ × J0|

2
+

1
µω2

pm
|∇ × K0|

2

)
dxdy

+

∫
Γ

∫
D

ρ

(
ϵ|∇ × ∂t E|

2
+ µ|∇ × ∂t H|

2
+

1
ϵω2

pe
|∇ × ∂t J|

2
+

1
µω2

pm
|∇ × ∂t K|

2

)
(0)dxdy

+

∫
Γ

∫
D

ρ

(
ϵ|∂yi E|

2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2

)
(0)dxdy

+

∫
Γ

∫
D

ρ

(
ϵ|∂y2

i
E|

2
+ µ|∂y2

i
H|

2
+

1
ϵω2

pe
|∂y2

i
J|

2
+

1
µω2

pm
|∂y2

i
K|

2

)
(0)dxdy],

where constant C20 > 0 depends on parameters ϵ, µ, ωpe, ωpm,Γe and Γm , but is independent of t .

Proof. Differentiating (32)–(35) with respect to any yi (i = 1, . . . , d), we obtain

ϵ∂t (∂y2
i
E) − ∇ × (∂y2

i
H) + ∂y2

i
J = −(∂y2

i
ϵ)∂t E − 2(∂yi ϵ)∂t yi E, (62)

µ∂t (∂y2
i
H) + ∇ × (∂y2

i
E) + ∂y2

i
K = −(∂y2

i
µ)∂t H − 2(∂yi µ)∂t yi H, (63)

∂t (∂y2
i
J) + Γe∂y2

i
J − ϵω2

pe∂y2
i
E

= −(∂y2
i
Γe)J − 2(∂yiΓe)∂yi J + (∂y2

i
(ϵω2

pe))E + 2∂yi (ϵω
2
pe)∂yi E, (64)

∂t (∂y2
i
K) + Γm∂y2

i
K − µω2

pm∂y2
i
H

= −(∂y2
i
Γm)K − 2(∂yiΓm)∂yi K + (∂y2

i
(µω2

pm))H + 2∂yi (µω2
pm)∂yi H. (65)

Denote

E N G7(t) =

∫
Γ

∫
D

ρ(y)

(
ϵ|∂y2

i
E|

2
+ µ|∂y2

i
H|

2
+

1
ϵω2

pe
|∂y2

i
J|

2
+

1
µω2

pm
|∂y2

i
K|

2

)
(t)dxdy.

Multiplying (62)–(65) by 2ρ(y)∂y2
i
E, 2ρ(y)∂y2

i
H,

2ρ(y)
ϵω2

pe
∂y2

i
J and 2ρ(y)

µω2
pm

∂y2
i
K, respectively, then integrating over D and

Γ , and adding the resultants, we have

d
dt

E N G7(t) +

∫
Γ

∫
D

2ρ(y)

(
Γe(x, y)

ϵ(x, y)ω2
pe(x, y)

|∂y2
i
J|

2
+

Γm(x, y)
µ(x, y)ω2

pm(x, y)
|∂y2

i
K|

2

)
dxdy

= −

∫
Γ

∫
D

(∂y2
i
ϵ)∂t E · 2ρ∂y2

i
E −

∫
Γ

∫
D

(2∂yi ϵ)∂t yi E · 2ρ∂y2
i
E
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−

∫
Γ

∫
D

(∂y2
i
µ)∂t H · 2ρ∂y2

i
H −

∫
Γ

∫
D

(2∂yi µ)∂t yi H · 2ρ∂y2
i
H

−

∫
Γ

∫
D

∂y2
i
Γe

ϵω2
pe

J · 2ρ∂y2
i
J −

∫
Γ

∫
D

2∂yiΓe

ϵω2
pe

∂yi J · 2ρ∂y2
i
J

+

∫
Γ

∫
D

∂y2
i
(ϵω2

pe)

ϵω2
pe

E · 2ρ∂y2
i
J +

∫
Γ

∫
D

2∂yi (ϵω
2
pe)

ϵω2
pe

∂yi E · 2ρ∂y2
i
J

−

∫
Γ

∫
D

∂y2
i
Γm

µω2
pm

K · 2ρ∂y2
i
K −

∫
Γ

∫
D

2∂yiΓm

µω2
pm

∂yi K · 2ρ∂y2
i
K

+

∫
Γ

∫
D

∂y2
i
(µω2

pm)

µω2
pm

H · 2ρ∂y2
i
K +

∫
Γ

∫
D

2∂yi (µω2
pm)

µω2
pm

∂yi H · 2ρ∂y2
i
K. (66)

By the Cauchy–Schwarz inequality, we have

Err1 ≤ (max
D×Γ

|

∂y2
i
ϵ

ϵ
|)
∫
Γ

∫
D

ρ(ϵ|∂t E|
2
+ ϵ|∂y2

i
E|

2).

Similarly, by (32) and the Cauchy–Schwarz inequality, we have

Err2 = −

∫
Γ

∫
D

2
∂yi ϵ

ϵ
(∇ × ∂yi H − ∂yi J − ∂yi ϵ∂t E) · 2ρ∂y2

i
E

≤ (max
D×Γ

|
2∂yi ϵ

ϵ
√

ϵµ
|)
∫
Γ

∫
D

ρ(µ|∇ × ∂yi H|
2
+ ϵ|∂y2

i
E|

2)

+ (max
D×Γ

|
2ωpe∂yi ϵ

ϵ
|)
∫
Γ

∫
D

ρ(
1

ϵω2
pe

|∂yi J|
2
+ ϵ|∂y2

i
E|

2)

+ (max
D×Γ

|
2(∂yi ϵ)2

ϵ2 |)
∫
Γ

∫
D

ρ(ϵ|∂t E|
2
+ ϵ|∂y2

i
E|

2).

Similarly, by (33) and the Cauchy–Schwarz inequality, we have

Err4 =

∫
Γ

∫
D

2
∂yi µ

µ
(∇ × ∂yi E + ∂yi K + ∂yi µ∂t H) · 2ρ∂y2

i
H

≤ (max
D×Γ

|
2∂yi µ

µ
√

ϵµ
|)
∫
Γ

∫
D

ρ(ϵ|∇ × ∂yi E|
2
+ µ|∂y2

i
H|

2)

+ (max
D×Γ

|
2ωpm∂yi µ

µ
|)
∫
Γ

∫
D

ρ(
1

µω2
pm

|∂yi K|
2
+ µ|∂y2

i
H|

2)

+ (max
D×Γ

|
2(∂yi µ)2

µ2 |)
∫
Γ

∫
D

ρ(µ|∂t H|
2
+ µ|∂y2

i
H|

2).

Similarly, by the Cauchy–Schwarz inequality, we have

Err3 ≤ (max
D×Γ

|

∂y2
i
µ

µ
|)
∫
Γ

∫
D

ρ(µ|∂t H|
2
+ µ|∂y2

i
H|

2),

Err5 ≤ (max
D×Γ

|

ϵ∂y2
i
Γe

Γe
|)
∫
Γ

∫
D

ρ

ϵω2
pe

(|J|
2
+ |∂y2

i
J|

2),

Err6 ≤ (max
D×Γ

|
2ϵ∂yiΓe

Γe
|)
∫
Γ

∫
D

ρ

ϵω2
pe

(|∂yi J|
2
+ |∂y2

i
J|

2),

Err7 ≤ (max
D×Γ

|

∂y2
i
(ϵω2

pe)

ϵωpe
|)
∫
Γ

∫
D

ρ(ϵ|E|
2
+

1
ϵω2

pe
|∂y2

i
J|

2),

Err8 ≤ (max
D×Γ

|
2∂yi (ϵω

2
pe)

ϵωpe
|)
∫
Γ

∫
D

ρ(ϵ|∂yi E|
2
+

1
ϵω2

pe
|∂y2

i
J|

2),
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Err9 ≤ (max
D×Γ

|∂y2
i
Γm |)

∫
Γ

∫
D

ρ

µω2
pm

(|K|
2
+ |∂y2

i
K|

2),

Err10 ≤ (max
D×Γ

|2∂yiΓm |)
∫
Γ

∫
D

ρ

µω2
pm

(|∂yi K|
2
+ |∂y2

i
K|

2),

Err11 ≤ (max
D×Γ

|

∂y2
i
(µω2

pm)

µωpm
|)
∫
Γ

∫
D

ρ(µ|H|
2
+

1
µω2

pm
|∂y2

i
K|

2),

Err12 ≤ (max
D×Γ

|
2∂yi (µω2

pm)

µωpm
|)
∫
Γ

∫
D

ρ(µ|∂yi H|
2
+

1
µω2

pm
|∂y2

i
K|

2).

Denote the following constants:

C16 = max
D×Γ

(
|

∂y2
i
ϵ

ϵ
| + |

2(∂yi ϵ)2

ϵ2 |, |
∂y2

i
µ

µ
| + |

2(∂yi µ)2

µ2 |

)
,

C17 = max
D×Γ

(
|

∂y2
i
(ϵω2

pe)

ϵωpe
|, |

∂y2
i
(µω2

pm)

µωpm
|, |

ϵ∂y2
i
Γe

Γe
|, |∂y2

i
Γm |

)
,

C18 = max
D×Γ

(
|
2∂yi (ϵω

2
pe)

ϵωpe
|, |

2∂yi (µω2
pm)

µωpm
|, |

2ϵ∂yiΓe

Γe
| + |

2ωpe∂yi ϵ

ϵ
|, |2∂yiΓm |

)
,

C19 = max
D×Γ

(
|

2∂yi ϵ

ϵ
√

ϵµ
|, |

2∂yi µ

µ
√

ϵµ
|

)
.

Substituting the above estimates into (66), we obtain
d
dt

E N G7(t) ≤ C14 · E N G7(t) + C16

∫
Γ

∫
D

ρ(ϵ|∂t E|
2
+ µ|∂t H|

2)

+ C17

∫
Γ

∫
D

ρ(ϵ|E|
2
+ µ|H|

2
+

1
ϵω2

pe
|J|

2
+

1
µω2

pm
|K|

2)

+ C18

∫
Γ

∫
D

ρ(ϵ|∂yi E|
2
+ µ|∂yi H|

2
+

1
ϵω2

pe
|∂yi J|

2
+

1
µω2

pm
|∂yi K|

2)

+ C19

∫
Γ

∫
D

ρ(ϵ|∇ × ∂yi E|
2
+ µ|∇ × ∂yi H|

2). (67)

Applying Lemmas 2.2, 2.1, Theorems 2.1, and 2.2 to the C16, C17, C18 and C19 terms, respectively, then using the
Gronwall inequality (cf. Lemma 2.3) to the resultant, we conclude the proof. □

Remark 2.5. By similar techniques, we believe that if the random parameters are smooth enough, then higher
derivatives with respect to the random vector y can be proved to be bounded similarly as stated in Theorems 2.1–2.3.
Since the proofs will become quite technical and are similar, we skip the proofs for higher derivatives.

2.2. Convergence analysis

To prove the convergence estimate for the stochastic collocation method, let us first recall the following
interpolation error estimates.

Lemma 2.6 ([34, p. 289–290]). Let I y
N u denote the polynomial of degree N that interpolates u at the (N + 1) Gauss,

or Gauss–Radau, or Gauss–Lobatto points {y j }
N
j=0, i.e., I y

N u(y) =
∑N

j=0u(y j )L j (y). Then we have the interpolation
error in the L2-norm:

∥u − I y
N u∥L2(−1,1) ≤ C N−m

|u|Hm (−1,1), ∀ u ∈ H m(−1, 1) with m ≥ 1, (68)

and the interpolation error in the H l-norm:

∥u − I y
N u∥H l (−1,1) ≤ C N 2l− 1

2 −m
|u|Hm (−1,1), ∀ u ∈ H m(−1, 1) with m ≥ l ≥ 1. (69)
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For the Gauss–Lobatto interpolation, we have the following optimal error estimate:

∥(u − I y
N u)′∥L2(−1,1) ≤ C N 1−m

|u|Hm (−1,1), ∀ u ∈ H m(−1, 1) with m ≥ 1. (70)

Below are the extension of the above interpolation results to tensor product interpolation.

Lemma 2.7. Let IN u = I y1
N I y2

N · · · I yd
N u denote the d-dimension tensor product polynomial of the 1-D interpolation

polynomial of degree N that interpolates u at the (N + 1) Gauss, or Gauss–Radau, or Gauss–Lobatto points {y j }
N
j=0.

Then we have the interpolation error in the L2-norm [34, (5.8.20)]:

∥u − IN u∥L2(Γ ) ≤ C N−m
|u|Hm (Γ ), ∀ u ∈ H m(Γ ) with m > d/2. (71)

For the Gauss–Lobatto interpolation, we have the following optimal error estimate [34, (5.8.21)]:

∥u − IN u∥H1(Γ ) ≤ C N 1−m
|u|Hm (Γ ), ∀ u ∈ H m(Γ ) with m > (d + 1)/2. (72)

To present the error estimate, recall that the mean (or expectation) of a function u is defined by

E[u] =

∫
Γ

∫
D

ρ(y)u(x, t, y)dxdy, (73)

and its mean square is defined by

M[u] =

(∫
Γ

∫
D

ρ(y)|u(x, t, y)|2dxdy
)1/2

. (74)

Theorem 2.4. Let (E, H) be the solution of (1)–(7), and (EN , HN ) be the stochastic collocation solution of (15). If
the assumptions of Theorems 2.1 and 2.2 are satisfied, then the following mean and mean square errors hold: For any
0 < t ≤ T ,

M[E − EN ] + M[H − HN ] + M[∇ × (E − EN )] + M[∇ × (H − HN )] ≤ CT N−1, (75)

E[|E − EN
|] + E[|H − HN

|] + E[∇ × (E − EN )] + E[∇ × (H − HN )] ≤ CT N−1. (76)

Here and below CT is a constant depending on T but independent of N . Furthermore, if the assumptions of
Theorem 2.4 are satisfied, then we have the following higher error estimates: For any 0 < t ≤ T ,

M[E − EN ] + M[H − HN ] + E[|E − EN
|] + E[|H − HN

|] ≤ CT N−2. (77)

Finally, if the assumptions of Theorem 2.4 are satisfied, for the Gauss–Lobatto interpolation, we have the error
estimate for the derivative of the solution with respect to the random variables: For any 0 < t ≤ T , and j = 1, . . . , d,

M[∂y j (E − EN )] + M[∂y j (H − HN )] + E[|∂y j (E − EN )|] + E[|∂y j (H − HN )|] ≤ C N−1. (78)

Proof. For any fixed x, using (68) of Lemma 2.5 for u = E and u = H with m = 1, respectively, we have∫
Γ

(
ρ(y)ϵ(x, y)|E(x, t; y) − EN (x, t; y)|

2
+ ρ(y)µ(x, y)|H(x, t; y) − HN (x, t; y)|

2
)

dy

≤ C N−2
∫
Γ

(
ρ(y)ϵ(x, y)|∂yE|

2
+ ρ(y)µ(x, y)|∂yH|

2) dy. (79)

Similarly, using (68) of Lemma 2.5 for u = ∇ × E and u = ∇ × H with m = 1, respectively, we have∫
Γ

(
ρ(y)ϵ(x, y)|∇ × (E(x, t; y) − EN (x, t; y))|

2
+ ρ(y)µ(x, y)|∇ × (H(x, t; y) − HN (x, t; y))|

2
)

dy

≤ C N−2
∫
Γ

(
ρ(y)ϵ(x, y)|∂y(∇ × E)|2 + ρ(y)µ(x, y)|∂y(∇ × H)|2

)
dy. (80)

Adding (79) and (80) together, then integrating the resultant with respect to x over D and using Theorems 2.1
and 2.3, we complete the proof of (75).

The estimates (77) can be proved similarly by using (68) of Lemma 2.5 with m = 2 and the higher regularity
obtained in Theorem 2.3.
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Similarly, using (70) of Lemma 2.5 with m = 2, and the higher regularity proved in Theorem 2.3, we obtain the
proof of (78).

Finally, the mean errors follow from the standard inequality ∥u∥L1 ≤ C∥u∥L2 and the estimates (75), (77)
and (78). □

With the above interpolation estimate, we can show that the overall errors for solving the metamaterial Maxwell’s
equations by the classical Yee scheme (cf. [35]) are estimated as follows. Denote the electric field solution of Yee
scheme for any fixed random vector y as EN , and EN

h,∆t for the electric field solution of the fully-discrete solution with
stochastic collocation method imposed. Denote the discrete L2-norm over the physical space D as |·|l2(D) (cf. [35]).
Then we can obtain the discrete mean square error as following:

(
∫
Γ

ρϵ|E − EN
h,∆t |

2
l2(D)dy)1/2

≤ (
∫
Γ

2ρϵ(|E − EN
|
2
l2(D) + |EN

− EN
h,∆t |

2
l2(D))dy)1/2

≤ C[N−m
+ (h2

+ (∆t)2)], (81)

where we used the error estimate of Yee scheme and Theorem 2.4. The error estimate for other variables can be
bounded similarly.

3. Numerical results

To justify our theoretical analysis, here we present some numerical results carried out for the metamaterial model
in T Mz mode, whose governing equations are:

µ0
∂ Hx1

∂t
= −

∂ E
∂x2

− Kx1 + g1, (82)

µ0
∂ Hx2

∂t
=

∂ E
∂x2

− Kx2 + g2, (83)

ϵ0
∂ E
∂t

=
∂ Hx2

∂x1
−

∂ Hx1

∂x2
− J + g3, (84)

∂ J
∂t

= ϵ0ω
2
e E − Γe J + g4, (85)

∂Kx1

∂t
= µ0ω

2
m Hx1 − Γm Kx1 + g5, (86)

∂Kx2

∂t
= µ0ω

2
m Hx2 − Γm Kx2 + g6, (87)

where gi (1 ≤ i ≤ 6) are added source terms used to construct exact solutions for checking convergence rates. The
parameters µ0, ϵ0, Γm , Γe, ωm and ωe are functions of spatial variable x and random vector ξ .

Example 1. In this test, we choose the following parameters:

ϵ0(x, ξ ) = 1 + 0.01(sin(π (ξ1x1 + ξ2x2 − 1)) + cos(π (ξ3x1 + ξ4x2 − 1)) + exp(−ξ5x1 − ξ6x2)),

µ0(x, ξ ) = 1 + 0.01(sin(π (ξ1x1 + ξ2x2 − 1)) + exp(−ξ3x1 − ξ4x2) + cos(π (ξ5x1 + ξ6x2 − 1))),

Γe(x, ξ ) = π + 0.01(cos(π (ξ1x1 + ξ2x2 − 1)) + sin(π (ξ3x1 + ξ4x2 − 1)) + exp(−ξ5x1 − ξ6x2)),

Γm(x, ξ ) = π + 0.01(cos(π (ξ1x1 + ξ2x2 − 1)) + exp(−ξ3x1 − ξ4x2) + sin(π (ξ5x1 + ξ6x2 − 1))),

ωe(x, ξ ) = π + 0.01(exp(−ξ1x1 − ξ2x2) + cos(π (ξ3x1 + ξ4x2 − 1)) + sin(π (ξ5x1 + ξ6x2 − 1))),

ωm(x, ξ ) = π + 0.01(exp(−ξ1x1 − ξ2x2) + sin(π (ξ3x1 + ξ4x2 − 1)) + cos(π (ξ5x1 + ξ6x2 − 1))),

where ξi (1 ≤ i ≤ 6) are uniform independent random variables on [0, 1].

In our tests, we use Yee scheme (cf. [35]) to solve the T Mz model on physical domain [0, 1]2 and time domain
[0, 1] with the exact solution given as

Hx1 = sin(πx1 + µ0) cos(πx2 + µ0) exp(−π t),
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Table 1
Errors of the solutions when the analytic solutions are infinitely smooth in both random and spatial variables.

Mesh 1/5 1/10 Rate 1/20 Rate 1/40 Rate

E[|Hx1 − H h
x1

|] 9.51281E−03 2.25052E−03 2.0796 4.90362E−04 2.1390 1.16331E−04 2.1259
M[|Hx1 − H h

x1
|] 9.51281E−03 2.25090E−03 2.0794 4.90442E−04 2.1389 1.16353E−04 2.1258

E[|Hx2 − H h
x2

|] 9.51281E−03 2.25462E−03 2.0770 4.91154E−04 2.1378 1.16533E−04 2.1252
M[|Hx2 − H h

x2
|] 9.51281E−03 2.25498E−03 2.0768 4.91231E−04 2.1377 1.16554E−04 2.1251

E[|E − Eh
x1

|] 1.14777E−02 2.33418E−03 2.2978 5.27242E−04 2.2221 1.26109E−04 2.1670
M[|E − Eh

x1
|] 1.14777E−02 2.33587E−03 2.2968 5.27710E−04 2.2215 1.26237E−04 2.1666

E[|Kx1 − K h
x1

|] 8.77292E−03 1.71711E−03 2.3531 3.72208E−04 2.2794 8.73870E−05 2.2154
M[|Kx1 − K h

x1
|] 8.77292E−03 1.71767E−03 2.3526 3.72326E−04 2.2792 8.74154E−05 2.2153

E[|Kx2 − K h
x2

|] 8.77292E−03 1.71711E−03 2.3531 3.72208E−04 2.2794 8.73870E−05 2.2154
M[|Kx2 − K h

x2
|] 8.77292E−03 1.71767E−03 2.3526 3.72326E−04 2.2792 8.74154E−05 2.2153

E[|J − J h
x1

|] 1.71215E−02 3.95199E−03 2.1152 9.11318E−04 2.1159 2.18246E−04 2.0998
M[|J − J h

x1
|] 1.71215E−02 3.95296E−03 2.1148 9.11584E−04 2.1156 2.18302E−04 2.0997

Hx2 = − cos(πx1 + µ0) sin(πx2 + µ0) exp(−π t),

E = sin(πx1 + ϵ0) sin(πx2 + ϵ0) exp(−π t),

Kx1 = π2t sin(πx1) cos(πx2) exp(−π t),

Kx2 = −π2t cos(πx1) sin(πx2) exp(−π t),

J = π2t sin(πx1) sin(πx2) exp(−π t).

To test the convergence rate, we vary the partition size in the x1 and x2 directions hx1 = hx2 = h from 1/5 to 1/40,
and time step size from 1/10 to 1/80. We set time partition equals two times of spatial to guarantee the stability. In
the same time, the partition numbers in random space vary from 1 to 8. We present the errors of all six components
(Hx1 , Hx2 , E, Kx1 , Kx2 , J ) in the discrete E[·] and M[·] in Table 1. We can see clearly that all solutions show second
order convergence which agrees with our theoretical result, since in this case the exact solution is infinitely smooth in
both random and spatial variables and the overall error is dominated by the numerical scheme error.

In Fig. 1, we present one sample magnetic field and its mean and variance obtained by solving the same
problem by a 20 × 20 spatial uniform partition on [0, 1]2. We set the initial conditions and boundary values
using the above exact solution and no added source functions. Fig. 1 is obtained with the random vector ξ =

(0.8147, 0.9058, 0.1270, 0.9134, 0.6324, 0.0975), and shows that the mean magnetic field is similar to the sample
field in this case.

Example 2. This example is used to test the convergence rate when the solution has limited regularity in the random
variables. For simplicity, we use the same exact solution as Example 1 except Hx1 being given as:

Hx1 = sin(πx1 + µ0) cos(πx2 + µ0) exp(−π t) + (ξ1 −

√
2

2
)msgn

(
ξ1 −

√
2

2

)
, m = 1, 2.

We choose number
√

2/2 to avoid the case that some interpolation point falls at this cusp point. The corresponding
source terms are obtained by plugging the exact solution into the governing equations. It is easy to check that the exact
solutions are infinitely smooth except that Hx1 (Γ ) ∈ H m+1/2−ϵ(Γ ) when m = 1, 2, respectively.

To investigate the convergence rate, we initialize the partition number for x1, x2, t and ξ as 10, 20, 40 and 2
respectively to make a uniform spatial and temporal partition and use a Gauss–Lobatto points for each random space.
Then we double all partition numbers three times. The numerical results of original solutions are given in Tables 2
and 3 for m = 1 and m = 2, respectively. Table 2 shows that the error of Hx1 is about O(N−1.3) in both mean and
mean square norm defined earlier, and errors of other solutions are still O(N−2) due to their infinite smoothness. This
is consistent with our theoretical analysis. When m = 2, all the solutions have O(N−2) convergence, which shows
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(a) The random magnetic field. (b) The mean magnetic field.

(c) The variance of magnetic field.

Fig. 1. Comparison of a random sample of magnetic field and its mean and variance obtained with ξ = (0.8147, 0.9058, 0.1270, 0.9134,

0.6324, 0.0975).

clearly by the results stated in Table 3. Notice the rate of Hx1 is limited to 2 due to the 2nd convergent rate of the
FDTD scheme. We also plotted the variances of the electric fields at variance times in Fig. 2.

Example 3. In this example, we solve a classic example showing the backward wave propagation in metamaterials
(cf. [36,35]). This example assumes that a metamaterial slab of size [0.024, 0.054] m × [0.002, 0.062] m is located
inside a vacuum of size [0, 0.07] m × [0, 0.064] m. An incident source wave is imposed as E field and excited at line
x = 0.004 m ranging from y = 0.025 m to y = 0.035 m. The source wave varies in space as exp(−(x−0.03)2/(50h)2)
where h is the partition size in space, and in time as:

f (t) =

⎧⎪⎪⎨⎪⎪⎩
0 t < 0 or t > (2m + k)Tp

g1(t) sin(ω0t) 0 ≤ t < mTp

sin(ω0t) mTp ≤ t < (m + k)Tp

g2(t) sin(ω0t) (m + k)Tp ≤ t < (2m + k)Tp

where

g1(t) = 10x3
1 − 15x4

1 + 6x5
1 , x1 = t/mTp
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Table 2
Errors of the solutions when Hx1 ∈ H3/2−ϵ (Γ ).

N 2 4 Rate 8 Rate 16 Rate

E[|Hx1 − H h
x1

|] 2.544284E−01 5.899390E−02 1.8103 1.560676E−02 1.6431 6.047332E−03 1.3678
M[|Hx1 − H h

x1
|] 2.972258E−01 7.969676E−02 1.6161 2.654922E−02 1.4797 1.024674E−02 1.3735

E[|Hx2 − H h
x2

|] 9.506088E−06 1.570312E−05 0.9623 5.537782E−06 1.7153 1.456298E−06 1.9270
M[|Hx2 − H h

x2
|] 1.576924E−05 1.125031E−05 1.1302 5.549302E−06 1.4701 1.465709E−06 1.9207

E[|Kx1 − K h
x1

|] 6.473112E−04 1.479130E−04 2.0982 3.443082E−05 2.0817 8.255164E−06 2.0603
M[|Kx1 − K h

x1
|] 6.473390E−04 1.479207E−04 2.0982 3.443912E−05 2.0816 8.255810E−06 2.0606

E[|Kx2 − K h
x2

|] 5.212914E−04 1.306984E−04 2.0072 3.209770E−05 2.0099 8.057718E−06 1.9940
M[|Kx2 − K h

x2
|] 5.213384E−04 1.307129E−04 2.0070 3.211124E−05 2.0095 9.062296E−06 1.9938

E[|E − Eh
|] 1.291961E−04 4.004254E−05 1.9222 9.690372E−06 2.0176 2.442342E−06 1.9883

M[|E − Eh
|] 1.297785E−04 4.008978E−05 1.9236 9.704608E−06 2.0176 2.445378E−06 1.9886

E[|J − J h
|] 1.206363E−03 3.078828E−04 1.9984 7.689780E−05 2.0120 1.892578E−05 2.0226

M[|J − J h
|] 1.206383E−03 3.078850E−04 1.9984 7.690346E−05 2.0119 1.892703E−05 2.0226

Table 3
Errors of the solutions when Hx1 ∈ H5/2−ϵ (Γ ).

N 2 4 Rate 8 Rate 16 Rate

E[|Hx1 − H h
x1

|] 4.707117E−02 6.770013E−03 2.7029 7.617172E−04 2.5807 1.891617E−04 2.0096
M[|Hx1 − H h

x1
|] 5.827503E−02 8.021087E−03 2.6621 1.028223E−03 2.5124 2.463826E−04 2.0612

E[|Hx2 − H h
x2

|] 2.053239E−05 3.153899E−06 1.9998 1.204564E−06 1.7503 2.786668E−07 2.1119
M[|Hx2 − H h

x2
|] 2.361496E−05 3.209744E−06 2.0270 1.213414E−06 1.7048 3.020466E−07 2.0062

E[|Kx1 − K h
x1

|] 3.563472E−04 8.236230E−05 2.0961 2.025432E−05 2.0996 4.483891E−06 2.1754
M[|Kx1 − K h

x1
|] 3.563567E−04 8.236546E−05 2.0961 2.025525E−05 2.0996 4.484184E−06 2.1754

E[|Kx2 − K h
x2

|] 3.563472E−04 8.236230E−05 2.0961 2.025432E−05 2.0996 4.483891E−06 2.1754
M[|Kx2 − K h

x2
|] 3.563567E−04 8.236546E−05 2.0961 2.025525E−05 2.0996 4.484184E−06 2.1754

E[|E − Eh
|] 8.567125E−05 1.922316E−05 2.0511 4.694926E−06 2.0016 1.198734E−06 1.9696

M[|E − Eh
|] 8.570607E−05 1.923237E−05 2.0509 4.697663E−06 2.0013 1.199810E−06 1.9691

E[|J − J h
|] 4.566191E−04 1.075776E−04 2.0366 2.599359E−05 2.0100 6.630678E−06 1.9709

M[|J − J h
|] 4.566465E−04 1.075871E−04 2.0366 2.599465E−05 2.0100 6.631424E−06 1.9708

g2(t) = 1 − (10x3
2 − 15x4

2 + 6x5
2 ), x2 = (t − (m + k)Tp)/mTp

here Tp = 1/ f0 and ω0 = 2π f0. In this simulation, m = 2, k = 100, f0 = 30 GHz.

This model is solved on a uniform mesh with time step size τ = 10−13 s = 0.1 ps and 12 perfectly matched layer
(PML) imposed around the physical domain. For details can refer to our previous work [35]. We use the following
random parameters for our simulation:

ϵ0(x, ξ ) = 1.11 × 10−11(1 + ξ1 + ξ2),

µ0(x, ξ ) = 10−6/(1 + ξ1 + ξ2),

Γm(x, ξ ) = 108(1 + 10−4(ξ3 − 0.5)),

Γe(x, ξ ) = 108(1 + 10−4(ξ4 − 0.5)),

ωm(x, ξ ) = 2π
√

2 × 3 × 1010(1 + 10−4(ξ5 − 0.5)),

ωe(x, ξ ) = 2π
√

2 × 3 × 1010(1 + 10−4(ξ6 − 0.5)).

The obtained electric field at various time steps are plotted in Fig. 3, which shows that as the source wave enters
the metamaterial slab, the wave propagates backward due to the negative refractive index of the metamaterial and
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Fig. 2. Example 2. The variances of electronic fields at t = 0.25 (Top left), t = 0.5 (Top right), t = 0.75 (Bottom left) and t = 1 (Bottom right).

propagates forward after the wave moves out the metamaterial subdomain. This example shows that the backward
wave propagation phenomenon still exists in the random metamaterial.

4. Conclusions

In this paper, we first establish the regularity analysis for the time-dependent Maxwell’s equations in Drude
metamaterial with respect to the random variables. Using the regularity result, we prove the error estimate for the
stochastic collocation method developed to solve this model. Extensive numerical results are presented to justify
the theoretical analysis. We also demonstrate the backward wave propagation phenomenon happened when the
electromagnetic wave travels in the random metamaterial. We expect that similar results to the Drude model can
be obtained for other metamaterial models too [31]. In the future, we plan to develop more efficient stochastic
collocation method and even stochastic Galerkin method to Maxwell’s equations. We will explore more practical
wave propagation problems in random media and random inputs.
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Fig. 3. The contour plot of electric field |E | at various time steps.
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