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ABSTRACT

One way to teach programming problem solving is to teach explicit,

step-by-step strategies. While prior work has shown these to be

effective in controlled settings, there has been little work investigat-

ing their efficacy in classrooms. We conducted a 5-week case study

with 17 students aged 15-18, investigating students’ sentiments

toward two strategies for debugging and code reuse, students’ use

of scaffolding to execute these strategies, and associations between

students’ strategy use and their success at independently writing

programs in class. We found that while students reported the strate-

gies to be valuable, many had trouble regulating their choice of

strategies, defaulting to ineffective trial and error, even when they

knew systematic strategies would be more effective. Students that

embraced the debugging strategy completed more features in a

game development project, but this association was mediated by

other factors, such as reliance on help, strategy self-efficacy, and

mastery of the programming language used in the class. These

results suggest that teaching of strategies may require more explicit

instruction on strategy selection and self-regulation.
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1 INTRODUCTION

Programming is hard to learn [21]. It requires the mastery of pro-

gramming language semantics [18], common patterns of computa-

tion [15], ever-changing APIs and tools [13], and several software

engineering skills, such as testing, debugging, and program design

[12]. Learners also need strong self-regulation skills, both to reg-

ulate their learning [7], but also to regulate their programming

process [16, 17]. The range of skills required in programming may

be one reason why teaching programming is so difficult [11, 21].

One approach to improving learning is to teach strategic skills

[19]. For example, one strategic skillset is self-regulation, helping

students to reflect on and change their strategies when they find

them to be ineffective. Studies show that learners’ self-regulated

learning skills tend to be shallow, but when strong, are associated

with learning success [10, 16, 20]. Others have investigated the self-

regulated learning strategies that higher education CS students find

effective [7], including explicitly assessing task difficulty. One study

developed adolescents’ self-regulation skills by prompting learners

to reflect on their strategies; this increased students’ independence,

sustained their growth mindset, and increased their productivity

[17], mirroring findings in science education (e.g., [1]).

While self-regulation appears to be key in helping learners select

strategies, a related approach has been to teach explicit, step-by-

step strategies for solving specific problems. For example, a strategy

for debugging might involve prompting students to first find strong

evidence of the cause of a failure, and only then edit their program

to repair the defect. Experiments on explicit strategies for program

design [8, 22], program tracing [23], code reviews [5], and spread-

sheet modification [3] have all showed promising short term gains

in adult problem solving. Our recent work has further shown that

explicit strategies supported by a tool for managing the execution

of strategy steps [14] cause experienced developers to have greater

task success and more confidence in their progress [14].

While this prior work establishes that self-regulation skills may

be important and that explicit strategies for specific programming
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tasks can help in controlled settings with adults, there is little prior

work investigating the teaching of explicit programming strategies

in classrooms. Moreover, even less work has considered teaching

strategies to adolescents, who may have distinct challenges from

students in higher education, due to their still-developing execu-

tive functioning [2]. These gaps in prior work leave open several

important questions about the efficacy of strategies in classrooms:

• RQ1: What barriers do students face trying to use explicit pro-

gramming strategies in their problem solving? For example,

from an adoption perspective, do students welcome the guid-

ance that explicit strategies can offer, or do they view them

too structured and time-consuming?

• RQ2: To what extent is scaffolding necessary to support the

execution explicit strategies? Can strategy support eventually

be removed or is it augmentation that remains valuable even

after having learned a strategy?

• RQ3: To what extent is using explicit strategies associated with

more success at programming problem solving? And to what

extent do other factors such as prior knowledge and self-

efficacy mediate this success?

To answer these questions, we conducted a classroom study of

explicit programming strategies, teaching a 5-week summer course

to a group of 17 adolescents. We taught students the game design

subset of Code.org’s CS Discoveries curriculum and two explicit

programming strategies for debugging and code reuse. In the rest

of this paper, we detail the course, the strategies, our answers to

the questions above, and their implications.

2 METHOD

Our approach to teaching explicit strategies was to offer deliberate

practice [6], including direct instruction on two strategies, concrete

contextual guidance on using the strategies, and feedback on their

use throughout the duration of our. In the rest of this section, we

detail the classroom context of this strategy practice, the strategies

we taught, and the data we gathered.

2.1 Setting and Participants

We focused on students aged 14-18 in U.S. high schools who were

novice to programming. To reach diverse students, we partnered

with a university’s Upward Bound (UB) program. UB is a U.S.

federally-funded college preparation program that helps students

who are low-income and/or have no parent or guardian with a bach-

elor’s degree access higher education. The programweworked with

served four public high schools and reached about 180 students

per year. The program was free; students received lunch money to

attend and a stipend upon completion.

UB’s summer session last 5-weeks. We offered a łGame Designž

elective. The UB staff solicited students’ elective preferences and

then randomly assigned students to their 1st and 2nd choices. After

enrollment stabilized, we had 17 students. The group was mostly

low-income racial minority students with little to no programming

experience. Students were aged 14-17 years old. Of the 17 students,

9 identified as boys and 8 as girls. All but one student identified

as Asian, African American, Hispanic, and Middle Eastern. About

65% of students reported speaking a language other than English

fluently, as well as 71% speaking a non-English language at home.

The languages reported included English (15), Vietnamese (3), Ben-

gali (2), Somali (2), Cham (2), Mien (1), Russian (1), Nepali (1), and

Amharic (1). Students’ parents’ education mostly ranged between

completing some high school to some college.

Students had little to no prior experience with programming:

12 reported never having written a program, but 9 reported hav-

ing used at least one programming language, including HTML (4),

Minecraft (3), Excel (3), Scratch (2). Three students mentioned pro-

fessional languages such as Java (2), Python (2), and JavaScript

(1). To assess prior programming knowledge, we gave students a

pre-test which measured their knowledge of basic programming

principles such as variables, conditionals, loops, and Game Lab

APIs, all in JavaScript. Out of 10 points on the pre-test, the median

was 3. One outlier student correctly answered 8 questions.

2.2 Course design

Our course spanned 18 contact hours across 18 days. Class was

in a computer lab that seated 25. The 1st author taught the class

with the help of four teaching assistants (three undergrads and one

high school student). The class followed Code.org’s game design

curriculum, which used Game Lab, a simple web-based IDE with

both a block-based and text-based editor for authoring 2D interac-

tive games with JavaScript. The Code.org curriculum spans more

than 30 hours of instruction, so we excluded some lessons. The

first 3 weeks of the course covered the subset of JavaScript used

in Game Lab and key Game Lab APIs on sprites, animations, and

collision detection. Each class began with a brief 5-10 minutes of

direct instruction on the lesson for the day, followed by a 45 minute

period of self-guided Code.org instruction.

After 3 weeks of instruction, we administered a midterm, then

began a 2-week period of game development in which students

worked alone or in pairs to design and implement a simple game

of their own design across ten class periods. To receive full credit,

students’ projects needed to: 1) have a background, 2) have a sprite

controlled by the player, 3) have a sprite that moves automatically,

4) draw at least one shape, 5) have an animated sprite, and 6) have

at least one sprite that responded to collisions. We offered students

extra credit for features they wrote down and implemented beyond

the basic requirements, incentivizing independent work.

2.3 Explicit strategies

We taught two explicit strategies during the class. To represent

strategies, we used a format called Roboto [14], and a tool that helps

students execute each step of a Roboto strategy while tracking their

progress. Figures 1 and 2 show the text of the strategies and Figure

3 shows the strategy tracker.

The debug strategy, shown in Figure 1, was a generic approach

to localizing a defect by brainstorming possible causes and investi-

gating each one systematically. If this approach failed, the strategy

prompted students to ask the teacher for ideas on possible causes.

We taught the strategy just after the lesson that introduced condi-

tionals. To teach the strategy, we discussed the metaphor of fixing

a car engine. We asked students if they would use a strategy of

unscrewing something without first understanding how the engine

worked; most agreed that would be a bad strategy. We then dis-

cussed how debugging programs was they same, requiring one to
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day of instruction. The second sourcewas help requests during class;

we gathered data about whether students were using the strategy

we taught, which we defined to students as łusing the strategy

tracker or reading the strategy to guide your work.ž The third

source was self-report via an end of class survey asking students

whether they used one of the strategies to solve a problem on that

day, with or without the tracker. We collated all three data sources

for each student, combining them into a single binary variable of

whether the strategies had been used.

To measure the relationship between strategy use and produc-

tivity (RQ3), we measured productivity by analyzing students’ final

games for a set of game features (described later). To control for

knowledge of JavaScript, we used the midterm scores assessing

knowledge of variables, conditionals, Boolean logic, and Game Lab

APIs. To measure strategy self-efficacy, our daily debrief survey

asked students to express their agreement with the statements łI

can follow the debugging strategy that [the instructor] taught to

find and fix defects in my programs.ž and łI can follow the ’how to’

strategy to find and adapt examples for my programs.ž on a 5-point

scale of strongly disagree to agree. We asked this each day for each

strategy that had been taught on that day or prior.

3 RESULTS

To contextualize our results, we begin by describing the classroom

environment. Most students were engaged, but some were tired and

slept, some occasionally used their smartphones, and some were

distracted by sitting next to friends. The instructor and assistants

wandered the lab, proactively offering help, responding to questions,

and ensuring students were on task. Since most students spoke Eng-

lish as a second language, students moved at very different paces

and the instructors and TAs regularly needed to give further expla-

nation of the Code.org content. As suggested by prior work [11],

the purely content-driven instruction in Code.org’s curriculum was

insufficient to produce robust knowledge of JavaScript’s semantics,

which led to many defects in students’ programs.

3.1 RQ1: Barriers to using strategies

To answer RQ1, we performed several qualitative analyses. We

followed Hammer and Berland’s views on qualitative coding, not

treating the results of our category generation as data itself, but as

an organization of claims about data [9].

3.1.1 Strategy Interviews. The first analysis we performed was of

the responses to our two interviews about the strategies, one prior

to the midterm concerning the debugging strategy, and the second

at the end of the course covering both strategies1. One author began

by identifying categories of sentiments that students expressed

about the strategies. This author then discussed the substance of the

categories with the rest of the authors and resolved disagreements.

The quotes we include paraphrase students’ verbatim responses.

The first round of interviews about the debug strategy revealed

that 46.7% of students preferred to guess the cause of defects and

edit the program to verify their guess, 26.7% preferred asking for

help, and 13.3% preferred reading and analyzing their code. Only

13.3% preferred the debug strategy. Out of the 13 distinct sentiments

1Our analysis omitted data from 2 students who missed one of the interviews.

students expressed, only three were positive. Students claimed that

they liked the step-by-step nature of the debugging strategy, feeling

it helped them stay on track, one calling it a łformula for when

you get stuck.ž Many students reported liking the debug strategy

because it gave them an alternative to their ineffective editing

strategy. One student said that it łforces us to actually look at our

code instead of adding random stuff.ž

Although many students said that the debug strategy made it

easier to solve their problems, the majority of their sentiments

about it were negative. These included not being able to use the

strategy independently, being unsure where to start, having diffi-

culty identifying possible causes of defects, finding the strategy too

time consuming, finding the strategy tracker interface confusing,

disliking the tracker’s design (having to log in, the website łlooking

boringž), and finding the strategy as too general and repetitive.

In the second round of interviews, conducted after 2 weeks of

open-ended game development, 13.3% students preferred the debug

strategy over guessing and editing (33.3%), asking for help (33.3%),

and analyzing their code (20.0%). A chi-squared analysis on the

frequency of the preferred strategies in the middle and end of the

class showed no significant change in strategy preference (χ2=0.64,

p=.89). Students expressed many of the same sentiments about the

debug strategy as before, but none of the students reported disliking

the interface, being annoyed by having to log in, feeling unsure

where to start, or feeling that the strategy was too general. Two

new sentiments also emerged: students reported that the steps of

the strategies were harder to remember without the tool, and that

they disliked strategies rarely gave them solutions right away.

In responses about the reuse strategy, 60% of students claimed

not having used it. Students preferred strategies including looking

for resources without the tool (26.7%), asking for help (33.3%), and

guessing implementation details (20.0%). Only 20.0% preferred the

reuse strategy. Students reported liking that the reuse strategy

helped them find solutions and that it prompted them to search for

resources, whether online or from peers. They disliked, however,

that it did not help them find solutions right away and found it

harder to remember the steps without the tool. They also reported

feeling like the reuse strategy was łpretty much cheatingž because

it used resources online, that they struggled to interpret the code

they found online, that they often could not find resources, and

that their lack of prior knowledge hindered their use of it: łkind

of hard to know, because some of the things you’re trying to learn

you don’t know yet.ž

3.1.2 Reactions to Strategy Modeling. To further understand bar-

riers to using strategies, we analyzed notes about the 239 help

requests for students' reactions to the help we provided when mod-

eling strategy use. We conducted an inductive, qualitative coding

of these notes, which involved generating and refining a set of

categories from students' reactions, then classifying and resolving

inconsistencies. Table 1 shows the range of reactions.

Students exhibited both positive and negative reactions toward

the strategies. Positive reactions were characterized by compliance

with, expressions of belief in, or an indication of learning as a re-

sult of the strategy. Negative reactions included impatience with

the time strategy use required, frustration when the intended goal

was not met, or inclination to revert back to guessing and editing.
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Table 2: Ordinal logistic regressions

Odds Ratio SE β Wald Pr > χ2

Debug Self Efficacy 0.70 0.75 0.23 0.63

Team 2.15 0.99 0.61 0.44

Debug Usage 1.56 0.36 1.54 0.22

Midterm Score 1.05 0.25 0.04 0.85

Help Request Count 0.98 0.07 0.08 0.77

Reuse Self Efficacy 0.55 0.68 0.76 0.38

Team 1.82 0.99 0.36 0.55

Reuse Usage 1.15 0.26 0.30 0.58

Midterm Score 1.01 0.26 0.00 0.96

Help Request Count 1.03 0.05 0.37 0.54

To account for other factors that may have mediated productiv-

ity, we next created ordinal logistic regressions for each strategy

including more possible factors that influence the number of im-

plemented features. The other factors we included were 1) prior

knowledge of the Game Lab API based on midterm score, as brittle

knowledge of the API would have limited productivity; 2) the most

frequent response to the self-efficacy question for the strategy on

the daily surveys after the midterm, as self-efficacy should have

mediated successful use of the strategies; 3) whether or not they

were on a team, as teams may have been more productive; and 4)

the number of times they requested help from an assistant, as help

seeking was likely to play a significant role in successfully building

game features. Table 2 shows the resulting regressions. Neither

model significantly explained the variation in productivity, suggest-

ing that additional factors, or interactions between factors, were

responsible for the number of game features students implemented.

4 DISCUSSION

Our case study revealed several trends. First, with respect to barriers

(RQ1), all of our data sources suggest that while the adolescents in

our class could see the merits of the strategies in the abstract, many

did not see enough value to use them. Most chose to engage in rapid

cycles of editing and testing, without deeply understanding their

code, rather than the more systematic strategies we taught that

required reasoning about program behavior. Student sentiments

suggest that this was partly because of a perception that strate-

gies slowed them down, but also because many of the skills the

strategy required were something students’ did not feel confident

performing without help, such as identifying possible causes of

defects or finding and reasoning about relevant code online. Our

results on scaffolding (RQ2) suggest that having a tool that aided

strategy execution may have scaffolded strategy learning over time,

but that students who used the strategies appeared to do so by

internalizing the them, rather than use the tracker. Our results on

productivity (RQ3) suggest that while there was an association

between using the debug strategy and how many game features

students implemented, the relationship was not a direct one: there

were likely many interacting factors that we did not model that

determine whether students’ were able to use explicit strategies to

effectively guide their problem solving.

There are several possible interpretations of these results. One

is that while explicit strategies may be more effective in princi-

ple, unless students believe they can perform them independently,

they will be reluctant to use them, even when they have directly

observed their benefits. A related interpretation is that providing

effective, explicit strategies may only be effective for learners that

have strong self-regulation skills, as prior work shows that learners

with weaker regulation skills are often unaware of the need for bet-

ter strategies [7, 10, 17, 20]. Another interpretation is an łattention

economicž one [4]: in a classroom environment with substantial

teaching support, asking for help is a more efficient strategy than

trying to independently use a programming strategy a student has

just learned; after all, both strategies had numerous failure modes

that encouraged students to ask for help if they got stuck. Another

interpretation is that the strategies were simply too sophisticated

to learn while also learning basic programming concepts. Perhaps

simpler strategies, scaffolded by instructor guidance, would be more

likely to be adopted and more likely to impact behavior, even if

they are less effective. For example, future work could explore a

debugging strategy that simply prompts students to łfind and un-

derstand the cause before editing,ž or a reuse strategy that prompts

students to łask an expert for an example and then work with them

to adapt it to your needs.ž This level of strategic detail might be

more appropriate for rank novices, and the level of complexity of

problems they tend to face. Finally, perhaps most adolescents, who

are known to have not yet fully developed executive functioning [2],

do not yet have the self-regulation skills yet to delay gratification

in a way that explicit programming strategies require.

Our study’s limitations complicate these interpretations. Stu-

dents might have been more positive in the interviews and surveys

because of participant response bias. Our class was students’ last of

the day, and so many of their self-regulation skills may have been

exhausted by a long day of math, writing, college prep, and other

electives. The students we studied are also not representative of all

adolescents learning to code.

Despite these limitations, our results have important implications

for future research and teaching. First, our data suggest that there

appear to be many interacting factors that influence adoption and

use of explicit strategies in classrooms, such as students’ willingness

to delay gratification, the availability of help, the strength of their

self-regulation skills, self-efficacy with the specific strategies taught,

the likelihood of students’ encountering problems that benefit from

strategy use, and the alignment between the specific strategies

taught and students’ prior knowledge. This suggests that studying

strategies in strictly controlled settings that omit these factors is

not likely to be fruitful. Second, despite having a tool that carefully

taught the strategies, an instructor that patiently explained the

strategies, and an entire team of teaching assistants model the

use of strategies with individual students, most students did not

adopt the strategies. If we are to succeed in teaching adolescents

programming strategies we know to be effective, future work must

invent more effective, scalable ways to teach strategies. We hope

our results are a solid foundation for this work.
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