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A B S T R A C T

The exchange of resources across ecosystem boundaries can have large impacts on ecosystem structures and
functions at local and regional scales. In this article, we develop a simple model to investigate dynamical im-
plications of bi-directional resource exchanges between two local ecosystems in a meta-ecosystem framework. In
our model, we assume that (1) Each local ecosystem acts as both a resource donor and recipient, such that one
ecosystem donating resources to another results in a cost to the donating system and a benefit to the recipient;
and (2) The costs and benefits of the bi-directional resource exchange between two ecosystems are correlated in
a nonlinear fashion. Our model could apply to the resource interactions between terrestrial and aquatic eco-
systems that are supported by the literature. Our theoretical results show that bi-directional resource exchange
between two ecosystems can indeed generate complicated dynamical outcomes, including the coupled ecosys-
tems having amensalistic, antagonistic, competitive, or mutualistic interactions, with multiple alternative stable
states depending on the relative costs and benefits. In addition, if the relative cost for resource exchange for an
ecosystem is decreased or the relative benefit for resource exchange for an ecosystem is increased, the pro-
duction of that ecosystem would increase; however, depending on the local environment, the production of the
other ecosystem may increase or decrease. We expect that our work, by evaluating the potential outcomes of
resource exchange theoretically, can facilitate empirical evaluations and advance the understanding of spatial
ecosystem ecology where resource exchanges occur in varied ecosystems through a complicated network.

1. Introduction

It is increasingly recognized that material fluxes across ecological
boundaries can have substantial consequences for ecosystem structure
and function by mediating ecological processes across multiple tem-
poral and spatial scales [18,27,37,39]. Processes operating over mul-
tiple spatial scales (e.g. landscape, region) have been considered in the
study of population persistence and species coexistence [27]. The me-
tapopulation and metacommunity frameworks have contributed much
towards understanding spatial relationships in ecology by focusing on
the movement of organisms [4,13,27,32,49]. A metapopulation, de-
fined as a set of local populations in which individuals move from one
place (population) to another [10,14], has provided insight into how
the spatial coupling of local populations through dispersal permits the
regional persistence of species that experience local extinctions and
colonizations [27]. A metacommunity is a set of local communities
connected by dispersal of multiple interacting species at different spa-
tial scales [24,27], which has an exclusive focus on the biotic

components of ecosystems [27]. The concept of a meta-ecosystem —a
set of ecosystems connected by spatial flows of energy, materials and
organisms across ecosystem boundaries [27] — builds upon these fra-
meworks by embracing flows of biotic and abiotic elements [11,26,27].
This study investigates the theoretical consequences of reciprocal re-
source exchange between two ecosystems influencing functional char-
acteristics such as energy flow and nutrient cycling.

Resources refer to any object or substance that contributes posi-
tively to the growth, reproduction, or maintenance of an organism.
Resource flows in the form of inorganic nutrients in terrestrial-aquatic
ecosystems [7] have gained much attention as essential nutrients can
limit primary production of individual plants and entire ecosystems
[1,8,51,52]. For instance, energy exchange in stream-riparian meta-
ecosystems play an important role in the ecological functions by linking
aquatic and terrestrial food webs [1,2]. In streams, different forms of
energy flow affect fish production, which is directly affected by detritus
or indirectly by the aquatic food chain (e.g. terrestrial and aquatic in-
sects feeding on riparian vegetation) [2]. Within this stream-riparian
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meta-ecosystem context, the importance of resource unidirectional
transfers from a donor ecosystem to a recipient ecosystem has been
studied [6]. For instance, much research has focused on the flow of
terrestrial-derived resources (e.g., leaf litter) to recipient aquatic eco-
systems [42]. On the other hand, the flow of energy, detritus, and or-
ganisms from the water to the land can also have large effects on ter-
restrial community structure [38,42] as many studies have shown that
aquatic insects have strong effects on terrestrial consumer abundance
[36,43], distribution [33,41], and behavior [12]. These studies have
shown that aquatic insects can represent a substantial portion (25%-
100%) of energy supplied to terrestrial consumers [3,42]. Thus, re-
source movements between ecosystems are bi-directional in general
and can play an important role in regulating nutrient availability and
ecosystem productions [1,47].

Adjacent ecosystems rarely function independently of each other
[11,27]. Instead, their habitats interact extensively, with each system
being inherently linked by the cross-habitat transfer of energy or nu-
trients [21]. Resource exchange between two adjacent ecosystems, such
as terrestrial and aquatic ecosystems, typically have high temporal and
spatial variation and can enter each other’s habitats at any trophic
level, which could have dramatic influences on food web dynamics
(e.g., predation) and regulating nutrient availability and productions in
each ecosystem [1,39]. For example, terrestrial invertebrate inputs play
important roles in streams. Depending on the season, invertebrates
falling into a stream can make up as much as 50% of the annual con-
sumption in some fish species [3]. Similarly, emerging aquatic insects
are an important food source for riparian predators such as birds, li-
zards, and spiders [3,5,28]. They can comprise up to 90% of a riparian
predator’s diet [23]. Motivated by this, we aim to develop a simple
model to investigate dynamical outcomes of bi-directional resource
exchange between two ecosystems through trophic interactions across
ecosystem boundaries. We expect that our model can be applied to
ecosystems such as adjacent terrestrial and aquatic ecosystems.

Mathematical models have been useful to help us gain deeper bio-
logical insights on how resource exchange across ecosystem boundaries
can have huge impacts on ecosystem structures and functions at local
and regional scales. Recent theoretical work (e.g. [11,27,42]) based on
the meta-ecosystem concept has been an important and timely exten-
sion to existing approaches in spatial ecology, which provides a pow-
erful theoretical framework to address novel questions including the
effects of bi-directional resource exchange in spatial ecosystem ecology
[11,27]. In [27], they developed a simple theoretical meta-ecosystem
model to demonstrate how significant global source-sink constraints
arise from spatial coupling of ecosystems through nutrient flows. In
[11], they analyzed a model for meta-ecosystem dynamics in a het-
erogeneous environment to study how the spatial flows of materials
such as inorganic nutrients and nutrients sequestered into producers,
herbivores, and detritus affect the community dynamics by extending
the source-sink concept with an ecosystem perspective. In [42], they
developed a model of resource exchange between rivers and watersheds
to predict the spatial extent of material and nutrient fluxes from aquatic
portions of watershed ecosystems based on a geomorphic template that
includes river network structure, topography, and channel sinuosity
along with important biological attributes such as productivity and
dispersal ability. There is no doubt that the framework of meta-eco-
system theoretical approach [11,27] has the potential to integrate the
perspectives of community, ecosystem, and landscape ecology to pro-
vide important and novel fundamental insights into the dynamics and
functioning of ecosystems from local to global scales.

In this article, motivated by the work of Leroux and co-workres
[11,27], we develop and analyze a simple meta-ecosystem model to
explore how bi-directional resource exchanges and interactions be-
tween two adjacent ecosystems such as terrestrial and aquatic ecosys-
tems affect ecological community structures and their productions. In-
teractions between multiple trophic levels are an important starting
point in the prediction of the effects of resource loss and (or) gain in

ecosystems that can prompt sudden changes in the functioning of
complex ecosystems. Our model focuses on the resource exchange be-
tween two ecosystems mainly driven by trophic interactions such as
predation. More specifically, our model resembles a meta-ecosystem in
which the individual ecosystem compartments function as both donors
and recipients; each compartment exchanges resources reciprocally and
ecosystem production is determined by in situ resource levels and the
balance between inputs and outputs of materials through trophic in-
teractions.

The rest of the article is organized as follows: In Section 2, we
provide a short review on similar models in varied topics of ecological
systems to gain deeper insights on the applications of our proposed
model and the related dynamical outcomes. In Section 3, we provide
the detailed model derivation of the proposed model. In Section 4, we
perform local and global mathematical analysis to obtain theoretical
results along with the related biological implications, and implement
numerical simulations and bifurcation analysis to gain more insights on
the dynamical effects of the cost and benefit of resource exchange. In
Section 5, we discuss our results and potential future work. Lastly, we
provide an appendix with detailed proofs of our theoretical results.

2. Comparisons to applications of similar models in two-species
interactions

Mathematical models can help us understand the complexity of
ecosystems in a quantitative way through simplifications. In this sec-
tion, we will provide a short review on similar but different models that
have been applied to population dynamics of two species interactions
with potentially different dynamical outcomes than our proposed
model due to modeling assumptions.

Holland and DeAngelis [17] proposed a bi-directional consumer-
resource (C-R) mutualism model, where each species can be mutualistic
(i.e., beneficial) and parasitic (i.e., costly) to the other species with the
related interactions modeled through Holling type II functional re-
sponses. This model explains when and how mutualism transitions into
parasitism, and the related results show that overexploitation (amen-
salistic interaction) may be beneficial to a species in the short-term or
lead to extinction of one or both species; however, densities of both
species are greater in the absence of overexploitation in the long term.
Our proposed model (3) models benefits through increasing its carrying
capacity and cost through Holling Type I functional responses. These
different modeling approaches give different dynamical outcomes. Even
though both our model and the model proposed in [17] potentially
carry the same number of interior equilibria, their stability differs.

Zhang presents a competition-mutualism combined model by using
a parabolic function in [57] extending his work with a two-species
model in [56] to describe mutualism (or cooperation) occurring at low
density while competition occurs at high density. The model in [57]
shows the six kinds of interactions between two species in community
or ecosystem level including competition, mutualism, predation, com-
mensalism, amensalism, and neutralism through simple phase-plane
analysis. Similar to our model, the work in [56,57] also observe com-
petition, mutualism, predation, amensalism as well as commensalism.
The study of Zhang et al. [56] also focuses on the stability conditions of
boundary equilibria (one species goes extinct), and the related stability
results of boundary equilibria support opinion of Zhang [57] about
mutualism can promote two-species coexistence with implications that
the evolution of mutualism may contribute to the multiple species co-
existence and stability of ecosystem, and that mutualism may be fa-
vored by natural selection. The analytical work in [56,57] has been
limited.

One of the recent work by Wang and Wu [53] proposed a mutu-
alism-competition combined model modified from the Lotka–Volterra
model which assumes that species i has positive effects on species j
when it is at low density, while it has negative effects on species j when
it is at high density. The interval of low density of species j, represents
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the region of net mutualism of species j to species i. This assumption is
using a definition by Hernandez and Barradas [16], i.e., the mutualism-
competition interaction among multiple species means that mutualism
happens when the species are at low population density while compe-
tition happens when they are at high population density, which is op-
posite to our proposed model due to the fact that we are modeling on
the nutrient exchange between ecosystems instead of organism inter-
actions. Wang and Wu [53] focuses on mutualism and competition, and
gives some useful insights as to which degree mutualism has more in-
fluence on either a higher competitive species or both species on
reaching a density larger than its carrying capacity by displaying re-
gions of net mutualism, through simple analysis such as stability ana-
lysis and phase plane graphs.

As a summary, the models studied in [53,56,57] are similar and
show that: mutualism at low population density brings a positive effect
on the system by promoting coexistence and making the species achieve
high densities; species that compete so intensely that they cannot co-
exist in the pure competition model, but can coexist if they are mu-
tualistic at low densities; when in coexistence, the species with strong
competitive ability and/or high initial density would benefit from the
mutualism by approaching a density larger than its carrying capacity;
when mutualism occurs in certain domains, a win-win situation
emerges in which both species approach densities larger than their
carrying capacities, respectively.

Our proposed meta-ecosystem model (3) models nutrient exchanges
between two ecosystems by using the similar modeling approach in
[34] that developed a mutualism-parasitism continuum model and its
application to plant-mycorrhizae interactions. The model incorporates
the gain to the host from the interaction with the symbiont and the
symbiont’s density independent and dependent death rates. Our model
(3) does not assume a density independent nutrient depletion in each
ecosystem, but does assume a density dependent resource exchange.

The comparisons above suggest that different functional responses
of benefits and costs of interactions can produce different dynamical
outcomes. For example, the stability of equilibria of the model proposed
in [17] is different than the other models presented here including our
model (3). Also, the models in [53,56,57] are similar but their study
focuses are slightly different: Zhang [57] addressed interior equilibria;
Zhang et al. [56] provided mathematical definitions of different inter-
actions and studied the boundary equilibria; and Wang and Wu [53]
studied mutualism and competition interactions only. All of these study
are using simple stability analysis along with phase plane portraits.

3. Model derivation

In this section, we present a simple meta-ecosystem model to ex-
amine the dynamical outcomes of bi-directional resource exchanges
between two nutrient-limited ecosystems. Bi-directional resources ex-
change occurs when an ecosystem acts as a bioreactor and transforms a
resource from an unavailable form to an available one [15,50]. As a
consequence, each ecosystem is both a resource donor and a recipient.
In the proposed model, we use benefits and costs to refer to the positive
effect of resource gain and negative effect of resource loss on biomass
production, respectively. These general terms incorporate the suite of
possible direct and indirect effects of resource exchanges that could be
mainly driven by trophic interactions. Thus, the production of each
ecosystem is a nonlinear function of local environments and the balance
between resource inputs and outputs.

Let P(t), Q(t) be the production of two adjacent ecosystems that have
resource exchange at time t. Resource exchange between P and Q
ecosystems cause simultaneous benefits and costs which affect the
ecosystem growth. Each ecosystem acts as a recipient by receiving re-
sources (benefit) and as a donor by contributing with resources (cost) in
a nonlinear fashion. We represent the meta-ecosystem dynamics of two
ecosystems with bi-directional resource exchange with the following
equations (see Fig. 1 for a schematic presentation):

= ⎡
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where =r i p q, ,i is the intrinsic growth rate of biomass in ecosystem i;
Ki is the in situ resource availability (i.e. carrying capacity) of eco-
system i in the absence of the resource exchange; ai indicates the
quantity of resource from the donor ecosystem that is transferred to the
recipient system i; and bi represents the depletion rate of resources of
the donor ecosystem i at the ecosystem level. More specifically, the
ecological assumptions of the proposed model (1) can be stated as
follows:

1. In the absence of resource exchange, the production dynamics of
ecosystem P and Q are described by the following logistic growth
model (2):
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which implies that either ecosystem P or Q could have persistent
production at their carrying capacity =P Q K K( *, *) ( , )p q without
resource exchange.

2. In our meta-ecosystem model (1), the cost (or contribution) of each
ecosystem is modeled through the Holling Type I functional re-
sponse, i.e. =b QP i p q, , ,i as we assume that the resource exchange
between two ecosystems P and Q is mainly driven by the trophic
interactions such as predation. This assumption is supported by the
resource exchange occurring at the interface between the terrestrial
and aquatic ecosystems. A classic article by Jackson and Fisher [22]
shows that 97% of the biomass of adult insects emerging from
streams into riparian ecosystems do not return to the aquatic eco-
system due to environmental stress and predation pressure.

3. In our meta-ecosystem model (1), the benefit or resource that re-
cipient ecosystem i receives from the donor ecosystem j is measured
as a linear function of the production of the donor ecosystem. For
example, due to the resource exchange, the potential carrying ca-
pacity of the ecosystem P increases to +K a Qp p where the term apQ
incorporates the gain to the recipient ecosystem P from the resource
exchange with the donor ecosystem Q. This modeling approach uses
the framework of a mutualism-parasitism continuum model devel-
oped in [34] that considers the costs and benefits of two interacting
species.

Following [30], we rescaled the meta-ecosystem model (1) by letting
= = =p q τ r t, ,P

K
Q
K pp q

. Thus it yields

= = =
dp
dP K

dq
dQ K

dt
dτ r

1 , 1 , 1
p q p

which gives the following meta-ecosystem model (see the detailed re-
scaling steps in the last section):
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where p and q represent the resource stock of each ecosystem relative to
its own carrying capacity; =α Ki

a
K j
i
i

and =β Ki
b
r j
i
i

encompass the relative
benefits and costs of resource exchanges for ecosystem i, respectively;
=α

β
a
b
r
K

i

i

i
i

i
i
is the relative ratio of benefit to cost for ecosystem i. Increasing
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the carrying capacity Kp of ecosystem p will increase the relative ben-
efits of ecosystem q causing a decrease of the relative benefits for
ecosystem p. The exchange of resources, in this case favoring ecosystem
q, has a cost. Therefore, the parameter describing the cost of resource
exchange in ecosystem p increases as Kp increases. Also, we notice that
the ratio for ecosystem q, =q Q

Kq
is not affected by the increase of Kp.

This could be explained by the fact that ecosystem q is undergoing an
equal proportion of the relative benefits and costs due to the resource
exchange, so the ecosystem q is not affected by the change of Kp.
Moreover, =γ r

r
q

p
represents the relative growth rate of resources in q

relative to those in p, e.g. if γ>1, then rp< rq. Note that, for con-
venience, we use relative to denote the parameters that have been re-
scaled. In the rest of this article, we will investigate how the relative
benefits (costs) of resource exchanges, αi (βi), and the relative ratio of
benefit to cost α

β
i

i
of each ecosystem affect ecological community struc-

ture and the production of each ecosystem.

4. Mathematical analysis

We first provide the following theorems regarding the general dy-
namical properties of our proposed model (3):

Theorem 1 (Positivity and Boundedness). The meta-ecosystem model (3) is
positive invariant and bounded in  = ≥ ≥+ p q{ 0; 0}2 and only has
equilibrium dynamics.

Theorem 1 indicates that our meta-ecosystem is biologically well-
defined with simple dynamics (i.e. it has no limit cycles according to
Dulac–Bendixson Criterion).

Theorem 2 (Persistence of ecosystems). Ecosystem i in the meta-ecosystem
(3) is persistent if its relative cost is less than 1, i.e., = <β K 1i

b
r j
i
i

.

Theorem 2 indicates the persistence of each ecosystem requires its
relative cost to be less than 1, i.e.

= < ⇔ <β b
r
K K r

b
1 .i

i

i
j j

i

i

This implies that ecosystem i can persist if its effective growth rate r
b
i
i
is

greater than the original carrying capacity Kj of ecosystem j. The results
of Theorem 2 also imply that the meta-ecosystem (3) is permanent
when βi<1 for both =i p q, , i.e., both Ecosystem p and Ecosystem q
are persistent. Then according to the fixed point theorem [20], we can
conclude that the meta-ecosystem (3) has at least one interior equili-
brium when βi<1 for both =i p q, .

Now we study the number of equilibria and their stability for Model
(3). First, the model always has the following three boundary equilibria:

=E (0, 0),00 =E (0, 1),01 =E (1, 0),10 and it can have up to three in-
terior equilibria that are determined with the isoclines (4) and (5) by
setting ′ =p 0 and ′ =q 0:

= = − +p g q β q α q* ( *) (1 *)(1 *)p p (4)

= = − +q f p β p α p* ( *) (1 *)(1 *).q q (5)
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2 2
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2
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−
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1

2
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βp

p
.

We denote each of these maxima as the composite cost-benefit term
for ecosystems q and p, respectively. That is, for a given αi and βi,
=i p q, , it describes the maximum resource stock a given ecosystem can

achieve and the stock of the neighboring ecosystem. The resource stock

of ecosystem i reaches a maximum value of ≥
⎜ ⎟⎛
⎝
+ ⎞
⎠ 1

1

4

αi
βi

αi
βi

2

when the re-

sources of ecosystem j are at
−

,α

1

2

αi
βi

i
for =i j p q, , , ≠i j. Now we present

the following theorem regarding the number of equilibria and their
stability for Model (3):

Theorem 3 (Equilibria and Stability Dynamics). Let αp, αq, βp, βq and γ be
positive parameters. Our meta-ecosystem model (3) always has three
boundary equilibria: =E (0, 0),00 =E (0, 1),01 =E (1, 0)10 where the
extinction equilibrium E00 is always a source; the boundary equilibrium
=E (0, 1)01 is locally asymptotically stable (LAS) if βp>1; and the

boundary equilibrium =E (1, 0)10 is LAS whenever βq>1. Model (3)
can have up to three interior equilibria provided the following sufficient
conditions are satisfied:

1. No interior equilibrium (see Fig. 5): Model (3) has no interior equili-
brium if the following inequalities hold
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+ −
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Fig. 1. A schematic representation of our meta-ecosystem model.
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for = =i p j q, or = =i q j p, .
2. One interior equilibrium (see Fig. 3a): Model (3) has a unique interior

equilibrium if < <β1, 1α
β i
i

i
for both =i p q, and

<
+

= = ≠β
α
α

j p j q j i
1 2

for or but .j
j

j

3. Two interior equilibria (see Fig. 6): Model (3) has two interior equilibria
if the following inequalities hold

⎛
⎝
+ ⎞

⎠

< < < <β β α
4

1
1

α
β

α
β

i j j2
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for either = =i p j q, (see Fig. 6 a) or = =i q j p, (see Fig. 6b).
4. Three interior equilibria (see Fig. 4): Model (3) has three interior equi-

libria if the following inequalities hold
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Theorem 3 suggests that with resource exchanges, the meta-eco-
system (3) could have very complicated dynamics such as multiple al-
ternative states depending on local environments.

Based on our theoretical results (Theorems 1–3) along with the aid
of the two-dimensional bifurcation diagram (see Fig. 2 when =α αp q),
we conclude that the relative cost βi, =i p q, and the relative ratio of
benefit to cost ,α

β
i

i
=i p q, determine the dynamical outcomes of the

meta-ecosystem (3) as follows:

1. Relative costs of resource exchange of both ecosystems are less than
1: the meta-ecosystem (3) is permanent with either one (the blue
region on the left corner of Fig. 2) or three interior equilibria (the
yellow region on the left corner Fig. 2) where the separation of these

two cases is determined by curves approximated by =
⎜ ⎟
⎛

⎝
+ ⎞

⎠

βi
4

1

αj
βj

αj
βj

2 for

both =i j p q, , and i≠ j.
– One interior equilibrium (see Fig. 3a): Based on sufficient conditions
from Theorem 3, the meta-ecosystem (3) has global stability at the
unique interior equilibrium when the following inequalities hold
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These conditions imply that this type of permanence of the meta-
ecosystem (3) occurs when both ecosystems have low relative
costs (i.e., βi<1) and low relative ratio of benefit to cost (i.e., ).

– Three interior equilibria (see Fig. 4): The meta-ecosystem (3) can
have three interior equilibria E E E, ,pq pq pq

1 2 3 when the relative costs
of resource exchange between ecosystem p and q have inter-
mediate values, i.e. < =β i p q1, , ,i but the relative cost of re-

source exchange βi is greater than
⎜ ⎟
⎛

⎝
+ ⎞

⎠

,
4

1

αj
βj

αj
βj

2 for both =i j p q, , and

≠i j. In this case, the meta-ecosystem (3) is permanent and has
two interior alternative states where initial conditions determine
when the system approaches to the interior stable state at which
one ecosystem will have the advantage for a given outcome. We
define this dynamical outcome as a Type Three bi-stability.

2. Relative costs of resource exchange for both ecosystems are greater
than 1 (see the blue region in the upper right corner of Fig. 2): the
meta-ecosystem (3) has a Type One bi-stability between the two
boundary equilibria E01 and E10 (see Fig. 3b), where the meta-eco-
system has a unique interior equilibrium Epq1 which is a saddle. In
this case, initial conditions determine which boundary equilibrium
the system will approach to.

3. One of the relative costs of resource exchange of ecosystems is less
than 1 (i.e., − − <β β( 1)( 1) 0i j ): the meta-ecosystem (3) has either
no interior equilibrium (white regions in Fig. 2) or two interior
equilibria (red regions in Fig. 2) where the separation of these two

cases is determined by curves approximated by =
⎜ ⎟
⎛

⎝
+ ⎞

⎠

βi
4

1

αj
βj

αj
βj

2 for both

=i j p q, , and i≠ j.
– No interior equilibrium (see Fig. 5): According Theorem 3, the
meta-ecosystem (3) has global stability at the boundary equili-
brium (i.e., the ecosystem j goes extinct due to resource exchange)
when the following inequalities hold

< < <
+

+

−
+ −

=
−

⎛
⎝
+ − ⎞

⎠

>

−

( )

α
β

β
α

α

α β α β
α β β α β α

1, 1
1 2

and
( )

( 2 )

1

2
1

i

i
j

j β α

j

j j i i

i i j j j j

α
β

α
β α β

1

2
2

1 1

i i

i

i

i

i j j

where the conditions <
+

+
−βj

α

α1 2

j βi αi
j

1

and

= >
⎜ ⎟⎜ ⎟

⎜ ⎟−

⎛
⎝
+ − ⎞

⎠

⎛
⎝
− ⎞
⎠

⎛

⎝
+ − ⎞

⎠

1
α β α β

α β β α β α

( )

2

1

2

j j i i

i i j j j j

αi
βi

αi
βi αj βj

2
2

1 1
requires that βi<1. This implies

that Ecosystem i is persistent and drives Ecosystem j to extinction
based on Theorem 2. This case occurs when the relative cost of
resource exchange for Ecosystem j is high, i.e., βj>1, while the
relative cost of resource exchange βi and the relative ratio of
benefit to cost α

β
i

i
for Ecosystem i are low.

Biologically, bi-directional resource exchange between two eco-
systems, leads to the depletion of the resource stock in one eco-
system and persistence in the other. With the exclusion of one

Fig. 2. Bifurcation diagram of βp versus βq showing the number of interior
equilibria of our proposed model (3) when = =α α 3p q and =γ 1. No interior
(white), One interior (blue), Two interior (red), Three interior (yellow). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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ecosystem, the resource stock of the meta-ecosystem converges to
that of the persistent ecosystem with the low relative cost. This
dynamical outcome is analogous to the competition exclusion sce-
nario of the traditional two species competitive Lotka–Volterra
model even though both ecosystems act as a donor and recipient.

– Two interior equilibria (see Fig. 6): This is the case when the meta-
ecosystem (3) has a Type Two bi-stability dynamical outcome
between one boundary equilibrium and one stable interior equi-

librium if the inequalities
⎛
⎝
+ ⎞

⎠

< < < <β β α
4

1
1

α
β

α
β

i j j2

j

j

j

j

hold.

Biological implications of conditions that lead to this type of al-
ternative stable states are that: (1) The relative cost for resource
exchange of Ecosystem i is less than one but larger than

< <
⎜ ⎟
⎛

⎝
+ ⎞

⎠

β 1i

4

1

αj
βj

αj
βj

2 which guarantees that Ecosystem i is persistent

with two different production outcomes depending on initial
conditions; (2) Ecosystem j has high relative cost (i.e., βj>1) and
relative ratio of benefit to cost (i.e., > 1α

β
j

j
) for resource exchange

which provides an opportunity for the production of Ecosystem j
to be greater than one for proper initial conditions.

In the following two subsections, we explore how the relative cost
and benefit of resource exchange for each ecosystem, i.e., =α β i p q, , , ,i i
affect the dynamical structure and production of the meta-ecosystem
(3) through two and one dimensional bifurcation diagrams, respec-
tively.

4.1. Effects of the relative benefits of resource exchange on model dynamics

Fig. 2 is a two-dimensional bifurcation diagram of βp∈ (0, 2) versus
βq∈ (0, 2) with all possible scenarios of the number of interior equili-
bria of the meta-ecosystem (3) by setting = =α α 3p q and =γ 1. To
explore how the relative benefits αp and αq affect the geometry structure
of −β βp q regions with no (white), one (blue), two (red) and three
(yellow) interior equilibria, we compare the case of = =α α 3p q (Fig. 2)
to the cases of = =α α.6, 3p q (Fig. 7b) and = =α α15, 3p q (Fig. 7a).
The following observations arise:

Increasing the value of the relative benefit αi of bi-directional re-
source exchange for Ecosystem i, we expect that Type Two and Type
Three bi-stability regions (i.e., alternative stable states) are increased
while the extinction region for Ecosystem i is decreased. For example,
by comparing Fig. 7a ( =α 15p ) to Fig. 2 ( =α 3p ) where αp increases
from 3 to 15, we can observe that the yellow (Type Three bi-stability)
and the red (Type Two bi-stability) region in Fig. 7a are increased
while the white region in the right bottom corner in Fig. 7a (where the
global extinction of Ecosystem p occurs) is decreased. Biologically
speaking, this implies that increasing values of the relative benefit αi of
bi-directional resource exchange for Ecosystem i can potentially in-
crease the complexity of the dynamics of the meta-ecosystem (3) by

Fig. 3. Phase plane showing one interior equilibrium and stability of equilibria using isoclines (4) and (5). • - Stable, ○ - Unstable.

Fig. 4. Phase plane showing three interior equilibria and Type Three bi-stabi-
lity of equilibria using isoclines (4) and (5). • - Stable, ○ - Unstable.

M.R. Messan et al. Mathematical Biosciences 301 (2018) 167–184

172



generating alternative states (the increased yellow region confined in
[0, 1]× [0, 1] of Fig. 7a) and promote the survivorship for Ecosystem i
by shrinking the extinction region of Ecosystem i and expanding Type
Two bi-stability region in return shown in Fig. 7a.

Decrease the value of the relative benefit αi of bi-directional re-
source exchange for Ecosystem i, we expect that Type Two and Type
Three bi-stability regions are decreased while the extinction region for
Ecosystem i is increased. As an example, we compare Fig. 7b ( =α .6p ) to
Fig. 2 ( =α 3p ) where αp decreases from 3 to 0.6, we can observe that the
yellow (Type Three bi-stability) and the red (Type Two bi-stability)
region in Fig. 7 b are shrunk while the white region in the right bottom
corner in Fig. 7 b (where the global extinction of Ecosystem p occurs)
has been increased. Thus, this implies that decreasing values of the
relative benefit αi of bi-directional resource exchange for Ecosystem i
can potentially decrease the complexity of the dynamics of the meta-
ecosystem (3) by eliminating bistable regions (see the decreased yellow
and red region in the right bottom of Fig. 7b) and suppress the survi-
vorship for Ecosystem i by expanding the extinction region of

Ecosystem i (see the white region shown in Fig. 7b).

4.2. Interactions generated by the bi-directional resource exchange within
ecosystems

In the absence of the bi-directional resource exchange, the two
ecosystems of the meta-ecosystem (3) are uncoupled and both approach
the rescaled carrying capacity 1, i.e., the meta-ecosystem (3) has a
globally stable equilibrium at =p q( *, *) (1, 1). However, with the bi-
directional resource exchange, the dynamics and the ultimate produc-
tions of the meta-ecosystem (3) (i.e., its stable equilibria (p*, q*)) could
be very complicated. To illustrate all potential interactions, we define
the following terminologies:

Amensalistic Interaction: This is the case when one ecosystem
goes extinct while the other achieves its rescaled original carrying ca-
pacity 1, i.e., =p q( *, *) (1, 0) or =p q( *, *) (0, 1) is either globally or
locally stable for the meta-ecosystem (3). For example, =p q( *, *) (1, 0)
is globally stable in the white region of the left bottom corner in Figs. 2

Fig. 5. Phase plane showing no interior equilibrium and stability of possible equilibria using isoclines (4) and (5). • - Stable, ○ - Unstable.

Fig. 6. Phase plane showing two interior equilibria and Type Two bi-stability of equilibria using isoclines (4) and (5). • - Stable, ○ - Unstable.
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and 7 while it is locally stable in the blue region of the right top corner
in Figs. 2 and 7 (i.e., βi>1 for both =i p and q); and =p q( *, *) (0, 1) is
globally stable in the white region of the right bottom corner in Figs. 2
and 7 while it is locally stable in the blue region of the right top corner
in Figs. 2 and 7. The outcome of this Amensalistic Interaction leads to no
harm to Ecosystem i but drives Ecosystem j extinct where =i j p q, , and
i≠ j. Mutualistic Interaction: This is the case when the ultimate
productions of both ecosystems in the meta-ecosystem (3) are larger
than their rescaled carrying capacity 1, i.e., (p*, q*)> (1, 1). This could
occur when the meta-ecosystem (3) has either one (i.e., blue regions of
left bottom corner in Figs. 2 and 7) or three interior equilibria (i.e., the
yellow region in Figs. 2 and 7). The outcome of this Mutualistic Inter-
action provides the benefits to each ecosystem such that their produc-
tions are larger than the case without resource exchange. Competitive
Interaction: This is the case when the ultimate productions of both
ecosystems in the meta-ecosystem (3) are smaller than their rescaled
original carrying capacity 1, i.e., (p*, q*)< (1, 1). This could occur
when the meta-ecosystem (3) has one interior equilibrium (i.e., blue
regions of left bottom corner in Figs. 2 and 7). The outcome of this
Competitive Interaction produces some harm to each ecosystem such that
their productions are smaller than the case without resource exchange.

Antagonistic Interaction: This is the case when the production of
one ecosystem is above its rescaled carrying capacity 1 while the other
is below, i.e., (p*, q*) with p*∈ (0, 1) and q*> 1 or (p*, q*) with
q*∈ (0, 1) and p*>1. This could occur when the meta-ecosystem (3)
has either one (i.e., blue regions of left bottom corner in Figs. 2 and 7)
or two interior equilibria (i.e., the red regions in Figs. 2 and 7) or three
interior equilibria (i.e., the yellow region in Figs. 2 and 7). The outcome
of this Antagonistic Interaction produces some harm to one ecosystem
but benefits the other.

Commensalistic Interaction: This is the case when the production
of one ecosystem is above its rescaled carrying capacity 1 while the
other is equal to 1, i.e. (p*, q*) with =p* 1 and q*> 1. This case occurs
when the meta-ecosystem (3) has either one, two or three interior
equilibria (i.e., blue, red or yellow region in Figs. 2 and 7) and under

the condition that = −
⎜ ⎟

−

⎛
⎝
− ⎞

⎠

α 1q
α β

α β β1

p p

p p q

and αp> βp, for any arbitrary

positive αp, βp, βq. The outcome of this Commensalistic Interaction pro-
duces neither benefit nor harm to one ecosystem but benefits the other.
An example when =p* 1 and q*>1 occurs with parameter values
= = = = =γ α β β α1, 2, .4, 0.5, 3p p q q generating equilibria:

=p q( *, *) {(0, 0), (0, 1), (1, 0), (1, 2), (1.0967, 1.9376), (1.7559, 0.7651)}
with =p q( *, *) (1, 2) being locally stable.

Other Interactions: If =p* 1, it is possible that the meta-ecosystem

(3) has the coexistence state with q*< 1. This is the case when the
production of one ecosystem is below its rescaled carrying capacity 1
while the other is equal to 1. An numerical example of the case =p* 1
and q*< 1 occurs with parameter values
= = = = =γ α β β α1, 2, 0.9, 0.5, 0.222,p p q q generating equilibria:

=p q( *, *) {(0, 0), (0, 1), (1, 0), (1, 0.6111)} with =p q( *, *) (1, 0.6111)
being globally stable.

Naturally, we would like to explore how local environment of the
meta-ecosystem (3) that lead to the ultimate production of one eco-
system is above or below its original carrying capacity due to resource
exchange. We have the following corollary from the graphic analysis of
Theorem 3:

Corollary 1. Assume that (p*, q*) is a locally stable interior equilibrium of
the meta-ecosystem (3), then we have the following statements:

1. If βq>1, then the production of Ecosystem p has p*∈ (0, 1). On the

other hand, if < < >
⎜ ⎟
⎛

⎝
+ ⎞

⎠

β 1, 1,q
α
β

4

1

αp
βp

αp
βp

p

p2 then the production of

Ecosystem p is p*>1.
2. If βp>1, then the production of Ecosystem q has q*∈ (0, 1). On the

other hand, if < < >
⎜ ⎟
⎛

⎝
+ ⎞

⎠

β 1, 1,p
α
β

4

1

αq
βq

αq
βq

q

q2 then the production of

Ecosystem q is q*>1.

The production of Ecosystem p would be negatively affected from
the bi-directional resource exchange if = >β K 1q

b
r p
q

q
(i.e., >Kp

r
b
q

q
)

which implies that the large original carrying capacity Kp in Ecosystem
p is greater than the large relative growth rate r

b
q

q
in Ecosystem q.

However, in order for Ecosystem p to benefit from the resource ex-
change, it requires to have a large value of the relative benefit to cost
> 1,α

β
p

p
and the relative benefit for the other ecosystem q should be in

the intermediate range that is constrained by the relative benefit to cost
α
β
p

p
for Ecosystem p, i.e.,

⎛
⎝
+ ⎞

⎠

< <β
4

1
1.

α
β

α
β

q2

p

p

p

p

When the meta-ecosystem (3) experiences the Type Two bi-stability
between one boundary equilibrium and one interior stable coexistence
equilibrium (see the red region of Figs. 2 and 7), then it has Antagonistic
Interaction where the production of one ecosystem is above its rescaled

Fig. 7. Bifurcation diagrams of βp versus βq showing the number of interior equilibria of our proposed model (3). No interior (white), One interior (blue), Two interior
(red), Three interior (yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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carrying capacity 1 while the other is below. More specifically, if the
conditions of the meta-ecosystem (3) having two interior equilibria are
met, i.e.,

⎛
⎝
+ ⎞

⎠

< < < <β β α
4

1
1 ,

α
β

α
β

i j j2

j

j

j

j

then Ecosystem i is persistent so that it could have either the ultimate
production being at its rescaled carrying capacity 1, or a production
that is below its rescaled carrying capacity 1 depending on initial
conditions; and Ecosystem j is approaching to either extinction or a
production that is above its rescaled carrying capacity 1 depending on
initial conditions. For example, in the case of βp<1< βq, the meta-
ecosystem (3) has bi-stability between =p q( *, *) (1, 0) and (p*, q*) with
p*∈ (0, 1), q*> 1. Thus, Ecosystem p does not benefit from the re-
source exchange while Ecosystem q may go to extinct. However, as a
tradeoff, Ecosystem q has an opportunity to have its production beyond
its rescaled carrying capacity under the proper initial conditions.

If the meta-ecosystem (3) experiences the Type Three bi-stability
between two interior stable coexistence equilibria (see the yellow re-
gion in Figs. 2 and 7), then it has either Antagonistic Interaction or
Mutualistic Interaction where at least the production of one ecosystem in
each stable interior equilibrium is beyond its rescaled carrying capacity
1. More specifically, the meta-ecosystem (3) has two stable interior
equilibria p q( *, *)1 1 and p q( *, *)2 2 with >p * 11 and >q* 12 .

The relative benefit and cost of bi-directional resource exchange for
each ecosystem play an important role in its production of the meta-
ecosystem (3). To explore the detailed impacts on production size along
with stability dynamics, we use one dimensional bifurcation diagrams
to investigate the potential effects of the relative benefit βi (e.g., Figs. 8
and 9) and the relative cost αi (e.g., Figs. 10–13) by setting =γ 1.

First, we study the effects of the relative cost of bi-directional re-
source exchange in the following two cases by setting = =α α 3p q :

1. Let = <β 0.2 1q and βp varies in (0,2) (see Fig. 8): This is the case
when Ecosystem q is persistent since its relative cost βq is less than 1.
We can observe that there are three critical points
< < < <β β β0 1p p p

1 2 3 of βp such that:

– ⎜ ⎟∈ ⎛
⎝

⎞
⎠

β β0, ,p p
1
⎜ ⎟
⎛
⎝

⎞
⎠

β β,p p
1 2 and ⎜ ⎟

⎛
⎝

⎞
⎠

β β,p p
2 3 : The meta-ecosystem (3) has a

unique interior globally stable equilibrium (p*, q*)> (1, 1) where
it hasMutualistic Interaction in which both ecosystems benefit from

resource exchange. In the range ⎜ ⎟
⎛
⎝

⎞
⎠

β0, ,p
1 increasing the value of the

relative cost βp for Ecosystem p leads to the decreased production
p* of Ecosystem p and the increased production q* of Ecosystem q.

In the range ⎜ ⎟
⎛
⎝

⎞
⎠

β β, ,p p
1 2 increasing βp leads to the decreased pro-

duction p*i of Ecosystem p for both =i 1, 2; however, increasing βp
can lead to the increased production q*1 and the decreased pro-

duction q*2 of Ecosystem q. In the range ⎜ ⎟
⎛
⎝

⎞
⎠

β β, ,p p
2 3 increasing βp

leads to the decreased productions for both ecosystems p, q.

– ⎜ ⎟∈ ⎛
⎝

⎞
⎠

β β , 1p p
3 : The meta-ecosystem (3) has a unique interior glob-

ally stable equilibrium (p*, q*) where it has Antagonistic Interaction
with p*∈ (0, 1) and q*> 1. In this range, increasing βp leads to
the decreased productions for both ecosystems p, q.

– βp>1: The meta-ecosystem (3) has no interior equilibrium and it
approaches to =p q( *, *) (0, 1) globally, i.e., it has Amensalistic
Interaction where Ecosystem p goes extinct while Ecosystem q
achieves its rescaled carrying capacity 1.

2. Let = >β 1.4 1q and βp varies in (0,2) (see Fig. 9): The meta-eco-
system (3) has local stability at =p q( *, *) (1, 0) since the relative
cost βq of Ecosystem q is greater than 1. We can observe that there is
a critical point < <β0 1p

1 of βp such that:

– ⎜ ⎟∈ ⎛
⎝

⎞
⎠

β β0,p p
1 : The meta-ecosystem (3) has no interior equilibrium

and it approaches to =p q( *, *) (1, 0) globally, i.e., it has Amen-
salistic Interaction where Ecosystem q goes extinct while Ecosystem
p achieves its rescaled original carrying capacity 1.

– ⎜ ⎟∈ ⎛
⎝

⎞
⎠

β β , 1p p
1 : The meta-ecosystem (3) has one stable interior

equilibrium (p*, q*) (i.e., the Type Two bi-stability) where it has
Antagonistic Interaction with p*∈ (0, 1) and q*> 1. In this range,
increasing βp leads to the decreased productions for both ecosys-
tems p, q.

– βp>1: The meta-ecosystem (3) has a unique unstable interior
equilibrium (p*, q*) (i.e., the Type One bi-stability) where it has
Antagonistic Interaction such that one ecosystem goes extinct while
the other achieves its rescaled original carrying capacity 1, i.e.,
both =p q( *, *) (1, 0) and =p q( *, *) (0, 1) are locally stable for the
meta-ecosystem (3).

In summary, we conclude that increasing the value of the relative
cost βp for Ecosystem p can always lead to the decreased production p*
of Ecosystem p; however, depending on local environment conditions,

Fig. 8. Bifurcation diagram showing the stability of interior equilibria of the meta-ecosystem (3) when = = = = ∈γ α α β β1; 3; 0.2, (0, 2)p q q p . Stable; Unstable.
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increasing βp may increase or decrease the production q* of Ecosystem
q.

Now we explore the effects of the relative benefit of bi-directional
resource exchange in the following four cases:

1. = < < =β β0.9 1 1.2q p and =α 1.5q such that > 1α
β
q

q
(see Fig. 10):

This is the case when Ecosystem q is persistent since its relative cost
βq is less than 1 and the meta-ecosystem (3) is locally stable at

=p q( *, *) (0, 1) with the relative cost βp of Ecosystem p being
greater than 1. We can observe that there is a critical point
< <α0 3p

1 of αp such that:
– ∈α α(0, )p p

1 : The meta-ecosystem (3) has no interior equilibrium
and it approaches to =p q( *, *) (0, 1) globally, i.e., it has Amen-
salistic Interaction where Ecosystem p goes extinct while Ecosystem
q achieves its rescaled carrying capacity 1.

– >α αp p
1: The meta-ecosystem (3) has one stable interior equili-

brium (p*, q*) (i.e., the Type Two-bi-stability) where it has An-
tagonistic Interaction with p*> 1 and q*∈ (0, 1). In this range,
increasing the relative benefit αp of resource exchange for Eco-
system p leads to the increased production p* for Ecosystem p and
the decreased production q* for Ecosystems q.

2. = < < =β β.9 1 1.2p q and =α 1.2q such that > 1α
β
q

q
(see Fig. 11):

This is the case when Ecosystem p is persistent, i.e., its relative cost
βp being less than 1 and the meta-ecosystem (3) is locally stable at

=p q( *, *) (1, 0) since the relative cost βq of Ecosystem q is greater
than 1. We can observe that there is a critical point < <α0 3p

1 of αp
such that:
– ∈α α(0, )p p

1 : The meta-ecosystem (3) has one stable interior
equilibrium (p*, q*) (i.e., the Type Two-bi-stability) where it has
Antagonistic Interaction with p*∈ (0, 1) and q*> 1. In this range,
increasing αp leads to the increased production p* for Ecosystem p
and the decreased production q* for Ecosystems q.

– >α αp p
1: The meta-ecosystem (3) has no interior equilibrium and it

approaches to =p q( *, *) (1, 0) globally, i.e., it has Amensalistic
Interaction where Ecosystem q goes extinct while Ecosystem p
achieves its rescaled carrying capacity 1.

3. = = <β β 0.9 1p q and =α 0.5q such that < 1α
β
q

q
(see Fig. 12): This is

the case when the meta-ecosystem (3) is permanent with a unique
interior globally stable equilibrium (p*, q*) since βi<1 for both
=i p q, and < 1α

β
q

q
. We can observe that there is a critical point

< <α0 1p
1 of αp such that:

– ∈α α(0, )p p
1 : The meta-ecosystem (3) has a unique globally stable

interior equilibrium (p*, q*) where it has Competitive Interaction
with p*∈ (0, 1) and q*∈ (0, 1). In this range, increasing αp leads to
the increased production p* for Ecosystem p and the decreased
production q* for Ecosystems q.

– >α αp p
1: The meta-ecosystem (3) has a unique globally stable in-

terior equilibrium (p*, q*) where it has Antagonistic Interaction

Fig. 9. Bifurcation diagram showing the stability of interior equilibria of the meta-ecosystem (3) when = = = = ∈γ α α β β1; 3; 1.4; (0, 2)p q q p . Stable; Unstable.

Fig. 10. Bifurcation diagram showing the stability of interior equilibria of the meta-ecosystem (3) when = = = =γ β β α1; 1.2; 0.9; 1.5p q q and αp∈ (0, 3). Stable;
Unstable.

M.R. Messan et al. Mathematical Biosciences 301 (2018) 167–184

176



with p*>1 and q*∈ (0, 1). In this range, increasing αp leads to
the increased production p* for Ecosystem p and the decreased
production q* for Ecosystems q.

4. = = <β β 0.9 1p q and =α 1.5q such that > 1α
β
q

q
(see Fig. 13): This is

the case when the meta-ecosystem (3) is permanent with either a
unique globally stable interior equilibrium (p*, q*) or two stable
interior equilibria =p q i( *, *), 1, 2i i (i.e., the Type Three bi-stability)
since βi<1 for both =i p q, and > 1α

β
q

q
. We can observe that there

are two critical points < < <α α0 6p p
1 2 of αp such that:

– ∈α α(0, )p p
1 : The meta-ecosystem (3) has a unique globally stable

interior equilibrium (p*, q*) where it has Antagonistic Interaction
with p*∈ (0, 1) and q*>1. In this range, increasing αp leads to
the increased production p* for Ecosystem p and the decreased
production q* for Ecosystems q.

– ∈α α α( , )p p p
1 2 : The meta-ecosystem (3) has two stable interior

equilibria p q( *, *)i i (i.e., the Type Three bi-stability) where it has
Antagonistic Interaction with ∈ >p q* (0, 1); * 11 1 and
> ∈p q* 1; * (0, 1)2 2 . In this range, increasing αp can increase the

production p*i for both =i 1, 2 of Ecosystem p and q*2 for Eco-
system q. However, increasing αp can decrease the production q*1
of Ecosystem q.

– >α αp p
2: The meta-ecosystem (3) has a unique globally stable in-

terior equilibrium (p*, q*) where it has Antagonistic Interaction
with p*>1 and q*∈ (0, 1). In this range, increasing αp can in-
crease the production p* for Ecosystem p and decrease the pro-
duction q* for Ecosystems q.

In summary, we conclude that increasing the value of the relative
benefit αp for Ecosystem p can increase the production p* of Ecosystem
p. Increasing αp can decrease the production q* of Ecosystem q but it
could also increase the production q* in some cases.

5. Discussion

The meta-ecosystem concept has been used to study substantial
consequences of bi-directional resource exchange across ecosystem
boundaries on ecosystem structure and function [11,18,27,37,39,42].
Resource exchange between two adjacent ecosystems, such as terres-
trial and aquatic ecosystems, can act on each other’s habitats through
trophic interactions such as predation, which could have dramatic
impacts on the dynamics of each ecosystem [11,27,37,42]. For ex-
ample, terrestrial invertebrates can make up as much as 50% of the
annual consumption in some fish species and emerging aquatic insects

Fig. 11. Bifurcation diagram showing the stability of interior equilibria of the meta-ecosystem (3) when = = = =γ β β α1; .9; 1.2; 1.2p q q and αp∈ (0, 3). Stable;
Unstable.

Fig. 12. Bifurcation diagram showing the stability of interior equilibria the meta-ecosystem (3) when = = = =γ α β β1; 0.5; 0.9q p q and αp∈ (0, 3). Stable; Unstable.
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can comprise up to 90% of a riparian predator’s diet [3,23,28]. Moti-
vated by this, our study aims to develop a simple meta-ecosystem model
to explore potential dynamical outcomes of bi-directional resource ex-
change through trophic interactions between two adjacent ecosystems
such as terrestrial-aquatic ecosystems.

Our model describes a situation in which each ecosystem directly
facilitates the use of a resource that is otherwise unavailable to the
recipient ecosystem. We assume that the main driver of bi-directional
resource exchange between two ecosystems are species interactions
such as predation and related nutrients crossing ecosystem boundaries
where each ecosystem benefits from the newly available resource but at
a cost of losing resources important for local growth. As a result, each
ecosystem experiences benefits and costs from bi-directional resource
exchange. After rescaling, our analysis implies that our proposed meta-
ecosystem can have rich dynamics due to resource exchange, and the
relative costs and benefits of bi-directional resource exchange of both
ecosystems determine its dynamical outcomes.

Our work proposes a more in depth study of the effects of the in-
teractions of two ecosystems by using one- and two-dimensional bi-
furcations, which shows examples of critical points where increasing or
decreasing the relative benefit of resource exchange can change the
interactions, say, from mutualistic to antagonistic to amensalistic. The
results of Zhang and co-workers [53,56,57] show the possibility of
switching from one kind of inter-specific interaction to another due to
variation in population densities. In our study, we show that the specific
interactions depend on the relative cost and benefit of resource ex-
change. Using two-dimensional bifurcations, we provide regions of
persistence and permanence of the ecosystems, and identify the effects
of the relative benefit and/or cost with respect to the area that provides
decrease (or increase) of extinction of one of the ecosystems and co-
existence of both ecosystems. Using one-dimensional bifurcations, we
are able to capture how the relative cost and benefit that can determine
the production size at the different interactions we present. We also
classify different types of bi-stability exhibited in our model.

In summary, our theoretical results imply: (1) The persistence of an
ecosystem in the meta-ecosystem is determined by its relative cost of bi-
directional resource exchange which below one, the ecosystem is per-
sistent; above one, the other ecosystem goes extinct locally. (2) The
ratio of the relative benefit to cost of resource exchange for each eco-
system contributes greatly on whether the meta-ecosystem has alter-
native stable states (i.e., bi-stability). (3) If the relative costs of bi-di-
rectional resource exchange for both ecosystems are less than 1, then
the meta-ecosystem is permanent with either one or two interior stable
equilibria where the latter case occurs when the relative costs are not
too small and the relative ratio of benefits to costs for both ecosystems

are greater than 1. The case of two interior stable equilibria refers to the
Type Three bi-stability. (4) If the relative costs of bi-directional resource
exchange for both ecosystems are larger than 1, then one of the two
ecosystems in the meta-ecosystem will go extinct, and initial conditions
determine which ecosystem goes extinct (Type One bi-stability). (5) If
the relative cost of resource exchange for one ecosystem is less than 1
while the other one is greater than 1. Then the meta-ecosystem either
has one ecosystem going extinct globally and the other ecosystem ap-
proaching its original carrying capacity; or experiences the Type Two bi-
stability where both ecosystems can co-exist or one of the two ecosys-
tems goes extinct locally depending initial conditions. Although each
ecosystem acts as a donor and recipient, the case of the meta-ecosystem
having the persistence of one ecosystem and the global extinction of the
other can be analog to the Competition Exclusion scenario of the tradi-
tional Lotka–Volterra two species competition model. Also, numerical
results showed that increasing (Decreasing) values of the relative ben-
efit of bi-directional resource exchange for one ecosystem can poten-
tially increase (compress) the complexity of the dynamics of the meta-
ecosystem by generating (eliminating) alternative states (i.e., the Type
Two and Type Three bi-stability) and promote (suppress) the survivor-
ship of this ecosystem.

In addition to the impacts on ecological communities, bi-directional
resource exchange between two ecosystem can affect their productions
tremendously. Two ecosystems of the meta-ecosystem can experience
Amensalistic Interaction, Mutualistic Interaction, Competitive
Interaction, Antagonistic Interaction, Commensalistic Interaction,
or the combinations of these interactions when the meta-ecosystem has
alternative stable states, depending on their relative benefits and costs.
In summary, Amensalistic Interaction emerges when one ecosystem goes
extinct while the other achieves its rescaled original carrying capacity
1, occurs when at least one ecosystem has its relative cost of resource
exchange less than 1. For example, the meta-ecosystem has the Type
One-bi-stability or experiences Competition Exclusion. Competitive
Interaction emerges when the productions of both ecosystems are
smaller than their rescaled original carrying capacity 1, only occurs
when the meta-ecosystem is permanent with a unique coexistence
equilibrium. Antagonistic Interaction can occur when the meta-eco-
system has a unique coexistence equilibrium, or the Type Two bi-sta-
bility, or the Type Three bi-stability. However, if the meta-ecosystem has
the Type Two bi-stability, then it definitely experiences Antagonistic
Interaction when one ecosystem achieves an equilibrium biomass re-
source stock greater than its scaled carrying capacity and the other
reaches an equilibrium below this level closed to exhaustion of re-
sources (see Fig. 6). This scenario is similar to the hypothesis of Mar-
galef [29] that mature forests exploit earlier successional stages due to

Fig. 13. Bifurcation diagram showing the stability of interior equilibria of the meta-ecosystem (3) when = = = =γ α β β1; 1.5; 0.9.q p q Stable; Unstable.
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foraging by consumers from late-successional ecosystems [27]. It fol-
lows that mobile consumers can reciprocally transport nutrients be-
tween the ecosystems (e.g. feeding in one and defecating (or dying) in
the other [46]. For instance, the quality of forage differs between
ecosystems but the consumer feeds and defecates in each equally. Over
time, differences in forage quality might equate to one ecosystem
paying a higher cost of herbivory (i.e. exporting higher quality and
importing lower quality) and perpetually keeping the ecosystem with
the higher cost of resource loss in an early successional stage. Priority
effects on equilibrium dynamics may need further support to this in-
terpretation. Currently it is unclear whether material transfers are great
enough to drive successional change [27]. Moreover, Mutualistic Inter-
action emerges when the productions of both ecosystems being greater
than 1, can only occur when the meta-ecosystem is permanent with the
Type Three bi-stability under proper conditions. In our model, we found
that this scenario occurs when both ecosystems have high relative ratios
of benefit to cost and have low relative costs for both ecosystems (see
Fig. 3a). This type of interaction may underlie observations of over-
yielding present in diverse forests relative to monocultures [44] and
could result from ecosystems utilizing different forms of the same re-
source or from the redistribution of resources among trees limited by
different nutrients. Sapijanskas et al. [44] recently proposed that litter
exchange was responsible for over yielding (i.e. higher community level
yields in mixtures relative to monocultures) in tropical forests and
Pretzsch and Schütze [40] documented facilitation between Norway
spruce and European. Lastly, Wood et al. [54] found trees responded to
leaf litter nutrients by increasing leaf production within months of
addition, but did not provide information regarding the effects of re-
ciprocal litter exchange. In addition, positive effects of litter are typi-
cally observed after longer periods of time (i.e. 15 years [55]).

Furthermore, due to a nonlinear relationship in the trade-off of
benefits and costs between the exchange of resources, our model sug-
gests that increasing the value of the relative cost for an ecosystem can
always decrease its production (see Figs. 8 and 9); however, depending
on the local environment, it may increase or decrease the production of
the other ecosystem. If we increase the value of the relative benefit for
one ecosystem, then the ecosystem has an increased production; how-
ever, the other ecosystem may have decreased production most cases
but increased production in some cases (see Figs. 10–13). For instance,
the latter can occur when the relative cost of bi-directional resource
exchange of both ecosystems are less than one. In this case, we have
αi> βi, i.e., > ,a

b
K
r

i
i

i
i

for = ≠i j p q i j, , , , which implies that the ratio of
the quantity of resource received from donor ecosystem to the depletion
rate of resources must be greater than the ratio of its carrying capacity
to the intrinsic growth rate of biomass. Other interesting outcomes in
our model are shown by increasing the carrying capacity Ki of eco-
system i. This will increase the relative benefits causing a decrease of
the relative benefits for ecosystem i. The exchange of resources, in this
case favoring ecosystem j, has a cost. Therefore, the parameter de-
scribing the cost of resource exchange increases as Ki increases. Also, we
notice that the ratio for ecosystem j is not affected by the increase of Ki.

This is explained by the fact that ecosystem j is undergoing an equal
proportion of the relative benefits and costs due to the resource ex-
change, so the ecosystem j is not affected by the change of Ki.

Despite the theoretical results presented here seem to be supported
by empirical evaluations, we make a number of simplified assumptions.
First, our meta-ecosystem is closed to the inputs of external inputs (e.g.
atmospheric N) and losses (e.g. recalcitrant litter; [31]), processes
which can have an important role in nutrient availability in a local
ecosystem. Secondly, our model assumes resources needed to be pro-
cessed (conditioned) by the donor ecosystem before they are made
available to the recipient ecosystem. More specifically, we assume that
resource exchange is mainly driven by the trophic interactions. How-
ever, this simplified assumption may not be completely unreasonable.
For instance, leaf litter conditioning in the stream ecosystem may affect
its decomposition after deposition in the riparian ecosystem by a flood.
Similarly, terrestrial insects fallen into aquatic environments are
sometimes considered more profitable for consumers than in situ prey
[3]. Further, in our model, resources flow freely between ecosystems
(i.e. no preferential movement due to wind or topography or con-
centration gradients resources). In reality, there may be a preferential
movement of resources between ecosystems. For instance, litter typi-
cally depend on the predominant wind or water direction, downslope
topography and litter characteristics (e.g. leaf geometry and specific
weight; [9,25,35,47]). Lastly, there is no distinction in factors gov-
erning the transformation of a resource within a donor or its use in
recipient ecosystem (e.g. decomposition). Instead, the model aggregates
these effects into general costs and benefits for analytical tractability.
The abstractness of the cost-benefit terms in the model may, to say the
least, be difficult to measure empirically and further discrimination
between the many, complex and possibly interacting factors may be
necessary to evaluate these theoretical results empirically.

Although this is a highly simplified model of bi-directional resource
exchanges, it seems to be supported by a number of empirical ob-
servations (e.g. [9,45,55]). It is becoming increasingly known that the
exchange of resources between ecosystems is important and the eco-
system function and structure cannot be separated from the context in
which takes place. Investigating the potential responses of the biomass
resource stocks in two ecosystems using a theoretical approach allowed
us to drastically reduce the complexity found in nature and therefore
provides an acceptable foundation on which to base future theoretical
evaluations. Integrating theoretical and empirical ecology is a fruitful
area of research and a necessary step towards a complete understanding
of spatial ecosystem ecology [27].
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Appendix A. Theoretical proofs

A1. Rescaling

Rescaling Model (1) by letting = = =p q τ r t, , ,P
K

Q
K pp q
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Proof of Theorem 1. Note that

′ = ′ == =p q0, 0,p q0 0

hence according to Theorem A.4 (p.423) in Thieme (2003), we conclude that the system (3) is positively invariant in +
2 . It follows that the set

∈ =+p q p q{( , ), : , 0}2 is invariant. Consider the following:
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Then, by the property of positive invariance we have the following cases:
Case 1: αp≤ βp:
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Case 2: αp> βp:
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This shows that system (3) is bounded in +
2 .

Next, we show system (3) has only equilibrium dynamics. Define =p qΦ( , ) pq
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This shows that system (3) has no limit cycle (i.e. only equilibrium dynamics) according to Dulac–Bendixson Criterion (Theorem A.12 on [48]). □

Proof of Theorem 2. According to Theorem 1, we know that Model (3) is attracted to a compact set C in +
2 . First, we focus on the persistence

conditions for y. Notice that when =q 0, = −p p(1 )dp
dt . Then we conclude that the ω-limit set is (1,0). Therefore, we have
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Since > 0dq
q dt if and only if βq<1, according to Theorem 2.5 of Hutson [19], we can conclude that q is persistent if βq<1.

Now, when =p 0, = −γq q[1 ],dq
dt then the ω-limit set in this case is (0,1). Therefore, we have
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Since > 0dp
p dt if and only if βp<1, according to Theorem 2.5 of Hutson [19], we can conclude that p is persistent if βp<1. □

Proof of Theorem 3. It is clear that for all positive values of the parameters, Model (3) always has three boundary equilibria:
= =E E(0, 0), (0, 1),00 01 and =E (1, 0)10 .
The local stability of each of the boundary equilibria follow from the analysis of the Jacobian matrix:
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For each of the three equilibria we have:

1. E00 – The Jacobian matrix associated with the extinction equilibrium is:

⎜ ⎟= ⎛
⎝

⎞
⎠

J γ(0, 0) 1 0
0 ,
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with eigenvalues =λ 11 and =λ γ2 . Therefore, we conclude E00 is always unstable.
2. E01 – The Jacobian matrix associated with this equilibrium is:

= ⎛

⎝
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− −
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⎠
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β
γ α β γ
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1 0
( )

.p
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Notice that + = − + − <λ λ γ β(1 ) 0p1 2 if and only if βp>1 and = − − >λ λ γ β(1 ) 0p1 2 if and only if βp>1. Hence this boundary equilibria is
stable whenever βp>1.

3. E10 – The Jacobian matrix associated with this equilibrium is:
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Notice that + = − + − <λ λ γ β1 (1 ) 0q1 2 if and only if βq>1 and = − − >λ λ γ β(1 ) 0q1 2 iff βq>1 Hence this boundary equilibria is stable
whenever βq>1.

Now we show the sufficient conditions of the existence and the number of interior equilibria of Model (3). If (p*, q*) is an interior equilibrium,
then it satisfies the following two quadratic equations:
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The expressions of =M i p q, ,i imply that the quadratic equation f(p) has Mq<0 if < 1α
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. Similarly, we can conclude that the

quadratic equation g(q) has Mp<0 if < 1α
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β
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. Therefore, according to the geometry of =q f p( ) and =p g q( ) (see Figure 6–4),

we can conclude the following:

1. Two interior equilibria (see Fig. 6): Model (3) has two interior equilibria if the following inequalities hold
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for either = =i p j q, (see Fig. 6a) or = =i q j p, (see Fig. 6b).
2. Three interior equilibria (see Fig. 4): Model (3) has three interior equilibria if the following inequalities hold
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On the other hand, if (p*, q*) is an interior equilibrium, then it satisfies the following equation subject to <p*
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= >

= −

= − + − −
= + − − −
= + −

c α β α β

c α β α β β α

c α β α β α β α β α β
c β α α β α β
c α β

0

2 ( )

( ) ( 2 )
1 ( )( 2 )
(1 )( 1)

p p q q

p p q q p p

q q p p p p q q q q

p p q q q q

q q

4
2 2

3

2
2

1

0

This implies the following:

1. c3> 0 if βp> αp
2. c2> 0 if > + ⇔ < +α β α β β2q q q q q

α
α1 2
q

q
or the following inequalities hold

>
+

−
+ −

>β
α
α

α β α β
α β β α β α1 2

and
( )

( 2 )
1.q

q

q

q q p p

p p q q q q

2

3. c1> 0 if βp> αp and < +βq
α
α1 2
q

q
or the following inequalities hold

> >
+

<
+

+
−

β α β
α
α

β
α

α
,

1 2
and

1 2
.p p q

q

q
q

q β α

q

1

p p

4. c0> 0 if βq>1 while c0< 0 when βq<1.

Therefore, we could have the following conclusions

1. No interior equilibrium (see Fig. 5): Model (3) has no interior equilibrium when ci>0 for all =i 0, 1, 2, 3, 4, e.g., if the following inequalities
hold

< < <
+

+

−
+ −

>

−α
β

β
α

α

α β α β
α β β α β α

1, 1
1 2

and
( )

( 2 )
1.

p

p
q

q β α

q

q q p p

p p q q q q

1

2

p p

2. One interior equilibrium (see Fig. 3): Model (3) has a unique interior equilibrium when c0< 0 and ci>0 for all =i 1, 2, 3, 4, e.g., if
< < +β1,α

β q
α
α1 2

p

p

q

q
and the following inequalities holds

< <

⇒ = + − + − + − >=

β
α
β

F q α β α β α β β α

1 and 1

( ) (1 )(1 )( (1 )(1 ) ) 0.

p
q

q

q p p q q p p q q1

Similarly, due to the symmetric properties of f(p) and g(q), we could have the conclusions on the cases of no or one interior equilibrium by
looking at the equations in terms of p:

= − ∘ = + + + +G p p g f p d p d p d p d p d( ) ( )( ) 4
4

3
3

2
2

1 0

where:

= >

= −

= − + − −
= + − − +
= + −

d α β α β

d α β α β β α

d α β α β α β α β α β α β
d α β β α α β
d α β

0

2 ( )

( ) ( ) 2
1 ( )( 2 )
(1 )( 1).

q q p p

q q p p q q

p p q q q q p p q q p p

q q p p p p

p p

4
2 2

3

2
2

1

0

Therefore, combined the equations of G(p) and F(q), we have the following conclusions

1. No interior equilibrium (see Fig. 5): Model (3) has no interior equilibrium if the following inequalities hold

< < <
+

+
−

+ −
>−α

β
β

α

α
α β α β

α β β α β α
1, 1

1 2
and

( )
( 2 )

1i

i
j

j β α

j

j j i i

i i j j j j

1 2
i i

for = =i p j q, or = =i q j p, .
2. One interior equilibrium (see Fig. 3a): Model (3) has a unique interior equilibrium if < <β1, 1α

β i
i

i
for both =i p q, and
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1 2
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□

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.mbs.2018.05.006.
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