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INTERACTIONS BETWEEN LEAF-CUTTER ANTS AND FUNGUS

GARDEN: EFFECTS OF DIVISION OF LABOR, AGE POLYETHISM,

AND EGG CANNIBALISM

Marisabel Rodriguez Rodriguez1, Nathan Smith2,
Tin Phan1, Jonathan Woodbury1 and Yun Kang3,*

Abstract. Division of labor (DOL), age polyethism, and egg cannibalism all play roles in shaping
colony-level population dynamics in social insect colonies. The ways in which these mechanisms interact
with one another to shape population dynamics is not currently understood. In this study, we exam-
ine how these mechanisms influence population dynamics in colonies of fungus-gardening leaf-cutter
ants by developing and studying two sets of models: (1) We study age polyethism contribution to
the dynamics of this multi-species interaction model which incorporates mechanisms of DOL; (2) We
explore effects of egg cannibalism in colony dynamics and understand how to model such social conflict
behavior realistically using different functional responses. Our results suggest that: (a) Age polyethism
is important to keep stable population dynamics. (b) Large maturation rate and mortality rate of inside
workers induce colony death. (c) Small enough egg cannibalism rate benefits adult worker ant’s growth
and (or) development, large proportion of ants performing a given task can promote colony survival,
and too large egg cannibalism rate can lead to colony’s death. (d) Increasing energy invested on brood
care and (or) the conversion rate between fungus and ants could induce oscillatory dynamics in models
with cannibalism.
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1. Introduction

Eusocial insects represent some of the most advanced social systems and are characterized by having cooper-
ative brood care, an overlap of at least two generations in the same colony, and coexistence of reproductive and
non-reproductive members [15]. Leaf-cutter ants are considered by many to represent one of the pinnacles of
social evolution. They live in colonies that can reach population sizes in the millions, have a number of morpho-
logically distinct subclasses, build nests over 30m wide, and are the greatest agricultural pest of the neotropics,
with mature colonies devouring hundreds of pounds of leaves every year. The huge size of the colonies and
success of the species is facilitated by their symbiosis with a fungus that they grow as their primary food source.
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The ants do not eat the pieces of fresh vegetation that they collect from the plants surrounding the colony, but
instead provide them to their fungal symbiont which they consume in turn. They exhibit a complex system
of division of labor by which task allocation depends on the age of the individual or on physical features, or
on both [15]. Division of labor (DOL) in social insects, as defined by [11], “describes a process in which one
individual repeatedly performs a task while another individual repeatedly performs another”.

Mechanisms of DOL include size polymorphism, age polyethism, variation in response thresholds, and learning
[1]. Some of the tasks performed by non-reproductive individuals include caring for the queen and brood, nest
construction, foraging for resources, and cleaning and defending the nest, which have the overall purpose of
increasing the colony’s success [15, 42]. Age polyethism plays an important role in shaping division of labor
in leaf-cutter ant colonies [4, 38]. This phenomenon is observed in many social insects in which individuals
perform different tasks as they grow older [25, 39]. For example, workers in the smallest physical class take care
of brood and the fungus inside the nest when they are young [4, 36], and can be seen riding on pieces of leaves
being carried back to the nest by foragers when they are older, where they both protect the forager carrying
the leaf from parasitic phorid flies and begin cleaning and processing the leaf fragment [4, 10, 12, 20, 36, 37].
Older workers from all size classes are also more likely to participate in the dangerous behavior of defending the
nest [15]. Therefore, for social insect colonies with age polyethism, the tasks performed by individuals within
a colony changes as they mature [5]. One of the interesting questions is how age polyethism in a social insect
colony contributes to population dynamic’s including the distribution of workers performing different tasks.

Egg cannibalism behavior has been regularly observed in social insect colonies, including leaf-cutter ants and
honeybees [22, 29, 41], and is suggested to be a selfish behavior influenced by environmental factors such as
shortage of food resources [21, 27, 29], and individual traits such as sex [34]. Recent studies have shown that
egg cannibalism is an adaptive life strategy that can increase growth and developmental rates [19, 23, 28, 33],
adult body size [24, 33], improve colony survival [19, 28, 33], and reduce competition within the colony [28, 33,
40]. There is a fair amount of literature devoted to the study of cannibalism behavior in both ecological and
evolutionary settings (see [7–9, 19]).

In leaf-cutter ants, egg cannibalism behavior plays an important role during the incipient stage of the leaf-
cutter colony life cycle. When the first workers eclose in the new colony started by a recently-mated queen, the
queen produces large malformed trophic eggs, formed by fusing multiple eggs in the ovariole, and the workers
feed them to developing larvae to reduce consumption of the still-small fungus garden. The production of these
trophic eggs is crucial to the survival of the colony until it reaches the size required for stable colony growth [18].
One interesting question is whether the benefit of cannibalism behavior is reflected in a linear energy transfer
from victim to consumer or in a nonlinear fashion.

A number of experimental studies have examined the respective roles of egg cannibalism [19, 23, 24, 28, 33, 40],
division of labor [1], and age polyethism [4, 25, 38, 39] in shaping population dynamics of social insects. However,
it has been difficult to study how these factors interact with one another to shape overall colony-level population
dynamics. Increasing our understanding of how these factors individually shape population dynamics, how the
effects of the factors modulate the influence of one another, and their cumulative effects will be of great value
to social insect scientists. In this paper we will use a mathematical modeling approach to facilitate study of the
effects of these potentially interacting variables on colony-level population dynamics.

Mathematical models have been used to understand population dynamics observed in natural environments.
For instance, [16] developed a simple model to describe the colony dynamics from regulatory effects of feedback
mechanisms such as brood production in eusocial paper wasps. Other models [17, 31, 32] have studied different
mechanisms of division of labor. In [17, 31], they focused on studying the regulation of task partitioning of
hunting behavior in a Ponerine ant colony and in construction behavior in social wasps, respectively. Both
[17, 31] used a Stock and Flow modeling framework to develop a system of first-order ODEs explaining that
task partitioning of hunting behavior and nest construction, can be done by regulation. In [32], an ODE model
approach was used to study the task regulation of collective behavior in honeybees predicting an adaptive
strategy for both bees and plants. Also, [30] proposed a model to study the population and resource dynamics
of a honeybee colony emphasizing pollen supply and brood cannibalism. However, few models that could be
applied to the interactions between leaf-cutter ants and their fungus garden have been produced (but see [18]).
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The model proposed by [18] describes the mutualism interactions of leaf-cutter ants and their fungus with
an implicit division of labor, which provides global dynamics suggesting that division of labor among worker
ants is an important factor which determines survival and growth, or death of leaf-cutter ants colonies and their
fungus garden. We adopt the modeling approach of [18] to investigate the effects of age polyethism and egg
cannibalism on colony population dynamics. More specifically, the main purpose of this paper is to learn the
possible colony dynamic outcomes by studying the effects of the explicit division of labor through the subdivision
of the worker ants into two task groups that perform tasks according to their age such as tending the fungus
garden and collecting leaves. We also explore how the colony may benefit from egg cannibalism behavior in
linear or nonlinear fashions.

2. Derivations of models

Kang et al. [18] proposed the following model (2.1) to study an incipient colony growth model for leaf-cutter
ants and their fungus garden based on simple density-dependent growth and death rates coupled with a fungus
growth model which can be described by a generalized Michaelis-Menten equation of enzyme kinetics [18]:

F ′(t) =
rfaA

2

b+ aA2
F − dfF 2 − rcAF

A′(t) = raAF − daA2, (2.1)

where rf is the maximum growth rate of the fungus; ra = crf with c being the conversion rate between fungus
and ants; b is the half-saturation constant; and da, df is the mortality rate of ants and the fungus, respectively.
The parameter a = p2q(1− q) measures implicit division of labor with p being the portion of the worker biomass
of A(t) performing an inside colony task such as brood care, and q being the portion of energy of each worker
performing an outside colony task such as foraging. The ecological assumptions of (2.1) are listed as follows:

(1) The numerical response function for ants is the Holling Type I function, i.e., fungus biomass F multiplied
by a constant number ra. In addition, we assume that ants suffer from density-dependent mortality due
to energy consumed by foraging for leaves and taking care of the larvae and fungus garden, which will
modify population growth through density-dependent self-limitation [14].

(2) The numerical response of fungus to ants is a Holling Type III function aA2

b+aA2 by applying the concept
of the kinetics of functional response [26]. Moreover, the fungus suffers from density-dependent mortality
due to self-limiting [14].

In the following subsections, we provide detailed model derivations and assumptions of the following two sets
of models based on the modeling approach of (2.1) [18]:

(1) We derive two models with division of labor: Leaf-cutter ants and their fungus garden interaction models
with versus without age polyethism.

(2) We derive two models with egg cannibalism behavior in the interactions of leaf-cutter ants and their
fungus garden: (1) Consumption of eggs leads to the energy increasing linearly for consumer; and (2)
Consumption of eggs decreases the mortality of the consumer in a nonlinear fashion.

2.1. Leaf-cutter ants and fungus garden interaction models with division of labor

Let F (t) represent the biomass of fungus, and A(t) = Ai(t) + Ao(t) be the total biomass of workers in a
colony where Ai(t) is the biomass of ants working inside the colony, and Ao(t) is the biomass of ants working
outside the colony at any time t, respectively. We propose the following system of nonlinear differential equations
describing the biomass rate of change of two task groups of leaf-cutter ants and their fungus with their related
age polyethism effect as model (2.2). We assume that ants working inside the colony Ai will age into Ao to
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perform more risky tasks outside of the colony with maturation rate β.

F ′(t) =

[
rfAiAo
b+AiAo

− dfF − riAi − roAo
]
F

A′i(t) = ciriAiF − βAi − diAi(Ai +Ao)

A′o(t) = coroAoF + βAi − doAo(Ai +Ao) (2.2)

The ecological assumptions of the leaf-cutter ants colony’s dynamics of (2.2) are listed as follow:

1. Biomass of fungus F (t):
• F (t) can only increase if there are ants tending the garden inside the colony and ants collecting leaves

outside the colony, hence its growth will be a product thereof, taking into account the maximum growth
rate of the fungus, rf . By the kinetics of functional response, we can describe the response of the fungus

as a Holling type III functional response,
rfAiAo

b+AiAo
where b is the half saturation constant.

• F (t) decreases due to natural mortality and consumption by ants, with df as the death rate of fungus,
and ri and ro as the rate of consumption by ants working inside and outside, respectively.

Thus, the dynamics of the fungus biomass F (t) is described by the following equation:

F ′(t) =

[
rfAiAo
b+AiAo

− dfF − riAi − roAo
]
F.

2. Biomass of ants working inside and outside the colony, Ai(t) and Ao(t):
• Ai(t) and Ao(t) increase in proportion to the biomass of fungus and their own biomass according to

the rate of consumption (ri, ro respectively) and the rate at which they can convert the biomass of
consumed fungus to their own biomass (ci, co respectively).
• Ai(t) and Ao(t) decreases due to density dependent mortality, i.e. the death rate of each of the task

groups increases when the total population is too large and individuals are competing for space or
resources.
• We consider a maturation rate of ants working inside the colony βAi. We assume that ants working

inside the colony leave this task group at a per-capita rate β.

In summary, model (2.2) has explicit division of labor that is measured by the population of inside colony
workers Ai and outside colony workers Ao. In our model we assume that age polyethism is an additional DOL
mechanism which includes the fact that younger workers Ai performing inside colony task will age into older
workers Ao performing outside colony task at a rate of β. We aim to compare the dynamical outcomes of model
(2.2) for β = 0 and β > 0 in order to explore the impacts of age polyethism described by the term βAi. We also
compare dynamics of the original model (2.1) to model (2.2) to study the effects of explicit DOL.

2.2. Derivation of models with egg cannibalism in leaf-cutter ants.

Let F (t) be the total biomass of fungus as time t, and E(t)+A(t) denote the total biomass of a focal colony
of leaf-cutter ants at time t, where E(t) represents the egg population biomass that can be cannibalized by A(t)
at time t, and A(t) represents the population biomass of larvae and adult workers that may have cannibalistic
behavior at time t. We propose the following sets of nonlinear equations describing a two-stage population model
of leaf-cutter ants with egg cannibalism behavior and implicit DOL:

F ′(t) = F

[
rfaA

2

b+ aA2
− dfF − rcA

]
E′(t) = p1raAF − αAE − βE
A′(t) = (1− p1)raAF + βE + c1αAE − daA2 (2.3)
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F ′(t) = F

[
rfaA

2

b+ aA2
− dfF − rcA

]
E′(t) = p1raAF − αAE − βE

A′(t) = (1− p1)raAF + βE − daA
2

1 + c2αE
(2.4)

Model (2.3) describes the utilization of egg cannibalism leading to the growth benefit of A due to the linear
energy transformation, while the model (2.4) describes the utilization of egg cannibalism resulting in reduced
mortality rate of A, and thus increase the lifespan of A. The benefits of egg cannibalism are modeled as nonlinear
effects in the model (2.4). The detailed ecological assumptions for these models are described below.

First, the derivations of the biomass fungus F in both model (2.3) and (2.4) follow the same assumptions in
the original model (2.1) studied in [18]. We also assume that the reproductive division of labor results in the
ratio of energy gained through consuming fungus being p1 ∈ [0, 1] for the colony reproduction investment, i.e.,
the colony invests p1raAF in reproduction and (1− p1)raAF in the growth of A-class. We also assume that egg
population E(t) has no natural death but can only die through cannibalism by the A-class or mature into A-
class. Egg cannibalism is modeled with the Holling Type I functional response αAE, where α is the cannibalism
rate; E(t) matures into the A-class at the rate of βE. Thus, the population dynamics of E is described with
the following equation:

E′(t) = p1raAF − αAE − βE.

Regarding the population of A-class, this increases through the energy gained by consuming fungus (1−p1)raAF
and the maturation from E-class βE.

• In model (2.3), A(t) can increase linearly its population/biomass by cannibalizing the egg population at
a rate c1αAE, where c1 ∈ (0, 1) is the conversion efficiency between ants and eggs.
• In model (2.4), consuming eggs at a rate αAE, A(t) mortality rate daA

2 is decreased with the functional
response 1

1+c2αE
, which represents the benefit obtained from cannibalism. The parameter c2 is a coefficient

describing the functional response of survivability to an increasing presence of eggs which increases the
number of individuals cannibalized.

The assumptions above imply that, if there is no egg cannibalism (i.e. α = 0), model (2.3) and (2.4) are reduced
to the following system:

F ′(t) = F

[
rfaA

2

b+ aA2
− dfF − rcA

]
E′(t) = p1raAF − βE
A′(t) = (1− p1)raAF + βE − daA2. (2.5)

We aim to compare the dynamical outcomes of model (2.5) without egg cannibalism to models (2.3) and (2.4)
with cannibalism to explore how may cannibalism behavior alter the colony dynamics; and compare equilibria
dynamics of model (2.3) to (2.4) to investigate how different modeling approaches of cannibalism’s benefits
could result in different outcomes.
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3. Mathematical analysis

First, we provide the following theorem regarding the basic dynamic properties of the proposed models (2.2),
(2.3) and (2.4) as follows:

Theorem 3.1 (Positive invariance and boundedness). The systems (2.2)–(2.4) are all positive invariant in R3
+.

More specifically, every trajectory of model (2.2) is attracted to a compact set C =
[
0,

rf
df

]
×
[
0,

c rf
d df

]
; and every

trajectory of models (2.3) and (2.4) is attracted to a compact set D =
[
0,

rf
df

]
× [0,M3].

Models (2.2)–(2.4) are biologically well-defined, i.e. the populations’ biomass is always positive and bounded.
In addition, the extinction equilibrium E0 = (0, 0, 0) always exists for all models.

3.1. Effects of age polyethism

To determine the effects of age polyethism, we identify the conditions by which the colony of leaf-cutter ants
can survive or perish. We do this by analyzing interior equilibria for the system (2.2) when β = 0 and β > 0.
We define an interior equilibria in our model as a fix-point of the form (F ∗, E∗, A∗) where F ∗, E∗, A∗ > 0. Let

κ =
coro
ciri

be the relative growth rate of workers performing inside colony tasks to workers performing inside colony tasks.
Let

A∗i = A∗o

[
(do − diκ)A∗o − βκ
β − (do − diκ)A∗o

]
,

which depends on the positive solutions of the following nullcline equation:

g2(Ao) = a4A
4
o + a3A

3
o + a2A

2
o + a1Ao + a0. (3.1)

The complete expression for the constants ai, for i = 0, ..., 4 are in the appendix.
The following theorem provides conditions for existence of interior equilibria for both considered cases of

(2.2) (i.e., β = 0 and β > 0).

Theorem 3.2 (Existence of equilibria). Model (2.2) always have the extinction equilibrium E0 = (0, 0, 0) which
is always locally asymptotically stable. In addition, model (2.2) with β = 0 has interior equilibria if and only if
κ = do

di
. On the other hand, model (2.2) with β > 0 has an interior equilibrium if do

di
> κ and does not have an

interior equilibria if do
di
< κ.

3.1.1. Numerical simulations

According to Theorem 3.2 and numerical simulations displayed in Figure 1, when κ = do
di

, Model (2.2) without
age polyethism (i.e. β = 0) has an attractor that consists of a line of equilibria where initial condition plays
an important role in determining which equilibrium converges to. When the condition does not satisfy, Model
(2.2) with β = 0 has only the extinction equilibrium.

The inclusion of age polyethism (i.e. β > 0) in model (2.2), gives us unique solutions as opposed to when
β = 0 with either infinitely many solutions or non-existent positive solutions. Figure 2, shows the possible
number of interior equilibria that model (2.2) with β > 0 can have and their stability. Fixing parameters
rf = 0.7; b = 0.002; ci = 0.5; co = 0.3; df = 0.2; di = 0.1; do = 0.2; ri = 0.15; ro = 0.2 and varying β, which
denotes the transition and maturation rate from inside worker to outside worker, we can see the effect of this
parameter in the biomass of fungus, inside the colony workers, and outside the colony workers. Figure 2a shows
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Figure 1. Time series solution for model (2.2) with parameters rf = 0.7, b = 0.002, df =

0.2, di = 0.01, do = 0.0095, ci = co = 0.7, ro = 0.06 with ri = dicoro
doci

, choosing different initial
conditions.

Figure 2. 1D bifurcation diagrams for model (2.2) studying the effect of β on biomass of
fungus and worker ants where rf = 0.7; b = 0.002; ci = 0.5; co = 0.3; df = 0.2; di = 0.1; do =
0.2; ri = 0.15; ro = 0.2. (Blue: stable and green: unstable interior equilibria.)

that as β increases, the total biomass of fungus is benefited by its increase. This could imply that as more
inside worker ants transition into outside workers (i.e. workers which cut, collect, and bring back leaves to the
colony), the biomass of fungus increases and benefits from Ao effort. Also, as β increases, the biomass of the
population of ants working inside the colony decreases (see Fig. 2b), while the biomass of the population of ants
working outside increases (see Fig. 2c). However, too high of a maturation rate could affect the whole colony
and both species (fungus and ants) by inducing colony’s death. An explanation of this effect is that when inside
the colony workers transition very quickly to outside workers, they are now exposed to greater risks outside the
nest, resulting in increased mortality. At the same time, inside the nest, the production of new workers may not
be fast enough to maintain a satisfactory number of inside workers need to contribute to the efforts to keep their
fungus cultivar alive.

Figure 3 is a one-dimensional bifurcation of the death rate of outside workers to inside workers ratio showing
coexistence and stability when do

di
> κ. We also notice that as do

di
increases, the biomass of fungus and the task

group of ants working outside the colony decreases, while the biomass of the task group of ants working inside
the colony increases.

Figure 4 is a two-dimensional bifurcation diagram of do ∈ (0, 1) and di ∈ (0, 1) with different levels of mat-
uration rate β by setting ci = co = 0.4; ri = ro = 0.2, i.e. both task groups have the same consumption rate of
fungus and conversion rate of fungus into their own biomass. When the maturation rate is small, too large di
can make the colony extinct. If the maturation rate is larger (e.g. β = 0.1), then the colony can go extinct if di
is not large enough. In general if di > do the colony of leaf-cutter ants can go extinct, otherwise it persists.
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Figure 3. 1D bifurcation of the ratio do
di

with parameters rf = 0.7, b = 0.002, df = 0.2, ci =
co = 0.4, ro = 0.25, ri = 0.2.

Figure 4. 2D bifurcation to study the effect of di and do on the existence of interior equilibria
for model (2.2). ci = co = 0.4; ri = 0.2; ro = 0.25. (Area in black denotes existence of interior
equilibria and white represents no interior.)

Figure 5 shows the effects of the conversion rate of fungus into the biomass of worker ants. Here, we have
co ∈ (0, 1) versus ci ∈ (0, 1) by setting β = 0.02, ri = 0.2, ro = 0.25 and varying the death rate of each of the
task groups of worker ants. Consider di < do, when di is really small (see Fig. 5a), then when the conversion
rate ci of the worker ants belonging to the task group Ai is really small and for any value of co (white area
in Fig. 5a), the colony cannot survive. Now, if di increases but still less than do, the colony cannot survive for
large co and small to medium ci (see Fig. 5b). However, small co and large c1 can promote coexistence of the
two task groups and fungus.

3.2. Egg cannibalism

Next we investigate the effects of egg cannibalism α in both models (2.3) and (2.4). If there is no egg cannibalism
(i.e. α = 0), system (2.3) and (2.4) reduces to system (2.5).

Theorem 3.3 (No egg cannibalism). Let γ =
4b(dadf+rarc)

(rarf )2
. System (2.5) always have the extinction equilibrium

and has the following equilibria scenarios:

(1) No interior equilibria: when a < γ.
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Figure 5. 2D bifurcation to study the effect of ci and co on the existence of interior equilibria
for model (2.2). do = 0.5;β = 0.02; ri = 0.2; ro = 0.25. (Area in black denotes existence of
interior equilibria and white represents no interior.)

(2) One interior equilibria: when a = γ.
(3) Two interior equilibria: when a > γ.

The equilibrium dynamics of model (2.5) when the colony does not have egg cannibalism are similar to those in
the model of [18], i.e. (0, 0, 0) is globally stable when it is the only equilibrium and (F ∗2 , E

∗
2 , A

∗
2) can be locally

asymptotically stable when it exists.
Biological implications: Theorem 3.3 and equilibrium dynamics shown in [18] for a similar case implies

that division of labor plays an important role in determining whether a colony of leaf cutter ants can survive
in the absence of egg cannibalism. When a is too small, the proportion of adult ants performing certain tasks
is too small, therefore they are not investing enough energy to a given task. This leads to the extinction of the
colony. However, if the proportion of adult ants performing given tasks is large enough, then the colony can
survive.

Theorem 3.4. If model (2.5) without cannibalism has no interior equilibria, then model (2.3) with cannibalism
cannot have interior equilibria, i.e., the colony cannot survive. Moreover, model (2.4) with cannibalism can have
the following dynamics:

(1) Model (2.4) always have the extinction equilibrium and can have maximum two interior equilibria: Ei =
(F ∗i , E

∗
i , A

∗
i ), i = 1, 2.

(2) If fmax =
rf
√
ab−2brc
2bdf

< 0, then model (2.4) has no interior equilibrium.

(3) If fmax >
da
ra

1−p1 >
da
ra

, then model (2.4) definitely has interior equilibria.

Biological implications: Theorem 3.4 supported by Figure 6 suggests that systems such as (2.5) and (2.3),
i.e. without cannibalism and with cannibalism used for growth benefit of A biomass, respectively, cannot fully
describe the positive mechanism that egg cannibalism represents in a colony of social insects. Under critical
conditions when division of labor implicitly described by a is too small, both systems only have the extinction
equilibrium. However, model (2.4) with cannibalism used to increase A lifespan improves the outcomes of model
(2.3) and model (2.5) by providing two existent interior equilibrium where one of them can be stable (see
Theorem 3.5). This suggests that the dynamics of model (2.4) provide survival of the colony when model (2.5)
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Figure 6. Nullclines of system (2.5) with no egg cannibalism and systems (2.3) and (2.4) with
egg cannibalism.

and (2.3) cannot. Further analytical and graphical implications regarding the existence of interior equilibria of
model (2.4) can be found in Appendix C.

The following theorem summarizes the conditions for existence of interior equilibria (F ∗, E∗, A∗) for models
(2.3) and (2.4), i.e. coexistence of fungus, eggs, and adult workers in a colony where egg cannibalism contributes
to the growth of adult workers and increases adult worker lifespan, respectively.

Theorem 3.5 (Extinction and survival conditions). Let a, b, c1, da, df , p1, ra, rc be positive parameters. We
define

K1 =
aβrarf

b(dadf + rarc(1− p1(1− c1)))
and K2 =

αb(dadf + rarc(1− p1(1− c1))

βrarf
.

Model (2.3) and model (2.4) always have the extinction equilibrium which is always asymptotically stable. In addi-
tion, given the following conditions, both models can have maximum two interior equilibria: Ei = (F ∗i , E

∗
i , A

∗
i ),

i = 1, 2, such that all the components of E2 are larger than the components of E1 (i.e. E2 > E1). For model
(2.3):

(1) Colony dies out (zero and one interior equilibrium): If α > K1 or a < K2, then the equilibrium (0, 0, 0) is
the only equilibrium of the system and it is global stability. On the other hand, when α = K1 or a = K2,
there is only one interior equilibrium which is saddle.

(2) Colony survives (two interior equilibria): if α < K1 or a > K2, E2 is locally asymptotically stable when

ra(1− p1)F ∗2 + c1αE
∗
2 < 2daA

∗
2.

Similarly, for model (2.4), when (0, 0, 0) is the only equilibrium, it is globally stable, while if two interior equilibria
exists under condition 3 in Theorem 3.4, then E2 is locally asymptotically stable when

ra(1− p1)F ∗2 <
2daA

∗
2

1 + c2αE∗2
.
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Figure 7. p1 = 0.85;α = 0.08; rc = 0.7; rf = 2; b = 0.002; df = 0.2; a = 0.3; ra = 0.15; da =
0.02;β = 0.15.

Biological implication: Theorem 3.5 suggests that both egg cannibalism and division of labor are important
factors for the survival of a colony of leaf cutter ants. For instance, if egg cannibalism rate is too large and the
proportion of ants performing a given task is too small, then the colony will die out. However, for a small egg
cannibalism rate and large proportion of ants performing a given task, i.e., there are more ants investing energy
on different tasks while using egg cannibalism as a way to regulate their growth, then the colony of leaf-cutter
ants with fungus can survive. (See supplementary material in Appendix B.1).

The following numerical simulations will aid to understand the different dynamics of models (2.3) and
(2.4). We investigate the effects of egg cannibalism rate α, the parameter measuring the division of labor
among the workers a, and the energy spent on brood care p1 on the biomass of eggs E, adult workers A, and
fungus F .

We compare the dynamics of model (2.3) and model (2.4) with egg cannibalism used as energy for growth of
the adult population described with the Holling Type I functional response c1αAE and for energy to decrease

death rate (increase lifespan) of adult workers daA
2

1+c2αE
.

3.2.1. Numerical simulations

The time series solutions for model (2.3) and model (2.4) when testing the increase of p1 and rc, respectively,
are shown in Figure 7 and Figure 8. Supplementary bifurcation diagrams in Appendix B.2 show the destabilizing
effects produced by the increase of parameters describing the energy gained through the consumption of fungus
by the adult worker invested on brood care, p1, and the conversion rate between fungus and ants, rc. For high
energy invested on brood care p1 by adult workers, and (or) high conversion rate between fungus and ants rc,
both model (2.3) and model (2.4) can have oscillatory solutions. Both of these systems models egg cannibalism
and its benefits in two different fashions as previously described in our model derivation. Comparing the model
(2.5) with no egg cannibalism, we observe that these fluctuation in populations dynamics emerge with the
presence of egg cannibalism and other mechanisms related to brood care and nutrient consumption. Also, we
want to point out that when rc is too large, e.g. close to or greater than 2, the system goes through catastrophic
event such that all solutions go to the extinction state.

Next, we present 2-dimensional bifurcation diagrams in Figure 9, which shows the effects of egg cannibalism
rate α with the parameter measuring the division of labor among the workers a in both models. In Figure 9a,
we choose c1 = 0.1 for model (2.3) showing that with no egg cannibalism and with small or no division of labor,
the colony can die out, while large egg cannibalism rate together with a higher response of division labor the
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Figure 8. rc = 1.5;α = 0.08; p1 = 0.8; rf = 2; b = 0.002; df = 0.2; a = 0.3; ra = 0.15; da =
0.02;β = 0.15.

Figure 9. 2D bifurcation showing the effects of egg cannibalism rate with respect to the param-
eter measuring division of labor. rf = 1; b = 0.5; ra = 0.07; df = 0.1; rc = .007; da = 0.1;β =
0.5; p1 = 0.5. (Area in black denotes existence of interior equilibria and white represents no
interior.)

colony can survive. Similarly, in Figure 9b, we choose c2 = 10 for model (2.4) showing that for very small a the
colony can die out, but larger a and any value of α the colony can survive. In this case, both of the models
present similar results to those of model (2.1) and in [18], in which division of labor plays a role on the survival
of the colony.

In Figure 10 we can see the effects that energy spent on brood care p1 and the egg cannibalism rate α have
on the existence of interior equilibria for models (2.3) and (2.4). For model (2.3), we can see in Figure 10a
that the colony can survive with low energy spent on brood care p1 or low egg cannibalism rate α. For model
(2.4), we can see in Figure 10b that the colony can survive almost under any value of p1 and α. However, with
a high egg cannibalism rate and the majority of energy being spent on brood care and not on adult’s growth,
the colony will not survive. Next, we provide 1-dimensional bifurcation diagrams in Figures 11–14, which show
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Figure 10. 2D bifurcation showing the effects of egg cannibalism rate with respect to the energy
spent on brood care. a = 0.05; rf = 1; b = 0.5; ra = 0.07; df = 0.1; rc = .007; da = 0.1;β = 0.5.
(Area in black denotes existence of interior equilibria and white represents no interior.)

Figure 11. 1D bifurcation disgram of the linear model (2.3) c1 = 0.1; a = 0.05; rf = 1; b =
0.5; ra = 0.07; df = 0.1; rc = .007; da = 0.1;β = 0.5; p1 = 0.5. (Blue: stable and green: unstable
interior equilibria.)

that both models can have two interior equilibria where one of them is stable and the other one is unstable.
In Figures 11 and 12, we vary the parameter describing the egg cannibalism rate α with different c1. In both
figures, we notice that as α increases, the biomass of fungus, eggs, and adult workers decreases and eventually
disappears. However, increasing c1 the conversion rate between ants and eggs, allows a higher cannibalism rate
between adult workers and eggs. This suggests that if egg cannibalism is utilized to maximize adult growth, then
the colony can survive under difficult conditions.

Figures 13 and 14 show the effects of egg cannibalism α and survival rate of adult workers due to cannibalism
c2 in model (2.4). The results in Figure 13 suggest that for small cannibalism rate the biomass in the colony
can increase, but if the egg cannibalism is too large the colony dies out. However, for large c2, the colony can
survive even with very high egg cannibalism rate (see Fig. 14). In this case, because the energy obtained from
the eggs cannibalized is been used to decrease mortality rate of adult workers, these have the highest biomass
in the colony.
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Figure 12. 1D bifurcation diagram of the linear model (2.3) c1 = 0.85; a = 0.05; rf = 1; b =
0.5; ra = 0.07; df = 0.1; rc = .007; da = 0.1;β = 0.5; p1 = 0.5. (Blue: stable and green: unstable
interior equilibria.)

Figure 13. 1D bifurcation diagram of the non-linear model (2.4) c2 = 4; a = 0.05; rf = 1; b =
0.5; ra = 0.07; df = 0.1; rc = .007; da = 0.1;β = 0.5; p1 = 0.5. (Blue: stable and green: unstable
interior equilibria.)

Figure 14. 1D bifurcation diagrams of the non-linear model (2.4) c2 = 10; a = 0.05; rf = 1; b =
0.5; ra = 0.07; df = 0.1; rc = .007; da = 0.1;β = 0.5; p1 = 0.5. (Blue: stable and green: unstable
interior equilibria.)

4. Discussion

Modeling social insect biology has helped study the complex phenomena simple mechanisms can produce.
Models proposed in [16], for instance, provide some advances on understanding the dynamics of brood production
and colony development of paper wasps by considering oophagy in the models. In the work of Schmickl et al. [29],
through empirical study, they were able to determine that shortage of pollen can induce cannibalism of young
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honeybee larvae, and that cannibalism serves to recycle nutrients, mainly protein, to convert back into worker
jelly. In [31], showed that task partitioning can lead to self-regulation mechanisms.

In this work, we presented three different models to study the effects of age polyethism and egg cannibalism on
the population dynamics of a leaf-cutter ant colony. System (2.2) models the explicit division of labor of (adult)
worker ants in a leaf-cutter ant colony where we subdivided the total worker population A(t) in two groups:
worker ants in charge of processing and cultivating the fungus garden (inside workers) Ai(t) and worker ants in
charge of collecting leaves to grow the fungus garden (outside/forager workers) Ao(t). This system models the
work done by each of these groups of ants, the consumption rate of fungus for growth/development of workers,
and respective natural death rates. We considered the case when β = 0 in model (2.2) to study the effects of
their age-based division of labor (i.e. age-polyethism) within the colony dynamics.

Our analytical and numerical results show that without age-polyethism (i.e. β = 0), the system (2.2) can
have infinitely many solutions (i.e. infinitely many interior equilibria) under the condition di

ciri
= do

coro
, which

represents the ratio of mortality to growth in both task groups Ai and Ao. Including age-polyethism (i.e.,
β > 0), model (2.2) has a maximum of two interior equilibria. The effects of β (i.e. maturation rate) on the
biomass of fungus, inside and outside workers are considered to be beneficial for certain ranges, i.e., a very
high maturation rate could terminate the colony. An explanation of this situation could be that when inside
workers begin to mature faster and switch to performing riskier tasks, this leads to an increase of mortality.
Also, the production of new workers to perform inside tasks is not fast enough.Therefore, the colony experiences
negative effects causing its collapse. Also, with the subdivision of workers into two task groups, we were able
to capture in model (2.2) and Figure 2 that if one of the task groups decreases (in this case, Ai decreases as β
increases) while the other task group Ao increases, then the fungus receives a greater contribution from the ants
working outside the colony. Model (2.2) with β > 0 suggests that increasing the outside worker population has
greater benefits for colony growth and development than increasing the inside worker population, as long as a
certain necessary number of inside colony workers exist to care for the fungus and the brood. The evolutionary
implications of this finding, and the role it plays in the life history of leaf-cutter ants, should be investigated in
future studies.

Comparing the two different cases considered in model (2.2), i.e. β = 0 and β > 0, we conclude that age
polyethism has clear benefits for the stability of a colony, which is logically consistent with the important role
it plays in the life of leaf-cutter ants [15]. However, it is interesting that the model also shows that the benefits
of age polyethism are constrained by β, the maturation rate. Whether the maturation rate of leaf-cutter ants
has been shaped by this restriction imposed by age polyethism should be investigated in future studies.

On the other hand, systems (2.3) and (2.4) model an implicit division of labor and egg cannibalism by
including two developmental stages, i.e. eggs and adults, in which adults perform necessary tasks to maintain
their fungus cultivar, and interact with eggs by providing brood care or cannibalizing them. Model (2.3) differs
with model (2.4) by the choice of Holling Type functional response that models different ways egg cannibalism
can contribute to the colony dynamics. In model (2.3), we use the Holling Type I functional response c1αAE
to describe the positive input that egg cannibalism can provide to the adult class as a nutrient source for
growth purposes, whereas model (2.4) has the Holling Type II functional response daA

1+c2αAE
that describes the

contribution of egg cannibalism as nutrient source to decrease death rate of the adult class, thus providing an
increase of worker lifespan (see Figs. 11–14). This opens an opportunity to perform manipulative experimental
work to determine whether egg cannibalism increase lifespan of adult workers, or if it has alternative benefits.

In the absence of egg cannibalism, i.e., when α = 0, both model (2.3) and model (2.4) reduce to model (2.5)
and have simple dynamics. The dynamics of model (2.5) with no egg cannibalism suggest that division of labor
plays an important factor determining whether a colony of leaf cutter ants can survive or not in the absence of
egg cannibalism. In such a case, if a is too small, i.e., the proportion of adult ants performing certain tasks is too
small, then the energy invested to a given task is not enough to maintain a colony. This leads to colony collapse.
However, if the proportion of adult ants performing given tasks is large enough, then the colony can survive.
This suggests that there may be an evolutionary relationship between division of labor and egg cannibalism,
which it would be interesting to explore in future work. Moreover, the dynamics of model (2.3) suggest that in
addition to division of labor, egg cannibalism could also play a role in the survival of the colony. This model
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can show the survival of a colony when egg cannibalism is not too large and the proportion of of adult ants
performing necessary tasks is large enough. Even though model (2.3) has the addition of egg cannibalism as a
mechanism of survival, it is not the best model to show the positive mechanisms that egg cannibalism represent
in a colony. Therefore, the functional response introduced in model (2.4) improves this model by providing
survival of the colony when model (2.5) with no egg cannibalism and model (2.3) with cannibalism described
in the form of Holling Type I functional response cannot.

Another interesting result of models (2.3) and (2.4) is the possibility of destabilizing effects of population
dynamics, i.e., fluctuations in populations size. Comparing the dynamics obtained in [18] of a model with no
egg cannibalism considered and our models with egg cannibalism, we conclude that this fluctuations arise due
to the egg cannibalism behavior in the colony. These fluctuations, as seen in Figures 7 and 8, are also developed
by the increase of energy invested in brood care and the conversion rate of between fungus and ants. In [16],
Karsai et al. made similar findings with respect to the fluctuations in brood dynamics in paper wasps due to
egg cannibalism. Their models assumed that adults prefer to feed the larvae with the younger eggs. This will
produce a huge and fast decrease of eggs, but at the same time, there is a positive feedback mechanism due to
an increase of egg-laying rate, which produce the fluctuations. In [16], we can consider the adults feeding the
larvae with eggs as the brood care through egg cannibalism, and therefore, our model produce similar results
through this mechanisms.

Appendix A. Parameter values

These intervals are obtained from the approximations according to empirical work [3, 6, 18].

Table A.1. Intervals of parameters used in the models.

Parameter Intervals Reference

ra: Maximum growth rate of ants (0.05,0.3) [18]
rf : Maximum growth rate of fungus (0.01,1) [18]
rc, ci, co: Conversion rate between fungus and ants (0.001,10) [18]
da, di, do: Death rate of ants, inside and outside adult workers (0.001,1) [18]
df : Deterioration rate of fungus (0.001,1) [18]
ri, ro: Consumption rate of fungus variable
b: Half-saturation constant (0.001,10) [18]
a: Measurement of the division of labor (0.0.25) [18]
p1: Energy invested on brood care (0,1) variable
α: Cannibalism rate variable
β: Maturation rate (0.015, 0.25) [2, 4]
c1: Conversion efficiency between ants and eggs (0,1) variable
c2: Regulation effect of an increase of cannibalism arbitrary variable

Appendix B. Supplementary material

B.1 Supplementary bifurcation diagrams comparing dynamics of egg cannibalism in
models (2.3) and (2.4)

The following bifurcation diagrams compares the dynamics of egg cannibalism in models 2.3 and 2.4 explained
in Theorem 3.5. The figures display dashed blue and green lines representing the stable and unstable interior
equilibria, respectively, for model (2.4). The solid blue and green lines represent the stable and unstable interior
equilibria, respectively, for model (2.3). Figure B.1 helps us understand better that model (2.4) provides colony
survival for a larger range of α (egg cannibalism rate).
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Figure B.1. 1D bifurcation diagrams: models comparison of egg cannibalism dynamics.
c1 = 0.85; c2 = 4;a = 0.05; rf = 1; b = 0.5; ra = 0.07; df = 0.1; rc = .007; da = 0.1;β = 0.5; p1 =
0.5 (Blue: stable and green: unstable interior equilibria.)

Figure B.2. 1D bifurcation diagrams of the model (2.5) with no cannibalism.
α = 0, rc = 0.7, rf = 2, b = 0.002, df = 0.2, a = 0.3, ra = 0.15, da = 0.02, β = 0.15, c1 = 0.8
(Blue: stable and green: unstable interior equilibria.)

Figure B.3. 1D bifurcation diagrams of the model (2.3). α = 0.08, rc = 0.7, c1 = 0.8, rf =
2, b = 0.002, df = 0.2, a = 0.3, ra = 0.15, da = 0.02, β = 0.15 (Blue: stable and green: unstable
interior equilibria.)

B.2 Supplementary bifurcation diagrams for time series Figure 7 and Figure 8

In Figures B.2–B.4 we compare the effects of p1: the energy gained through the consumption of fungus by
the adult workers which is then distributed (or invested) on brood care. In Figure B.2, which represents the
case when there is no egg cannibalism, the biomass of fungus, eggs, and adult workers can have oscillatory
solutions if the energy invested on brood care is medium to high. In Figures B.3, we introduce cannibalism
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Figure B.4. 1D bifurcation diagrams of the model (2.4). α = 0.08, rc = 0.7, c2 = 10, rf = 2, b =
0.002, df = 0.2, a = 0.3, ra = 0.15, da = 0.02, β = 0.15 (Blue: stable and green: unstable interior
equilibria.)

Figure B.5. 1D bifurcation diagrams of the model (2.4). α = 0.08, rc = 1.5, c2 = 10, rf = 2, b =
0.002, df = 0.2, a = 0.3, ra = 0.15, da = 0.02, β = 0.15 (Blue: stable and green: unstable interior
equilibria.)

(α > 0) as represented in model (2.3). In this case, the range in which oscillatory solutions can happen is
decreased while the range of stable biomass is increased. This effect is produced by the way worker ants are
using the converted energy from cannibalized eggs for their own growth. In Figure B.4, the energy from egg
cannibalism is used to increase adult lifespan, therefore, higher levels of energy is available to invest on brood
care keeping the biomasses stable. Moreover, model (2.4) shows an increase of biomass of fungus, eggs, and
adult workers as p1 increases compared to that in model (2.3), when there is no egg cannibalism. As a note, it
seems that egg cannibalism can stabilize the dynamics with the nonlinear model (2.4) having better stabilizing
ability. In Figure B.5, we noticed that increasing rc, i.e. the conversion rate between fungus and ants, can
produce oscillatory solutions as p1 increases. This suggests that rc can potentially destabilize the dynamics in
the nonlinear model (2.4).

Appendix C. Proofs

C.1 Proof for Theorem 3.1

Proof. For any F ≥ 0, Ai ≥ 0, and Ao ≥ 0 we have for system (2.2)

dF

dt
|F=0 = 0,

dAi
dt
|Ai=0 = 0,

dAo
dt
|Ao=0 = 0
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and for system (2.2)

dF

dt

∣∣∣
F=0

= 0,
dAi
dt

∣∣∣
Ai=0

= 0,
dAo
dt

∣∣∣
Ao=0

= βAi ≥ 0

thus according to the Theorem A.24 in [35], we can conclude that for model (2.2) are positive invariant in
R3

+. Now we show boundedness of the system. First, we have the following inequalities due to the property of
positive invariance:

dF

dt
=

[
rfAiAo
b+AiA0

− dfF − riAi − roAo
]
F ≤ (rf − dfF )F

which implies that

lim sup
t→∞

F (t) ≤ rf
df

= M. (C.1)

This indicates that for any ε1 > 0, there exists T1 large enough, such that

F (t) ≤M + ε1 for all t > T1.

Now let N = Ai +Ao, then

N ′ = A′i +A′o = F (ciriAi + coroAo)−N(diAi + doAo)

≤ cFN − dN2)

≤ N(c(M + ε1)− dN) for all t > T1

which indicates

lim sup
t→∞

N(t) ≤ crf
ddf

,

where c = max{ciri, coro} and d = min{di, do}. Then every trajectory starting from R3
+ converges to the com-

pact set C =
[
0,

rf
df

]
×
[
0,

c rf
d df

]
.

In system (2.3) and (2.4), for any F ≥ 0, E ≥ 0, and A ≥ 0 we have that

dF

dt

∣∣∣
F=0

= 0,
dE

dt

∣∣∣
E=0

= p1raAF ≥ 0,
dA

dt

∣∣∣
A=0

= βE ≥ 0.

Therefore, we conclude that both model (2.3) and (2.4) are positive invariant in R3
+.

For the system (2.4), let A(t), E(t), F (t) > 0 for t ∈ R+. From C.1 we have that

lim sup
t→∞

F (t) ≤ rf
df
.

This indicates that for any ε > 0, there exists T1 large enough, such that

F (t) ≤M1 + ε1 for all t > T1.
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Similarly, from the second equation of (2.4) we get

dE

dt
= p1raAF − αAE − βE ≤ A(p1raF − αE) ≤ A

(
p1ra

(
rf
df

+ ε1

)
− αE

)
, for all t ≥ T1

which indicates

lim sup
t→∞

E(t) ≤ p1rarf
αdf

.

Therefore for any ε2 > 0, there exists T2 large enough, such that

E(t) ≤ p1rarf
αdf

+ ε2 for all t ≥ T1.

Let N(t) = A(t) + E(t), then

N ′ = A
(
raF −

daA

1 + c2αE
− αE

)
≤ A

(
raM1 +

daM2

1 + c2αM2
− da

1 + c2αM2
N
)

which implies

lim sup
t→∞

N(t) ≤ daM2 + (raM1 − αM2)(1 + αc2M2)

da
= M3

Then every trajectory starting from R3
+ converges to the compact set D =

[
0,

rf
bdf

]
× [0,M3]. This implies

that all three populations are bounded and this also holds for the linear system (2.3).

C.2 Proof of Theorem 3.2

Proof. The interior equilibria (F ∗, A∗i , A
∗
o) of model (2.2) when β = 0 is determined with dF

dt = dAi

dt = dAo

dt = 0
as follows:

rfA
∗
iA
∗
o

b+A∗iA
∗
0

− dfF ∗ − riA∗i − roA∗o = 0 ⇒ F ∗ =
A∗iA

∗
orf − (A∗iA

∗
o + b)(riA

∗
i + roA

∗
o)

(b+A∗iA
∗
o)df

(C.2)

ciriA
∗
iF
∗ − diA∗i (A∗i +A∗o) = 0 ⇒ F ∗ =

(A∗i +A∗o)di
ciri

(C.3)

coroA
∗
oF
∗ − doA∗o(A∗i +A∗o) = 0 ⇒ F ∗ =

(A∗i +A∗o)do
coro

(C.4)

(C.3) = (C.4)⇒ (A∗i +A∗o)

(
di
ciri
− do
coro

)
= 0 ⇒ di

ciri
=

do
coro

which implies A∗i +A∗o > 0.

From the equation above, we can conclude that the system has infinitely many positive solutions if and only
if do

di
= coro

ciri
.

We substitute (C.3) into (C.2) and we obtain
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Figure C.1. Relation of Ai with Ao in model (2.2) when β = 0; Ai =
−cido(dfdo+cor2o)A

2
o+cicodorfroAo−b(cidfd2o+c

2
odir

2
o)

(cidfd2o+c
2
odir

2
o)Ao

with parameters rf = 0.7, b = 0.002, df =

0.2, di = 0.01, do = 0.0095, ci = co = 0.7, ro = 0.06 with ri = dicoro
doci

.

Ai =
−cido(dfdo + cor

2
o)A

2
o + cicodorfroAo − b(cidfd2o + c2odir

2
o)

(cidfd2o + c2odir
2
o)Ao

The interior equilibria (F ∗, A∗i , A
∗
o) of model (2.2) is determined as follows:

From A′i(t) = 0, yields

F ∗ =
(A∗i +A∗o)di + β

ciri
, (C.5)

and from A′o(t) = 0, yields

A∗i =
A∗o(doA

∗
o − coroF ∗)

β − doA∗o
(C.6)

Substituting equation (C.5) into (C.6) and solving for Ai, results in

A∗i = A∗o

[
(do − diκ)A∗o − βκ
β − (do − diκ)A∗o

]
(C.7)

where κ = coro
ciri

.
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Condition C.1: Consider ci, co ∈ (0, 1), A∗i is positive for κ = coro
ciri

< 1 whenever βκ
do−diκ < A∗o <

β
do−diκ , but

also if κ = coro
ciri

> 1, then β
do−diκ < A∗o <

βκ
do−diκ , both cases satisfying do

di
> κ = coro

ciri
.

Now substituting (C.7) into (C.2) we obtain the following nullcline:

g2(Ao) = a4A
4
o + a3A

3
o + a2A

2
o + a1Ao + a0 = 0 (C.8)

a4 = −ciri(ri − ro)(do − diκ)2

a3 = −(do − diκ)(dorf + roβ)− κ(β(ro − 2ri)− dirf )

a2 = bciri(ri − ro)(do − diκ)2 + βciri[dorf − κ2(dirf + riβ) + κ(dorf + roβ − didf )]

a1 = −βri(b(ci(ri − 2ro) + coro)(do − diκ) + ciβκ)

a0 = −briroβ2(ci − co)

The nullcline (C.8) always have at least two positive roots. However, if a root Ao from (C.8) does not satisfy
Condition A1, then model (2.2) has no interior equilibria. Additional conditions for no interior equilibria are:

do
di

< κ, ri < ro ci < co, β <
dirf

ro − 2ri
, dorf (1 + κ) + κroβ < κ2ri(di + β) + κdidf

C.3 Proof for Theorem 3.3

Proof. The interior equilibria (F ∗, E∗, A∗) of model (2.5) are determined by setting F ′ = E′ = A′ = 0. From
the first equation of (2.5) we obtain

F ∗ =
rfaA

∗2

df (b+ aA∗2)
− rc
df
A∗ =

A∗

df

[
rfaA

∗

b+ aA∗2
− rc

]
= A∗f(A∗) (C.9)

By setting E′ +A′ = 0 yields

raF
∗ − daA∗ = 0 ⇒ F ∗ =

da
ra
A∗ ⇒ f(A∗) =

da
ra

⇒ rfaA
∗

df (b+ aA∗2)
− rc
df
− da
ra

= 0

Hence, by solving f(A) = da
ra

for A, which is equivalent to g(A) = −a(dadf + rarc)A
2 + ararfA− b(dadf

+ rarc), we obtain the following cases:

1. If a > 4b(dadf + rarc)/(rarf )2, then by simple algebraic calculations, we can have the following two
positive solutions of g(A):

A∗1 =
rarf

2(dadf + rarc)
−

√(
rarf

2(dadf + rarc)

)2

− b

a(dadf + rarc)

A∗2 =
rarf

2(dadf + rarc)
+

√(
rarf

2(dadf + rarc)

)2

− b

a(dadf + rarc)
.
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Thus, when there is no egg cannibalism, the two interior equilibria of model (2.5) are:

(F ∗1 , E
∗
1 , A

∗
1) =

(
da
ra
A∗1,

dap1A
∗
1
2

β
,A∗1

)
and (F ∗2 , E

∗
2 , A

∗
2) =

(
da
ra
A∗2,

dap1A
∗
2
2

β
,A∗2

)
.

2. If a = 4b(dadf + rarc)/(rarf )2, then the system (2.5) has only one positive equilibria:

(F ∗1 , E
∗
1 , A

∗
1) =

(
darf

2(dadf + rarc)
,

dap1(rarf )2

4β(dadf + rarc)2
,

rarf
2(dadf + rarc)

)
3. If a < 4b(dadf + rarc)/(rarf )2, then there is only one trivial equilibrium: F = 0, E = 0, and A = 0.

C.4 Proof for Theorem 3.4

Proof. The interior equilibria (F ∗, E∗, A∗) of model (2.3) can be determined as follows:
From the first equation of (2.3) we obtain

F ∗ =
rfaA

∗2

df (b+ aA∗2)
− rc
df
A∗ =

A∗

df

[
rfaA

∗

b+ aA∗2
− rc

]
= A∗f(A∗) (C.10)

From the second equation of (2.3) we get

E∗ =
p1raA

∗F ∗

β + αA∗
=

p1raA
∗2

df (β + αA∗)

[
rfaA

∗

b+ aA∗2
− rc

]
=
p1raA

∗2f(A∗)

β + αA∗
(C.11)

Let E′ +A′ = 0, then we get

raF
∗ − daA∗ − α(1− c1)E∗ = 0 ⇒ raA

∗f(A∗)− daA∗ − α(1− c1)
p1raA

∗2f(A∗)

β + αA∗
= 0

⇒ f(A∗) =
da
ra

[
β + αA∗

β + αA∗[1− p1(1− c1)]

]
⇒ 1

df

[
rfaA

∗

b+ aA∗2
− rc

]
=
da
ra

[
β + αA∗

β + αA∗[1− p1(1− c1)]

]
[from (C.10)]

(C.12)

From the above, we obtain the nullcline

g(A) = A3 + q2A
2 + q1A+ q0 (C.13)

where

q2 =
β(dadf + rarc)− rarfα[1− p1(1− c1)]

α(dadf + rarc[1− p1(1− c1)])

q1 =
αb[dadf + rarc(1− p1(1− c1))]− ararfβ

aα(dadf + rarc[1− p1(1− c1)])

q0 =
bβ(dadf + rarc)

aα(dadf + rarc[1− p1(1− c1)])
> 0
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Let g(A) = A3 + q2A
2 + q1A+ q0 and g′(A) = 3A2 + 2q2A+ q1.

Then g(A) has the following critical points:

Ac1 =
−q2 −

√
∆

3
, Ac2 =

−q2 +
√
∆

3

where ∆ = q22 − 3q1. Since q0 > 0, the sufficient condition for g(A) to have positive real solutions is q22 − 3q1 ≥ 0,
i.e.,

α ≤ aβrarf
b(dadf + rarc(1− p1(1− c1))

,

otherwise, g(A) has no positive real solutions. When q2 < 0, i.e. α >
β(dadf+rarc)

rarf [1−p1(1−c1)] , and ∆ > 0 then g(A) has

two positive critical points 0 < Ac1 < Ac2. Notice that g′′(Ac1) = −2
√
∆ < 0 and g′′(Ac2) = 2

√
∆ > 0, this implies

that g(A) has a local maximum at Ac1 and local minimum at Ac2 for A > 0, then g(A) has two positive solutions
if and only if g(Ac2) < 0, otherwise it has no positive solutions, where

g(Ac2) =
27q0 + 6q1

√
∆− q2(9q1 + 2q2

√
∆− 2q22)

27

Therefore, g(Ac2) < 0, if q2(9q1 + 2q2
√
∆− 2q22) > 27q0 + 6q1

√
∆.

Now, we will show that when model (2.5) has no interior equilibria, model (2.3) cannot have interior equilibria.

From Proposition 3.3 and (C.3), we have that f(A) := 1
df

[
rfaA
b+aA2 − rc

]
and has the following properties: f(0) =

− rc
df

< 0, f(A) is an increasing function on (0,
√
b/a) and decreasing on (

√
b/a,∞). Therefore, f(A) has a

maximum fmax = maxA>0{f(A)} = f(Ac =
√
b/a) =

rf
√
ab−2brc
2bdf

. Hence, model (2.5) with α = 0 can have

interior equilibria if f(A) = da
ra

and fmax ≥ da
ra
> 0. Therefore, if f(A) < da

ra
, then system (2.5) has no solutions

in A, i.e., when fmax <
da
ra

, but also if fmax < 0 < da
ra

, i.e.,
rf
√
ab

2b < rc, then model (2.5) can definitely not have
interior equilibria, i.e., colony cannot survive. Similarly, from (C.12), model (2.3) can have interior equilibria if

f(A) = da
ra

[
β+αA

β+αA[1−p1(1−c1)]

]
. Hence, since

da
ra

<
da
ra

[
β + αA

β + αA[1− p1(1− c1)]

]
⇒ fmax <

da
ra

<
da
ra

[
β + αA

β + αA[1− p1(1− c1)]

]
,

this implies that when model (2.5) (model representing a colony with no cannibalism) does not have interior
equilibria, then model (2.3) can definitely have no interior interior equilibria.

Next, we show the dynamics of interior equilibria for model (2.4).
An interior equilibrium (F ∗, E∗, A∗) of model (2.4) must satisfy the following three equations

0 =
rfaA

2

b+ aA2
− dfF − rcA

0 = p1raAF − αAE − βE

0 = (1− p1)raAF −
daA

2

1 + c2αE
+ βE (C.14)

From the first and second equation of (C.14) we get (C.10) and (C.11), respectively.



EFFECTS OF EGG CANNIBALISM AND AGE POLYETHISM BETWEEN LEAF-CUTTER ANTS AND FUNGUS 25

If there is no egg cannibalism, then the interior solutions satisfy the equation f(A) = da
ra

. Complete dynamics
of this case has been provided in Proposition 3.3.

Now, if there is egg cannibalism, then the interior solutions satisfy the following equation:
From (C.14), let E′ +A′ = 0, then we get

raF − αE −
daA

1 + c2αE
= 0 ⇒ f(A) =

da
ra

[
1

1 + c2αE

]
+
αE

raA
.

Therefore, using (C.11)

f(A) =
da
ra

[
1

1 + c2raAf(A) αp1Aβ+αA

]
+
αp1Af(A)

β + αA
⇒ f(A)

[
1− αp1A

β + αA

]
=
da
ra

[
1

1 + c2raAf(A) αp1Aβ+αA

]

⇒ f(A) =
da
ra[

1− αp1A
β+αA

] [
1 + c2raAf(A) αp1Aβ+αA

] =
da
ra

1− αp1A
β+αA

[
1− c2raAf(A)

(
1− αp1A

β+αA

)] .
Let h(A) = αp1A

β+αA

[
1− c2raAf(A)

(
1− αp1A

β+αA

)]
. Thus

f(A) =
da
ra

1− h(A)
(C.15)

From h(A), we have

αp1A

β + αA
(1− c2raAf(A)) ≤ h(A) ≤ p1.

Now, let A∗ be the positive roots of the equation (C.15) subject to the condition f(A∗) > 0, so that the system
(2.4) have interior attractors.

Therefore, we can have the following conclusions about model (2.4):

(1) If fmax < 0, i.e., 1
df

(
rf
√
ab

2b

)
< rc, then our model has no interior equilibrium.

(2) If fmax >
da
ra

1−p1 >
da
ra

, then our model definitely has interior equilibria. This follows from the conclusion

that model (2.5) can have interior equilibria when fmax >
da
ra

.

C.5 Supplementary material for Theorem 3.4.

Note that an interior equilibrium (F ∗, E∗, A∗) of model (2.4) satisfies the equation

f(A) =
da

ra[1− h(A)]
,
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Figure C.2. Two claims: fmax <
da
ra

1−hmin
versus fmax <

da
ra

where

f(A) :=
1

df

[
rfaA

b+ aA2
− rc

]
and h(A) :=

p1αA

β + αA

[
1− c2raAf(A)

(
1− αp1A

β + αA

)]
.

Additionally to the proof and implications of Theorem 3.4, we have the following claims: If f(A) = da/ra
has no positive solutions, then f(A) = da

ra[1−h(A)] definitely has no solutions in A if h(A) > 0. In general, if

fmax <
da
ra

1−hmin
(see Fig. C.2a), where hmin is the minimum of h(A) over [0, Ac], this implies that it is possible

for f(A) = da
ra

to have positive solutions but f(A) =
da
ra

1−h(A) does not have. If fmax <
da
ra

(see Fig. C.2b), then

f(A) =
da
ra

1−h(A) can still have positive solutions in A if h(A) < 0 for a certain interval (Aa, Ab), where Aa and

Ab are the smallest Aa =
(

(rf/rc)−
√

(rf/rc)2 − 4b/a
)
/2 and largest Ab =

(
(rf/rc) +

√
(rf/rc)2 − 4b/a

)
/2

roots of f(A) = 0.

C.6 Proof for Theorem 3.2

Proof. The stability of the equilibrium Ei, i = 1, 2, 3 of model (2.2) is determined by the eigenvalues of the
following Jacobian matrix J evaluated at the extinction equilibrium:

Jacobian Matrix for model (2.2):

J =


−2dfF +

rfAiAo

b+AiAo
− riAi − roAo

(
brfAo

(b+AiAo)2
− ri

)
F

(
brfAi

(b+AiAo)2
− ro

)
F

ciriAi ciriF − (2Ai +Ao)di − β −diAi
coroAo β − doAo coroF − (Ai + 2Ao)do

 (C.16)

The stability of the equilibrium Ei, i = 1, 2, 3 of model (2.2) when β = 0 is determined by the eigenvalues
λi(0, 0, 0), i = 1, 2, 3 of the Jacobian matrix (C.16), i.e., J1(0,0,0) = 03×3.
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Hence, we will use Center Manifold Theory to determine the stability condition of system (2.2) when β = 0
at equilibrium E0. First, we simplify the system using Taylor series expansion (consider only up to the second
order):

F ′(t) = −dfF 2 − riAi − roAoF
A′i(t) = ciriAiF − diAi(Ai +Ao)

A′o(t) = coroAoF − doAo(Ai +Ao) (C.17)

We replace A0 in term of a function of F and Ao. For that, consider,

h(F,Ao) = a1F
2 + a2FA+ a3A

2
o +O(F 3, A3

o)

By some simple calculation, we get h(F,Ao) ≡ 0. Thus, the flow on the center manifold is given by

F ′(t) = −dfF 2 − riAi
A′i(t) = ciriAiF − diA2

i (C.18)

Again, both eigenvalues are zero for the system (C.18) at the trivial equilibrium (0, 0). Using center manifold
theory for the stability at its extinction equilibrium. This system is already in the desired form to use center
manifold theory. Replacing Ai in terms of a function of F , i.e., g(F ) = b1F

2 + b2F
3 + O(F 4), and by simple

calculation, it can be proved that g(F ) ≡ 0. Therefore, the flow on the center manifold is given by

F ′ = −dfF 2, (C.19)

i.e., model (2.2) is always locally asymptotically stable at the extinction equilibrium E0.
Similarly, the stability of the extinction equilibrium for system (2.2) when β > 0 can be stablished by using

Center Manifold Theory. It can be concluded that the flow on the center manifold for system (2.2) is given by
(C.19), i.e., model (2.2) is always locally asymptotically stable at the extinction equilibrium E0.

C.7 Proof for Theorem 3.5

Proof. The stability of the equilibrium Ei, i = 1, 2, 3 of models (2.3) and (2.4) is determined by the eigenvalues
of the following Jacobian matrix J associated to each model, respectively, evaluated at each equilibrium:

Jacobian for model (2.3):

J =


−2dfF

∗ +A∗
(
arfA

∗

b+aA∗2 − rc
)

0 F ∗
(

2abrfA
∗

(b+aA∗2)2
− rc

)
p1raA

∗ −(β + αA∗) p1raF
∗ − αE∗

ra(1− p1)A∗ β + αc1A
∗ ra(1− p1)F ∗ − 2daA

∗ + αc1E

 (C.20)
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Jacobian for model (2.4):

J =


−2dfF

∗ +A∗
(
arfA

∗

b+aA∗2 − rc
)

0 F ∗
(

2abrfA
∗

(b+aA∗2)2
− rc

)
p1raA

∗ −(β + αA∗) p1raF
∗ − αE∗

ra(1− p1)A∗ β + αc2daA
∗2

(1+c2αE∗)2 ra(1− p1)F ∗ − 2daA
∗

1+c2αE∗

 (C.21)

1. Stability of extinction equilibrium for model (2.3) and (2.4)
The stability of the extinction equilibrium E0 = (0, 0, 0) for models (2.3) and (2.4) is determined by the

eigenvalues λi(0, 0, 0), i = 1, 2, 3 of the Jacobian matrix (C.20) and (C.21), respectively, evaluated at E0. i.e.

J(0,0,0) =


0 0 0

0 −β 0

0 β 0


which gives λ1 = λ2 = 0, λ3 = −β.

Now we will use Center Manifold Theory to determine the stability condition of systems (2.3) and (2.4) at
equilibrium E0 = (0, 0, 0). First, we simplify systems (2.3) and (2.4) by using Taylor series expansion (consider
only up to the second order). System (2.3) and (2.4) simplify as follows:

F ′(t) = −(dfF
2 + rcAF )

A′(t) = (1− p1)raAF + βE − daA2

E′(t) = −βE + (p1raF − αE)A

(C.22)

System (C.22) is already in the desired form with C = 02×2, P = −β, x = [F,A], H(x,E) = p1raFA − αEA
and

G(x,E) =

[
−dfF 2 − rcAF

(1− p1)raAF − daA2 + βE

]
.

Let

h(x) = a1F
2 + a2FA+ a3A

2 +O(F 3, A3)

Dh(x) = [2a1F + a2A+ · · · , a2F + 2a3A+ · · · ]
Dh(x)[Cx+G(x, h(x))] = [2a1F + a2A+ · · · , a2F + 2a3A+ · · · ][

−dfF 2 − rcAF
(1− p1)raAF − daA2 + β(a1F

2 + a2FA+ a3A
2 + · · · )

]
Ph(x) +H(x, h(x)) = −β(a1F

2 + a2FA+ a3A
2 + · · · ) + p1raFA− αA(a1F

2 + a2FA+ a3A
2 + · · · )

Setting Dh(x)[Cx+G(x, h(x))] = Ph(x) +H(x, h(x)) and collecting terms, we obtain

F 2 : 0 = a1β ⇒ a1 = 0
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FA : 0 = a2β + p1ra ⇒ a2 = −p1ra
β

A2 : 0 = 0

Hence, h(F,A) = −p1raβ FA+O(F 3, A3). Thus, the flow of the center manifold is given by

F ′(t) = −(dfF + rcA)F

A′(t) = (1− p1)raAF + β(−p1ra
β

FA+O(F 3, A3))− daA2

= (1− 2p1)raAF − daA2 +O(F 3, A3) (C.23)

Again, both eigenvalues are zero for system (C.23) at the trivial equilibrium (0, 0). Therefore, we use center
manifold theory for the stability at its extinction equilibrium. The system (C.23) is already in the desired form
to use center manifold theory. Consider the function g(F ) = b1F

2 + b2F
3 +O(F 4), then

Dg(F ) = 2b1F + 3b2F
2 + · · ·

Dg(F )G(F, h(F ))] = [2b1F + 3b2F
2 + · · · ][−dfF 2 − rcF (2b1F + 3b2F

2 + · · · )]
H(x, h(x)) = 0

Similarly as before, by simple calculation and collecting terms we obtain g(F ) ≡ 0. Therefore, the flow on the
center manifold is given by the equation

F ′ = −dfF 2

i.e. systems (2.3) and (2.4) are always asymptotically stable at the extinction equilibrium E0.

2. Stability of interior equilibria for model (2.3)
Let (F ∗, E∗, A∗) be an interior equilibrium of model (2.3). Then its stability is determined by the eigenvalues

λi(F
∗, E∗, A∗), i = 1, 2, 3 of its Jacobian matrix (C.20) at the interior equilibrium (F ∗, E∗, A∗), where its

characteristic equation is as follows:

λ3 −

[
3∑
i=1

λi

]
λ2 +

 3∑
i,j=1,i6=j

λiλj

λ− 3∏
i=1

λi

with λi(F
∗, E∗, A∗), i = 1, 2, 3 being the roots of the above characteristic equation:

3∑
i=1

λi = − [dfF + 2daA+ αA+ β − (ra(1− p1)F − c1αE)] < 0

3∑
i,j=1,i 6=j

λiλj = −
[
F

(
2abrfA

(b+ aA2)2
− rc

)
(1− p1)raA+ (p1raF − αE)(β + αc1A)− (β + αA)(dfF )

]
−(ra(1− p1)F + αc1E − 2daA)(β + αA+ dfF ) > 0

3∏
i=1

λi = F

(
2abrfA

(b+ aA2)2
− rc

)
[p1raA(β + c1αA) + (β + αA)(1− p1)raA]

+dfF [(β + αA)(ra(1− p1)F + αc1E − 2daA)− (p1raF − αE)(β + α+ αc1A)] < 0
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According to the Routh-Hurwitz stability criterion for third-degree polynomial, the sufficient conditions for
the above inequalities to be true, which provide the stability of interior equilibria are given by

ra(1− p1)F + c1αE < 2daA,
2abrfA

(b+ aA2)2
< rc, p1raF > αE (⇒ β > 0).

3. Stability of interior equilibria for (2.4)
Let (F ∗, E∗, A∗) be an interior equilibrium of model (2.4). Then its stability is determined by the eigenvalues

λi(F
∗, E∗, A∗), i = 1, 2, 3 of its Jacobian matrix (C.21) at the interior equilibrium (F ∗, E∗, A∗), where its

characteristic equation is as follows:

λ3 −

[
3∑
i=1

λi

]
λ2 +

 3∑
i,j=1,i 6=j

λiλj

λ− 3∏
i=1

λi

with λi(F
∗, E∗, A∗), i = 1, 2, 3 being the roots of the above characteristic equation:

3∑
i=1

λi = −
[
dfF + β + αA+

2daA

1 + c2αE
− ra(1 − p1)F

]
< 0

3∑
i,j=1,i6=j

λiλj = −
[
F

(
2abrfA

(b+ aA2)2
− rc

)
ra(1 − p1)A+ (p1raF − αE)

(
β +

αc2daA
2

(1 + c2αE)2

)

+ (β + αA)

(
ra(1 − p1)F − 2daA

1 + c2αE

)
+ dfF

(
ra(1 − p1)F − (β + αA) − 2daA

1 + c2αE

)]
> 0

3∏
i=1

λi = F

(
2abrfA

(b+ aA2)2
− rc

)[
p1raA

(
β +

αc2daA
2

(1 + c2αE)2

)
+ (β + αA)ra(1 − p1)A

]
+ dfF

[(
β2E

A
+

αc2daβEA

(1 + c2αE)2

)
+ (β + αA)

(
ra(1 − p1)F − 2daA

1 + c2αE

)]
< 0

According to the Routh-Hurwitz stability criterion for third-degree polynomial, the sufficient conditions for the
above inequalities to be true, which provide the stability of interior equilibria are given by

ra(1− p1)F <
2daA

1 + c2αE
,

2abrfA

(b+ aA2)2
< rc, p1raF > αE (⇒ β > 0).

The sufficient condition of the interior equilibrium is given by
rfaA
b+aA2 > rc for both model (2.3) and (2.4).

Using this argument, it follows that the sufficient condition of the stability for interior equilibria is A2 > b
a or

A >
√

b
ab . It can be easily verified that A∗2 > Ac >

√
b
a , thus, it can be conclude that the interior equilibrium

E2 is always locally asymptotically stable when it exists.
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