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Abstract—This paper proposes a video delivery strategy for dy-
namic streaming services which maximizes time-average stream-
ing quality under a playback delay constraint in wireless caching
networks. The network where popular videos encoded by scalable
video coding are already stored in randomly distributed caching
nodes is considered under adaptive video streaming concepts, and
distance-based interference management is investigated in this
paper. In this network model, a streaming user makes delay-
constrained decisions depending on stochastic network states:
1) caching node for video delivery, 2) video quality, and 3) the
quantity of video chunks to receive. Since wireless link activation
for video delivery may introduce delays, different timescales for
updating caching node association, video quality adaptation, and
chunk amounts are considered. After associating with a caching
node for video delivery, the streaming user chooses combinations
of quality and chunk amounts in the small timescale. The
dynamic decision making process for video quality and chunk
amounts at each slot is modeled using Markov decision process,
and the caching node decision is made based on the framework of
Lyapunov optimization. Our intensive simulations verify that the
proposed video delivery algorithm works reliably and also can
control the tradeoff between video quality and playback latency.

Index Terms—Wireless caching network, video delivery,
stochastic network optimization, Lyapunov optimization, Markov
decision process

I. INTRODUCTION

Within few years, it has been expected that tens of exabytes
of global data traffic be handled on daily basis, and on-demand
video streaming will account for about 70% of them [1]. In on-
demand video streaming services, a relatively small number of
popular contents is requested at ultra high rates and playback
delay is one of the most important measurement criteria of
goodness [2], [3]. To deal with the characteristics, wireless
caching technologies have been studied for video streaming
services by storing popular videos in caching helpers located
nearby users during off-peak time [4]-[6]. Therefore, it is
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obvious that storing and streaming of video files are of major
research interests in wireless caching networks.

There have been major research results for caching popular
files in stochastic wireless caching networks [7]-[9]. The
major goal of those research results was to design the optimal
caching policies according to the popularity distribution of
contents and wireless network topology. The probabilistic
caching policy was proposed in [7] to adapt characteristics
of the stochastic network. Many probabilistic caching meth-
ods have been proposed depending on various optimization
goals, e.g., maximization of cache hit probability [7], average
success probability of content delivery [8], and delivery rate
of multiple content requests [9]. However, these works on
the caching policy do not consider the identical content with
different qualities.

Since video files can be encoded to multiple versions which
differ in the quality levels, the video caching policies having
different quality levels have been widely studied in [10], [11].
Many researchers have proposed the static content placement
policies under the consideration of differentiated quality re-
quests for the same content, given probabilistic quality re-
quests [10] or minimum quality requirements [11]. The above
works are focused only on the content placement problem with
different qualities, however, the delivery policy of contents
with different qualities has not yet been studied much.

For video delivery/streaming, there are some necessary
decisions to be made: 1) which caching node will deliver the
video, 2) which quality of video will be provided, and 3) how
many video chunks will be transmitted. The first one is called
node association problem, and in most research contributions
that do not consider different quality levels for the same
file, the file-requesting user is allowed to receive the desired
video from the caching node under the strongest channel
condition [8], [12]. The node associations for video delivery
in heterogeneous caching networks have been studied in [13]-
[15]. On the other hand, when videos with different qualities
are independently cached, more elaborate node association
algorithm is necessary, because decision on the content quality
relies on the node association. In this case, the video delivery
policy was proposed in [16] to pursue time-average video
quality maximization while avoiding playback delays.

Since dynamic video streaming allows each chunk to have
a different quality depending on time-varying network condi-
tions, some researchers addressed transmission schemes which
serve the video by dynamically selecting the quality level
[17]. In [18] and [19], the scheduling policies which maximize
the network utility function of time-averaged video quality in
small-cell networks and device-to-device networks were pro-
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posed. The authors of [20] considered scalable video coding
(SVC) and proposed dynamic resource allocation and quality
selection under the pricing strategy for interference. While the
video delivery policies of [17]-[20] are operated at the base
station (BS) side, the decision policy of video quality level at
user sides was not considered. This scenario is consistent with
the practical real-world software implementation of dynamic
adaptive streaming over HTTP (DASH) [21], in which users
dynamically choose the most appropriate video quality. Even
though the work of [16] can choose the video quality at the
user side, however it cannot dynamically change the video
quality without updates of node association.

Further, control of the amount of receiving chunks depend-
ing on stochastic network states has been largely neglected in
above existing researches about video delivery. Even though
the authors of [16] and [20] maximize the long-term time-
average video quality under the various constraints, their
metrics representing video quality is obtained by averaging the
number of quality selections at each time slot. This method
would be not enough to evaluate the user’s quality of service,
especially when the transmission rate varies over the video
streaming service time. In practice, when channel experiences
deep fading and only the low-quality video is available, it
would not be the best choice to receive as many chunks as the
channel condition can provide. Rather than receiving many
low-quality chunks, the user could prefer to wait channel
conditions to be better and then to receive high-quality chunks,
if it guarantees no playback delay. Therefore, by considering
decision process of combinations of video quality and chunk
amounts, we can formulate the optimization problem which
maximizes the average video quality per each received chunk.
There has been not many researches yet considering the
average video quality per chunk as a performance metric as
well as aiming at adjustments of receiving chunk amounts
depending on caching node and user states.

This paper addresses dynamic video delivery in two dif-
ferent timescales for wireless caching networks with consid-
eration of user mobility. There are some existing works of
mobility-aware caching [22]-[24] in which user mobility is
known at the centralized server or randomness of user mobility
is probabilistically modeled. Meanwhile, content delivery in
wireless caching networks with moving users has not been
explored yet. When the delivery decisions are made at the user
side, it is reasonable to utilize the knowledge of user mobility
for dynamic content delivery. In addition, joint optimization of
long-term content caching and short-term delivery was studied
in [20], [25]; however, content delivery decisions in different
timescales has not been investigated.

This paper proposes a video delivery policy in the wireless
caching network for dynamic streaming services. The main
contributions are as follows:

o This paper proposes a dynamic video delivery policy
depending on stochastic network states. The proposed
policy makes three different but necessary decisions for
the streaming user: 1) caching node for video delivery,
2) video quality and 3) the quantity of video chunks
to receive. To the best of the authors’ knowledge, no

research has yet considered all of those video delivery
decisions.

o Caching node association and decisions of video quality
and amounts of receiving chunks are conducted in dif-
ferent timescales. Since wireless link activation for video
delivery is time-consuming, it is reasonable that caching
node association is performed slower than decisions of
video quality and amounts of receiving chunks. The
optimization framework of video delivery policy in two
different timescales is constructed based on frame-based
Lypunov optimization theory [26] and Markov decision
process (MDP).

o The proposed content delivery method reflects user mo-
bility. Therefore, the user enables to associate with the
caching node based on estimation of the short-term deci-
sions on quality and receiving chunk amounts in future.
Note that the knowledge of user mobility can be obtained
because delivery decisions are made at the user side.

o The proposed technique maximizes the average streaming
quality while averting playback latency, and can control
the tradeoff between video quality and playback delay.
Different from [16] and [20], we adopt the long-term
average video quality per each received chunk as a
performance metric.

o We perform simulations to verify the proposed video
delivery policy and to show the advantages of using
Lyapunov optimization theory and MDP.

The rest of the paper is organized as follows. The wireless
video caching network model is described in Sec. II. The
optimization problem for dynamic video delivery is formulated
in Sec. III. The rule of caching node association and control
policies of quality level and receiving chunk amounts are
proposed in Sec. IV and Sec. V. Simulation results are
presented in Sec. VI and Sec. VII concludes this paper.

II. NETWORK MODEL

The wireless caching network model is described in this
section. In addition, the user queue model and channel model
are introduced and the dependency of the necessary video
delivery decisions on the user queue and channel models is
explained. The inter-user interference is roughly included by
using distance-based interference management.

A. Wireless caching network model

This paper considers wireless caching network model where
a user requests certain video file for one of caching nodes
around the user, as shown in Fig. 1. The BS has already pushed
popular video files during off-peak hours to caching nodes
which have the finite storage size. Since we focus on video
delivery, the caching policy is out of scope for this paper and
only the desired video is considered. Suppose that the desired
video has L quality levels. Therefore, there are L types of
caching nodes, and the type-! caching nodes can deliver the
video of any quality ¢ € £;, where £; = {1,---,1} is the
set of qualities which the type-l caching node can provide.
Thus, the type-L caching nodes can provide all quality lev-
els from the quality set L. Note that simple definition of
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Fig. 1. Network Model
L, ={1,---,1} is assumed, but the proposed technique can be

coordinated with any arbitrary quality set as long as multiple
versions of the same video having different qualities are stored
in caching nodes.

The identical files of different qualities are stored in multiple
caching nodes, and the type-l caching nodes are distributed by
the independent Poisson Point Processes (PPPs) with intensity
Apq [7], where p, indicates the caching probability of the
requested video encoded to provide any quality g € {1,--- ,1}.
Suppose that the caching policy is already determined, i.e., all
pq for all ¢ are given. In addition, videos of different qualities
have different file sizes and IV, denotes the file size of quality
q in bits, satisfying N, < N, for all m,q € £ and m < q.

User mobility is also captured in network model. The user
is moving towards certain direction and periodically searches
for a caching node to receive the desired video file. As
shown in Fig. 1, geological distribution of caching nodes
around the user varies at each time slot, so the caching node
decision should be appropriately updated. Further, this paper
also considers how many chunks of which quality level to be
requested from the user depending on the stochastic network
environment. When there are other users who exploit the
wireless caching network with the same resource, the target
streaming user is interfering with them. We adopt the distance-
based interference management to limit the interference power
lower than certain threshold, and details are explained in
Section II-C.

B. User queue model and channel model

A video file consists of many sequential chunks. The user
receives the video file from a caching node and processes data
for the streaming service in units of chunks. Each chunk of a
file is responsible for some playback time of the entire stream.
As long as all chunks are in correct sequence, each chunk
can have different quality in dynamic streaming. Therefore,
the user can dynamically choose video quality level in each
chunk processing time. By using the queueing model, it can
be said that the playback delay occurs when the queue does
not have the chunk to be played. In this sense, receiver queue
dynamics collectively reflects the various factors which cause
the playback delay.

In general, the user model has its own arrival and departure
processes. The user queue dynamics in each discrete time slot
t € {0,1,---} can be represented as follows:

Q(t+1) = max{Q(t) — ¢,0} + M(¢) and Q(0) =0, (1)

where )(t) stands for the queue backlog at time ¢. In addition,
the departure c is a constant because the streaming user does
not change the video playback rate in general. The arrival
M (t) denotes the number of received chunks at time ¢.

Let the caching node which the user chooses for video
delivery be a. Then, h(a,t) = \/D(a,t)w(t)u(t) represents
the Rayleigh fading channel between the user and the caching
node o at time ¢, where D(a,t) = 1/d(a,t)? controls
path loss, where d(«,t) is the user-caching node distance
at time ¢, § is the path loss exponenet, and w(t) is the
shadowing effect and follows normal distribution with variance
02, ie, w ~ N(0,02). In addition, u represents the fast
fading component having a complex Gaussian distribution,
u ~ CN(0,1). The link rate can be simply given by R(«,t) =
W log, (1 + W), where W, ¥, and YT are bandwidth,
transmit SNR, and interference-noise-ratio (INR), respectively.

The number of received chunks necessarily depends on the
caching node decision « and its link rate. In this paper, each
slot interval is determined to be channel coherence time ¢t..
Then, the number of received chunks M (¢) is constrained by

M(t)Nq(t) < tCR(OZ7 t). (2)
Since M (t) and N, are nonnegative integers,
M(t)Nyy < B(ayt) = [teR(a,t)]. 3)

Therefore, the decision of M (t) depends on the decisions of
a(t) and ¢(t) and the random network event R(«,t).

C. Distance-based interference management

Although many existing works have investigated complex
interference management schemes such as interference align-
ment and interference cancellation, most of researches on the
wireless caching and delivery policy have still used simple in-
terference avoidance based interference management schemes,
e.g., by spectrum sharing [28] or assuming the protocol model
[29]. For simplicity, this paper considers the distance-based
interference control for node association (i.e., link activation)
for video delivery. The design ideas can be extended to other
more sophisticated interference management schemes [30],
[31].

Activation of the new link for video delivery in the wireless
caching network means that the network allows the new
streaming user to interfere with existing users. A new user
causes two types of interference, 1) from the caching nodes
already serving existing users to the new user, and 2) from the
caching node associated with the new user to existing users.
Therefore, we define Ry and Ry as the safety distances for
streaming users and their associated caching nodes respec-
tively to keep the interference levels below the predetermined
threshold of p. In other words, a new streaming user who wants
to exploit the wireless caching network should be generated
outside the radius Ry of all caching nodes associated with
the existing users. In addition, the new user has to find the
caching node to receive the desired content outside the radius
Ry of all existing users. The safety distances of Ry and Ry
should be carefully chosen, and then a new pair of a caching
node and a user can be generated only when their interference
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Fig. 2. Safety radius and activation of new link for video delivery

power is acceptable for every existing video delivery link, as
shown in Fig. 2.

In this regard, a new pair of a caching node and a streaming
user is allowed for video delivery through following two steps.
The first step is to confirm the INR, say Y, at the new
streaming user to be lower than p. Here, T is the ratio
of the aggregated interference power from all the activated
caching nodes to noise variance. If Yo > p, the system
does not allow the new user to exploit the wireless caching
network, and the new user should directly request the desired
content from the server which has a whole file library or
wait for content delivery in future. For example, suppose that
interference power from the nearest interfering caching node
to the new user dominates Y. We further let Wy be the
transmit SNR of the interfering node, and d,, be the distance
from the interfering node to the new user. Then, INR becomes
Ty = %, and Ry > /Wy /p to guarantee Yo < p.

Althoqlgh the interference power at the new user is safe
to exploit the wireless caching network, ie., Yo < p, the
caching node associated with the new user will be able to
degrade the signal-to-interference-plus-noise ratios (SINRs) of
existing users. Thus, the second step is required, in which
the new user should find the caching node to receive the
desired content with sufficiently large link rate as well as not
to significantly interfere with other users. Let one of existing
users have a margin of INR to guarantee p before activating the
new link, denoted by § = p— Y. Since the interference signal
from the new caching node is independent on other interfering
nodes, Ry = /Wo/J is obtained similar to the case of Ry.
Therefore, the new caching node should be chosen outside the
radius of Ry from every existing user whose margin of INR
would be different from each other.

Even though the new user and its caching node are found
while limiting all interference levels at users lower than p,
the newly generated link between them could not be enough
to provide reliable content transmissions due to bad channel
conditions. Therefore, we investigate the existence of the
caching node around the new user which stores the requested
content and can deliver the content reliably. Let the minimum
SINR for reliable video delivery denoted by ~min. Then, the
probability that at least one caching node can successfully

deliver the desired content to the new user is represented by

U|hy, 1 |?
n= Pr{|’1| > me}, “4)

T+1

where h,, ; is the channel gain between the new user and the
caching node whose channel condition is the strongest among
the nodes storing the desired content of the user. According
to order statistics and [8], the cumulative distribution function
of the smallest reciprocal of channel power is F¢, ,(§) =1 —
e~ ™A where &, 1 = 1/|hy.1|? and )\, is the intensity of
PPP of nodes caching the desired content. According to (4),
7 can be found by

v

Then, by introducing the minimum probability of finding
at least one caching node for reliable video delivery denoted
BY Mmin, @ set of {Ymin, min} can be considered as a criterion
for new reliable link activation which satisfies 7 > 7. In
this regard, we can verify how much interference power is
acceptable to satisfy the criterion of {Ymin, 7min }, as follows:

LG
1-— —1l(2) Ay ———————~ ¢ = i
eXp{ ™ ( ) ’len(T+1)} _nmn
7T(2) A, U

Yanin I ( 1%%)

—1>7. (6)

Thus, if all network parameters are given, the threshold of
interference power can be determined by

n'(2)\, ¥
p= (7)1 —1. (7
“Ymin ln(m)

On the other hand, if the network requires the target criterion
of interference management, i.e., P, Ymin, and 7Ny, are given,
the system can determine how much transmit power is required
and/or how many caching nodes store the desired video.

In this paper, the minimum SINR threshold is set so that
the chunk of the smallest size (i.e., the lowest quality) is
deliverable at least, i.e., toWW1logy(1 4+ Ymin) = N1. Then, we
can say that caching nodes which store the desired content
should be distributed with the intensity of A, at least, as
follows:

Ny
(20% — 1) In(+—=—)(1+ )

1_77min
w[(2)T ' ®

/\n > /\min =

III. DYNAMIC VIDEO DELIVERY POLICIES

The dynamic video delivery policy in two different
timescales is described in this section. When the data rate
of the delivery link not in outage is varying, i.e., the number
of receiving video chunks at each discrete slot is not fixed,
video quality per received chunk is the reasonable performance
metric. Therefore, the problem that maximizes quality per
received chunk with the constraints for playback delay and
channel capacity is formulated.
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A. Video delivery decisions

The goal of this paper is to find the appropriate three
decisions at each slot ¢ in the network model illustrated in
Section II: 1) caching node for video delivery a(t), 2) video
quality level ¢(t¢), and 3) the quantity of receiving chunks
M (t). However, to update the caching node association, the
time-consuming process is required in which the user sends
the request signal for video delivery and the caching node
approves it. Therefore, new caching node association is hardly
performed as frequent as receiving chunks, and we suppose
that the decision on «(t) is made at larger timescale than
decisions on ¢(t) and M (t).

Decisions on quality level
and chunk number

—

q(t),q(ty + 1), q(ta = 1)
M(t),M(ty +1),--, M(t; — 1)

alty) alty) l alts) alty)

Caching node decision
Fig. 3. Different timescales for decisions on «(t), ¢(t) and M(t)

In this sense, the user decides ¢(t) and M (¢) at time slots
t €{0,1,2---}, but caching node decisions are performed at
time slots ¢t = 0,7,2T,---, where T is the time interval for
caching node association. The time slot for the k-th caching
node decision is denoted by t, = (k—1)T for k € {1,2,---}.
Different timescales of decisions on «(t), ¢(t) and M (t) are
described in Fig. 3. Let the k-th frame for caching node
decision be T, = {tx,tx + 1, - ,tx + T — 1}. As shown in
Fig. 3, after associating with the caching node «(¢) at time ¢,
decisions on quality level ¢(t) and chunk amounts M (¢) are
performed over ¢ € T}, to receive the desired video from o(ty).
Therefore, q(t) € Liaw,)) and M(t)Nyqw < B(a(ty),t)
should be satisfied for ¢t € T, where I(a(tx)) is the type
of the caching node a(ty).

The user can make the candidate set of caching nodes
denoted by A(ty), and a(ty) € A(t;). All caching nodes in
A(t)) should be outside the radius Ry of all existing users
to limit the interference power lower than p. To avoid the
situation in which no caching node can deliver the desired
video, i.e., A(t) > 0, the caching nodes which provide SINRs
larger than ~,, are assumed to be outside the radius Ry of all
existing users. A(ty) consists of up to L caching nodes, i.e.,
| A(tg)| < L, in which each caching node in A(t;) belongs to
different types. If there are several nodes of type-l, the user
takes one of them whose channel condition is the strongest.
There is no reason to choose another type-/ caching node
while leaving the node with the strongest channel if another
streaming user does not request the video from that strongest
node. In addition, |A(?;)| < L means that L —|.A(t)| caching
node types do not exist around the user. Suppose that the new
streaming user is already generated outside the radius Ry of
all existing caching nodes and the INR Y is observed at the
new user. Also, another user’s link activation is banned around
the target user due to the interference issue. Then, we just

5

consider the node association problem of the new streaming
user with respect to the candidate set A(¢;) while the INR T
is observed.

B. Problem formulation

For determining the appropriate video delivery policy, three
performance metrics are considered: playback delay, average
streaming quality, and video quality fluctuations. The dynamic
streaming service enables to provide the differentiated quality
requirements to users; therefore, video quality per received
chunk becomes a performance metric. The playback delay is
obviously the most important factor for the streaming user’s
satisfaction. In addition, for streaming services, users are very
difficult to endure the dramatic fluctuations of video quality.
Therefore, this paper supposes that the user pursues the high-
quality video unless the delay constraint is not suffered and
quality does not vary extremely during video playback.

Based on these goals, we can formulate the optimization
problem which minimizes the quality degradation constrained
on averting queue emptiness and extreme quality fluctuations
as follows:

{a7 q, M} =
KT-1

(G 4B |RT & PPN MO

€))
. 1 t'—1

st lim = tho E[Z(t)] < oo (10)
M(t)Nq(t) < B(aat) (11)
lq(t) —q(t —1)[ <1 12)
a(ty) € A(ty), Vk e {1,2,---} (13)

q(t) € El(a(tk))v vt € 77@7 ke {1727 T }7 (14)

where P(q(t)) is quality measure of ¢(t) and P is the maxi-
mum quality measure, i.e., equation (9) is the time averaged
video quality degradation. Decision vectors are represented as
a=latr), - .altx)), q = [a(0), (1), .q(KT—1)] and
M = [M(0),M(1),--- , M(KT-1)]. Specifically, the expec-
tation of (9) is with respect to random channel realizations and
stochastic distributions of caching nodes. The constraint (10)
is for limiting the playback latency (i.e., queueing delay), and
the constraint (11) is came from (3), which demonstrates that
decisions on ¢(¢) and M (t) depend on the channel state of the
associated caching node «. The dramatic quality fluctuations
can be avoided by addressing the constraint (12). Lastly, the
constraints (13) and (14) give the candidate sets of caching
node and video quality.

As mentioned earlier, playback delay occurs when the next
chunk is not arrived in the queue. If the user is assumed
to receive chunks in order, the playback latency is generated
when Q(t) = 0. Then, the long-term time-averaged playback
delay occurrence rate can be limited by taking the constraint
of

lim E[Q(t)] > 0.
t'— o0
Here, Z(t) = Q — Q(t) is introduced to convert (15) to
the strong stability form of the queuing system. Taking a

15)
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sufficiently large constant Q which affects the maximal queue
backlog, (15) can be approximately replaced by the constraint
(10) that has a role of avoiding queue emptiness. Based on the
Lyapunov optimization theory, the upper bound on the time-
average queue length of Z(t) is also derived by using the
algorithm which minimizes the Lyapunov drift [33]; finally, it
makes chunks accumulated in the user queue enough to avoid
the playback delay, i.e., to achieve queue stability in (15).

From (1), the queue dynamics of Z(t) can be represented
as follows:

Z(t+1)=min{Z(t) + ¢,Q} — M(t) and Z(0) = Q. (16)

Even though the update rules of Q(t) and Z(¢) are different,
both queue dynamics mean the same video chunk processing.
Therefore, playback delay due to emptiness of Q(t) can
be explained by queueing delay of Z(t). By Littles’ Law
[32], the expected value of Z(t) is proportional to the time-
averaged queueing delay. The similar method to reduce the
video playback delay by introducing Z(t) and pursuing its
stability was used in the work of [16].

From the optimization problem (9)—(11), we can intuitively
see how decisions are made depending on Q(¢). Suppose that
the queue is almost empty. In this case, the user prefers the
caching node whose channel condition is strong, pursues low-
quality file, and tries to receive as many chunks as possible
to stack many chunks in the queue. However, all of those
decisions could degrade the average streaming quality. When
the caching node with the strongest channel condition belongs
to type-1, it can be better to associate with the caching node
of another type in terms of average quality. In addition, when
low quality is chosen, receiving too many chunks may not
be a good choice. The user would prefer to receive the small
number of chunks in current time-step and wait the better
channel condition. If the channel condition is improved at the
next time-step, the user can request many chunks of high-
quality video. Thus, those decisions are strongly dependent
on the queue state Q(t), the caching node distribution, and
channel conditions of caching node candidates.

IV. CACHING NODE DECISION PoLICY

For avoiding the queue emptiness, i.e., pursuing queue sta-
bility of Z(t), the optimization problem of (9)—(11) are solved
based on the Lyapunov optimization theory. However, since
the timescale of decision on « is larger than that of decisions
on g and M, the frame-based Lyapunov optimization theory
[26] is used for caching node decision. Lyapunov function L(t)
can be defined as L(t) = £Z(t)%. Then, let A(.) be a frame-
based conditional Lyapunov function that can be formulated
as A(ty) = E[L(tx + T) — L(tx)|Z(tx)], i-e., the drift over
the time interval 7". The dynamic policy is designed to solve
the given optimization problem of (9)—(11) by observing the
current queue state, Z(t), and determining the caching node
to minimize a upper bound on frame-based drift-plus-penalty
[33]:

tAT—1 -

Aty) + VIE{Z (P

t=ty

_P(g(t)))- M(t)\zm} a7

where V' is an importance weight for quality improvement.

6

First of all, the upper bound on the drift can be found in
the Lyapunov function.

Lit+1)— L(t) = %{Z(t 1) - 20

- %{ min{Z(t) — M(t) + ¢, Q — M(t)}* — Z(t)Z}
1

< {20 - M) + o7 - 207}

By summing (18) over t = tj,--- ,tr + 1T — 1, the upper
bound in the frame-based Lyapunov function is obtained by

Lty +T) — L(t)

LT —1 1
< 2 {z00-mo)+ - mw2) a9

t=ty

(18)

Thus, according to (17), minimizing a bound on frame-based
drift-plus-penalty is consistent with minimizing

D(a(ty), Q(tk), qr. M) =

S 2o v + g aroy

t=ty,

E

VP - Pat))- M(t)} \Z(m) . o)

where q; = [Q(tk),Q(tk + ]-)v' o 7q(tk + 7T — 1)]’ My, =
[M(tg), M(t + 1),--- ,M(ty, + T — 1)] and recall that
Z(t) = Q — Q(t). The above minimum is conditioned on
M(t)Nyy < B(a(tg),t) for all t € Tg. This frame-based
algorithm is shown to satisfy the queue stability constraint of
(10) while minimizing the objective function of (9) in [26].
For any «(t) € A(ty), the minimum bound on frame-based
drift-plus-penalty can be obtained by

D(a(t). Q(tx) = miy Dla(t), Qltr): g Ma). - 2D

In Section V, we will provide an efficient method to find the
minimum achieving q;, and M.

System parameter V' in (20) is a weight factor for the term
representing the measure of video quality degradation. The
value of V is important to control the queue backlogs and
quality measures at every time. The appropriate initial value
of V needs to be obtained by experiment because it depends on
the distribution of caching nodes, the channel environments,
the playback rate c, and Q Also, V' > 0 should be satisfied. If
V < 0, the optimization goal is converted into maximizing the
measure of video quality degradation. Moreover, in the case
of V. = 0, the user only aims at stacking queue backlogs
without consideration of video quality. On the other hand,
when V' — oo, users do not consider the queue state, and thus
they just pursue to minimize the video quality degradation.
V can be regarded as the parameter to control the trade-
off between quality and delay, which captures the fact that
the user can stack many low-quality chunks or relatively the
small number of high-quality chunks in the queue, under the
given channel condition. Even though the weight factor V is
utilized for Lyapunov optimization as a deterministic system
parameter, in the system in which the queue length should be
smaller than a predetermined threshold, the appropriate value
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of V can be adaptively chosen depending on the network
state. However, since the statistics of the queue length are
very difficult to derive, the distribution of V' is hard to be
mathematically obtained in advance; therefore, the work of
[34] dynamically changes V' with the list of predetermined
values according to the queue length. However, a constant V'
is used in this paper for simplicity.

From (20), we can anticipate how the algorithm works.
When the queue is almost empty, i.e. Z(t) ~ Q, the large
arrivals M (t) are necessary for the user not to wait the next
chunk. In this case, the user prefers the caching node which
can deliver many chunks. On the other hand, when the queue
backlogs are stacked enough to avoid playback delay, i.e.
Z(t) ~ 0, the user would request the high quality level of
P(q(t)) without worrying about playback latency.

With the initial condition of Q(tj), the user computes
D(a(ty), Q(ty)) for all a(ty) € A(ty). Then, the caching
node which minimizes D(«(tx), Q(tr)) is chosen at the user,

argmin  D(a(ty), Q(tr))-
a(ty)EA(ty)

0t (1) = (22)

However, the user should estimate the average function
value of future queue states Z(t) and decisions of ¢(t) and
M (t) for t € T. For finding (21), the frame-based algorithm
is formulated based on MDP [26], and it can be solved by
dynamic programming as following section.

V. DECISIONS ON QUALITY LEVEL AND RECEIVING
CHUNK AMOUNTS

The goal of this section is to compute D(c(ty), Q(tx)),
given the associated caching node «(¢;) and initial queue
backlogs Q(tx).

A. Stochastic shortest path problem

According to (20), we can formulate the drift-plus-penalty
algorithm of the k-th frame as follows:

{q), M.} = afgflgin D(a(ty), Q(tr),q, M) (23)
q,

s.t. M(t)Nyety < By(t) (24)

lg(t) —q(t —1)[ <1 (25)

q(t) € Lia(tr))s (26)

where B (t) = B(a(ty),t). The problem of (23)-(26) is
similar to the stochastic shortest path problem based on MDP.
In the network model, By(t) and Z(t) (i.e., Q(t)) are given
before making decisions of ¢ (t) and My (t) at every time t.

The queue backlog Z(t) represents the current state which
satisfies the Markov property and Z(t) € Z = {0,1,--- ,Q}
because ()(t) is a nonnegative integer and we assume that
Q(t) < Q. It is reasonable to set Q be the arbitrarily
predefined maximum queue backlog because the queue size
is finite in the practical system. In addition, the quality fluctu-
ation constraint (25) sets a limit on the quality decision ¢(t).
Therefore, we can define § = Z x Ly, (1)) as the state space
of MDP and let the state set S(t) = {Z(ts, q(t—1)} € S. The

7

action set of MDP is defined as O(t) = {M(t),q(¢t)}. Then,
incurred cost at t € T can be formulated by

9k(S(t),0(t)) = Z(t)(c — M(t)) + %(c — M(t))?
+ V(P —P(q(t))M(t). 27)

)
The transition probabilities from S(t)
defined for all states s and s as

Py(0,b) = P{S(t+1) = §'|S(t) = 5,0(t) = 0, Bi(t) = b}.
(23)
Since the next state S(¢+1) is deterministic given the current
state S(t) and action ©(¢), it can be seen that Py ,(60,b) €
{0,1}. Note that even though transition probabilities are
deterministic to the current state and action set, a random
event, i.e., channel gain information, sets a limit on the feasible
next action space; therefore, the system is not deterministic.

to S(¢+ 1) can be

B. Probability mass function of By(t)

The constraint (24) indicates that the maximum number of
chunks which the user can receive depends on the random
network event By (¢) and the decision of quality ¢(t). It notifies
that decisions on ¢(t) and M (t) should jointly made as well
as the probability distribution of the random network event
By(t) is required.

Define a random variable Y = log, (1 + aX), where X is a
chi-square random variable and a is a constant. Then, we can
obtain P{Y > y}, as given by

P2y} =ep{ - o7 -1}

Since |h(a,t)|? follows the chi-squared distribution and a
random variable By (t) is a nonnegative integer, the probability
mass function of By(t) is found as follows:
P{Bg(t) = b}
= P{t.R(a(ty),t) > b} — P{t.R(a(tx),t) > b+ 1}

(29)

(30)
— 2\1/32;{1 ) (T + 1)2b/th
ST P T T 2uD(as0)
B B (’r + 1)2(b+1)/tCW
exp{ 20 D(a 1) . (31)

C. Dynamic programming

Given «(ty) and S(t), the user observes the state S(7)
and the random network event By (7), and decides the action
O(7) for each time slot 7 € 7. Then, the minimum incurred
cost based on measurements of By (7) and Z(7) is

Gr(7,50,b0) =
te+T—1
min E ; gr(S(t),0(1)|S(r) = s0, B(7) = bo | ,
(32)
conditioned on M (7)Ny-) < Bg(7), where s {20,490}

4
and S(7) = sg means that Z(7) = zp and ¢(7 — 1) = qo.
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Let Ji (7, sp) be the marginalized function of Gy (7, sg, bo)
over all possible By (7) = by, and it can be approximated into

Bimax

Jk(T, 8()) = Z P{Bk(T) = bo}Gk(T, So,bo),
bo=0

(33)

where Bp,x is a nonnegative integer such that P{B >
Bax} =~ 0. The dynamic programming provides the action
that minimizes the following cost as given by [27]

G (7, 50, b0) = min B[ g (S() = s0,0(7))+

" Pyeal©(7),b0) - Gl + 1y, Bi(r +1))]
yeS

— min [gk(S(T) = 50,0(7)) + Ju( + 1, S(r + 1))], (35)

(34)

where the expectation of (34) is with respect to {By(t) : 7+
1<t<T-—1}, Z(r +1) = min{z + ¢,Q} — M(7), and
lg(7 + 1) — go| < 1. The minimum cost is obtained over all
O(7) such that M(7)Ny(y < By(7) = bo.

Given By(t) = by, the user can find the minimum value of
(35) by greedily testing all joint combinations of decisions
on ¢(t) and M(¢t). For example, let there exists L = 2
quality levels and ¢ € {1,2} correspond to the file size of
N € {10,20}. If By(t) € [20:30) Kbits and ¢(t — 1) = 1 for
simplicity, where [a:b) = {a,a+1,--- ,b— 1}, then there are
four possible decisions: 1) M(t) =0, 2) ¢q(t) =1, M(t) =1,
3) q(t) =1, M(t) =2, and 4) q(t) = 2, M(t) = 1. The user
computes costs for all those possible decision cases and picks
the minimum one as an optimal cost.

We set the end time slot of the k-th frame as ¢y =t +7,
which is the start time of the k4-1-th frame. To find the optimal
costs Ji(t) = {Jk(t,s) : s € S} for t € Ty, by using dynamic
programming equation (35), the end costs of Jy(tx11) are
required. Since the playback delay occurs at the end state
when the accumulated chunk amounts are smaller than the
departure quantity, i.e., Q(tx41) < ¢ and Z(tx11) > Q — c.
Therefore, the end costs for those states, i.e., Jx(tx+1, {2, ¢})
for z € {Q —c+1,--- ,Q} should be very large. Even when
Q(tg+1) > ¢, the more chunks are accumulated, the more
likely there will be no playback delays in the following frame.
In this sense, Ji(tg+1,{?, q}) > Jk(trt1,{4,q}) fori > jis
preferred for all 4, j € {0,--- ,Q — ¢}. Especially, as a large
number of chunks are received in the queue, the effect of addi-
tional chunks to avert queue emptiness would be significantly
decreased. Therefore, Jy(tpy1,1{i,q}) for i = {0,1,---Q}
are arbitrarily modeled as the truncated form of exponential
distribution. Thus, we can set the end costs for all ¢ € Lj(q (1))
as follows:

Je(tii1,{g,2}) = A, V2 €{Q—c+1,--,Q} (36)

Ti(tisr, {g, 1)) = 1072 - Ape Q=D vie {0,---,Q — ¢},
(37)

where A is a predefined large constant to give penalties
for playback delay occurrences and g is the exponential
distribution coefficient.

Given the end costs Jj (t;+1), the optimal costs Jy(¢) for all
t € Ti can be obtained by backtracking the shortest path based

8

on the dynamic programming equation (35). Then, when the
queue backlog at time ¢ = t;, is Z(t;) and the previous quality
selection is q(tx — 1), Jx(tx, S(tx)) becomes the minimum
drift-plus-penalty term given «(tx) and Q(ty), i.e., (21). Then,
after finding the averaged drift-plus-penalty terms for all o €
A(t) by using dynamic programming, the user determines the
caching node to receive the desired video file by comparing
all drift-plus-penalty terms, as described in (22).

D. Decisions of quality and chunk amounts

After determining the caching node a(ty), the user should
choose the video quality and the number of chunks to receive
for every time slot t € 7, depending on time-varying
channel conditions and its queue state. For this goal, we
can simply use the principle of optimality in the dynamic
programming algorithm [27], which argues that if the optimal
policy ©* = {©*(t), - ,0*(ty + T — 1)} is a solution of
the stochastic shortest path problem, then the truncated policy
{©*(tx+j), - ,0*(tr+T—1)} is optimal for the subproblem
overt € {tx +J,-- ,tg + T —1}, where 0 < j < T — 1.

Based on this principle of optimality, the user can make
the optimal decisions of ¢*(¢t) and M*(¢t) for t € T by
using the minimum costs obtained while performing dynamic
programming for caching node decision «*(t;). When de-
ciding ¢*(t) and M™*(t), the channel gain can be observed,
e.g. B(a(ty),t) = by; therefore, the optimal action ©*(¢) is
deterministic given S(t) = so and By(t) = by which provide
the minimum cost G(t, so, bo), as given by

QZ(taSO>bO) =
argmin |gx(S(t) = 50,0) + Jp(t + 1,S(t + 1))}7 (38)
e

conditioned on M (t) Ny < bo for t € Tg.

Thus, the user should store the optimal actions ©} (¢, s, b)
forall t € T, s € Sand b € B = {0,1,---, Buax}
to deal with all possible random network events. Simply,
T- QL - (Bmax + 1) actions are required, but some of channel
realizations can give the same optimal action. Again, consider
the example of L = 2 quality levels and ¢ € {1,2}
corresponding to the file size of N € {10,20} in Kbits.
When ¢(t — 1) = 1, any B = b € [20:30) Kbits allows four
combinations of decisions of ¢(t) and M (t), as explained in
Section V-C, and the user is enough to store the only one
optimal action for all B = b € [20:30) Kbits. In this sense,
define N subsets of B denoted by B,, forn € {1,--- , Nz},
as follows:

NB
UB.=8B (39)
n=1
B,NByp=0¢, Vn#m, nyme{l,--- ,Np} (40)
6;;(15,87(71) = @Z(t,s,bg), Vb1, by € B,. 41

Thus, the user needs to store 71 - QL - N actions. The
whole steps for video delivery decisions on caching node,
video quality, and receiving chunk amounts are presented in
Algorithm 1.
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Algorithm 1 Dynamic video delivery decisions on «, g, and
M in different timescales
Precondition:
1: o V: parameter for streaming quality-delay trade-offs
o (: threshold for queue backlog size
o K: the number of caching node decisions
o T': the time interval of updating caching node decision

2: t =0// KT — 1: number of discrete-time operations

3: while £ < K do

4: trx = (k — 1)T": time for the k-th caching node decision

5: Observe S(tx) and find A(tr)

6: Compute Dy (c(tx), Q(tx)) by using dynamic programming
equation (35) and store ©j(¢,s,b) for every a(ty) € A(tx),
seSand b e B.

7: Make a decision of o*(¢x) by using (22)

8: fort =ty :tx+7 —1do

9: Observe S(t) and By(t)

10: Make a decision of O (¢, S(t), Br(t))

11: end for
12: end while

E. Computational complexity of dynamic programming

To determine the optimal policy at each time slot, it seems
that at least QLBmaX computations are required, but some of
channel realizations can perform the same computation as seen
in Section V-D. Since all realizations b € B,, not only give the
same Oj (¢, S(t),b) but also make the same computations of
ge(S(t) = 50,0(t)) + Jp(t +1,5(t + 1)) for all possible
combinations of ¢(t) and M(t), QLN computations are
required at least.

However, in most of random network events, more compu-
tations are required to take the minimum function in (35).
As shown in the example of L = 2 quality levels and
q € {1,2} corresponding to the file size of N € {10,20}
in Kbits, there are four combinations of decisions of ¢(t)
and M (t) when B = b € [20:30) Kbits and ¢(t — 1) = 1.
Generally speaking, there are ZQL:I |2 | + 1 combination
of possible decisions of ¢(t) and M (t; for any b € B,,
when B,, is given. Denote Ny(B,,) by the number of decision
combinations of ¢(t) and M(t) when Bi(t) = b € Bp;
then, Ny(B,) becomes the size of feasible action sets. Let
the average number of Ny(B,,) for all n € {1,--- , N} be
Np, then total QLN Ny computations are required at each
time slot in dynamic programming.

Here, Nz and N obviously depend on By, L and N, for
q € L. There are not many versions of the identical video of
different quality levels, i.e. L is small in general, and N, is
not controllable unless the video encoding scheme is changed.
On the other hand, By, increases as transmit SNR grows;
therefore, large SNR could result in huge computational com-
plexity as well as large number of registers to store the optimal
costs for decisions of quality and chunk amounts. However,
the streaming user can receive a large number of high-quality
chunks enough to avoid queue emptiness in the sufficiently
large transmit SNR region. Considering that the proposed
video delivery scheme targets the streaming user who is worry-
ing about playback delays as well as video quality degradation,
however, huge complexity burden for large transmit SNR is out
of scope in targeting scenarios. Thus, N’z and Ay are expected

9
TABLE I
SYSTEM PARAMETERS
No. of quality levels (L) 3
Default PPP intensity (\) 0.4
Time interval of caching node decisions (1) 5
Caching probabilities (p = [p1,--- ,pr]) 2,2,
Transmit SNR (V) 25 dB
INR (Y) 5 dB
Path loss exponent (/3) 2
Shadowing variance (02) 4 dB
Minimum probability of finding caching node (9min) 0.99
Queue departure (c) 1
User radius (R) 50 m
Bandwidth (W) 1 MHz
Coherence time (t.) 5 ms
End cost coefficient (A) 107
End cost coefficient () 1
Q 100
Binax 52 kbits
|4 0.015

not much large in our targeting scenarios where adjustments
of the tradeoff between playback delay and video quality are
necessary; therefore, computational complexity for dynamic
programming can be somewhat limited. Nevertheless, the deep
reinforcement learning-based approach could relax the curse
of dimensionality for the system having massive number of
states and actions or no prior channel information. This paper
remains the learning-based method for dynamic video delivery
as a future work.

VI. SIMULATION RESULTS

In this section, we show that the proposed algorithm for
dynamic video delivery works well with video files of different
quality levels in wireless caching network with user mobility.
Simulation parameters are listed in Table I, and these are used
unless otherwise noted. The proposed technique can be applied
to any distribution model for caching nodes, but we suppose
that caching nodes which store the desired content are modeled
as an independent PPP with the intensity of A, which is
generally assumed for researches of wireless caching networks
[7], [8]. Then, the PPP intensity of type-l caching nodes
becomes Ap;, where p; denote the caching probability of the
video which can be encoded into any quality in £;. Therefore,
larger p;, more caching nodes of type-/ around the streaming
user. Based on the network model described in Fig. 1, the
user is slowly moving towards certain direction. In practice,
the channel condition between the user and the caching node
delivering the desired video could be varying due to Doppler
shift as the user is moving, but this effect is not captured
in this paper. Peak-signal-to-noise ratio (PSNR) is considered
as a video quality measure, and quality measures and file
sizes depending on quality levels are supposed as P(q) =
[34, 36.64, 39.11] dB and N (q) = [2621, 5073, 10658] Kbits
which are obtained from real-world video traces [35]. Since
we assume that i, = 0.99 and toW logy (1 + Ymin) = N (1),
the minimum intensity of PPP distributions to satisfy the
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Fig. 4. Delay occurrence rates over A

performance criterion of {Ymin, 7Jmin } becomes Apin = 0.0352.
Therefore, even for the least distributed chunks of the highest
quality, i.e., ¢ = 3, the intensity of caching node distribution
is sufficiently large, i.e., Ap3 = 0.0571 > Anin-

To verify the advantages of the proposed algorithm, this
paper compares the proposed one with three other schemes:

o ‘Strongest’: The user receives the desired video file from
the caching node whose channel condition is the strongest
among A(ty) at time slots of tg, for k € {1,2,---}.
Decisions of ¢(t) and M (t) are made based on dynamic
programming results.

o ‘Highest-Quality’: The user receives the desired video file
from the caching node which can provide the highest-
quality file among A(ty) at time slots of tg, for k €
{1,2,---}. Decisions of ¢(t) and M (t) are made based
on dynamic programming results.

o The work of [16]: The user associates with one of nearby
caching nodes for content delivery by maximizing the
average of quality levels chosen at every time slot under
the constraint of playback delay. This work considered
caching of video files having a specific quality level
only; therefore, the node association is equivalent to the
quality decision. Even though two different timescales
are investigated for video delivery in this paper, we let
the user with this scheme change the caching node to
receive video chunks in short-term scale. Note that the
performance metric of [16] is the average of quality levels
chosen at every time slot without adjustments of receiving
chunk amounts, and this scheme lets the user to receive
as many chunks as the channel capacity allows.

In summary, performance comparisons with ‘Strongest’ and
‘Highest-Quality’ can show the effects of caching node deci-
sion based on Lyapunov optimization. Also, comparison with
[16] can show that the proposed scheme is appropriate for the
practical performance metric (i.e., average video quality per
played chunk) and specify the advantage of using MDP and
dynamic programming for decisions on video quality and the
amounts of receiving chunks.
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Fig. 5. Video quality measures over A

A. Caching node distribution

At first, impacts of the PPP intensity, i.e. how many caching
nodes are distributed around the streaming user, are shown in
Figs. 4 and 5, which give the plots of playback delay occur-
rence rates and average video quality measures per received
chunk versus )\, respectively. As A grows, there becomes an
increase chance that the user can find the caching node around
itself that can deliver many high-quality chunks; therefore,
both delay and quality performances of all schemes become
improved.

Since the caching node whose channel condition is the
strongest can deliver the largest number of chunks to the user,
‘Strongest’ provides much lower delay occurrence rates than
‘Highest-Quality’ in Fig. 4. However, ‘Strongest’ does not
consider the video quality when associating with the caching
node; therefore, its quality measure is worse than ‘Highest-
Quality’. On the other hand, ‘Highest-Quality’ can provide the
higher quality measure to the user compared to ‘Strongest’,
however, the user can suffer from frequent playback delays
especially when A is small.

Meanwhile, the proposed technique determines to associate
with the caching node by balancing the video quality and
channel condition; therefore, the proposed one can provide
quite high quality as ‘Highest-Quality’ while limiting playback
delays as ‘Strongest’ and the scheme in [16], as shown in Figs.
4 and 5, respectively. Thus, the proposed scheme can be said to
smooth out the tradeoff between quality and playback delay
and to fairly achieve both goals. Also, note that ‘Strongest’
and ‘Highest-Quality’ determines the caching node depending
on their purposes, i.e., the channel condition and quality of
cached contents, without consideration of user mobility. Even
though the channel condition of the caching node chosen by
‘Strongest’ is the strongest at fj, after that it could not be
the strongest due to time-varying channels and user mobility.
Therefore, ‘Strongest” is not the best choice for reducing
playback delays, and the proposed one and the work of [16]
can show almost the same delay performance as ‘Strongest’.
Similarly, with the knowledge of user mobility and estimated
the future decisions on quality and receiving chunk amounts,
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the proposed scheme provides as high quality measure as
‘Highest-Quality’.

The scheme proposed in [16] aims at limiting the playback
delay using the same constraint of queue stability in (15) based
on Lyapunov optimization; therefore, its delay performance
is as good as ‘Strongest’ and the proposed one. However,
the average quality measure per received chunk maintains the
lowest value. Since maximization of the average of quality
levels chosen at every slot in [16] treats receiving one chunk
and multiple chunks of the same quality as the identical case,
the actual playback quality could be significantly degraded
when the user receives very many low-quality chunks to avoid
the playback delay if the channel capacity is sufficiently large.
In practice, the average video quality per playing chunk is
more appropriate for a performance metric representing the
users’ satisfactions; therefore, we can see from the results in
Fig. 5 that adjustments of receiving chunk amounts are very
important.

B. Uniform and nonuniform caching probabilities

We set three cases of caching probabilities for the video file
with different quality levels, as follows:
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o Case 1: p1 =4/7, po =2/7, p3 =1/7

o Case 2: p1 =1/3, po =1/3, p3=1/3

o Case 3: p1 = 1/7, po =2/7, p3 =4/7
Note that Case 2 corresponds to the uniform caching proba-
bility case and Case 1 and Case 3 are nonuniform. In Case
3, the streaming user is more likely to receive high-quality
video than other cases, on the other hand, Case 1 represents
an environment where there are not many caching nodes
which can provide the high-quality video around the user.
The performances of playback delay and quality measure
depending on those cases of caching probabilities are shown
in Figs. 6 and 7, respectively.

In Fig. 6, delay incidence of ‘Highest-Quality’ definitely
decreases as p; decreases and p3 grows, because the caching
nodes storing the high-quality video are likely to be near to the
streaming user. However, since the distribution density of all
caching nodes does not change, i.e., A ZlL:l pr = A, the delay
performances of all the other schemes are not influenced much
by different caching policies. For the ‘Strongest’ scheme,
any caching probability case can deliver as many low-quality
chunks of small size as possible when there are too few chunks
in queue so the playback delay is about to occur. In this sense,
the proposed technique and [16] show almost the same delay
performances as ‘Strongest’, because both schemes strongly
limit the playback delay compared to quality improvement.

The average quality measures of all schemes increase as
p1 decreases and ps grows as shown in Fig. 7. Even though
‘Highest-Quality’ pursues the video quality, its average quality
measure per received chunk does not differ much from that of
the proposed one for any caching probability case similar to
Fig. 5. Especially in Case 3, caching nodes storing the highest-
quality video are distributed more than nodes of other types,
therefore the caching node whose channel condition is the
strongest would be highly probable to be type 3. Thus, the
difference between quality performances of ‘Strongest’ and
‘Highest-Quality’ or the proposed scheme is not large.

The performance rankings in Figs. 6 and 7 among com-
parison techniques are consistent with the results of Figs. 4
and 5. Compared to those comparison schemes, the proposed
technique provides quite high average video quality, while
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limiting delay occurrence rate as low as ‘Strongest’ and [16].
In addition, [16] still provides as low delay occurrence rates
as the proposed one but its average quality per chunk is too
poor to achieve user satisfaction.

C. System parameter V

Since V has a role to weigh quality maximization compared
to averting playback delay in Lyapunov optimization prob-
lem, delay occurrence rates increase and the expected quality
measures of all techniques become improved, as V' grows, as
shown in Figs. 8 and 9, respectively. Therefore, we can control
the tradeoff between video quality and playback latency by
adjusting the system parameter V. Among comparison tech-
niques, the proposed scheme improves the quality performance
sufficiently while minimizing the increase in delay incidence
by taking large V. As we’ve seen in Sections VI-A and VI-B,
the proposed technique provides higher average video quality
than ‘Strongest’ and [16], and much better delay performance
than ‘Highest-Quality’.
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D. SINR level

The delay and quality performances over INR levels are
shown in Figs. 10 and 11, respectively. It is easily expected
that quality performances decrease and delay occurrence rates
increase as INR grows for all comparison techniques. Almost
all of the performance rankings among comparison techniques
remain as seen former subsections, but the performance of
‘Highest-Quality’ is influenced by INR levels more than the
proposed one and ‘Strongest’. We can expect that ‘Highest-
Quality’ becomes more difficult to accumulate video chunks in
the queue as the INR grows, therefore the quality level chosen
by the user becomes increasingly degraded. Rather, ‘Strongest’
is not significantly affected by INR changes compared to
‘Highest-Quality’, because the channel condition of its caching
node is much stronger than that of the node chosen by
‘Highest-Quality’. The proposed scheme still achieves the
improved video quality while guaranteeing very low delay
occurrence rate.

VII. CONCLUSION

This paper studies the dynamic delivery policy of video
files of various quality levels in the wireless caching network.
When the caching node distribution around the streaming user
is varying, e.g. the user is moving, the streaming user makes
decisions on caching node to receive the desired file, video
quality, and the number of receiving chunks. The different
timescales are considered for the caching node association
and decisions on quality and the number of receiving chunks.
The optimization framework of those video delivery decisions
conducted on different timescales is constructed based on
Lyapunov optimization theory and Markov decision process.
By using dynamic programming and the frame-based drift-
plus-penalty algorithm, the dynamic video delivery policy is
proposed to maximize average streaming quality while limiting
playback delay quite low. Further, the proposed technique can
adjust the tradeoff between performances of video quality and
playback delay by controlling the system parameter of V.
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