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We demonstrate how the problem of finding the effective property of quasiperiodic constitutive relations can be simpli-
fied to the periodic homogenization setting by transforming the original quasiperiodic material structure to a periodic
heterogeneous material in a higher dimensional space. The characterization of two-scale cut-and-projection convergence
limits of partial differential operators is presented. Copyright © 2017 John Wiley & Sons, Ltd.
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1. Introduction

The search for effective properties of material mixtures dates back to at least the second half of the 19th century with notably the
works of Maxwell Garnett, Clausius-Mossotti, and Lord Rayleigh. The contributions in the field have been in the form of various mixing
formulas based on physical insights and simplified models of the effect of dispersed phases in a matrix with landmark papers by
condensed matter physicists such as Bruggeman and Landauer in the first half of the 20th century (see [1] for a review) that serve as an
inspiration for mathematicians DeGiorgi and Spagnolo [2], Tartar [3], Bensoussan, Lions and Papanicolaou [4], Dal Maso [5].

A mathematical result typically states in which sense the solutions of sequences of partial differential equations (PDEs) with rapidly
varying coefficients converge to the solution of PDEs with constant coefficients while the coefficient variation becomes more and
more rapid. The PDEs with constant coefficients constitute models of processes taking place in homogeneous, and often anisotropic,
materials, that is, the effective properties of the heterogeneous materials are given by the constant coefficients.

In [6], Nguetseng presented the concept of two-scale convergence, which was further developed in [7]. Two-scale convergence
turned out to be a very useful concept in homogenizing periodic material mixtures. This is a generalization of the usual weak con-
vergence, in which one uses oscillating test functions to capture the same scale oscillations in the sequence of functions that are
investigated. As a consequence, one obtains limit functions that are defined on the product space R"x]0, 1[". A similar method is the
periodic unfolding approach [8], in which one first maps the original sequence of functions to a sequence that is defined on R"x]0, 1[",
and then takes the usual weak limit in suitable function spaces, using this extended domain. This is similar to the Fourier transform
approach proposed in [9].

It is true that there are composites that have a periodic microstructure and many nonperiodic mixtures are very well modeled by
periodic composites. However, there are many material systems that are more cumbersome to model, for example, stochastic high-
contrast composites. There are also large period and quasiperiodic composites. For example, mixing two periodic materials may result
in a mixture that has a very large periodicity (when there is a common periodicity that is large) or in a quasiperiodic material, in the
case of a mixture of materials with rational and irrational periodicity, for example, see [10] for a setting in an almost periodic regime
and [11,12] for some recent work on one type of a stochastic and/or quasiperiodic multiscale homogenization setting.

Quasiperiodic materials can be described by periodic structures in higher spatial dimensions that are cut by hyperplanes and pro-
jected onto the lower dimensional space, typically R3, as proposed by the physicists Duneau and Katz 30 years ago [13]. This opens
up the possibility to use standard periodic homogenization tools, for example, two-scale convergence, to homogenize quasiperiodic
materials. To do that, one has to complement existing tools with the cut-and-projection operator; this was done in [14]. In this paper, we
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revisit this extension, the two-scale cut-and-projection convergence method presented in [14], to homogenize quasiperiodic structures.
We characterize the limits of partial differential operators in this setting and demonstrate the method on an electrostatic problem.

1.1.  Electrostatics
Let © be a bounded domain in R3 with Lipschitz boundary. We consider the electrostatic equation,

—div oy (x) grad uy(x) = f(x), xeQ
uplag =0

Mm

where f € L?(Q2) and 7 is a parameter that tends to zero when the fine-scale structure in the composite becomes finer and finer. We
assume that o, is bounded and coercive, that is, o € L (2; R¥*3), and there exists a constant ¢ > 0 such that

op(x)E-E>clE,  ae xeQ VEeR? 2)

Standard estimates yield solutions that are uniformly bounded in W&'Z(Q) with respect to 5. Our objective is to find the effective,
homogenized, equation when n — 0.

1.2.  Quasi-crystals

It is common in homogenization papers to assume that the medium is periodic, that is, in the static case that the electric conductivity
is a periodic function of the three space variables. Nonetheless, we shall slightly depart from this hypothesis by rather assuming that
there is some higher dimensional space within which one can define a periodic conductivity function (of more than three variables). As
it turns out, this mathematical game allows for the analysis of a class of materials that are neither periodic nor random: Quasi-crystalline
phases discovered by Shechtman [15] in the early eighties can be modeled by taking the cut-and-projection of a periodic structure in
an higher dimensional space (typically R® or R'2) onto a hyperplane (such as the Euclidean space R3). In the sequel, we will only require
the knowledge of a matrix R defining this cut-and-projection. In practice, physicists have access to the opto-geometric properties
of a quasi-crystal through analysis of the symmetries on X-ray diffraction patterns (the so-called reciprocal pseudo-arrays), which are
encompassed in the entries of R. For instance, the relative permittivity of the quasi-crystal Algs 5Fe125Cuy4 is given by R : R3 — RS,

er(Rx) =¢,(nc (X1 + 1x2), Nz (X1 + X3), N7 (X2 + TX3),

(3)
N (=X1 4 1X2), N7 (TX7 = X3), Ne (—X2 + TX3))

where n; is the normalization constant 1/,/2(2 + 1), with the Golden number 7, and ¢, € L§°(Y6), that is, it is bounded almost
everywhere on the hypercube Y¢ = ]0, 1[° and is periodic.

We note that there is an ambiguity in the definition of this relative permittivity as we could have defined it via a cut-and-projection
from a periodic array in R'2 onto R3 [13], &,(R'x) where R’ : R3 — R'2, that is, R” is a matrix with 12 rows and three columns and
& € LEO(Y”). The conductivity in (1) is defined in the same way; hence, there is a potential pitfall in the homogenization process.

However, we shall see in the next section that the homogenized result does not actually depend upon R : R" — R, provided it
fulfills the criterion

R'k#£0,VkeZ™\ {0} (4)

1.3.  Two-scale cut-and-projection convergence

In this section, we recall some properties of two-scale convergence [7] in the quasiperiodic setting [14]. Let us consider a real valued
matrix R with m rows and n columns. Similarly to the periodic case, our goal is to approximate an oscillating sequence {uy(x)},ejo1[
by a sequence of two-scale quasiperiodic functions ug (x, R%) where ug (x, ) is periodicon R".

As the matrix R is not uniquely defined, we first need to check that if g is a trigonometric polynomial, then the quasiperiodic function
f = g o Radmits the following (uniquely defined) ergodic mean (forR: R” — R™).

1
L(fy = lim —/ fxdx:/ dy = (5)
(= tm o )@= | gdy =
where [g] denotes the mean of g over the periodic cell Y™ in R™. As shown in [14], this is the case provided that R fulfills the criterion
(4). We recall the statement in [14] of this elementary result as it underpins homogenization of quasi-crystals.

Lemma 1.1
LetR: R" — R (m > n) satisfy (4). Then, (5) holds true for any trigonometric polynomial g on R™.

This result suggests the following concept of two-scale convergence attached to a matrix R.

Definition 1.1 (Distributional two-scale convergence)
Let © be an open bounded setin R" and Y™ = ]0, 1[™. We say that the sequence (u,) two-scale converges in the distributional sense
toward the function ugy € L2(Q x Y™) for a matrix R, if for every ¢ € D(Q; C;’"(Ym)):

Rx
lim — = x x X
nl 0/ up(x)e (x, . ) dx // . Uo(x, y)¢p(x,y)dxdy (6)
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Definition 1.2 (Weak two-scale convergence)
Let © be an open bounded setin R" and Y™ = ]0, 1[™. We say that the sequence (u,) two-scale converges weakly toward the function
up € L2( x Y™) for a matrix R, if for every ¢ € L2(2, C4(Y™)) (6) holds.

. . R . .
We denote weak two-scale convergence for a matrix R with u,, — uo. The following result [14] ensures the existence of such

two-scale limits when the sequence (uy) is bounded in L2(2) and R satisfies (4).

Proposition 1.1
Let Q be an open bounded setin R" and Y™ = ]0, 1{™. If R is a matrix satisfying (4) and (uy,) is a bounded sequence in L?(Q), then there

R
exist a vanishing subsequence 7, and a limit ug(x, y) € L2(Q x Y™) (Y™-periodic in y) such that u,, — ug as nx — 0.
R R

We will need to pass to the limit in integrals [, u, v, dx where u, — ug and v,, = vo. For this, we introduce the notion of strong
two-scale (cut-and-projection) convergence for a matrix R.
Definition 1.3 (Strong two-scale convergence)

R
A sequence uy, in L2(Q2) is said to two-scale converge strongly, for a matrix R, toward a limit ug in L2(2 x Y™), which we denote u;,, — uy,
R
if and only if uy, — ug and
lun 2y = Nluo(x, Y) I 2¢e2xym) 7)

This definition expresses that the effective oscillations of the sequence (uy) are on the order of 7. Moreover, these oscillations are
fully identified by uo. The following proposition provides us with a corrector type result for the sequence u, when its limit ug is smooth
enough:

Proposition 1.2
R
Let R be a linear map from R” in R™ satisfying (4). Let u,, be a sequence bounded in L2(2) such that u, — ug(x, y) (weakly). Then

(i) up weakly converges in L2(€2) toward u(x) = fym Uo(x, y) dy and
liminflunllz@) = lUolliz@xym) = lulla) ®)
(i) Let vy, be another bounded sequence in L2(R2) such that v, 5 Vo (strongly), then

Unpvy — w(x) inD’(Q) where w(x) = / uo(x, y)vo(x,y)dy 9)
ym

(iif) f uy, & Uo(x, y) strongly and H Uo (x, RT")

— [luo(x, ¥)l;2(c25ym), then

o)
(B
K n

— |luo(x, ¥)ll 2o xymy are said to be admissible for the two-scale cut-and-

L2(€2)

—0 (10)
12(S2)

Classes of functions such that Huo (x,%x) 2@
projection convergence. In particular, classes of functions in L2(£2, C4(Y™)) (dense subset in L2(Q x Y™)) are admissible.

In order to homogenize PDEs, we need to identify the differential relationship between y and v, given a bounded sequence (uy) in

W'2(Q) (such that uy, A up and Vuy, A x)- This problem was solved by Allaire in the case of periodic functions [7] and Bouchitté et
al. for quasiperiodic functions [14].

2. Definition of function spaces and associated cut-and-projection partial differential
operators and some of their properties

To carry out the homogenization analysis of PDEs defined on quasiperiodic domains, we need to pass to the limit when 7 goes to zero
in gradient, divergence, and curl operators acting on solutions of PDEs. To do this, we introduce some suitable function spaces. We
consider a matrix R satisfying (4) with m rows and n columns, that is, R : R” — R™, assuming we are considering PDEs defined on
domains Q C R". Any u € L?(Y™) can be represented by a Fourier series,

u(y) = > uge”™* ¥, u, eC
kezm

which can be used to define a function ug € L%(2), by the cut-and-projection operation,

ur(x) = uRx) = > uge kR = 3" up e RK)x e C
kezm kezm
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The mapping y = Rx and the chain rule yields that partial derivatives transform to

Hence, the gradient of ug is given by

grad ug(x) = > 2iR kuy ¥ (RTE)x — R'grad,, u(Rx) = R"V,, u(Rx)
keZm\{0}

where grad is the usual gradient in R" and grad,, denotes the gradient in the range of Rin R™. Vector valued functions u € L2(Y™ R3)

are represented analogously, and the divergence is given by

div ug(x) = Y 27i(R'Vy) - ux e ®5)* = (RTV,) - u(Rx)
keZm\{0}
where div is the divergence operator in R” and V,, denotes the nabla operator in the range of Rin R™. For n = 3, we get

curl ug(x) = curl u(Rx) = Z 27i (RTk) x ug ¥ (RTk)x _ (R"grad,) x u(Rx) = (R"V,) x u(Rx)
keZm\{0}

We can use these representations to define R-dependent gradient, divergence, and curl operators acting on functions defined on

domains in R™. They are
Ve u(y) = gradg u(y) = R'grad,, u(y) =RV, u(y)
divg u(y) = (RTVy) ~u(y)
andforn = 3,
curlg u(y) = (R"grad, ) x u(y) = (R'V,) x u(y)
Remark 2.1

The gradient operator gradg, is a directional derivative given by the projection on R" of the usual gradient in R™. The operation to
compute the divergence and curl uses the same projection of the nabla operator in combination with the usual nabla rules. The divg

operator can also be interpreted as the divergence in Y™ of the m-component vector Ru.

We define the following function spaces associated with the differential operators defined previously

Hy(gradg, Y™) = {u €L2(Y™) | gradqu e Lg(Y’";R")}

e (divg, Y™) = {u € LJ(Y™;R") | diveu € Lﬁ(vm)}
Hy(curlg, Y™) = {u € 2(Y™R?) | curlgu L§(Y’”;R3)}
and
Hy(dive,, Y™) = {u € Ha(divg, Y™) | divg u = o}
Hy(curlgy, Y™) = {u € Hy(curlg, Y™) | curlg u = 0}

We have the following lemma that states that any curlg-free vector field is given by the R-gradient of a scalar potential.

Lemma 2.1
Any function u € Hy(curlg,, Y™) is given as u = gradg ¢(y) for some scalar potential ¢ defined on Y™.

We are now in the position to state that spaces Hy(curlg,, Y™) and Hy(divg,, Y) are orthogonal to curls and gradients.

Lemma 2.2
The orthogonal space to Hy(curlg,, Y™) is given by the space of R-curls of functions defined as

Mg, (Y™, R3) = {w € 2(Y"R) | w(y) = curlgu(y) }

for some vector valued function u in R3 defined on Y.

Lemma 2.3
The orthogonal space to 3 (divg,, Y™) is given by the space of

Lo, (", B%) = {w € LR | w(y) = gradeg (y)]

for some scalar potential ¢ defined on Y™.

am

(12)
(13)

(14)

(15)

(16)

a7

. ______________________________________________________________________________________________________|
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3. Compactness results

In the following main compactness results, we let R be a matrix with m rows and three columns (m > 3) satisfying (4) and assume that
Q is an open bounded set of R3 with a Lipschitz boundary.

Proposition 3.1
Let {u,} be a uniformly bounded sequence in W'2(2). Then there exist a subsequence {up,} and functions u € W'?(Q) and
gradg ui(x, y) € L*(2,L3(Y™;R?)), such that

Un, LY u(x), grad up, A grad u(x) + gradg ur(x,y), n — 0 (18)

Proposition 3.2
Let {u,} be a uniformly bounded sequence in H(curl ,2). Then there exist a subsequence {u,, } and functions uy € H(curl , ),
gradg ¢ € L2(,L3(Y™;R?)), and curlg uy € L*(2,LF(Y™;R?)) such that

Un, A uo(x,y) = u(x) + gradg ¢(x,y), curl uy, & curl u(x) 4+ curlg u1(x,y), n —>0 (19)
where

u(x) =/ uog(x,y)dy (20)
ym

Proposition 3.3
Let {u,} be a uniformly bounded sequence in H(div , 2). Then there exist a subsequence {u,, } and functions uy € H(div,2) and
uq € L2(2, Hz(div, Y™)) such that

R R
up, — uo(x,y), div up, — div u(x) + divy u;(x,y), n —>0 (21)

where u is given by (20).
4. Homogenization of the electrostatic problem

Consider the quasiperiodic heterogeneous electrostatic problem (1) with o, = o (RTX) ,thatis,

—di Rx =
{ div 0( z )grad up(x) = f(x), xeQ 2
uplaa =0
Theorem 4.1
There exists a subsequence of {u,} that converges weakly in Wg'z (R2) to the solution u of the homogenized equation
_div o" -
{ div o"grad u(x) = f(x), xeQ (23)
ulag =0
where
o = /Y 05 (y) (8% — Vo, £(»)) dy (24)
and VR].)(" solves the local equation
[ 50 (3= Yoy £40) Vg (3) dy = 0 @s)

Proposition 4.1
The local equation (25) has a unique gradient solution Vg x* € L2(Y™; R3).

Remark 4.1
The local problem in a strong formulation reads

—div,, Ro (y)R'grad,, ui(x, y) = divy Ro (y)grad uo(x)

where divy, Ro (y) RTgrady is a degenerated elliptic operator. This is pointed out in other papers, for example, in [12]. But in the weak
formulation, Equation (25), we only force the local equation in three directions (i.e., if n = 3, R"), corresponding to the real space
coordinate axes. The corresponding projected gradients are bounded, and the potentials are not needed for the effective properties in
Equation (24). The gradient of potential, grad,, u;(x, y), may still be unbounded in L2(2, L2(Y™;R™)).

|
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We have the following corrector result that resembles that of Theorem 2.1 in [10], in which a corrector result is given for quasiperiodic
monotone operators. It follows from the fact that Vu(x) - Vax with x = (x', x% x>) are admissible test functions in the sense of
Proposition 1.2 (see the proof of Theorem 2.6 in [7]).

Proposition 4.2 (Correctors)
We have

=0

R
lim HVun(x) ~ Vu(x) — Vu(x) - Vay (i)
n—0 2(2R3)

n

5. Conclusions

We have demonstrated how quasiperiodic structures can be homogenized by using the property that they are generated by a periodic
geometry in a higher dimensional space. Homogenization of an electrostatic problem has been given as a first canonical example.
Proofs will be provided elsewhere together with homogenization of other problems of interest to physicists, such as homogenization
of the bianisotropic Maxwell system, as a quasiperiodic counterpart to the random case studied in [11], as well as homogenization of
non-linear problems in LP spaces.
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