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ABSTRACT 

The objective of this paper is to model and characterize the percolation dynamics in road 
networks during a major fluvial flooding event. First, a road system is modelled as planar graph, 
then, using the level of co-location interdependency with flood control infrastructure as a proxy 
to the flood vulnerability of the road networks, it estimated the extent of disruptions each 
neighborhood road network experienced during a flooding event. Second, percolation 
mechanism in the road network during the flood is captured by assigning different removal 
probabilities to nodes in road network according to a Bayesian rule. Finally, temporal changes in 
road network robustness were obtained for random and weighted-adjusted node-removal 
scenarios. The proposed method was applied to road flooding in a super neighborhood in 
Houston during hurricane Harvey. The result shows that, network percolation due to fluvial 
flooding, which is modelled with the proposed Bayes rule based node-removal scheme, causes 
the decrease in the road network connectivity at varying rate. 

INTRODUCTION 

Transportation systems are of fundamental importance to the normal functioning of societies 
in developed and developing countries alike. In addition to their everyday transferring of people, 
goods and services, during the disastrous events, transportation system is crucial for rescuing 
people and assets, and plays a vital role in repairing and restoring other critical infrastructure 
systems if they are disrupted (Mattsson and Jenelius 2015). However, transportation networks, 
especially road networks, are vulnerable to natural and human-made disasters, which could 
undermine their vital functionality. In order to cope with disruptions efficiently and take active 
precautionary measures, it is critical to understand the mechanisms with which the disruptions 
unfold in the transportation network. Graph theory based methods have been devised to assess 
the vulnerability of the transportation networks, as due to the planar nature of road systems, they 
tend to lend themselves readily to being represented as graphs. Graph theory reduces a road 
network to a mathematical matrix, which facilitates the accessibility and connectivity analysis 
within the road network using available graph theoretic measures and tools. Many studies on this 
topic, which uses certain network centrality measures, like betweennees centrality, eigenvector 
centrality, degree centrality, to identify vulnerable or critical locations on the network, indeed 
exist. However, topology of most of the critical infrastructure networks are intrinsically dynamic 
and evolving over time, which is especially true during disastrous events. This renders the 
vulnerability measures based on a single static graph less useful in assessing the temporal 
performance of the networks under disruptions. In order to address this issue, (Callaway et al. 
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2000) introduced a generalized concept of network percolation, through which resilience is 
assessed for a network after possible failure of a node or set of nodes. First introduced in the 
fields of physics and mathematics, percolation models continuous phase transitions on low-
dimensional lattice and could be divided into two broad categories, site percolation and bond 
percolation (Stauffer and Aharony 2014). The site and bond percolation respectively corresponds 
to node and edge percolation in the context of networks(Newman 2010). Modelling percolation 
in road networks requires an estimation of the removal probabilities of the nodes in the network. 
Most of infrastructure networks, including road networks, are spatially embedded (Bashan et al. 
2013) and failure probabilities of their nodes tend to be different due to the heterogeneity of the 
contexts within which the nodes operate, which requires the node-removal scheme to be able to 
reflect the difference in the configuration of the environment the nodes are located. In order to 
achieve this goal, this study proposes a network simulation-based method to capture the 
propagation dynamics of the fluvial flooding within the road networks. 

 
Figure 1 Proposed Framework 

LITERATURE REVIEW 

Studies on the vulnerability of transportation systems using graph theory have increased 
significantly in the past decades and graph theory in transportation field has been commonly 
used to study issues related to travel routing and networks topologies within the transportation 
network (Monteiro et al. 2012). Based on the inclusion of the temporal dimension in the 
vulnerability analysis, network topology related methods could be classified into static and 
dynamic approaches. Some examples of the static approaches that studied the topological 
vulnerability of transportation networks include the work by (Demšar et al. 2008; Ip and Wang 
2011; King et al. 2016; Leu et al. 2010; Porta et al. 2006). Comparatively, number of studies 
which used dynamic network approaches to study the vulnerabilities in transportation networks 
are small. A survey on the works used dynamic network approaches to study network 
vulnerability found that existing studies are either focusing on the theoretical network such as 
Erdos-Renyi, Scale-Free networks, or power-law networks (Gao et al. 2012; Huang et al. 2011), 
or they assumed that disruption on the networks are random, such as works on lattice network 
(Yan et al. 2017), communication tower networks (Parandehgheibi and Modiano 2013) and 
supply chain networks (Nicosia et al. 2013). This paper will contribute to the body of knowledge 
by proposing a dynamic network approach, which acknowledges the heterogeneity of the nodes, 
to assess the temporal change in the network robustness. In another words, instead of just using 
certain centrality measures to identify “vulnerable” areas in the network, this study considers the 
compromisation of the road network due to fluvial flooding as a dynamic process and captures 
the relative targeted nature of flooding locations. 
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PROPOSED METHODOLOGY 

It is possible that different types of flooding (fluvial flooding, fluvial flooding, reservoir 
flooding, coastal flooding) occur simultaneously during the hurricane and it is a quite 
challenging to capture the changes in the road networks under all of these flooding with a single 
model. Therefore, this study aims at capturing the temporal changes in the road network due only 
to fluvial flooding, which occurs due to the overflow of flood control infrastructure (like rivers, 
channels and bayous) during heavy rainfall. Figure 1 is the workflow diagram for the proposed 
methodology. 

Road Network Modelling 

In this study, modelling of the road network will adopt the primal approach in the network 
theory, which assumes the nodes are the intersections and links are the road sections. Road 
networks used for the study are obtained from OpenStreetMap using the OSMnx, which is a 
Python package developed by Boeing (Boeing 2017). In order to assess the road network 
connectivity for the general users, this study chosen to focus on the roadways which is used by 
passenger vehicles, as opposed to a more detailed road network which includes bikeways, 
walkways and service ways included. 

Overall Flood Vulnerability Estimation 

As it could be seen from Figure 2, there is a significant positive correlation between the level 
of flooding a neighborhood experienced and the proximity of the area to flood control 
infrastructure systems. The four clusters of heavily flooded regions (A, B, C and D) in Figure 2B 
correspond areas, which are in the immediate vicinity of reservoirs, dams or major bayous (1, 3, 
2 and 4) in the Figure 2A. While there could be many other factors contributing to the level of 
flooding experienced by the neighborhoods, the level of proximity with flood control 
infrastructure is an important factor for the flooding extent. This paper estimated the level of 
proximity between flood control infrastructure (dams, bayous and open channels) and road 
networks, based on the proximity and type of flood control infrastructure located near the road 
networks. Weights were assigned to the road network in certain super neighborhood (SN) in the 
below manner (Table 1): 

Table 1 Proximity Index with Flood Control Infrastructure 
Types of Co-location Co-location Weight 

SN is located within the peripheries of the reservoir/dam 4 
SN is adjacent to the dam/reservoir 2 
SN contains portion of a bayou 2 
SN contains portion of a channel/creek 1 

The overall neighborhood proximity index is cumulative, which means if it meets several co-
location condition, the proximity index will be the sum of respective co-location scenarios. For 
example, Super Neighborhood 17 (Eldridge/West Oak) in Houston has the highest flood 
vulnerability (with overall proximity index of 9) due to the fact that significant part of it is 
located within a reservoir (Barker), it is adjacent to a reservoir (Addicks), a major bayou 
(Buffalo) passes through it and it contains channel network. With the same logic, Super 
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Neighborhood 16 (Memorial) have an overall proximity index of 6 and the level of flooding 
experienced by this neighborhood is less severe compared to the SN-17. 

 
Figure 2 A: Location of the Flood Control Infrastructure in Houston(source:HCFCD); 

B:Flooding Experienced at Different Location in Houston (source:COHGIS) 

The super neighborhood this study focused on is called Memorial, which is located in the 
Energy Corridor region in Houston and one of the areas whose road network suffered heavily 
from the fluvial flooding during the past hurricane Harvey. This neighborhood has an overall co-
location index of 6. While proximity with flood control infrastructure is an important indicator 
for the level of inundation, many other factors, like topography of the area, availability of 
unpaved green space in the vicinity, are simultaneously at play. In the end, this study used the 
ratio of the area covered by flood water and total area at the peak of the inundation as the proxy 
for the portion of the nodes in the road network removed during flooding, which is about 60%. 

Flood Propagation in Road Network 

While the co-location interdependency with the flood control infrastructure provides insights 
about the overall level of flooding an area could experience at a macro-level, the sequence of the 
flooding and closure of roads in the area are largely affected by factors like the types of flood-
plain and relative elevation of the nodes in the road network. Therefore, this paper uses this 
information as the proxy for the likelihood of a node being an initiation point for the flood, 
which means nodes located in flood-prone areas (located in 100-year flood plain) with lower 
elevation having a higher chance of being removed first. It is also noteworthy to mention that, to 
certain extent, flood in the road network also spreads in a way that a disease does, a flooding of 
an adjacent node could lead to the flooding of the certain road nodes. Therefore, this study will 
estimate the prior probability of nodes being flooded based on the flooding status of the adjacent 
nodes and grade level of the street between these nodes, which will be used to update initial 
flood plain and elevation-based probability of nodes being removed. Bayesian rule is used to 
update the probability and obtain the posterior probability of nodes being removed. 

Due to the fact that there are numerous factors which could cause the road network to be 
flooded, there is an uncertainty about what areas get flooded first (i.e., places on the road 
network where the flooding originates). In order to identify where the flood initiates, a fuzzy 
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inference method is used. Two groups of variables (See Table 2 for variables and their possible 
values) are introduced to estimate the initial removal probability (See Table 3 for an example). 
The rational is if a certain node in the road network is located in a highly flood-prone area and its 
elevation is low, there is a high chance for it being removed from the road network first. The 
elevation data for the nodes in the road network is retrieved using Google API on OSMnx. 

Table 2 Variables and Their Possible Values 
Variables Possible Values 

Low 
Probability 

Medium 
Probability 

High Probability 

Flood Plain (Flood Control 
Infrastructure) Variable 

Non-
floodplain 

500 year flood 
plain 

100 year flood 
plain 

Elevation Variable Fourth 
quartile 

Third quartile First & Second 
Quartile 

Table 3 Example of Fuzzy Rule for Initial Probability for Node Removal 
IF Flood Plain AND Elevation THEN Probability P(A) 

If 
100 year 

And 
First & Second quartile 

Then 
Very high 

100 year Third quartile High 
100 year Fourth quartile Medium 

As to the estimation of the prior probability, which intends to models the possible 
propagation trends (directions) for the flood in the road network, two variables are used as input 
for the fuzzy inference model. The two variables are the status of the adjacent nodes and the type 
of grade between the adjacent node and the node in question. Two possible values are considered 
for the first variable, which are (1) there is at least one adjacent node which has already been 
flooded;(2) there is no adjacent node which has already been flooded. Similarly, binary values 
(positive or negative) are considered to the street-grade variable. For example, if the slope for the 
road section which is connecting one of the flooded adjacent nodes and grade of the road section 
is negative, then there is a high chance for that node being removed next (See Table 4 for an 
example). The data for grade types between every two adjacent nodes in the road network is 
retrieved using Google API using OSMnx tool in Python. 

Table 4 Example of Fuzzy Rule for Prior Probability for Node Removal 
IF An Adjacent Node AND Street Grade THEN P(B) 
If Flooded And Negative Then High 

Not flooded Positive Low 

Using below Bayesian rule, the posterior probability (  |P AB ) of certain node being 
removed is obtained by updating the initial probability after each removal phase. 

  
 | ( )

|
( )

P B A P A
P AB

P B
   

  where :  P A :  the initial probability ;  P(B) :  the prior probability   
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Figure 4 shows the temporal (approximated) changes in the connectivity (global efficiency) 
of the road network as the fluvial flood expands within the road network. This simulated result 
corresponds to the road closure in this neighborhood which started on Aug 25, 2017 and peaked 
(about 60% of the roadways closed) on Aug 29, 2017. As it could be seen in the Figure 4 (the 
blue dots represents the simulated result and the red one is fitted to the data with polynomial 
regression), there is a dramatic drop in the connectivity after about 10 percent of the nodes being 
removed and this trend continues until node removal portion reaches about 20 percent, after 
which the network probably becomes too fragmented and the further removal of nodes has little 
impact on the overall connectivity. A few cases were global efficiency of the road network 
seemingly increase after further nodes are removed are because global efficiency is also 
impacted by the changes in network size. Therefore, the level of reduction in the global 
efficiency due to node-removal is smaller than the positive impact the smaller-size have on the 
global efficiency. 

CONCLUSION AND FUTURE WORK 

This study proposed a probability-based simulation framework to model the percolation 
process in the road networks during a fluvial flooding. A highly non-linear relationship between 
the node removal ratio and the global efficiency of the road network is observed. One of the 
advantages of this study is its utilization of the publicly available big data (like planar network 
structure, node elevation and street grade) about road network. This study also has an 
intermediate finding that there is a positive correlation between proximity index and the level of 
inundation experienced, which means disruptions caused by hurricane induced flooding on the 
road networks could not be treated as random events. In the meantime, there are rooms for 
improvements. For example, this study only considered and modeled the fluvial flooding that is 
due to the overflow of the flood control infrastructure, while it is possible that multiple types of 
flooding occur simultaneously during a hurricane. More variables and parameters could be 
introduced to paint a more comprehensive picture of the disruptions caused by different types of 
flood. Using a connectivity measure which is not impacted by, or could account for, the varying 
network size will provide a more accurate sense of the change in the road network connectivity. 
It is also possible to relate the depth of flooding in the road network with the travel speed to 
develop a more accurate model about the impact of the flooding on the traffic flow. 
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