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ABSTRACT

Programs expecting structured inputs often consist of both a syntac-
tic analysis stage, which parses raw input, and a semantic analysis
stage, which conducts checks on the parsed input and executes
the core logic of the program. Generator-based testing tools in the
lineage of QuickCheck are a promising way to generate random
syntactically valid test inputs for these programs. We present Zest,
a technique which automatically guides QuickCheck-like random-
input generators to better explore the semantic analysis stage of test
programs. Zest converts random-input generators into determinis-
tic parametric generators. We present the key insight that mutations
in the untyped parameter domain map to structural mutations in
the input domain. Zest leverages program feedback in the form
of code coverage and input validity to perform feedback-directed
parameter search. We evaluate Zest against AFL and QuickCheck
on five Java programs: Maven, Ant, BCEL, Closure, and Rhino. Zest
covers 1.03X-2.81x as many branches within the benchmarks’ se-
mantic analysis stages as baseline techniques. Further, we find 10
new bugs in the semantic analysis stages of these benchmarks. Zest
is the most effective technique in finding these bugs reliably and
quickly, requiring at most 10 minutes on average to find each bug.
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Figure 1: Inputs to a program taking structured inputs can
be either syntactically or semantically invalid or just valid.

1 INTRODUCTION

Programs expecting complex structured inputs often process their
inputs and convert them into suitable data structures before in-
voking the actual functionality of the program. For example, a
build system such as Apache Maven first parses its input as an
XML document and checks its conformance to a schema before
invoking the actual build functionality. Document processors, Web
browsers, compilers and various other programs follow this same
check-then-run pattern.

In general, such programs have an input processing pipeline
consisting of two stages: a syntax parser and a semantic analyzer.
We illustrate this pipeline in Figure 1. The syntax parsing stage
translates the raw input into an internal data structure that can
be easily processed (e.g. an abstract syntax tree) by the rest of the
program. The semantic analysis stage checks if an input satisfies
certain semantic constraints (e.g. if an XML input fits a specific
schema), and executes the core logic of the program. Inputs may
be rejected by either stage if they are syntactically or semantically
invalid. If an input passes both stages, we say the input is valid.

Automatically testing such programs is challenging. The diffi-
culty lies in synthesizing inputs that (1) satisfy complex constraints
on their structure and (2) exercise a variety of code paths in the
semantic analysis stages and beyond. Random input generation is a
popular technique for such scenarios because it can easily scale to
execute a large number of test cases. Developers can write domain-
specific generators from which random syntactically valid inputs—
such as XML documents and abstract syntax trees— can be sampled.
Popularized by QuickCheck [30], this approach has been adopted
by many generator-based testing tools [16, 19, 32, 34, 38, 43, 49, 61].
QuickCheck-like test frameworks are now available in many pro-
gramming languages such as Java [44], PHP [10], Python [11],
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JavaScript [12], Scala [14], and Clojure [15]. Many commercial
black-box fuzzing tools, such as Peach [13], beSTORM [7], Cy-
berflood [9], and Codenomicon [8], also leverage generators for
network protocols or file formats. However, in order to effectively
exercise the semantic analyses in the test program, the generators
need to be tuned to produce inputs that are also semantically valid.
For example, the developers of CSmith [72], a tool that generates
random C programs for testing compilers, spent significant effort
manually tuning their generator to reliably produce valid C pro-
grams and to maximize code coverage in the compilers under test.

In this paper, we present Zest, a technique for automatically
guiding QuickCheck-like input generators to exercise various code
paths in the semantic analysis stages of programs. Zest incorporates
feedback from the test program in the form of semantic validity of
test inputs and the code coverage achieved during test execution.
The feedback is then used to generate new inputs via mutations.

Coverage-guided fuzzing (CGF) tools such as AFL [74] and lib-
Fuzzer [45] have gained a huge amount of popularity recently due
to their effectiveness in finding critical bugs and security vulnera-
bilities in widely-used software systems. CGF works by randomly
mutating known inputs via operations such as bit flips and byte-
level splicing to produce new inputs. If the mutated inputs lead to
new code coverage in the test program, they are saved for subse-
quent mutation. Of course, such mutations usually lead to invalid
syntax. Naturally, most of the bugs found by these CGF tools lie
in the syntax analysis stage of programs. CGF tools often require
many hours or days of fuzzing to discover deeper bugs [47], which
makes them impractical for use in continuous integration systems
with limited testing time budgets.

Our proposed technique, Zest, adapts the algorithm used by CGF
tools in order to quickly explore the semantic analysis stages of
test programs. Zest first converts QuickCheck-like random-input
generators into deterministic parametric generators, which map a
sequence of untyped bits, called the “parameters”, to a syntactically
valid input. The key insight in Zest is that bit-level mutations on
these parameters correspond to structural mutations in the space
of syntactically valid inputs. Zest then applies a CGF algorithm on
the domain of parameters, in order to guide the test-input genera-
tion towards semantic validity and increased code coverage in the
semantic analysis stages.

We have integrated Zest into the open-source JQF frame-
work [60]: https://github.com/rohanpadhye/jqf. We evaluate Zest
on five real-world Java benchmarks and compare it to AFL [74]
and (a Java port of) QuickCheck [44]. Our results show that the
Zest technique achieves significantly higher code coverage in the
semantic analysis stage of each benchmark. Further, during our
evaluation, we find 10 new bugs in the semantic analysis stages of
our benchmarks. We find Zest to be the most effective technique
for reliably and quickly triggering these semantic bugs. For each
benchmark, Zest discovers an input triggering every semantic bug
in at most 10 minutes on average. Zest complements AFL, which is
best suited for finding syntactic bugs.

To summarize, we make the following contributions:

e We convert existing random-input generators into determin-
istic parametric generators, enabling a mapping from bit-level
mutations of parameters to structural mutations of inputs.
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e We present an algorithm that combines parametric gener-
ators with feedback-directed parameter search, in order to
effectively explore the semantic analysis stages of programs.

e We evaluate our Java-based implementation of Zest against
AFL and QuickCheck on five real-world benchmarks to com-
pare their effectiveness in exercising code paths and discov-
ering new bugs within the semantic analysis stage.

2 BACKGROUND

2.1 Generator-Based Testing

Generator-based testing tools [16, 30, 32, 34, 38, 43, 61, 72] allow
users to write generator programs for producing inputs that belong
to a specific type or format. These random-input generators are
non-deterministic, i.e., they sample a new input each time they
are executed. Figure 2 shows a generator for XML documents in
the junit-quickcheck [44] framework, which is a Java port of
QuickCheck [30]. When generate() is called, the generator uses
the Java standard library XML DOM API to generate a random
XML document. It constructs the root element of the document by
invoking genElement (Line 4). Then, genElement uses repeated
calls to methods of random to generate the element’s tag name
(Line 9), any embedded text (Lines 19, 20, and in genString), and
the number of children (Line 13); it recursively calls genElement to
generate each child node. We omitted code to generate attributes,
but it can be done analogously.

Figure 3 contains a sample test harness method testProgram,
identified by the @Property annotation. This method expects
a test input xml of type XMLDocument; the @From annotation
indicates that inputs will be randomly generated using the
XMLGenerator.generate() APL. When invoked with a generated
XML document, testProgram serializes the document (Line 3) and
invokes the readModel method (Line 9), which parses an input
string into a domain-specific model. For example, Apache Maven
parses pom. xml files into an internal Project Object Model (POM).
The model creation fails if the input XML document string does not
meet certain syntactic and semantic requirements (Lines 11, 13). If
the model creation is successful, the check at Line 4 succeeds and
the test harness invokes the method runModel at Line 5 to test one
of the core functionalities of the program under test.

An XML generator like the one shown in Figure 2 generates
random syntactically valid XML inputs; therefore Line 11 in Figure 3
will never be executed. However, the generated inputs may not be
semantically valid. That is, the inputs generated by the depicted
XML generator do not necessarily conform to the schema expected
by the application. In our example, the readModel method could
throw a ModelException and cause the assumption at Line 4 to fail.
If this happens, QuickCheck simply discards the test case and tries
again. Writing generators that produce semantically valid inputs
by construction is a challenging manual effort.

When we tested Apache Maven’s model reader for pom. xml files
using a generator similar to Figure 2, we found that only 0.09%
of the generated inputs were semantically valid. Moreover, even
if the generator manages to generate semantically valid inputs, it
may not generate inputs that exercise a variety of code paths in
the semantic analysis stage. In our experiments with Maven, the
QuickCheck approach covers less than one-third of the branches
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1 class XMLGenerator implements Generator<XMLDocument> {
2 @Override // For Generator <XMLDocument>

3 public XMLDocument generate(Random random) {
4 XMLElement root = genElement(random, 1);

5 return new XMLDocument(root);

6 }

7 private XMLElement genElement(Random random,
8 // Generate element with random name

9 String name = genString(random);

10 XMLElement node = new XMLElement(name);
11 if (depth < MAX_DEPTH) { // Ensures termination
12 // Randomly generate child nodes

13 int n = random.nextInt (MAX_CHILDREN);
14 for (int i = @; i < n; i++) {

15 node . appendChild (genElement(random,
16 3}

17 3}

18 // Maybe insert text inside element

19 if (random.nextBool()) {

20 node.addText (genString(random));

21 3}

22 return node;

23 3}

24 private String genString(Random random) {

25 // Randomly choose a length and characters
26 MAX_STRLEN);

int depth) {

depth+1));

int len = random.nextInt(1,

String str = "";

for (int i = @; i < len; i++) {
str += random.nextChar();

27

29

30 3}

31 return str;
32 3}

33}

Figure 2: A simplified XML document generator.

1 @Property
void testProgram(@From(XMLGenerator.class) XMLDocument xml) {

3 Model model = readModel(xml.toString());

4 assume (model != null); // validity

5 assert(runModel (model) == success);

6}

7 private Model readModel(String input) {

8 try {

9 return ModelReader.readModel (input);

} catch (XMLParseException e) {
11 return null; // syntax error
} catch (ModelException e) {
return null; // semantic error
14 }
15 3
Figure 3: A junit-quickcheck property that tests an XML-
based component.

in the semantic analysis stage than our proposed technique does.
Fundamentally, this is because of the lack of coupling between the
generators and the program under test.

2.2 Coverage-Guided Fuzzing

Algorithm 1 describes coverage-guided fuzzing (CGF). CGF oper-
ates on raw test inputs represented as strings or byte-arrays. The
algorithm maintains a set S of important test inputs, which are
used as candidates for future mutations. S is initialized with a
user-provided set of initial seed inputs I (Line 1). The algorithm
repeatedly cycles through the elements of S (Line 5), each time
picking an input from which to generate new inputs via mutation.
The number of new inputs to generate in this round (Line 6) is de-
termined by an implementation-specific heuristic. CGF generates
new inputs by applying one or more random mutation operations
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Algorithm 1 Coverage-guided fuzzing.

Input: program p, set of initial inputs I
Output: a set of test inputs and failing inputs
1: S 1
22 Fe—0
3: totalCoverage «— 0
4: repeat
5. for inputin S do
6 for 1 < i < NUMCANDIDATES(input) do
7: candidate «— MUTATE(input, S)
8 coverage, result «< RUN(p, candidate)
9 if result = FAILURE then

F < F U candidate
11: else if coverage ¢ totalCoverage then
12: S «— S U {candidate}
13: totalCoverage < totalCoverage U coverage

14: until given time budget expires
15: return S, ¥

on the base input (Line 7). These mutations may include operations
that combine subsets of other inputs in S. The given program is
then executed with each newly generated input (Line 8). The result
of a test execution can either be Success or FAILURE. If an input
causes a test failure, it is added to the failure set # (Line 10).

The key to the CGF algorithm is that instead of treating the test
program as a black-box as QuickCheck does, it instruments the test
program to provide dynamic feedback in the form of code coverage
for each run. The algorithm maintains in the variable totalCoverage
the set of all coverage points (e.g. program branches) covered by
the existing inputs. If the successful execution of a generated input
leads to the discovery of new coverage points (Line 11), then this
input is added to the set S for subsequent fuzzing (Line 12) and the
newly covered coverage points are added to totalCoverage. (Line 13).

The whole process repeats until a time budget expires. Finally,
CGF returns the generated corpus of test inputs S and failing inputs
¥ (Line 15). CGF can either be used as a technique to discover inputs
that expose bugs—in the form of crashes or assertion violations—or
to automatically generate a corpus of test inputs that cover various
program features.

A key limitation of existing CGF tools is that they work without
any knowledge about the syntax of the input. State-of-the-art CGF
tools [25, 28, 45, 50, 63, 74] treat program inputs as sequences of
bytes. This choice of representation also influences the design of
their mutation operations, which include bit-flips, arithmetic oper-
ations on word-sized segments, setting random bytes to random
or “interesting” values (e.g. 0, MAX_INT), etc. These mutations are
tailored towards exercising various code paths in programs that
parse inputs with a compact syntax, such as parsers for media file
formats, decompression routines, and network packet analyzers.
CGF tools have been very successful in finding memory-corruption
bugs (such as buffer overflows) in the syntax analysis stage of such
programs due to incorrect handling of unexpected inputs.

Unfortunately, this approach often fails to exercise the core func-
tions of software that expects highly structured inputs. For example,
when AFL [74] is applied on a program that processes XML input
data, a typical input that it saves looks like:

<a b>ac&#84;a>
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which exercises code paths that deal with syntax errors. In this case,
an error-handling routine for unmatched start and end XML tags. It
is very difficult to generate inputs that will exercise new, interesting
code paths in the semantic analysis stage of a program via these
low-level mutations. Often, it is necessary to run CGF tools for
hours or days on end in order to find non-trivial bugs, making them
impractical for use in a continuous integration setting.

3 PROPOSED TECHNIQUE

Our approach, Zest, adds the power of coverage-guided fuzzing
to generator-based testing. First, Zest converts a random-input
generator into an equivalent deterministic parametric generator.
Zest then uses feedback-directed parameter search to search through
the parameter space. This technique augments the CGF algorithm
by keeping track of code coverage achieved by valid inputs. This
enables it to guide the search towards deeper code paths in the
semantic analysis stage.

3.1 Parametric Generators

Before defining parametric generators, let us return to the ran-
dom XML generator from Figure 2. Let us consider a particular
path through this generator, concentrating on the calls to nextInt,
nextBool, and nextChar. The following sequence of calls will be
our running example (some calls ommitted for space):

Call — result Context

random.nextInt(1, MAX_STRLEN) — 3  Root: name length (Line 26)
random.nextChar() — ‘f’ Root: name[@] (Line 29)
random.nextChar() — ‘o’ Root: name[1] (Line 29)
random.nextChar() — ‘o’ Root: name[2] (Line 29)
random.nextInt (MAX_CHILDREN) — 2 Root: # children (Line 13)

random.nextInt(1, MAX_STRLEN) — 3  Child 1: name length (Line 26)

random.nextBool () — False
random.nextBool () — False

Child 2: embed text? (Line 19)
Root: embed text? (Line 19)

The XML document produced when the generator makes this
sequence of calls looks like:

x1 = <foo><bar>Hello</bar><baz /></foo>.

In order to produce random typed values, the implementations of
random.nextInt, random.nextChar, and random.nextBool rely
on a pseudo-random source of untyped bits. We call these untyped
bits “parameters”. The parameter sequence for the example above,
annotated with the calls which consume the parameters, is:

o1 = 0000 0010 0110 0110 0000 0000
B ———— e e e
nextInt(1,...)—3 nextChar()—*f’ nextBool () —False

For example, here the function random. nextInt(a, b) consumes
eight bit parameters as a byte, n, and returns n% (b — a) + a as
a typed integer. For simplicity of presentation, we show each
random.nextXYZ function consuming the same number of param-
eters, but they can consume different numbers of parameters.

We can now define a parametric generator. A parametric gener-
ator is a function that takes a sequence of untyped parameters such
as o1—the parameter sequence—and produces a structured input,
such as the XML x;. A parametric generator can be implemented
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by simply replacing the underlying implementation of Random to
consult not a pseudo-random source of bits but instead a fixed
sequence of bits provided as the parameters.

While this is a very simple change, making generators deter-
ministic and explicitly dependent on a fixed parameter sequence
enables us to make the following two key observations:

(1) Every untyped parameter sequence corresponds to a syntac-
tically valid input—assuming the generator only produces
syntactically valid inputs.

(2) Bit-level mutations on untyped parameter sequences corre-
spond to high-level structural mutations in the space of syn-
tactically valid inputs.

Observation (1) is true by construction. The random.nextXYZ
functions are implemented to produce correctly-typed values no
matter what bits the pseudo-random source-or in our case, the
parameters—provide. Every sequence of untyped parameter bits
correspond to some execution path through the generator, and
therefore every parameter sequence maps to a syntactically valid
input. We describe how we handle parameter sequences that are
longer or shorter than expected with the example sequences o3 and
0y, respectively, below.

To illustrate observation (2), consider the following parameter
sequence, o2, produced by mutating just a few bits of o1:

oy = 0000 0010 0101 0111 ... 0000 0000.

e
nextChar()— ‘W’

As indicated by the annotation, all this parameter-sequence mu-
tation does is change the value returned by the second call to
random. nextChar() in our running example from ‘f’ to ‘W’. So
the generator produces the following test-input:

x2 = <Woo><bar>Hello</bar><baz /></Woo>.

Notice that this generated input is still syntactically valid, with
“Woo” appearing both in the start and end tag delimiters. This is
because the XML generator uses an internal DOM tree representa-
tion that is only serialized after the entire tree is generated. We get
this syntactic-validity-preserving structural mutation for free, by
construction, and without modifying the underlying generators.

Mutating the parameter sequence can also result in more drastic
high-level mutations. Suppose that o7 is mutated to influence the
first call to random. nextInt (MAX_CHILDREN) as follows:

o3 = 0000 ... 0000 0001
N——
nextInt(MAX_CHILDREN)—1

... 0000.

Then the root node in the generated input will have only one child:

x3 = <foo><bar>Hello</bar>M</foo>

(M designates the absence of <baz />). Since the remaining values
in the untyped parameter sequence are the same, the first child
node in x3—<bar>Hello</bar>—is identical to the one in x1. The
parametric generator thus enables a structured mutation in the
DOM tree, such as deleting a sub-tree, by simply changing a few
values in the parameter sequence. Note that this change results in
fewer random.nextXYZ calls by the generator; the unused parame-
ters in the tail of the parameter sequence will simply be ignored by
the parametric generator.
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Algorithm 2 The Zest algorithm, pairing parametric generators
with feedback-directed parameter search. Additions to Algorithm 1
highlighted in grey.

Input: program p, generator g
Output: a set of test inputs and failing inputs

1: S « {raNDOM }
2 Fe0

3: totalCoverage < 0
4: validCoverage < 0
5: g < MAKEPARAMETRIC(q)
6: repeat
7. for paramin S do
8: for 1 < i < NUMCANDIDATES(param) do
9: candidate < MUTATE(param, S)
10: input < g(candidate)
11: coverage, result < RUN(p, input )
12: if result = FAILURE then
13: F «— F U candidate
14: else
15: if coverage ¢ totalCoverage then
16: S «— S U {candidate}
17: totalCoverage «— totalCoverage U coverage
18: if result = VALID and coverage ¢ validCoverage then
19: S «— S U {candidate}
20: validCoverage «— validCoverage U coverage

21: until given time budget expires
22: return g(S), g(¥F)

For our final example, suppose o7 is mutated as follows:

04 = 0000 0011 ... 0000 0001 0000 0000
—_— —_————
hextBool () »True NextInt(1,...)—1

Notice that after this mutation, the last 8 parameters are consumed
by nextInt instead of by nextBool (ref. o1). But, note that nextInt
still returns a valid typed value even though the parameters were
originally consumed by nextBool.

At the input level, this modifies the call sequence so that the
decision to embed text in the second child of the document becomes
True. Then, the last parameters are used by nextInt to choose an

embedded text length of 1 character. However, one problem remains:

to generate the content of the embedded text, the generator needs
more parameter values than o4 contains. In Zest, we deal with this
by appending pseudo-random values to the end of the parameter
sequence on demand. We use a fixed random seed to maintain
determinism. For example, suppose the sequence is extended as:

0001 0000 0000 0100 1100 0000 0000
—— | —
nextChar()— ‘H’ nextBool () —False

o) = 0000 ...

Then the parametric generator would produce the test-input:

x4 = <foo><bar>Hello</bar><baz>H</baz></foo>.

3.2 Feedback-Directed Parameter Search

Algorithm 2 shows the Zest algorithm, which guides parametric
generators to produce inputs that get deeper into the semantic
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analysis stage of programs using feedback-directed parameter search.
The Zest algorithm resembles Algorithm 1, but acts on parameter
sequences rather than the raw inputs to the program. It also extends
the CGF algorithm by keeping track of the coverage achieved by
semantically valid inputs. We highlight the differences between
Algorithms 2 and 1 in grey.

Like Algorithm 1, Zest is provided a program under test p. Unlike
Algorithm 1 which assumes seed inputs, the set of parameter se-
quences is initialized with a random sequence (Line 1). Additionally,
Zest is provided a generator g, which it automatically converts to
a parametric generator g (Line 5). In an abuse of notation, we use
g(S) to designate the set of inputs generated by running g over the
parameter sequences in S, i.e. g(S) = {g(s) : s € S}.

Along with totalCoverage, which maintains the set of cover-
age points in p covered by all inputs in g(S), Zest also maintains
validCoverage, the set of coverage points covered by the (semanti-
cally) valid inputs in g(S). This is initialized at Line 4.

New parameter sequences are generated using standard CGF
mutations at Line 9; see Section 4 for details. New inputs are gener-
ated by running the sequences through the parametric generator
(Line 10). The program p is then executed on each input. During the
execution, in addition to code-coverage and failure feedback, the
algorithm records in the variable result whether the input is valid
or not. In particular, result can be any of {VALID, INVALID, FAILURE}.
An input is considered invalid if it leads to a violation of any as-
sumption in the test harness (e.g. Figure 3 at Line 4), which is how
we capture application-specific semantic validity.

As in Algorithm 1, a newly generated parameter sequence is
added to the set S at Lines 15-17 of Algorithm 2 if the correspond-
ing input produces new code coverage. Further, if the corresponding
input is valid and covers a coverage point that has not been exer-
cised by any previous valid input, then the parameter sequence is
added S and the cumulative valid coverage variable validCoverage
is updated at Lines 18-20. Adding the parameter sequence to S
under this new condition ensures that Zest keeps mutating valid in-
puts that exercise core program functionality. We hypothesize that
this biases the search towards generating even more valid inputs
and in turn increases code coverage in the semantic analysis stage.

As in Algorithm 1, the testing loop repeats until a time budget
expires. Finally, Zest returns the corpus of generated test inputs

g(S) and failing inputs g(F).

4 IMPLEMENTATION

Zest is implemented on top of the open-source JQF platform [60],
which provides a framework for specifying algorithms for feedback-
directed fuzz testing of Java programs. JQF dynamically instruments
Java classes in the program under test using the ASM bytecode-
manipulation framework [58] via a javaagent. The instrumenta-
tion allows JQF to observe code coverage events, e.g. the execution
of program branches and invocation of virtual method calls.
Fuzzing “guidances” can plug into JQF to provide inputs and
register callbacks for listening to code coverage events. JQF origi-
nally shipped with AFLGuidance and NoGuidance, which we use
in our evaluation in Section 5. AFLGuidance uses a proxy program
to exchange program inputs and coverage feedback with the ex-
ternal AFL tool; the overhead of this inter-process communication
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is a negligible fraction of the test execution time. NoGuidance ran-
domly samples inputs from junit-quickcheck [44] generators
without using coverage feedback. We implement ZestGuidance in
JQF, which biases these generators using Algorithm 2.
junit-quickcheck provides a high-level API for making ran-
dom choices in the generators, such as generating random integers,
time durations, and selecting random items from a collection. All
of these methods indirectly rely on the underlying JDK method
java.util.Random.next(int bits), which returns bits from a
pseudo-random stream. Zest replaces this pseudo-random stream
with stored parameter sequences, which are extended on-demand.
Since java.util.Random polls byte-sized chunks from its un-
derlying stream of pseudo-random bits, Zest performs mutations
on the parameter sequences (Algorithm 2, Line 9) at the byte-level.
The basic mutation procedure is as follows: (1) choose a random
number m of mutations to perform sequentially on the original
sequence, (2) for each mutation, choose a random length ¢ of bytes
to mutate and an offset k at which to perform the mutation, and (3)
replace the bytes from positions [k, k + £) with £ randomly chosen
bytes. The random numbers m and ¢ are chosen from a geometric
distribution, which mostly provides small values without imposing
an upper bound. We set the mean of this distribution to 4, since
4-byte ints are the most commonly requested random value.

5 EVALUATION

We evaluate Zest by measuring its effectiveness in testing the se-
mantic analysis stages of five benchmark programs. We compare
Zest with two baseline techniques: AFL and junit-quickcheck
(referred to as simply QuickCheck hereon). AFL is known to excel in
exercising the syntax analysis stage via coverage-guided fuzzing of
raw input strings. We use version 2.52b, with “FidgetyAFL” configu-
ration, which was found to match the performance of AFLFast [75].
QuickCheck uses the same generators as Zest but only performs
random sampling without any feedback from the programs under
test. Specifically, we evaluate the three techniques on two fronts:
(1) the amount of code coverage achieved in the semantic analysis
stage after a fixed amount of time, and (2) their effectiveness in
triggering bugs in the semantic analysis stage.

Benchmarks. We use the following five real-world Java bench-
marks as test programs for our evaluation:

(1) Apache Maven [3] (99k LoC): The test reads a pom. xml file
and converts it into an internal Model structure. The test
driver is similar to the one in Figure 3. An input is valid if it
is a valid XML document conforming to the POM schema.

(2) Apache Ant [1] (223k LoC): Similar to Maven, this test reads

a build.xml file and populates a Project object. An input

is considered valid if it is a valid XML document and if it

conforms to the schema expected by Ant.

Google Closure [4] (247k LoC) statically optimizes JavaScript

code. The test driver invokes the Compiler.compile() on

the input with the SIMPLE_OPTIMIZATIONS flag, which en-
ables constant folding, function inlining, dead-code removal,
etc.. An input is valid if Closure returns without error.

(4) Mozilla Rhino [5] (89k LoC) compiles JavaScript to Java byte-
code. The test driver invokes Context.compileString().
An input is valid if Rhino returns a compiled script.

®)

334

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon

(5) Apache’s Bytecode Engineering Library (BCEL) [2] (61k LoC)
provides an API to parse, verify and manipulate Java byte-
code. Our test driver takes as input a . class file and uses
the Verifier API to perform 3-pass verification of the class
file according to the Java 8 specification [53]. An input is
valid if BCEL finds no errors up to Pass 3A verification.

Experimental Setup. We make the following design decisions:

e Duration: We run each test-generation experiment for 3
hours. Researchers have used various timeouts to evaluate
random test generation tools, from 2 minutes [37, 59] to 24
hours [25, 47]. We chose 3 hours as a middle ground. Our
experiments justify this choice, as we found that semantic
coverage plateaued after 2 hours in almost all experiments.
Specifically, the number of semantic branches covered by
Zest increased by less than 1% in the last hour of the runs.

e Repetitions: Due to the non-deterministic nature of random
testing, the results may vary across multiple repetitions of
each experiment. We therefore run each experiment 20 times
and report statistics across the 20 repetitions.

¢ Seeds and Dictionaries: To bootstrap AFL, we need to pro-
vide some initial seed inputs. There is no single best strategy
for selecting initial seeds [64]. Researchers have found suc-
cess using varying strategies ranging from large seed cor-
pora to single empty files [47]. In our evaluation, we provide
AFL one valid seed input per benchmark that covers vari-
ous domain-specific semantic features. For example, in the
Closure and Rhino benchmarks, we use the entire React.JS
library [6] as a seed. We also provide AFL with dictionaries
of benchmark-specific strings (e.g. keywords, tag names)
to inject into inputs during mutation. The generator-based
tools Zest and QuickCheck do not rely on meaningful seeds.

o Generators: Zest and QuickCheck use hand-written input
generators. For Maven and Ant, we use an XML document
generator similar to Figure 2, of around 150 lines of Java
code. It generates strings for tags and attributes by ran-
domly choosing strings from a list of string literals scraped
from class files in Maven and Ant. For Closure and Rhino,
we use a generator for a subset of JavaScript that contains
about 300 lines of Java code. The generator produces strings
that are syntactically valid JavaScript programs. Finally, the
BCEL generator (~500 LoC) uses the BCEL API to gener-
ate JavaClass objects with randomly generated fields, at-
tributes and methods with randomly generated bytecode
instructions. All generators were written by one of the au-
thors of this paper in less than two hours each. Although
these generators produce syntactically valid inputs, no effort
was made to produce semantically valid inputs; doing so can
be a complex and tedious task [72].

The generators, seeds, and dictionaries have been made publicly
available at https://goo.gl/GfLRzA. All experiments are conducted
on a machine with Intel(R) Core(TM) i7-5930K 3.50GHz CPU and
16GB of RAM running Ubuntu 18.04.

Syntax and Semantic Analysis Stages in Benchmarks. Zest is
specifically designed to exercise the semantic analysis stages of
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Table 1: Description of benchmarks with prefixes of class/package names corresponding to syntactic and semantic analyses.

Name  Version Syntax Analysis Classes Semantic Analysis Classes

Maven  3.5.2 org/codehaus/plexus/util/xml org/apache/maven/model

Ant 1.10.2 com/sun/org/apache/xerces org/apache/tools/ant

Closure v20180204 com/google/javascript/jscomp/parsing com/google/javascript/jscomp/[A-Z]

Rhino 1.7.8 org/mozilla/javascript/Parser org/mozilla/javascript/(optimizer|CodeGenerator)
BCEL 6.2 org/apache/bcel/classfile org/apache/bcel/verifier

programs. To evaluate Zest’s effectiveness in this regard, we manu-
ally identify the components of our benchmark programs which
correspond to syntax and semantic analysis stages. Table 1 lists
prefix patterns that we match on the fully-qualified names of classes
in our benchmarks to classify them in either stage. Section 5.1 eval-
uates the code coverage achieved within the classes identified as
belonging to the semantic analysis stage. Section 5.2 evaluates the
bug-finding capabilities of each technique for bugs that arise in the
semantic analysis classes. Section 6 discusses some findings in the
syntax analysis classes, whose testing is outside the scope of Zest.

5.1 Coverage of Semantic Analysis Classes

Instead of relying on our own instrumentation, we use a third party
tool, the widely used Eclemma-JaCoCo [42] library, for measuring
code coverage in our Java benchmarks. Specifically, we measure
branch coverage within the semantic analysis classes from Table 1;
we refer to these branches as semantic branches for short.

To approximate the coverage of the semantic branches covered
via the selected test drivers, we report the percentage of total se-
mantic branches covered. Note, however, that this is a conservative,
i.e. low, estimate. This is because the total number of semantic
branches includes some branches not reachable from the test driver.
We make this approximation as it is not feasible to statically deter-
mine the number of branches reachable from a given entry point,
especially in the presence of virtual method dispatch. We expect the
percent of semantic branches reachable from our test drivers to be
much lower than 100%; therefore, the relative differences between
coverage are more important than the absolute percentages.

Figure 4 plots the semantic branch coverage achieved by each
of Zest, AFL, and QuickCheck on the five benchmark programs
across the 3-hour-long runs. In the plots, solid lines designate means
and shaded areas designate 95% confidence intervals across the 20
repetitions. Interestingly, the variance in coverage is quite low for
all techniques except QuickCheck. Since AFL is initialized with
valid seed inputs, its initial coverage is non-zero; nonetheless, it is
quickly overtaken by Zest, usually within the first 5 minutes.

Zest significantly outperforms baseline techniques in exercising
branches within the semantic analysis stage, achieving statistically
significant increases for all benchmarks. Zest covers as much as
2.81x as many semantic branches covered by the best baseline
technique for Maven (Figure 4a). When looking at our Javascript
benchmarks, we see that Zest’s advantage over QuickCheck is
more slight in Rhino (Figure 4b) than in Closure (Figure 4c). This
may be because Closure, which performs a variety of static code
optimizations on JavaScript programs, has many input-dependent
paths. Rhino, on the other hand, directly compiles valid JavaScript
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Figure 4: Percent coverage of all branches in semantic analy-
sis stage of the benchmark programs. Lines designate means
and shaded regions 95% confidence intervals.

to JVM bytecode, and thus has fewer input-dependent paths for
Zest to discover through feedback-driven parameter search.

Note that in some benchmarks AFL has an edge in coverage over
QuickCheck (Figure 4a, 4b, 4e), and vice-versa (Figure 4c, 4d). For
BCEL, this may be because the input format is a compact syntax, on
which AFL generally excels. The difference between the XML and
JavaScript benchmarks may be related to the ability of randomly-
sampled inputs from the generator to achieve broad coverage. It
is much more likely for a random syntactically valid JavaScript
program to be semantically valid than a random syntactically valid
XML document to be a valid POM file, for example. The fact that



ISSTA °19, July 15-19, 2019, Beijing, China

Zest dominates the baseline approaches in all these cases suggests
that it is more robust to generator quality than QuickCheck.

5.2 Bugs in the Semantic Analysis Classes

Each of Zest, AFL, and QuickCheck keep track of generated in-
puts which cause test failures. Ideally, for any given input, the
test program should either process it successfully or reject the
input as invalid using a documented mechanism, such as throw-
ing a checked ParseException on syntax errors. Test failures cor-
respond either to assertion violations or to undocumented run-
time exceptions being thrown during test execution, such as a
NullPointerException. Test failures can occur during the pro-
cessing of either valid or invalid inputs; the latter can lead to failures
within the syntax or semantic analysis stages themselves.

Across all our experiments, the various fuzzing techniques gener-
ated over 95,000 failing inputs that correspond to over 3,000 unique
stack traces. We manually triaged these failures by filtering them
based on exception type, message text, and source location, result-
ing in a corpus of what we believe are 20 unique bugs. We have
reported each of these bugs to the project developers. At the time
of writing: 5 bugs have been fixed, 10 await patches, and 5 reports
have received no response.

We classify each bug as syntactic or semantic, depending on
whether the corresponding exception was raised within the syntac-
tic or semantic analysis classes, respectively (ref. Table 1). Of the
20 unique bugs we found, 10 were syntactic and 10 were semantic.

Here, we evaluate Zest in discovering semantic bugs, for which
it is specifically designed. Section 6 discusses the syntactic bugs we
found, whose discovery was not Zest’s goal.

Table 2 enumerates the 10 semantic bugs that we found across
four of the five benchmark programs. The bugs have been given
unique IDs—represented as circled letters—for ease of discussion.
The table also lists the type of exception thrown for each bug.
To evaluate the effectiveness of each of the three techniques in
discovering these bugs, we use two metrics. First, we are interested
in knowing whether a given technique reliably finds the bug across
repeated experiments. We define reliability as the percentage of
the 20 runs (of 3-hours each) in which a given technique finds a
particular bug at least once. Second, we measure the mean time
to find (MTF) the first input that triggers the given bug, across
the repetitions in which it was found. Naturally, a shorter MTF is
desirable. For each bug, we circle the name of the technique that is
the most effective in finding that bug. We define most effective as
the technique with either the highest reliability, or if there is a tie
in reliability, then the shortest MTF.

The table indicates that Zest is the most effective technique in
finding 8 of the 10 bugs; in the remaining two cases (& and (0)), Zest
still finds the bugs with 100% reliability and in less than 20 seconds
on average. In fact, Zest finds all the 10 semantic bugs in at most
10 minutes on average; 7 are found within the first 2 minutes on
average. In contrast, AFL requires more than one hour to find 3 of
the bugs (®), (©), (¢)), and simply does not find 5 of the bugs within
the 3-hour time limit. This makes sense because AFL’s mutations
on the raw input strings do not guarantee syntactic validity; it
generates much fewer inputs that reach the semantic analysis stage.
QuickCheck discovers 8 of the 10 semantic bugs, but since it relies
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on random sampling alone, its reliability is often low. For example,
QuickCheck discovers (8) only 10% of the time, and (N) only 5% of
the time; Zest discovers them 100% and 95% of the time, respectively.
Overall, Zest is clearly the most effective technique in discovering
bugs in the semantic analysis classes of our benchmarks.

Case studies. In Ant, (8) is triggered when the input build.xml
document contains both an <augment> element and a <target> el-
ement inside the root <project> element, but when the <augment>
element is missing an id attribute. This incomplete semantic check
leads to an I1legalStateException for a component down the
pipeline which tries to configure an Ant task. Following our bug
report, this issue has been fixed starting Ant version 1.10.6.

In Rhino, (7) is triggered by a semantically valid input. Rhino suc-
cessfully validates the input JavaScript program and then compiles
it to Java bytecode. However, the compiled bytecode is corrupted,
which results in a VerifyError being generated by the JVM. AFL
does not find this bug at all. The Rhino developers confirmed the
bug, though a fix is still pending.

In Closure, (C) is an NPE that is triggered in its dead-code elimina-
tion pass when handling arrow functions that reference undeclared
variables, such as "x => y". The generator-based techniques al-
ways find this bug and within just 8.8 seconds on average, while
AFL requires more than 90 minutes and only finds it in 20% of the
runs. The Closure developers fixed this issue after our report.

(D) is a bug in Closure’s semantic analysis of variable declarations.
The bug is triggered when a new variable is declared after a break
statement. Although everything immediately after a break state-
ment is unreachable code, variable declarations in JavaScript are
hoisted and therefore cannot be removed. Zest is the only technique
that discovered this bug. A sample input Zest generated is:
while ((1_0)){

while ((1_0)){
if ((1_.90)) { break;;var 1_0;continue }
{ break;var 1_0 }

3
}

(U) was the most elusive bug that we encountered. Zest is the
only technique that finds it and it does so in only one of the 20 runs.
An exception is triggered by the following input:

((0_0) => (((0_0) *= (0_0))

< (A1) &= ((0_0)((((undefined)[(((i_1, 0.0, a_2) => {

if ((A_1)) { throw ((false).o_0) }

H((¥-3)))D ((new (null)((true)))>>)1>))

The issue is perhaps rooted in Closure’s attempt to compile-time
evaluate undefined[undefined](...). The developers acknowl-
edged the bug but have not yet published a fix. These complex
examples demonstrate both the power of Zest’s generators, which
reduce the search space to syntactically valid inputs, as well as the
effectiveness of its feedback-directed parameter search.

6 DISCUSSION AND THREATS TO VALIDITY

Zest and QuickCheck make use of generators for synthesizing
inputs that are syntactically valid by construction. By design, these
tools do not exercise code paths corresponding to parse errors in the
syntax analysis stage. In contrast, AFL performs mutations directly
on raw input strings. Byte-level mutations on raw inputs usually
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Table 2: The 10 new bugs found in the semantic analysis stages of benchmark programs. The tools Zest, AFL, and QuickCheck
(QC) are evaluated on the mean time to find (MTF) each bug across the 20 repeated experiments of 3 hours each as well as the
reliability of this discovery, which is the percentage of the 20 repetitions in which the bug was triggered at least once. For each
bug, the highlighted tool is statistically significantly more effective at finding the bug than unhighlighted tools.

Bug ID Exception Tool  Mean Time to Find (shorter is better) Reliability
1(99.45 sec) 100%
ant (B) IllegalStateException AFL [ 1 (6369.5 sec) 10%
QC [C1(1208.0 sec) 10%
[ (8.8 sec) 100%
closure @ NullPointerException AFL [ ] (5496.25 sec) 20%
(8.8 sec) 100%
Zest) [1(460.42 sec) 60%
closure @ RuntimeException AFL [ X 0%
QC [ X 0%
Zest) [1(534.0 sec) 5%
closure @ IllegalStateException AFL [ X 0%
QC [ X 0%
| (8.25 sec) 100%
rhino @ IllegalStateException AFL [ ] (5343.0 sec) 20%
| (9.65 sec) 100%
Zest  1(18.6 sec) 100%
rhino @ NullPointerException AFL [ X 0%
| (9.85 sec) 100%
0 (245.18 sec) 85%
thino(H) ~ ClassCastException AFL | X 0%
QcC [0 (362.43 sec) 35%
Zest) [(94.75 sec) 100%
rhino (7) VerifyError AFL [ X 0%
QC [0 (229.5 sec) 80%
Zest 1(19.5 sec) 100%
bcel@ ClassFormatException | (5.85 sec) 100%
QC [ (142.1 sec) 100%
1(19.32 sec) 95%
bcel@ AssertionViolatedException  AFL [ 1(1082.22 sec) 90%
QC 1(15.0 sec) 5%

lead to inputs that do not parse. Consequently, AFL spends most of
its time testing error paths within the syntax analysis stages.

In our experiments, AFL achieved the highest coverage within
the syntax analysis classes of our benchmarks (ref. Table 1), 1.1x-
1.6X higher than Zest’s syntax analysis coverage. Further, AFL
discovered 10 syntactic bugs in addition to the bugs enumerated in
Table 1: 3 in Maven, 6 in BCEL, and 1 in Rhino. These bugs were
triggered by syntactically invalid inputs, which the generator-based
tools do not produce. Zest does not attempt to target these bugs;
rather, it is complementary to AFL-like tools.

Zest assumes the availability of QuickCheck-like generators to
exercise the semantic analysis classes and to find semantic bugs.
Although this is no doubt an additional cost, the effort required
to develop a structured-input generator is usually no more than
the effort required to write unit tests with hand-crafted structured
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inputs, which is usually an accepted cost. In fact, due to the growing
popularity of generator-based testing tools like Hypothesis [11],
ScalaCheck [14], PropEr [61], etc. a large number of off-the-shelf
or automatically synthesized type-based generators are available.
The Zest technique can, in principle, work with any such generator.
When given a generator, Zest excels at exercising semantic analyses
and is very effective in discovering semantic bugs.

We did not evaluate how Zest’s effectiveness might vary de-
pending on the quality of generators, since we hand-wrote the
simplest generators possible for our benchmarks. However, our
results suggest that Zest’s ability to guide generation towards paths
deep in the semantic analysis stage make its performance less tied
to generator quality than pure random sampling as in QuickCheck.

The effectiveness of CGF tools like AFL is usually sensitive to
the choice of seed inputs [47]. Although the relative differences
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between the performance of Zest and AFL will likely vary with
this choice, the purpose of our evaluation was to demonstrate that
focusing on feedback-directed search in the space of syntactically
valid inputs is advantageous. No matter what seed inputs one pro-
vides to conventional fuzzing tools, the byte-level mutations on
raw inputs will lead to an enormous number of syntax errors. We
believe that approaches like Zest complement CGF tools in testing
different components of programs.

7 RELATED WORK

A lot of research has gone into automated test-input generation
techniques, as surveyed by Anand et al. [17].

Randoop [59] and EvoSuite [36] generate JUnit tests for a par-
ticular class by incrementally trying and combining sequences of
calls. During the generation of sequence of calls, both Randoop
and EvoSuite take some form of feedback into account. These tools
produce unit tests by directly invoking methods on the component
classes. In contrast, Zest addresses the problem of generating inputs
when given a test driver and an input generator.

UDITA [38] allows developers to write random-input generators
in a QuickCheck-like language. UDITA then performs bounded-
exhaustive enumeration of the paths through the generators, along
with several optimizations. In contrast, Zest relies on random mu-
tations over the entire parameter space but uses code coverage and
input-validity feedback to guide the parameter search. It would be
interesting to see if UDITA’s search strategy could be augmented to
selectively adjust bounds using code coverage and validity feedback;
however, we leave this investigation as future work.

Targeted property-testing [54, 55] guides input generators used
in property testing towards a user-specified fitness value using
techniques such as hill climbing and simulated annealing. Godel-
Test [35] attempts to satisfy user-specified properties on inputs. It
performs a meta-heuristic search for stochastic models that are used
to sample random inputs from a generator. Unlike these techniques,
Zest relies on code coverage feedback to guide input generation
towards exploring diverse program behaviors.

In the security community, several tools have been developed to
improve the effectiveness of coverage-guided fuzzing in reaching
deep program states [24, 28, 50, 52, 63]. AFLGo [24] extends AFL
to direct fuzzing towards generating inputs that exercise a pro-
gram point of interest. It relies on call graphs obtained from whole-
program static analysis, which can be difficult to compute pre-
cisely in our ecosystem. Zest is purely a dynamic analysis tool. Fair-
Fuzz [50] modifies AFL to bias input generation towards branches
that are rarely executed, but does not explicitly identify parts of
the program that perform the core logic. In Zest, we bias input
generation towards validity no matter how frequently the semantic
analysis stage is exercised.

Zest generates inputs that are syntactically valid by construction
(assuming suitable generators), but uses heuristics to guide input
generation towards semantic validity. Unlike Zest, symbolic exe-
cution tools [18, 21, 27, 29, 31, 39, 40, 46, 51, 65, 69] methodically
explore the program under test by capturing path constraints and
can directly generate inputs which satisfy specific path constraints.
Symbolic execution can thus precisely produce valid inputs exer-
cising new behavior. The cost of this precision is that it can lead to
the path explosion problem for larger programs. Hybrid techniques
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that combine symbolic execution with coverage-guided fuzzing
have been proposed [26, 57, 68, 73]. These hybrid techniques could
be combined with Zest to solve for parameter sequences that satisfy
branch constraints which Zest may not cover on its own.

Grammar-based fuzzing [23, 32, 39, 56, 67] techniques rely on
context-free grammar specifications to generate structured inputs.
CSmith [72] generates random C programs for differential testing
of C compilers. LangFuzz [43] generates random programs using
a grammar and by recombining code fragments from a codebase.
These approaches fall under the category of generator-based testing,
but primarily focus on tuning the underlying generators rather than
using code coverage feedback. Zest is not restricted to context-free
grammars, and does not require any domain-specific tuning.

Several recently developed tools leverage input format specifi-
cations (either grammmars [20, 71], file formats [62], or protocol
buffers [66]) to improve the performance of CGF. These tools de-
velop mutations that are specific to the input format specifications,
e.g. syntax-tree mutations for grammars. Zest’s generators are ar-
bitrary programs; therefore, we perform mutations directly on the
parameters that determine the execution path through the genera-
tors, rather than on a parsed representation of inputs.

There has also been some recent interest in automatically gener-
ating input grammars from existing inputs, using machine learn-
ing [41] and language inference algorithms [22]. Similarly, DI-
FUZE [33] infers device driver interfaces from a running kernel to
boostrap subsequent structured fuzzing. These techniques are com-
plementary to Zest—the grammars generated by these techniques
could be transformed into parametric generators for Zest.

Finally, validity feedback has been useful in fuzzing digital cir-
cuits that have constrained interfaces [48], as well as in generating
seed inputs for conventional fuzzing [70].

8 CONCLUSION

We presented Zest, a technique that incorporates ideas from
coverage-guided fuzzing into generator-based testing. We showed
how a simple conversion of random-input generators into paramet-
ric input generators enables an elegant mapping from low-level mu-
tations in the untyped parameter domain into structural mutations
in the syntactically valid input domain. We then presented an algo-
rithm that combined code coverage feedback with input-validity
feedback to guide the generation of test inputs. On 5 real-world
Java benchmarks, we found that Zest achieved consistently higher
branch coverage and had better bug-finding ability in the semantic
analysis stage than baseline techniques. Our results suggest that
Zest is highly effective at testing the semantic analysis stage of
programs, complementing tools such as AFL that are effective at
testing the syntactic analysis stage of programs.
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