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Abstract—Real-time applications such as autonomous and
connected cars, surveillance, and online learning applications
have to train on streaming data. They require low-latency, high
throughput machine learning (ML) functions resident in the net-
work and in the cloud to perform learning and inference. NFV on
edge cloud platforms can provide support for these applications
by having heterogeneous computing including GPUs and other
accelerators to offload ML-related computation. GPUs provide
the necessary speedup for performing learning and inference to
meet the needs of these latency sensitive real-time applications.

Supporting ML inference and learning efficiently for
streaming data in NFV platforms has several challenges. In
this paper, we present a framework, NetML, that runs existing
ML applications on an heterogeneous NFV platform that
includes both CPUs and GPUs. NetML efficiently transfers
the appropriate packet payload to the GPU, minimizing
overheads, avoiding locks, and avoiding CPU-based data copies.
Additionally, NetML minimizes latency by maximizing overlap
between the data movement and GPU computation. We evaluate
the efficiency of our approach for training and inference using
popular object detection algorithms on our platform. NetML
reduces the latency for inferring images by more than 20% and
increases the training throughput by 30% while reducing CPU
utilization compared to other state-of-the-art alternatives.

I. INTRODUCTION

Real-time applications such as autonomous driving,

connected cars, surveillance, multimedia delivery and even

network management, etc. are increasingly dependent on

machine learning capabilities. These require low-latency, high

throughput processing of the machine learning (ML) functions.

Given their computational complexity, they often depend

on cloud computing facilities residing in the network. Edge

cloud platforms supporting network resident functions, such as

Network Function Virtualization (NFV), can provide support

for these applications, processing the data as it streams in from

the network. An important goal is to process data (either for

learning or for inference) at high throughput and low latency.

ML algorithms such as Deep Neural Networks (DNN)

have seen increasing use as they improve in accuracy and

effectiveness [1]. However, ML models have become complex,

requiring significant compute power, typically requiring

specialized accelerators such as GPUs to speed up the

processing. [2] [3]. A number of useful applications, require

offloading the task of learning and inference to an edge or cloud

server rather than the end-devices that generate the information

since these devices have insufficient compute and storage. [4]

However, offloading any task to edge or cloud server comes

with overheads which increases end-to-end latency. This

includes network protocol stack cost, I/O, system calls etc.,

referred to as a ”datacenter tax” [5]. This datacenter tax will

only get higher with addition of overheads incurred by GPU

API calls and GPU I/O. In our experiments, we have observed

the I/O to the GPU is about 20-40% of the overall task. Any

reduction of the time for GPU’s I/O will be extremely valuable

for lowering ML inference latency on edge or cloud servers.

ML applications often operate on streaming data. Popular

ML libraries and frameworks such as PyTorch, TensorFlow,

Caffe combine CPU cores with GPUs for processing streaming

data. But these platforms come with a number of challenges, as

they are not optimized for performing inference over streaming

data on these CPU/GPU platforms. One of the key challenges

with faster inference of streaming data is to perform efficient

transfer of the data received from the network to the GPU

subsystem. Typical system architectures have GPUs residing

on the Peripheral Component Interconnect Express (PCIe)

bus, with a Direct Memory Access (DMA) engine helping to

transfer a large chunk of data from a contiguous region in the

host’s memory. However, transferring data received as packets

stream in one after the other can result in poor performance,

with substantial latency, because of the need to copy the data

into a contiguous page-locked pinned CPU memory region

and setting up the DMA. Since low latency is critical for

real-time systems, we need to achieve multiple goals at the

same time: deliver the streaming data to the GPU complex as

the data arrives over the network, minimize overheads on both

the CPU and GPU for performing communication and data

movement tasks; and maximize the parallelism in the GPU

for performing machine learning tasks. We observe that just

running the existing popular libraries on a CPU/GPU system

for streaming data from the network tends to perform poorly.

Further, the emerging field of distributed machine-learning

systems [6] transmits data between distributed nodes for

training, inference and result aggregation. Platforms like DAIET

[7] perform in-network aggregation of results computed by

various ML worker nodes. Other approaches like Branchynet

[8] create a single DNN, dividing computational layers

between the end-device, edge-server and cloud-server, using

the network to transmit data between these computing devices.

These approaches involve a lot of data transfers, and perform

ML operations in multiple network-resident systems. Therefore,

getting the network data to the GPU quickly and using the

CPU and GPU effectively are valuable in all these domains.

There are several approaches possible for efficiently moving

data to the GPU. NVIDIA’s GPUDirect is one where data978-1-5386-9376-6/19/$31.00 ©2019 IEEE



is directly transferred from a Fibrechannel NIC to the GPU.

However, this method is limited to specialized NICs [9] and

requires modified drivers that are not available for most other

NICs. The goal of our work is to design mechanisms that

can be more broadly useful for Ethernet NICs and common

off-the-shelf (COTS) hardware with various GPUs.

There are other approaches to decrease inference latency

of course, which involve compromises in the ML applications

themselves, having to tradeoff application capability for

throughput. DNN implementations in ML libraries have

changed the DNN by either reducing the number of neural

network layers to obtain faster inference. E.g., Yolo V3 [10]

uses 106 layers in the neural network while a lightweight

variant Tiny-Yolo only uses 23. Alternately, for object

detection, the model may reduce the resolution of the input

image to reduce the computation needed, to achieve speedup.

Other techniques, such as binarized neural networks [11],

do model compression and model pruning to have the DNN

models take less memory and reduce computation for each

inference. Hardware approaches such as NVIDIA GPUs

with specialized Tensor cores provide speedup on inference.

Eyeriss [12], which increases the re-usability of the data in the

neural network, is another option. Most of these options are

beneficial when all of data exists in memory, which implies

significant latency because they have to wait for buffering

all of the data. The options of modifying ML applications to

tradeoff accuracy for throughput and performance and using

special-purpose hardware are not entirely the most desirable,

and have limited applicability for use with streaming data.

We have built an NFV platform, NetML, for supporting ML

applications on a COTS hardware platform. Our contribution

is to develop a fundamentally different approach to data

movement from the host to the GPU and efficiently transfer

data from network packets. The current CPU and GPU systems

have evolved in a way that the process of transferring data from

the host (CPU) to GPU requires the data to be ”pushed” to GPU.

With the GPU on the other end of a PCIe BUS, the host has to

communicate the address, data size and other information to set

up the GPU’s DMA engine by executing multiple CUDA API

calls and driver functions. This process of ”pushing” data from

CPU is expensive and is incurred for each packet scattered

around in host memory. NetML, avoids this unnecessary

overhead and latency of processing CUDA API and the driver

function repeatedly by initiating the data transfer from GPU

subsystem itself. NetML”pulls” the data by starting the data

transfer by providing the GPU threads the address of multiple

network packets and the data transfer of network packets is

initiated from the GPU subsystem itself. Thus, expensive CUDA

API and driver functions are invoked just once. Moreover,

we exploit the shared memory huge-pages of the NFV plat-

form [13] to eliminate data movement by the CPU, and pin this

shared memory to allow the data to be accessed by the GPU sub-

system as it streams in, with low latency and minimal overhead.

NetML also maximizes the overlap between GPU execution

and the DMA-based data transfer to the GPU complex for

subsequent ML stream data processing. In addition, NetML

seeks to maximize the overlap of CPU NF processing with

the GPU execution. Thus, we reduce latency and improve

throughput substantially by eliminating CPU data movement,

streaming data to the GPU subsystem and maximizing overlap

of CPU, DMA and GPU functions.

With NetML, efficient data transfer to the GPU cuts the

task completion time for inference in neural networks. In the

experiments using image detection ML libraries, we use NetML

for inference of a large image that is received by the edge server

in multiple packets. NetML helps achieve maximum pipelined

parallelism across all components, including the network link

carrying the packets, DMA setup and transfer to GPU, and

initiation of the inference engine. NetML thus reduces the time

to infer a single image by at least 20% compared to a traditional

implementation of the same libraries without NetML’s opti-

mizations. The NetML platform, runs on COTS hardware and

allows plugging in of existing ML libraries and models while

providing speedup both for learning and inference for streaming

data, without requiring modifications to those applications.

II. MOTIVATION

There are a number of challenges associated with

performing ML with streaming data, both for learning and

inference, in an edge server. First, the ML models are

complex and compute-intensive. The popular Convolutional

DNN models such as AlexNet and ResNet50 require very

high number of multiply and accumulate (MAC) operations

(666 million and 3.9 billion MACs, respectively) [2]. It is

well understood that even with modern high-end servers,

CPU-based processing is just not sufficiently fast. In contrast,

the GPUs can spawn thousands of lightweight threads, which

can perform these MAC operations in parallel more effectively,

thus enable to achieve very high speedup.

More importantly, as data streams through the edge-server

at high bandwidth, the time available at the edge server to

process the data is limited. Furthermore, storing the streaming

data for learning or inference subsequently might not be

feasible due to significant storage requirement. Thus, it is

necessary that we learn and perform inference as the data

is streamed through the edge server, without incurring large

latencies from buffering the data. Using GPUs to perform ML

is likely the only option at the edge server.

To reiterate this point, we performed experiments in an edge

server to observe the time required by typical ML application

to perform object detection on an image data being forwarded

through it. We utilized two alternatives to perform inference

in the data. First, in CPU-Only approach, we extract the

streaming data and process it in ML applications such as

PyTorch and Darknet (Tiny-Yolo) running in the CPU itself.

Alternatively, we use the CPU-GPU based approach, where

we DMA the data received from streaming packets (one

packet at a time) to the GPU and process the image data in

a DNN model running in a GPU.

We used an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

processor to conduct inference by a CPU and the NVIDIA

Tesla P100 GPU to perform inference while using a GPU. We





created pinned buffer before initiating the DMA to transfer the

data to the GPU. This extra copy incurs additional latency and

CPU resources. Furthermore, it is recommended in CUDA’s

best practice guide [15] that pinned memory should be allocated

when the application is started, as pinning the memory during

the application runtime results in additional latency.

Thus, to transfer data received in packets efficiently, it is

important to have the data reside in pinned memory before

transferring the payload to the GPU. Note that incoming packets

in shared memory are not guaranteed to be put in a contiguous

space by the NIC driver and DPDK’s libraries. We overcome

this challenge by pinning the entire OpenNetVM’s shared

memory buffer, so every received packet reside in the pinned

memory before we initiate the DMA transfer to GPU. The

techniques we used to pin the shared memory used by NFs in

NetML is explained in Sec. III-D1.

We should note that the shared memory buffer is already

page-locked by the help of the DPDK library when the NF

manager starts. Pinning that shared memory using CUDA

API is still necessary as the CUDA runtime environment does

not recognize if a memory buffer is page-locked by another

application or not. Furthermore in CUDA, pinning a memory

buffer goes beyond just page-locking the memory buffer. It

also enables the Universal Virtual Addressing (UVA) feature,

which we utilize extensively in NetML. Generally, the GPU

subsystem has its own memory and memory address translation

function. Thus, a pointer to the data residing in host’s (CPU)

memory cannot be used in CUDA kernels running in the GPU

and vice versa. The exception is with GPUs using the UVA

feature, where CUDA kernels can use the address of host

memory region that is pinned. With UVA, if a GPU thread

encounters a pinned host memory address, the GPU’s DMA

engine will initiate data transfer from the host memory location

immediately and the GPU threads can continue processing the

data. This feature is also marketed as ”Zero-copy” memory.

1) Pinning a Memory Buffer: We explored two options

for pinning a memory buffer in CUDA and using it as

OpenNetVM’s (CPU) shared memory.

• Dynamically Allocating and Pinning Memory: In this

approach, we modify the DPDK library by overriding

DPDK’s default method of reserving the hugepage memory

and instead, we allocate the pinned memory buffers using

the CUDA API function cudaHostAlloc().We then use this

dynamically allocated pinned memory as OpenNetVM’s

shared memory.

• Pinning DPDK’s hugepages memory:In this approach, we

pin the shared memory allocated by the DPDK (NF manager)

process by using the cudaHostRegister() API function. This

API function allows us to pin an existing pageable host

memory buffer (e.g., buffer generated by malloc()) and

provides the same features as pinned memory allocated

by other CUDA API functions such as cudaHostAlloc().

When an NF starts, it accesses the address of every page

of the shared memory allocated by NF Manager and uses

cudaHostRegister() to pin all of the shared memory. Thus,

all the packets received by the NFV platform and buffered

in shared memory will reside in pinned memory as well.

Because this operation works with hugepages memory, it

does not incur any additional overhead for packet processing

by NFs, as seen in the Table II. We adopt this approach for

NetML. It also does not interfere with the poll mode drivers

of DPDK or the NFV platform’s ability to run multiple NFs.

To test the efficiency of these options, we dynamically

allocated a memory buffer of 2 gigabytes using the CUDA

API cudaHostAlloc() function and used it as shared memory

for the OpenNetVM NFV platform. With this approach, we ob-

served the packet processing throughput of OpenNetVM/DPDK

applications decreased significantly (see Table II).

Next, we DPDK utilizes hugepages for shared memory,

thus decreasing the number of distinct memory pages needed,

thereby also reducing the number of translation lookaside

buffers (TLB) entries needed. This speeds up the translation

of virtual page address to physical page address. On the other

hand, allocating shared memory with the CUDA API only

allocates memory with standard 4-kilobyte page size, resulting

in a huge number of entries in TLB and much higher TLB

miss rate. It also impacts the poll mode drivers and libraries

required to host multiple NFs in the NFV platform. This is

why the approach used by NetML is preferred.
TABLE II

FORWARDING THROUGHPUT OF OPENETVM USING PINNED MEMORY

Pinning Method /Packet Size 256 bytes 512 bytes
Dynamically Allocating Pinned Mem. 3.1 Gbps 5.1 Gbps

Pinning DPDK’s Hugepages 10 Gbps 10 Gbps

E. Transferring the Data to the GPU

We explored three alternatives to transfer the streaming data

received in OpenNetVM’s shared memory from the NIC to

GPU.In all three alternatives, multiple packets constituting an

image are sent from a traffic generator. Associated with the

image data packet payload is metadata containing the image

ID, data offset, a packet ID and the number of packets for

the image. The meta-data is used to reconstruct the image

in the host and GPU memory. The image ID identifies the

right image buffer, with the data offset helping transfer the

image data appropriately into the image buffer. The CUDA

API functions and CUDA kernel launches are asynchronous

with respect to CPU. i.e., CPU is not notified when the CUDA

function has finished processing. The packet ID and count help

determine when an entire image is received so that the DNN

image evaluation kernel is invoked after the entire image is in

the GPU. The ordering of the execution of CUDA functions, i.e.,

the GPU executes CUDA kernels in the order they are launched.

Three different data movement alternatives are described below.
1) Per-Packet cudaMemcpy (A#1): In this approach, when

an NF receives the packets carrying the data that is to be

transferred to GPU, it calls a CUDA API function, cudaMem-

cpyAsync(), individually for each packet to initiate the transfer

of the packet’s data to GPU memory. The cudaMemcpyAsync()

function is processed by a CPU thread and passes the necessary

information, i.e., memory address and size of data, to CUDA

runtime to initiate the DMA. CUDA runtime then schedules the

GPU’s DMA engine to asynchronously DMA the data. Figure











node as input to another node (Model parallel) [8]. In both cases,

a large number of model parameters or training data has to be

copied from one compute node to another. This data transfer

cost can be significant. The work [38] shows that the overall

task-completion time can be reduced by better pipelining of the

communication and processing tasks. Others, such as DAIET

[7] perform distributed DNN training on multiple machines

to reduce the amount of information exchanged between the

compute servers with help of a data aggregating middle-box.

NetML may be used in this context to speed up the data

movement at each of the compute nodes.

VI. CONCLUSION

We presented NetML, a edge-server enhancement speedup

for Machine Learning applications to process streaming data

on OpenNetVM, a DPDK-based NFV platform. NetML runs

on hybrid CPU and GPU based system architectures, with the

GPU resources managed by the CUDA runtime environment.

In NetML, we pin the DPDK process’s shared memory to

achieve low-latency, efficient transfer of streaming data to

the GPU. NetML transfers packet data to GPU as soon as

the incoming data arrives, without having to wait or buffer

all the application data. It also avoids having the CPU to

copy data into a contiguous buffer, and utilizes asynchronous

GPU-resident functions to initiate the data transfer. Thus,

NetML reduces CPU consumption and minimizes latency

and seeks to minimize the idle time on the GPU. NetML is

effective in improving throughput and latency both for learning

and inference, without requiring fundamental changes to the

ML libraries. NetML can benefit every application processing

streaming data on GPU. We have demonstrated that NetML

reduces the latency to infer an image for object detection using

a neural network by 20% and increased throughput of training

a neural network with streaming data by more than 30%.
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