
Measuring PerformanceQuality Scenarios in Big Data Analytics
Applications: A DevOps and Domain-Specific Model Approach

Camilo Castellanos
cc.castellanos87@uniandes.edu.co

Universidad de los Andes
Bogota, Colombia

Carlos A. Varela
cvarela@cs.rpi.edu

Rensselaer Polytechnic Institute
Troy, NY, USA

Dario Correal
dorreal@uniandes.edu.co
Universidad de los Andes

Bogota, Colombia

ABSTRACT
Big data analytics (BDA) applications use advanced analysis al-
gorithms to extract valuable insights from large, fast, and hetero-
geneous data sources. These complex BDA applications require
software design, development, and deployment strategies to deal
with volume, velocity, and variety (3vs) while sustaining expected
performance levels. BDA software complexity frequently leads to
delayed deployments, longer development cycles and challeng-
ing performance monitoring. This paper proposes a DevOps and
Domain Specific Model (DSM) approach to design, deploy, and
monitor performance Quality Scenarios (QS) in BDA applications.
This approach uses high-level abstractions to describe deployment
strategies and QS enabling performance monitoring. Our experi-
mentation compares the effort of development, deployment and QS
monitoring of BDA applications with two use cases of near mid-air
collisions (NMAC) detection. The use cases include different per-
formance QS, processing models, and deployment strategies. Our
results show shorter (re)deployment cycles and the fulfillment of
latency and deadline QS for micro-batch and batch processing.

CCS CONCEPTS
• Software and its engineering→ Software architectures; Soft-
ware performance; • Information systems→Datamining; •Com-
puting methodologies→ Distributed computing methodologies.
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narios, DevOps, domain specific model
ACM Reference Format:
Camilo Castellanos, Carlos A. Varela, and Dario Correal. 2019. Measuring
Performance Quality Scenarios in Big Data Analytics Applications: A De-
vOps and Domain-Specific Model Approach. In European Conference on
Software Architecture (ECSA), September 9–13, 2019, Paris, France. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3344948.3344986

1 INTRODUCTION
Big data analytics (BDA) applications use machine learning (ML)
algorithms to extract valuable insights from large, (near) real-time
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and heterogeneous data. These BDA applications require complex
software design, development, and deployment to deal with big
data 3V characteristics (volume, variety, and velocity) to maintain
expected performance levels. But the complexity involved in appli-
cations development frequently leads to delayed deployments [6]
and difficult performance monitoring (e.g., throughput or latency)
[12]. Regarding big data 3V characteristics, a BDA solution can be
constrained to different performance quality scenarios (QS). For
instance, stream analytics applications require low latency, and
flexible scalability based on data volume flow. On the other hand,
batch processing of heavy workloads over large datasets demand
high scalability and fault tolerance to achieve an expected deadline.

In the aviation safety domain, the collision avoidance systems
enable aircraft to remain well clear using data collected by onboard
and ground sensors. A well clear violation implies loss of separation
between airplanes by calculating distance and time thus warning
against Near Mid-Air Collisions (NMAC) [11]. The timely detection
of NMACs within congested airspace (e.g., airport areas) using
streaming and semi-structured sensor data requires data-intensive
processing with strong latency constraints.

Within the field of software architecture, little research has been
done to specify BDA functional and non-functional requirements us-
ing high-level abstractions to deploy, monitor and evolve BDA solu-
tions constrained to performance QS. In this context, ACCORDANT
[5] is a Domain-Specific Model approach which allows designing
BDA applications using Functional and Deployment viewpoints
and QS. A Viewpoint is a collection of patterns, templates, and con-
ventions to express different concerns [13]. The QS specify quality
attribute requirements for a software artifact to support its design,
and quality assessment [3]. Though ACCORDANT metamodel in-
cludes a deployment viewpoint, containerization and performance
QS monitoring have not been addressed.

This proposal aims to reduce the time of design, deployment,
and performance monitoring of BDA applications applied in the
avionics domain. We propose an extension of ACCORDANT[5]
that includes performance QS and containerization approach to
take advantage of portability, scalability, configuration and deploy-
ment. We design a domain-specific language (DSL) to describe
architectural abstractions of functional, deployment, and QS. These
abstractions allow us to generate functional and infrastructure code
to measure the application’s performance. Our experimentation
monitor latency and deadline in two NMAC detection use cases
which demand distributed batch and micro-batch processing over
different deployment strategies. Our results report improvements
in design and (re)deployment times to achieve the expected per-
formance QS. In summary, the contributions of this paper are: i) A
metamodel to specify BDA deployments over containers and QS. ii)
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A DSL to design deployment over containers and QS to accelerate
BDA deployment monitoring. iii) An evaluation applied to avionics
use cases with different deployment strategies and QS.

The rest of this paper is organized as follows. In Section 2,
we present background. Section 3 reviews the related work. Sec-
tion 4 presents our methodology and proposal overview. Section 5
presents the avionics use cases. Section 6 details the steps followed
to validate this proposal. Section 7 reports and discusses the results.
Finally, Section 8 summarizes the conclusions and future work.

2 BACKGROUND
2.1 Analytics Portability
Due to the complexity of deploying and operating BDA solutions
integrating a myriad of technologies, complex analytics models and
distributed infrastructure, some research has been done to tackle
such complexity by raising the level of abstraction [5, 8–10]. Due
to the wide range of BDA technologies, portability plays a key role
to deploy, operate, and evolve BDA applications, and this is where
portable standards appear. The Predictive Model Markup Language
(PMML)1 is the defacto standard proposed by the Data Mining
Group that enables interoperability of analytics models through
neutral-technology XML format. PMML allows specifying a set of
ML algorithms and data transformations along with their metadata.

2.2 DevOps and Infrastructure as Code
According to Bass. et. al [4], DevOps is a set of practices aims to
reduce the time for implementing from development to produc-
tion environment, ensuring high quality. Infrastructure as Code
(IaC) arises from the necessity to handle the infrastructure setup,
evolution, and monitoring in an automated and replicable way
through executable specifications. IaC promotes the reduction of
cost, time and risk of IT infrastructure provision by offering lan-
guages and tools which allow to specify concrete environments
(bare-metal servers, virtual machines, operative systems, middle-
ware and configuration resources) and allocate them automatically.
In this context, technologies such as Kubernetes2 offers to decouple
application containers from the infrastructure details to deploy,
scale and manage container clusters.

2.3 Near Mid-Air Collisions Detection
Given the increasing demand, the airspace utilization density has
been growing which reduces the separation between aircraft. This
reduction increases the risk of collision, hence avionics’ communi-
cations and surveillance systems are processing more data, and they
have to maintain or improve performance QS in terms of accuracy,
response time, and availability. NMAC detection requires sensing
aircraft’s positions and velocities to calculate distances and times
to determine risk levels and maneuvers [11]. The Automatic De-
pendent Surveillance-Broadcast3 (ADS-B) is the next generation air
transportation technology which operates with satellite tracking
rather than radar to monitor air traffic more accurately.

1http://dmg.org/pmml/v4-3/GeneralStructure.html
2https://kubernetes.io/
3https://www.faa.gov/nextgen/programs/adsb/

3 RELATEDWORK
Artac et al. [2] propose a model-driven engineering (MDE) ap-
proach to create models of data-intensive applications which are
automatically transformed into IaC. They use TOSCA and Chef,
to support configuration management, service provisioning, and
application deployment, but their experimentation does not include
performance metrics monitoring of the deployed application. Qual-
iMaster [1, 7] focuses on the processing of online data streams for
real-time applications such as the risk analysis of financial markets
regarding metrics of time behavior and resource utilization. The
aim of QualiMaster is to maximize the throughput of a given pro-
cessing pipeline. Similarly, our proposal generates software for BDA
applications, but taking as input the analytics specification of a pre-
dictive model, and the performance metrics to be achieved. Unlike
Qualimaster, our proposal is technology-neutral and cross-industry
which enables a more widespread application.

Sandhu and Sood [14] propose a global architecture to schedule
big data application in geographically distributed cloud data centers
based on QoS parameters. These QoS parameters (response time,
deadline, etc) along with application features (processing, memory,
data input size, and I/O requirements) are given a priori by the users
to recommend the appropriate data center and cluster for a specific
BDA request. They use a Naïve Bayes classifier to determine the
category’ probabilities of a BDA request: compute intensive (C),
input/output intensive (I), and memory intensive (M). In addition,
a map with data centers and infrastructure resources is defined,
specifying categories (CIM) to select the most suitable cluster and
data center using a neural network model. Previous works analyze
performance in already developed BDA software. However, our
proposal includes the code generation of software and infrastruc-
ture of BDA solutions, and the performance monitoring for each
component and connector.

4 A DEVOPS AND DSM APPROACH
Our proposal offers a high-level approach to the DevOps practice,
starting from architectural artifacts, instead of source code. Specifi-
cally, we propose an extension of ACCORDANT metamodel [5] to
deal with infrastructure setup and QS. The ACCORDANT’s method-
ology, depicted in Figure 1, is composed of 7 steps: 1) The business
user defines business goals and QS. 2) The data scientist develops
analytics models and data transformations. The resulting analytics
models are exported as PMML files. 3) Architect design the soft-
ware architecture using ACCORDANT DSL in terms of Functional
Viewpoint(FV) and Deployment Viewpoint(DV) embedding PMML
models in FV to specify software behavior. 4) FV and DV models
are interweaved to obtain an integrated model. 5) Generation of
software and infrastructure code is done from integrated models.
6) The generated code is executed to provision infrastructure and
install the software. 7) QS are monitored in operation.

To enable stakeholders to use the proposed metamodels, we
design a Domain Specific Language (DSL) implemented with Xtext4
framework. This DSL allows us to design both FV and DV models
in a textual way. To illustrate how FV and DV models are specified
using this DSL, code excerpts of the avionics use cases will be
detailed in Section 6.3.
4https://www.eclipse.org/Xtext/
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Figure 1: Proposal overview

4.1 Functional Viewpoint (FV)
FV describes the functional components, connectors of the analyt-
ics solution and their relationships in a technology-neutral way.
Fig. 2 depicts a FV metamodel extract. Component metaclasses are
specialized in Ingestors, Transformers, Estimators and Sinks. Estima-
tor and Transformer are software component realizations of PMML
data model and data transformer respectively, and the PMML file
defines the analytics behavior. A Component exposes required and
provided Ports. Connectors metaclasses transfer data or control flow
among components through an input or output Roles. A set of con-
nector types are defined based on the connector’s classification
proposed by Taylor et al. in [15]: Stream, Event, Adaptor, Distributor,
Arbitrator, and Procedure Call.

4.2 Deployment Viewpoint (DV)
DV specifies how software artifacts (components and connectors)
are deployed on computation nodes. This proposal extends the DV
introduced in [5] by including containerization elements (dotted
red lines) and extending QS attributes (dotted blue lines). Fig 3
details the main metamodel elements. DV metamodel comprises
Pod, ExposedPort, and Deployment metaclasses to operationalize
BDA applications in a specific technology. Deployment Viewpoint
(DV) specifies Devices, Pods, ExposedPorts, Services, and execution
environments (ExecEnvironment) where the Artifacts are deployed.
A Device is a worker machine (physical or virtual) on which the
Pods are deployed. A Pod is a group of one or more ExecEnviron-
ment which can share storage and network. An ExecEnvironment
represents a container with a Docker image, and specific resources
requirements (CPU, memory). On this ExecEnvironment, both com-
ponents and connectors can be installed. A Deployment specifies
the desired state for a Pod’s group and its deployment strategy,
including the number of replicas. Services and ExposedPorts define
the policies, addresses, ports, and protocols by which to access to
Pods from outside the cluster network. A QScenario determines a
quality attribute requirement (i.e. latency, availability, scalability,
etc) for a specific Artifact. Thus, for instance, a QScenario could be
defined as “latency <= 3 seconds for an artifact X”, where artifact
X corresponds to a software component or connector. An Artifact
represents functional elements, i.e. components and connectors

which are deployed in an ExecEnvironment, thus the mappings
between FV and DV are materialized via component and connector
references in the metaclass Artifact which point to FV’s compo-
nents. It is noteworthy that a FV model can be deployed in different
DV models, and each DV model can fulfill QScenarios or not.

4.3 Code Generation
Once PMML, FV and DV models are designed and integrated, code
generation takes place by means of model-to-text transformations.
Code generation is twofold: software, and infrastructure (IaC) code.
On the functional code side, each component and connector is as-
signed to a target technology regarding its attributes specified in the
model (processing model, ML algorithm, delivery type, sync type,
etc). Such assignment enables us to generate code for target tech-
nology constrained to the attributes. For instance, near real-time
analytics could require stream or micro-batch processing provided
by specific technologies like Apache Storm or Spark respectively.
On the IaC side, DV models are transformed to Kubernetes’ YAML
files to create and configure infrastructure over Kubernetes cluster.
YAML files contain Nodes, Pods, Deployments, and Services which
are executed through Kubectl tool. In the last step, the performance
metrics of the BDA solution are gathered to be compared to initial
QS and evaluate the fulfillment of quality requirements.

5 EXPERIMENTATION IN AVIONICS
The experimentation validates if our proposal allows us to design,
generate, monitor and evolve BDA solutions regarding performance
QS. To do that, we use a case study in aviation safety to detect
NMAC on different air space ranges with different deployment
models while performance QS are monitored.

NMAC detection comprises a pairwise comparison within flights
collection, a 2-combination of a set n, C2

n ), where n is the flight
collection’s size. Each comparison implies to calculate distance and
time based on location, speed and heading to determine the risk
level of NMAC assuming constant velocities, headings, and thresh-
olds. A detailed explanation and reasoning of these caculations
can be reviewed in [11]. By comparing such metrics calculated for
each aircraft pair with thresholds such as time (TTHR), horizontal
(DTHR) and vertical distance (ZTHR) is possible to determine the
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Figure 2: Excerpt of Functional Viewpoint of ACCORDANT metamodel.

Figure 3: Excerpt of Deployment Viewpoint metamodel

alerting level: warning (3), corrective (2), preventive (1), and none (0)
as defined by Detection and Avoid Systems.

Our experimentation comprises two use cases, UC1 and UC2,
which require different performance QS in batch and micro-batch
processing. In UC1, the application computes NMAC alerting levels
over a large dataset at rest to offer a consolidated report on a wide
range of time. On the other hand, UC2 application consumes ADS-
B data every minute to generate near real-time alerts to support
avionics operation. The software component diagrams are detailed
in Fig. 4. These use cases represent BDA applications since they
combine semi-structured, near real-time data sources and analytics
models to predict alerting levels. In this experimentation, we have

used ADS-B exchange API5, which generates live position data each
minute. Live ADS-B position data are encoded in JSON responses
which contain flights, their positions and speeds.

5.1 Development and Deployment Time
We measured the time spent in design, development, infrastructure
provisioning, and deployment phases for both use cases with their
respective deployment models. We compared our proposal with the
traditional approach where each software component is developed
from scratch to load PMML files. Connector middleware and tech-
nology platforms were installed and configured using Kubernetes.

5www.adsbexchange.com
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Figure 4: Component diagrams of NMAC Use Cases

The use cases were developed and deployed by two teams, each
team was comprised of a developer and a system administrator.

5.2 Use Case 1 (UC1)
In UC1 (see Fig 4a), ADS-B data of eight-hours are stored in a
distributed file system to be loaded by JSON Ingestor component.
This reader component calls NMAC detector (Estimator) which
classifies the alert level. Once alert levels for each flight pair are
calculated, they are stored back in the file system. To compare
different data size magnitudes, we collected flights’ data for three
air space ranges: 2 nmi (nautical miles), 20 nmi, and 200 nmi around
JFK Airport. These ranges represent different application scopes to
attend different demand levels: local, metropolitan, and regional.
This use case does not have strong time restrictions due to its heavy
workload, therefore, the QS is defined within a wide deadline.

5.3 Use Case 2 (UC2)
In UC2 (see Fig 4b), the Ingestor component consumes data through
REST service of ADS-B exchange’s API. ADS-B data are pushed in a
message queue to be consumed by the NMAC detector component
which classifies NMAC alerts. Given the near real-time nature of
this application, latency is the critical quality attribute, and we
evaluated this QS in two air space ranges: 2 nmi and 200 nmi,
which demand different computation resources.

6 METHODOLOGY APPLICATION
We applied the ACCORDANT methodology detailed previously in
Fig. 1 to design, develop, deploy and monitor UC1 and UC2.

6.1 Definition of Business Goals and QS
In this step, the business goals were defined for each use case as
follows: UC1) Generate NMAC alerting levels for 8-hours ranges
around JFK Airport’s air space. UC2) Offer a near real-time alerting
service which reports NMAC events in delimited airspace.

These business goals involve different constraints, and therefore
different QS are specified for each use case. In UC1, the deadline
of the predictor component should be less than or equal to 1 hour.
On the other hand, in UC2, the latency of the predictor component
should be less than or equal to 3 seconds.

Figure 5: Excerpt of Functional Specification of Use Case 2
Using the ACCORDANT DSL

6.2 Analytics Model Development
Model training and evaluation are developed outside ACCORDANT,
but the resulting model is exported to PMML file to be loaded in
FV model. ADS-B dataset (360 live positions data) was collected on
December 7th, 2018 from 14:00 to 20:00. We trained and validated a
decision tree model after labeling this dataset with the alert level
(from 0 to 3) regarding Well Clear Criteria proposed in DAA Phase
16. The independent variables of the analytics model are: flight1_id,
flight2_id, tcpa, τmod , vz , |sz |, dcpa, and the dependent variable is
the alerting level (a). The model learned the threshold boundaries
of each alert level and exhibited a high accuracy (99.987%), so it
was exported as PMML file to be referenced by the FV model.

Listing 1 details an excerpt of the decisionmodel in PMML format.
At the beginning of XML file, data model’s input and output struc-
tures are defined in sections Data Dictionary and Mining Schema,
followed by the model specification, in this case, tree model’s con-
ditions. A PPML file’s extract of the tree model, which assigns the
highest alerting level=3, is defined by conditions: τmod <= 54.3718
(in seconds), sz_norm <= 0.0761 (in nmi), τmod <= 24.6105 (in
seconds) and dcpa <= 0.6387 (in nmi).

6.3 Functional View Design
FV models were designed using ACCORDANT DSL to specify the
component-connector structure for each use case. As an example,
Fig. 5 shows an excerpt of UC2 FV where three components (lines
3, 9, and 14) and two connectors (lines 23 and 31) are specified. In

6https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180002420.pdf
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Figure 6: Excerpt of Cluster Deployment Specification for
Use Case 2 Using the Proposed DSL

addition, nmac_detector (lines 9–13) uses micro-batch processing
model and has assigned the PMML file exported in Section 6.2.
Nmac_detector component exposes ports adsb_data (provided) and
nmacs_out (required) to receive ADS-B data and send NMAC results
through connectors EventQue1 and EventQue3 respectively. Con-
nectors’ properties such as delivery and buffering were configured
to determine the features of event-oriented connectors.

6.4 Deployment View Design
We designed two DV models uc1-local and uc1-cluster were to
deploy the UC1 FV. The deployment uc1-local instantiates estimator
component in Python and Sci-kit learn applying serial execution
in a single machine with 2.5 GHz Intel Core i5 and 8 GB memory.
Deployment uc1-cluster takes advantage of distributed processing
to increase the throughput on Apache Spark with more computing
resources. Hence, uc1-cluster deployment model defines a Spark
cluster with the master node and worker nodes (three replicas of
Kubernetes’ Pod). This cluster was deployed using Elastic Container
Service for Kubernetes (Amazon EKS) on EC2 instances t2.medium.

An extract of uc1-cluster specified in ACCORDANT Deploy-
ment DSL is shown in Fig. 6. Spark_worker::Deployment has 3
replicas. The nmac_artifact::Artifact has associated the component
nmac_detector::Estimator declared in the functional model UC1.
This artifact’s code will be generated in Spark (batch processing
technology) to expect the inputs defined in the PMML file and pre-
dict alert levels. Finally, this nmac_artifact is bound to a QS that
defines a maximum deadline of 3,600 seconds.

A single uc2-local deployment model was defined for UC2 to run
in a single machine with 2.5 GHz Intel Core i5 and 8 GB memory.
This uc2-local model defined a single node-pod with Apache Spark

and Kafka, where the estimator and event connectors were installed.
This NMAC estimator’s QS specifies that latency must be less than
or equal to 3 seconds.
Listing 1: Excerpt of Decision TreeModel for Alert Level Pre-
diction in PMML code
<PMML xmlns= " h t t p : / /www. dmg . org /PMML−4_3 " version= " 4 . 3 " >
. . .
<Da t aD i c t i ona ry >

<Da t a F i e l d name= " a " optype= " c a t e g o r i c a l " dataType= " i n t e g e r " >
<Da t a F i e l d name= " a " optype= " c a t e g o r i c a l " dataType= " i n t e g e r " >

<Value va lue = " 0 " / >
<Value va lue = " 1 " / >
<Value va lue = " 2 " / >
<Value va lue = " 3 " / >

< / Da t a F i e l d >
< / Da t a F i e l d >
. . .
< Da t a F i e l d name= " sz_norm " optype= " con t inuous " dataType= " f l o a t " / >

< / Da t aD i c t i ona ry >
<TreeModel funct ionName= " c l a s s i f i c a t i o n " s p l i t C h a r a c t e r i s t i c = " b i n a r y S p l i t " >

<MiningSchema>
<Min ingF i e l d name= " a " usageType= " t a r g e t " / >

. . .
<M in ingF i e l d name= " dcpa " / >

< / MiningSchema>
<Node i d = " 1 " >

<True / >
<Node i d = " 2 " >

< S imp l e P r e d i c a t e f i e l d = " doub le ( t_mod ) "
o p e r a t o r = " l e s sO rEqua l "
v a l u e = " 5 4 . 3 7 1 8 " / >
<Node i d = " 3 " >

< S imp l e P r e d i c a t e f i e l d = " doub le ( sz_norm ) "
op e r a t o r = " l e s sO rEqua l "
v a l u e = " 0 . 0 7 6 1 " / >
<Node i d = " 4 " >

< S imp l e P r e d i c a t e f i e l d = " doub le ( t_mod ) "
o p e r a t o r = " l e s sO rEqua l "
v a l u e = " 2 4 . 6 1 0 5 " / >
<Node i d = " 5 " s c o r e = " 3 " >

< S imp l e P r e d i c a t e f i e l d = " doub le ( dcpa ) " o p e r a t o r = " l e s sO rEqua l "
v a l u e = " 0 . 6 3 8 7 " / >

< S c o r eD i s t r i b u t i o n va lue = " 1 " recordCount= " 2 . 0 " / >
< S c o r eD i s t r i b u t i o n va lue = " 3 " recordCount= " 6 9 . 0 " / >

< / Node>
. . .

< / TreeModel>
< /PMML>

6.5 Integration and Code generation
Once FV and DV models are designed and integrated, the code gen-
eration produced the YAML files for Kubernetes deployments and
services. These YAML files contained provision and configuration
policies of Kubernetes cluster. Listing 2 shows an example of gener-
ated YAML files. Besides this, software components and connectors
are manually associated to specific technologies regarding their
constraints. Once these associations are defined, the functional
(technology-specific) code can be generated. Listing 3 shows an ex-
tract of the generated code for UC2’s Estimator which implemented
the PMML model in Spark Streaming technology. This implemen-
tation defines data input and output from the Data Dictionary and
Mining Schema embedded in PMML specifications. The mappings
between artifacts and components allow us to include logging code
regarding the relevant QS. In the current version, PMML loading
and evaluation have been implemented using JPMML API7.

6.6 Code Execution
Kubernetes code was executed on the AWS cloud using Amazon
Elastic Container Service for Kubernetes (Amazon EKS) and Elastic
Compute Cloud (EC2). After that, the software code was installed
over the EKS cluster to operationalize the end-to-end solution.

7https://github.com/jpmml/
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6.7 Solution Monitoring
Performance metrics were collected in operation and validated for
each use case (UC1 and UC2) against QS defined in Section 6.1. As a
result, different deployment configurations (local and cluster) were
designed, deployed and monitored.

Listing 2: Generated YAML Code from Deployment Specifi-
cation for Kubernetes (Extract)

kind : Deployment
metadata :

name : spark−worker
spec :

r e p l i c a s : 3
spec :

c o n t a i n e r s :
− name : spark−worker−ex

image : r amh i s e r / spa rk : 2 . 0 . 1
command : [ / spark−worker ]
p o r t s :
− c o n t a i n e r P o r t : 8081
r e s o u r c e s :

r e q u e s t s :
cpu : 0 . 2 5

Listing 3: Generated Java Code of NMAC Estimator Compo-
nent for Spark Streaming

I npu tS t r eam pmmlFi le = new URL ( " DTModel . pmml " )
E v a l u a t o r B u i l d e r b = new Load ingMode lEva l u a t o rBu i l d e r ( ) . l o ad ( pmmlFi le ) ;
E v a l u a t o r e v a l = b u i l d e r . b u i l d ( ) ;
T r an s f o rme rBu i l d e r pmmlTrans formerBui lder =
new Tran s f o rme rBu i l d e r ( e v a l u a t o r )

. w i t hTa rge tCo l s ( ) . exp loded ( true ) ;
L i s t < S t r u c t F i e l d > f i e l d s = new ArrayL i s t < S t r u c t F i e l d > ( ) ;
f i e l d s . add ( DataTypes . c r e a t e S t r u c t F i e l d ( " a " , DataTypes . In t egerType , true ) ) ;
. . .
f i e l d s . add ( DataTypes . c r e a t e S t r u c t F i e l d ( " sz_norm " , DataTypes . F loa tType , true ) ) ;
S t r u c tType schema = DataTypes . c r e a t e S t r u c t T y p e ( f i e l d s ) ;
Trans former pmmlTransformer = pmmlTrans formerBui lder . b u i l d ( ) ;
Da ta se t <Row> inputDs = s p a r k S e s s i o n . r ead ( ) . schema ( schema ) . c sv ( " adsb . j s on " ) ;
T r an s f o rme rBu i l d e r t b = new Tran s f o rme rBu i l d e r ( e v a l ) ;
Trans former t r a n s f o rme r = tb . b u i l d ( ) ;
Da ta se t <Row> r e s u l tD s = t r an s f o rme r . t r an s f o rm ( inputDs ) ;

7 RESULTS
This section presents and discusses the results obtained during the
design, development and operation phases for both use cases (UC1
and UC2) deployed in different DV models (local and cluster) and
data ranges (2 nmi, 20 nmi, 200 nmi).

7.1 Development and Deployment Time
Table 1 reports time invested for each BDA development phase,
approach, and use case. The traditional approach required less time
for both use cases of software design since it is mainly used for doc-
umentation and communication purposes, and it does not require
many details and formal definitions. However, in our approach,
the design requires formal specifications with more detail since
DV and FV models are executable first-class citizens, hence the
design time invested with this proposal is between 6 and 8 times
greater. In contrast, development time was reduced up to 70.8%
using our approach because code generation accelerated software
development. Similar reductions, from 66.6% to 75%, were reported
in infrastructure provision, deployment and re-deployment due
to IaC generation. In total, we observed a time reduction of 55.5%
(12.5 hours) in development and deployment for UC1, and 57.3%
(17.5 hours) for UC2 which facilitated monitoring and assessment

Table 1: Design, Development and Deployment Time In-
vested (in hours)

US Approach Design Dev. Infrastr. (Re)Deploy Total
UC1 Traditional 0.5 18 2 2 22.5
UC2 Traditional 0.5 24 3 3 30.5
UC1 Our 3 6 0.5 0.5 10
UC2 Our 4 7 1 1 13

Table 2: Flights, Pair Comparisons and Alerts for each Col-
lected Data Range

Data Range Flights Comparisons Alerts
2 nmi 3,370 9,932 27
20 nmi 20,999 568,693 1,061
200 nmi 138,590 20,506,061 1,669

of performance metrics for BDA applications. These results are con-
sistent with the metrics presented in [5]. In the following sections,
we detail and compare the collected performance metrics for each
use case to illustrate the QS monitoring.

7.2 Batch Processing Use Case (UC1)
In UC1, we executed distributed batch processing over three datasets
at rest (2, 20 and 200 nmi). We collected the execution time of the
Estimator components with two versions of DV models (uc1-local
and uc1-cluster), and we compared execution times against the
defined deadline. Sizes, flights, and pairwise comparisons for each
data range are reported in Table 2. It is noteworthy that pairwise
comparisons increase exponentially in respect of data range. In to-
tal, this experimentation found in the widest range (200 nmi) 1,669
NMAC alerts classified as follows: 228 first-level, 648 second-level,
and 793 third-level. The time range between 15:00 and 16:00 hours
observed the highest number of NMAC alerts, located around the
main airports of northeast’s cities: New York City, Philadelphia,
Boston and Washington. We confirmed that the greater number of
reported flights on ADS-B service, the more frequency of NMAC
alerts were found due to the higher airspace’s density.

Regarding the performance metrics monitoring, Fig. 7 details the
execution time results of estimator component for uc1-local and
uc1-cluster models previously described in Section 6.4. Deployment
uc1-local (sequential computation) took 24 seconds for 2 nmi data
range; for 20 nmi, 186 seconds; and for 200 nmi 5.588 seconds. On
the other hand, uc1-cluster (distributed computation) lasted 128
seconds for 2 nmi; 153 seconds for 20 nmi; and 1,619 seconds for
200 nmi. These results showed that while uc1-local deployment
took less time than uc1-cluster for 2 and 200 nmi data sets, uc1-local
breached the QS of 3,600 seconds (dotted red line in Figure 7). uc1-
local and uc1-cluster reported similar execution times with 20 nmi
data range (186 and 153 seconds respectively).

7.3 Micro-Batch Processing Use Case (UC2)
In UC2, we run uc2-local deployment, previously described in Sec-
tion 6.4, and collected latency metrics for an hour with 2 nmi
and 20 nmi data ranges. Fig. 8a details flights pairs processed per
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Figure 7: Execution Time in Batch Processing (UC1) for De-
ployments and Data Ranges

Figure 8: Estimator’s Latency in Micro-batch Processing
(UC2) in a) 2 nmi, and b) 20 nmi.

minute (left vertical axis) and latency (right vertical axis) for 2 nmi
data range. In average, each ABS-B position report contained 26.03
flights which implied 345.2 pairwise comparisons. During the whole
processing, latency was significantly lower (between 0.69 and 1.99
seconds) than the performance QS of 3 seconds (in dotted red line)
showing a behavior associated with the number of flights.

Fig. 8b depicts flights pairs processed per minute (left vertical
axis) and NMAC estimator latency (right vertical axis) for 20 nmi
data range. In average, each report contained 88.25 flights which
implied 4,217.42 pairwise comparisons. During the data processing,
latency remained bellow performance QS (dotted red line) showing
a very similar trend when compared to flight pair amount, but
with 139 flights (9,591 pair comparisons) latency was closer to
the latency limit: 2.91 seconds. Regarding these results, near real-
time processing time for a larger dataset with the same uc2-local
deployment could not fulfill the latency QS, therefore, distributed
processing deployment should be required for wider data ranges.

8 CONCLUSIONS
We have presented a DevOps and DSM proposal to design, deploy
and monitor BDA solutions. Our results indicated a speeding-up of
design, implementation, and (re)deployment of BDA solutions. We
obtained time reductions in design, development, and deployment
from 55.5% to 57.3% in use cases. This approach advocates for a
separation of concerns what facilitated testing different deployment
strategies associated with the same functional model.

We executed data processing to evaluate the fulfillment of per-
formance QS specified for two use cases in avionics. Our results
highlighted the cases where distributed processing presents better
performance than local-sequential processing, and the deployments

which incur in QS violations. Some challenges for technology-
specific implementations emerge since PMML loading and data
transformations are generic through JPMML API, and they are not
considered code optimization.

As future work, the performance metrics collected along with
FV and DV models could allow us to propose a performance model
to predict the expected behavior based on the functional model, de-
ployment model, and target technology to recommend the optimal
architecture configuration regarding QS. We are also working on
verifying correctness properties over ACCORDANTmodels such as
architectural mismatches. This approach has been used for deploy-
ing analytics components and connectors on virtual machines over
cloud infrastructure, but different paradigms such as serverless or
fog computing could open new challenges and research lines.
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