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1  | INTRODUC TION

Phenotypic optima can shift in response to selection, but evolution-
ary trajectories can be limited by underlying constraints (Arnold, 
1992; Futuyma, 2010). Integration between traits can result from 
shared genetic, functional or developmental mechanisms that pro-
duce correlations between traits (Pigliucci, 2003). Patterns of trait 
evolution and integration often vary as lineages move between 

adaptive zones, which can impact the strength of trait correlations, 
variances or optima (Revell & Collar, 2009). Organisms with complex 
life cycles, such as many insects and amphibians, transition through 
multiple environments across ontogeny (Moran, 1994; Sherratt, 
Vidal-García, Anstis, & Keogh, 2017; Wilbur, 1980). For some traits, 
this can produce developmental constraints that force a phenotypic 
trade-off between life stages. However, ecological and developmen-
tal constraints across ontogeny can be lifted through metamorphosis 
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Abstract
Patterns of phenotypic evolution can abruptly shift as species move between adap-
tive zones. Extant salamanders display three distinct life cycle strategies that range 
from aquatic to terrestrial (biphasic), to fully aquatic (paedomorphic) and to fully ter-
restrial (direct development). Life cycle variation is associated with changes in body 
form such as loss of digits, limb reduction or body elongation. However, the relation-
ships among these traits and life cycle strategy remain unresolved. Here, we use a 
Bayesian modelling approach to test whether life cycle transitions by salamanders 
have influenced rates, optima and integration of primary locomotory structures 
(limbs and trunk). We show that paedomorphic salamanders have elevated rates of 
limb evolution with optima shifted towards smaller size and fewer digits compared to 
all other salamanders. Rate of hindlimb digit evolution is shown to decrease in a gradi-
ent as life cycles become more terrestrial. Paedomorphs have a higher correlation 
between hindlimb digit loss and increases in vertebral number, as well as reduced 
correlations between limb lengths. Our results support the idea that terrestrial plan-
tigrade locomotion constrains limb evolution and, when lifted, leads to higher rates of 
trait diversification and shifts in optima and integration. The basic tetrapod body 
form of most salamanders and the independent losses of terrestrial life stages pro-
vide an important framework for understanding the evolutionary and developmental 
mechanisms behind major shifts in ecological zones as seen among early tetrapods 
during their transition from water to land.
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(Moran, 1994; Wilbur, 1980) or by losing life cycle stages (Bonett 
& Blair, 2017; Bonett, Phillips, Ledbetter, Martin, & Lehman, 2018). 
Shifts in life cycle complexity should also impact the relationships 
among traits, but few studies have addressed this question in a phy-
logenetic context.

The tetrapod limb is a classic model of evolutionary and de-
velopmental biology (Alberch & Gale, 1983, 1985; Alberch, Gould, 
Oster, & Wake, 1979; Coates, 1994; Coates & Clack, 1990; Shubin, 
Daeschler, & Coates, 2004; Shubin, Daeschler, & Jenkins, 2006; 
Shubin, Tabin, & Carroll, 1997; Shubin & Wake, 1995). Early tetra-
pods such as Ichthyostega and Acanthostega had limbs with seven or 
more digits that were reduced to five after a likely shift to a fully 
terrestrial lifestyle (Coates & Clack, 1990). Pentadactyly may repre-
sent the optimal configuration for both stability and flexibility neces-
sary during plantigrade locomotion (Clack, 2012). Subsequently, this 
state has become developmentally canalized and derived increases 
beyond pentadactyly are rare (Hayashi et al., 2015; Saxena, Towers, 
& Cooper, 2016), even though numerous tetrapods exhibit loss of 
digits (Alberch & Gale, 1985; Carroll, 1988). Modern vertebrate an-
alogs have been used to shed light on the functional morphology 
and evolution of early tetrapods (Ashley-Ross, 1994; Ijspeert, Crespi, 
Ryczko, & Cabelguen, 2007; King, Shubin, Coates, & Hale, 2011; 
Pierce, Hutchinson, & Clack, 2013). Among them, most salamanders 
and many modern “lizard-like” squamates have pentadactyl hind-
limbs and locomotor patterns similar to the earliest fully terrestrial 
crown-group tetrapods, offering a comparative context to test the 
ecological associations of early limb evolution.

A complicating factor in understanding the evolution of the tet-
rapod limb is the frequent associations of digit loss and limb reduc-
tion with body elongation (Bergmann, 2015; Brandley, Huelsenbeck, 
& Wiens, 2008; Gans, 1975; Lande, 1978; Wiens & Hoverman, 2008; 
Wiens & Slingluff, 2001). In squamates alone, this pattern has mani-
fested over 20 times (Wiens, Brandley, & Reeder, 2006) and is asso-
ciated with multiple locomotory strategies (e.g. burrowing and grass 
swimming) (Wiens & Slingluff, 2001; Wiens et al., 2006). Salamanders 
show similar patterns of body form evolution (Wiens & Hoverman, 
2008), but are set apart from squamates by the presence of distinct 
life cycle stages and significant ontogenetic variation among lineages. 
Strategies range from fully aquatic (paedomorphic) or fully terrestrial 
(direct developing), to a complex life cycle with an aquatic larval form 
that metamorphoses into a terrestrial adult (biphasic, also referred to as 
“metamorphic”). Traits that remain static across life stages (e.g. vertebral 
and digit numbers) may need to be optimized for performance across 
disparate environments. Lineages that shift to life cycles with different 
ecological regimes or fewer stages may be freed from such constraints 
and exhibit greater rates of phenotypic diversification (Bonett & Blair, 
2017) as well as changes in patterns of trait correlations (Tomašević 
Kolarov, Cvijanović, Denoël, & Ivanović, 2017). Alternatively, the in-
creased demands of terrestrial locomotion may constrain limb and body 
form phenotypes and create shifts in trait correlations.

Here, we use salamanders as a model to test for the effect of 
shifting selective regime on patterns of tetrapod limb evolution. 
Specifically, we use comparisons of evolutionary rate and optima 

(phylogenetic mean) to test for altered patterns of constraint and 
limb reduction. Constraint can be tested through comparisons of 
evolutionary rates among lineages, where groups with relatively low 
rates of phenotypic evolution are considered to be subject to higher 
levels of constraint (Beaulieu, Jhwueng, Boettiger, & O'Meara, 2012; 
Oufiero & Gartner, 2014). If terrestriality or life cycle complexity 
imposes a constraint on limb evolution, then this should manifest 
in higher rates of evolution in salamanders with an aquatic adult 
stage or a simple life cycle. We also test for shifts in integration of 
limbs and body form, and serial homology between forelimbs and 
hindlimbs in salamanders by comparing relative evolutionary cor-
relations. Regimes with relatively higher evolutionary correlations 
among traits were considered more integrated. This study provides 
an example of how shifts in life cycle and ecology can impact multi-
variate trait space and demonstrates the utility of clades with multi-
ple life cycle transitions to test for evolutionary constraint.

2  | MATERIAL S AND METHODS

2.1 | Morphometric and phylogenetic data

Morphometric data used in all analyses were derived from the data 
sets of Wiens and Hoverman (2008) and Bonett and Blair (2017). 
The morphological data set contained 199 taxa for which both limb 
lengths and digit numbers were available and 156 taxa with data on 
number of trunk vertebrae. This included 20 taxa that deviate from 
ancestral digit numbers of four toes on forelimbs and five toes on 
hindlimbs. The traits used in our analyses included forelimb length 
(FLL), hindlimb length (HLL), number of forelimb digits (FLD), num-
ber of hindlimb digits (HLD), number of trunk vertebrae (NoV; be-
tween the atlas and the sacrum), head length (HL), body width (BW), 
trunk of the body (SVL-HL) and trunk elongation (SVL-HL/BW). Limb 
lengths were divided by body width to control for body size varia-
tion. Continuous traits were Log10 transformed.

The phylogenies used were a posterior distribution of 1,000 
Bayesian trees taken from Bonett and Blair (2017). Tree analyses were 
based on three mitochondrial genes and four nuclear protein-coding 
genes. Trait models were tested across 1,000 simmaps simulated over 
our 1,000 Bayesian trees with unconstrained ancestral nodes (Figure 1). 
We coded life cycle states following Bonett and Blair (2017): taxa with 
aquatic larval and terrestrial adult stages were biphasic (bi), taxa that ob-
ligately retain larval morphologies and fully aquatic ecologies into adult-
hood were paedomorphic (pd), and taxa that completely transform in 
ovum and hatch as fully terrestrial juveniles lacking aquatic larval traits 
were coded as direct developers (dd). All analyses were conducted in 
the R v3.5.0 statistical software (R Core Team, 2018).

2.2 | Phenotypic constraint and optima of limb form

We tested rates and optima of limb evolution across three selective 
regime hypotheses as outlined in Bonett and Blair (2017). The first 
model, Three Life Cycles, splits all three salamander life cycle strate-
gies (bi vs pd vs dd) into distinct regimes. The Two Life Cycles model 
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compares salamanders with simple (pd and dd) vs complex (bi) life 
cycles. The Adult Ecology model groups species with terrestrial (bi 
and dd) vs aquatic (pd) adults.

We used the package OUwie v1.50 (Beaulieu et al., 2012) to esti-
mate rates of evolution and optima of limb morphologies in order to 
assess whether shifting between regimes influences phenotypic con-
straint or evolution. Trait optima (θ) allow us to test for differences in 
phylogenetic mean among selective regimes. Rates of phenotypic evo-
lution (σ2) can be used to assess whether regimes have differing levels 
of constraint. Low rates of evolution may indicate high levels of con-
straint, whereas shifts to relatively higher rates of evolution suggest re-
lease of constraint (Oufiero & Gartner, 2014). The traits modelled were 
FLL, HLL (both divided by body width), FLD and HLD. We tested the fit 
of one regime Brownian Motion (BM) and Ornstein–Uhlenbeck (OU) 
models as well as BM and OU models that allowed trait optima and rate 
of evolution to vary across regimes (BMσ2, BMθσ2, OUθ and OUθσ2).

All evolutionary models were tested across our three selective 
regime hypotheses, totalling 14 model comparisons per trait (see 
Supporting Information Tables S1–S4). OU models additionally con-
sider the pull of a trait towards an optimum known as strength of 
selection (α) (Butler & King, 2004; Cressler, Butler, & King, 2015; 
Hansen, 1997). However, we did not compare models that vary α 
across regimes as it often does not improve model selection when α is 
low (Beaulieu et al., 2012; Kaliontzopoulou & Adams, 2016). Models 
were compared using delta Akaike information criterion (ΔAIC) and 
AIC weights (wi) (Burnham & Anderson, 2002). To validate model fit, 
we simulated 100 data sets using σ2, θ and α parameter estimates 
from the best-fitting model for each trait using the “multiOU” func-
tion implemented in the package phytools v0.6-44 (Revell, 2012). 

The simulated data sets were then fitted to the respective model in 
OUwie v1.50, and the difference in mean parameter estimates was 
assessed qualitatively.

2.3 | Coevolution between limbs and body form

To test for differences in patterns of integration among selective regimes, 
we implemented the package ratematrix v1.0 (Caetano & Harmon, 2017, 
2018), which uses Metropolis–Hastings Markov Chain Monte Carlo 
(MCMC) to estimate the posterior distribution of evolutionary covari-
ance and correlations fitted to a pool of phylogenetic trees with mapped 
character states. Regimes that have relatively higher evolutionary cor-
relation between traits were considered to have stronger patterns of 
integration. We estimated posteriors from five pairwise trait interac-
tions: trunk elongation to both forelimb and hindlimb length, numbers of 
vertebrae to both numbers of forelimb and hindlimb digits, and forelimb 
to hindlimb length. We conducted bivariate analyses instead of a model 
including all traits based on the recommendation by Adams and Collyer 
(2018), where type 1 error may be inflated when more than two traits are 
added to a model. Ten short (1 million generations) MCMC chains were 
run with uninformative priors, and the four chains with the highest likeli-
hood were continued to 4 million generations. The first 50% of iterations 
were discarded as burn-in, leaving 2 million generations for analyses. We 
used summary statistics described in Caetano and Harmon (2017, 2018) 
to infer percent overlap between posterior distributions of trait covari-
ance among regimes. If life cycle regimes had overlap of less than 5% be-
tween their covariance posterior distributions, then we considered those 
life cycles to have differing levels of phenotypic integration between 
traits. We further described this direction by calculating evolutionary 

F IGURE  1 Character maps of 
alternative regime hypothesis. (a) Three 
Life Cycles regime, (b) Adult Ecology 
regime (terrestrial adults bi + dd vs aquatic 
adults pd) and (c) Two Life Cycles regime 
(complex bi vs simple life cycles pd + dd). 
The phylogeny is a consensus of the 
post-burn-in Bayesian cladograms used 
in comparative analyses from Bonett and 
Blair (2017)
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correlation between traits using the “extractCorrelation” function. Life 
cycles with higher absolute correlation have relatively higher integration 
between traits and vice versa.

3  | RESULTS

3.1 | Paedomorphosis influences rates and optima 
of limb evolution

In order to assess the role of life cycle variation and adult ecology 
on rates and optima of limb evolution, we used BM and OU models 

that allow us to investigate whether salamander life cycles have 
different trait optima and rates of evolution. We found OU mod-
els that allow rates and optima to vary among groups are favoured 
across all our morphological traits. Furthermore, for each trait, the 
Two Life Cycles model (simple pd + dd vs complex bi) was never the 
best fit, suggesting that life cycle complexity is not the best expla-
nation of limb evolution patterns (Supporting Information Tables 
S1–S4). Adult Ecology models (terrestrial bi + dd vs aquatic pd) were 
the best fit for both FLL and FLD (Supporting Information Tables S1 
and S2; ΔAICc ≥ 2.48 and 93.64, wi = 0.75 and 1.00, respectively). 
There was marginal support for the Three Life Cycles model (bi vs 

TABLE  1 Average rate (σ2) and optima (θ) parameter estimates ± standard deviation from our best-fitting evolutionary models across 
1000 stochastically mapped chronograms. Adult Ecology was the best-fitting model for forelimb digits (FLD) and length (FLL). Three Life 
Cycles was the best-fitting model for hindlimb digits (HLD) and length (HLL). The three life cycles compared were biphasic (bi), paedomorphic 
(pd) and direct development (dd)

Trait bi+dd θ pd θ bi+dd σ2 pd σ2

Adult ecology

FLD 4.00 ± 4.00e−3 3.62 ± 0.09 2.06e−9 ± 2.50e−24 2.39 ± 0.74

FLL 2.05 ± 0.023 0.89 ± 0.23 8.20e−3 ± 6.00e−4 0.026 ± 3.30e−3

Trait bi θ pd θ dd θ bi σ2 pd σ2 dd σ2

Three life cycles

HLD 4.81 ± 0.14 1.09 ± 1.22 5.35 ± 0.20 1.20e−3 ± 1.30e−4 0.025 ± 0.020 2.00e−4 ± 3.46e−5

HLL 2.33 ± 0.033 0.65 ± 0.29 2.47 ± 0.024 0.011 ± 1.10e−3 0.028 ± 5.40e−3 0.017 ± 1.80e−3

F IGURE  2 Histograms of optima (θ) 
parameter estimates from the best-
fitting evolutionary models across 1,000 
stochastically mapped chronograms. 
Forelimb digits (a) and forelimb length 
(b) were best fit by the Adult Ecology 
model that separates salamanders with an 
aquatic adult (blue) and terrestrial adult 
(red). Hindlimb digits (c) and hindlimb 
length (d) were best fit by the Three Life 
Cycles model that separates all three 
salamander life cycle strategies: biphasic 
(red), paedomorphic (blue) and direct 
development (gold)
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pd vs dd) explaining FLL (ΔAICc = 2.48, wi = 0.22). In both cases, it 
is clear that the evolution of an aquatic adult decreases optima and 
increases rate. FLD optima were lower for salamanders with aquatic 
compared to terrestrial adults, and the rate was over one billion 
times higher (Table 1, Figure 2a). This large disparity in rate between 
regimes is likely explained by complete fixation of FLD number at 
four in all species with terrestrial adults compared with FLD varia-
tion in aquatic salamanders. The same pattern is seen in FLL where 
optima for salamanders with terrestrial adults are higher than those 
with aquatic adults, and the rate of evolution is three times higher 
(Table 1, Figure 2b).

The best-fitting hindlimb models separated salamanders by all 
three life cycles (Supporting Information Tables S3 and S4; HLD 
ΔAICc ≥ 4.85, wi = 0.92; HLL ΔAICc ≥ 0.64, wi = 0.44). However, 
there was also some support for the Adult Ecology (bi + dd vs pd) 
OUθσ2 (ΔAICc = 0.64, wi = 0.32) and OUθ (ΔAICc = 2.00, wi = 0.16) 
models when explaining HLL. Paedomorphs had the lowest HLD op-
timum followed by biphasics, and direct developers had the highest 
HLD optimum (Table 1, Figure 2c). Paedomorphs had a rate twenty 
times higher than biphasics, which in turn had a rate six times higher 
than direct developers (Table 1). Paedomorphs also had the lowest 
HLL optimum and direct developers the highest (Table 1, Figure 2d). 
HLL rates are 2.5 times higher in paedomorphs than biphasics and 
1.7 times higher than direct developers. The Adult Ecology model 
(bi+dd vs pd) still showed that aquatic adults (pd) had lower optima 

and higher rates of evolution. Overall higher rates of phenotypic di-
versification in aquatic salamander limb traits suggest that terrestrial 
stages impose constraint, and lower optima suggest limb reduction. 
Reverse OU simulations yielded similar parameter estimates be-
tween groups except for HLD simulations, where θ were significantly 
underestimated when α was lower than 0.017. However, when man-
ually set to a greater α parameter, results matched θ estimations 
from raw data (Supporting Information Table S5).

3.2 | Paedomorphosis changes covariance 
between traits

We used Bayesian MCMC modelling to test for shifts of limb and 
body form evolutionary correlation between salamander life cy-
cles. We found significant differences in posterior correlation be-
tween all three life cycle strategies in FLD (% overlap <0.001). In 
HLD, there was overlap between salamanders with terrestrial adults 
(% overlap bi-dd = 0.40). For both the HLL and FLL to trunk elonga-
tion simulations, there was no significant difference between rate 
matrix posterior estimations except for correlation structure be-
tween paedomorphs and direct developers in FLL (HLL % overlap: bi-
pd = 0.06, bi-dd = 0.74, pd-dd = 0.053; FLL % overlap: bi-pd = 0.07, 
bi-dd = 0.46, pd-dd = 0.025). While limb length-to-body elongation 
rate matrices show more than 5% overlap between posterior param-
eter estimates, patterns trend towards higher negative correlation 

F IGURE  3 Posterior distribution of rate matrix parameter estimates of evolutionary correlation. Histograms represent a summary of 
the posterior distribution of correlation between traits among species (deemed evolutionary correlation). We compared forelimb digits 
vs numbers of vertebrae (a), hindlimb digits vs numbers of vertebrae (b), forelimb length vs body elongation (c), hindlimb length vs body 
elongation (SVL-HL/BW) (d) and forelimb length vs hindlimb length (e). Three rate matrices were fitted to the phylogeny: paedomorphic 
(blue), biphasic (red) and direct development (gold)
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in paedomorphic lineages. FLL-to-HLL comparisons show signifi-
cant differences in correlation between aquatic and terrestrial adult 
ecologies (% overlap: bi-pd <0.001, bi-dd = 0.12, pd-dd <0.001). 
Paedomorphs exhibit higher negative evolutionary correlation be-
tween HLD and NoV, but lower correlation between FLD and NoV 
and FLL to HLL (Figure 3). Higher negative evolutionary correlation 
between HLD and NoV in paedomorphs suggests that these traits 
show patterns of functional integration.

4  | DISCUSSION

Shifts in adaptive zones can impact patterns of morphological evo-
lution (Dial, Shubin, & Brainerd, 2015; Landis & Schraiber, 2017; 
Simpson, 1944; Thompson, 1998; Uyeda, Harmon, & Blank, 2016). 
Locomotion in aquatic vs terrestrial habitats presents disparate chal-
lenges that can result in distinct selective regimes (Citadini, Brandt, 
Williams, & Gomes, 2018; Gillis & Blob, 2001). Here, we show that 
reversals from terrestrial to aquatic environments result in higher 
rates of limb form evolution and lower trait optima. Reversals were 
also associated with increased integration between numbers of ver-
tebrae and hindlimb digits as well as a reduction of integration be-
tween hind and forelimb length. Our results support the hypothesis 
that shifting from terrestrial to aquatic environment lifts existing 
constraints on limb form as evidenced by elevated rates of morpho-
logical evolution. This shift has altered patterns of correlation, and 
therefore integration, between limbs and body form.

4.1 | Terrestriality constrains limb evolution

Terrestrial and aquatic environments create vastly different mediums 
for locomotion (Gillis & Blob, 2001), and transitions between them 
can alter rates and optima of locomotory trait evolution (Bonett & 
Blair, 2017; Bonett et al., 2018; Citadini et al., 2018). Locomotion on 
land requires more force to overcome gravity in many taxa (Clarac, 
Libersat, Pflüger, & Rathmayer, 1987; Deban & Schilling, 2009; Gillis 
& Blob, 2001), which could induce constraint on associated morphol-
ogy. Our data suggest strong patterns of constraint on digit num-
ber in terrestrial environments, likely associated with the functional 
demands of plantigrade locomotion. When re-invading aquatic hab-
itats, this constraint is lifted and replaced with novel selection pres-
sures leading to higher variance in limb evolution and often digital 
reduction in salamanders.

Evidence of digit number constraint due to plantigrade locomotion 
can be observed in early tetrapods during the transition from aquatic 
to terrestrial environments. The earliest tetrapods, Acanthostega and 
Ichthyostega, had eight and seven digits, respectively. Later, Tulerpeton 
was reduced to six digits (Coates & Clack, 1990). Skeletal evidence 
suggests that Acanthostega was likely adapted to tail-propelled swim-
ming, while Ichthyostega may have been the first known tetrapod 
that could facultatively shuffle on land coinciding with fewer digits 
(Ahlberg, Clack, & Blom, 2005; Pierce, Clack, & Hutchinson, 2012). 
Almost all crown-group tetrapods have been reduced to five or fewer 

digits following transitions to full terrestriality. Subsequent evolution 
beyond pentadactyly is rare, likely due to genetic and developmental 
constraints (discussed in Shubin et al., 1997).

Terrestrial salamander life cycles exhibit lower rates of limb evolu-
tion compared to paedomorphs. In hindlimb digits, this pattern mani-
fests on a scale where evolutionary optima are increasingly truncated 
and rates of trait of evolution are elevated as salamanders transition 
from more terrestrial to aquatic life cycles. Locomotion on land may 
be achieved by a smaller range of phenotypes resulting in reduced 
limb variation and fixation of digit number. This is apparent when we 
compare numbers of digits in salamanders with terrestrial vs aquatic 
adults. Forelimb digits are always fixed at four in salamanders with 
terrestrial adults, and while hindlimb digits have been reduced seven 
times (See Lamb and Beamer (2012) for evidence of additional reduc-
tions), in each case it was only by one digit. In contrast, paedomor-
phic salamanders display a larger range of limb and digit phenotypes. 
Within terrestrial habitats, aspects of plethodontid salamander foot 
morphology are constrained in climbing compared to terrestrial spe-
cies (Adams, Korneisel, Young, & Nistri, 2017). This further suggests 
that rates of evolution can be more stringently optimized as species 
move to locomotory regimes with higher performance demands.

Many other tetrapods exhibit higher variance after reversals to 
aquatic environments. Aquatic clawed frogs of the genus Xenopus 
have a prehallux which is likely a rudimentary sixth digit (Hayashi 
et al., 2015), while larval forms of most frogs have delayed limb de-
velopment to metamorphosis (Gans, 1975). Many fully aquatic reptile 
and mammal lineages such as ichthyosaurs, mosasaurs, plesiosaurs, 
cetaceans and sirenians have repeatedly lost or gained digits and 
phalangeal elements or lost entire limbs (Cooper, Berta, Dawson, 
& Island, 2007; Fedak & Hall, 2004; Motani, 1999; Richardson & 
Chipman, 2003; Savage, 1976; Wu, Li, Zhou, & Dong, 2003). Fossil 
amphibians such as microsaurs and lysorophians have repeatedly 
evolved limb-reduced forms that have been attributed to aquatic lo-
comotion (Carroll & Gaskill, 1978; Olson, 1971; reviewed in Schoch, 
2009). Repeated changes in morphological variance following tran-
sitions to aquatic environments support a hypothesis that terrestri-
ality constrains limb morphology. However, we do note that other 
transitions away from plantigrade locomotion result in limb or digit 
reduction, as it has also been associated with burrowing and grass 
swimming (Brandley et al., 2008; Polly, 2007; Wiens & Slingluff, 
2001; Wiens et al., 2006). In fact, limb reduction likely evolves in a 
multimodal distribution within diverse environments (Gans, 1975). 
Results discussed here explain one adaptive pressure on limb mor-
phology that may be shared across many tetrapod lineages. We 
hypothesize that patterns of limb constraint in salamanders are 
analogous to those facing early tetrapods during the transition from 
aquatic to terrestrial environments.

4.2 | Ecologically dependent correlation of digit and 
vertebral number

Among extant taxa, salamanders and “lizards” are the lineages that 
exemplify a generalized tetrapod body form with a short trunk and 
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four limbs of more or less equal length. Limb and digit reduction 
have long been recognized to coevolve with body elongation in tet-
rapods (Gans, 1975; Lande, 1978). Strong correlations between body 
elongation and limb reduction (including digit loss) have been recov-
ered in several comparative analyses (Brandley et al., 2008; Wiens 
& Slingluff, 2001). However, previous studies have not directly 
supported a correlation between these variables for salamanders 
(Wiens & Hoverman, 2008). Rather, digit loss has been associated 
with paedomorphosis and correlated with major decreases in abso-
lute body size (Wiens & Hoverman, 2008). Superficially, this find-
ing seems counterintuitive given that paedomorphosis and aquatic 
ecologies are associated with large body size in amphibians (Laurin, 
Canoville, & Quilhac, 2009; Laurin, Girondot, & Loth, 2004; Wiens 
& Hoverman, 2008). However, digit loss has been most extreme in 
relatively small lineages from clades with otherwise large or gigan-
tic paedomorphic species (e.g. Amphiumidae and Sirenidae; Wiens 
& Hoverman, 2008; Bonett, Trujano-Alvarez, Williams, & Timpe, 
2013). We found that digit loss in salamanders has an ecologically 
dependent relationship with body elongation. Specifically, hindlimb 
digit number has a significantly stronger negative relationship with 
numbers of trunk vertebrae in aquatic (paedomorphic) lineages, 
compared to lineages with terrestrial adult stages (biphasics and 
direct developers). We also found a stronger correlation between 
hindlimb length and body elongation in paedomorphs compared to 
biphasics and direct developers, but the difference between these 
groups was not significant (Figure 3).

Lateral undulation assisted by a pelvic driven, limb (or fin-)-based 
gait was potentially the ancestral mode of locomotion in the sarcop-
terygian lineage that gave rise to tetrapods (King et al., 2011). This 
locomotory strategy continues to be utilized by many salamanders 
and limbed squamates. When propulsion is dominated by lateral un-
dulation, limbs are often adpressed to the sides of the body. The 
strong correlation between limb and digit reduction in squamates 
has been functionally explained as selection for more efficient un-
dulation on, or through, a diversity of terrestrial habitats (Brandley 
et al., 2008; Gans, 1975; Siler & Brown, 2011; Wiens et al., 2006). In 
contrast, limbless lateral undulation by salamanders is used during 
anguilliform swimming or only brief, fast bursts when out of water. 
On land, all biphasic and direct developing salamanders still primarily 
walk using all four limbs. Even the most elongate (worm-like) ter-
restrial salamanders (Batrachoseps, Oedipina and Plethodon) primarily 
walk when on land, rather than laterally undulate with their limbs 
adpressed.

Wiens and Hoverman (2008) speculated that the loss of sala-
mander digits may result from a reduced need for limbs in an aquatic 
environment, but point out that being aquatic and paedomorphic 
is “not sufficient” to explain patterns of digit loss in salamanders. 
Digit reduction and loss are indeed most extreme in permanently 
aquatic lineages with elongate bodies (amphiumids, sirenids and 
some proteids), but not in those with shorter body forms (other pro-
teids, cryptobranchids and some plethodontids). Amphiumids, cryp-
tobranchids, proteids and sirenids have all likely been aquatic since 
the Cretaceous (Bonett et al., 2013; Demar, 2013; Holman, 2006). 

This suggests that length of time that a salamander lineage has been 
in the aquatic adaptive zone does not necessarily equate to a more 
elongate body and a smaller limb, but rather that there are alter-
native adaptive peaks for salamanders in diverse aquatic habitats. 
One peak involves body elongation and limb reduction for anguilli-
form swimming and burrowing as seen in amphiumids and sirenids. 
Another adaptive peak (or peaks) consists of dorsal–ventral flatten-
ing of the body and maintaining limbs for bottom walking in lotic en-
vironments (cryptobranchids and Necturus), or even shortening the 
trunk and lengthening the limbs as in some aquifer-dwelling paedo-
morphs (Eurycea rathbuni and Eurycea wallacei; Wiens, Chippindale, 
& Hillis, 2003; Bonett & Blair, 2017). In summary, patterns of hind-
limb digit number and vertebral column elongation are more highly 
correlated in obligately paedomorphic species, which have colonized 
different aquatic adaptive zones. In contrast, many salamanders 
with a terrestrial ecology have maintained consistent hindlimb digit 
numbers, which, in elongate terrestrial salamanders, demonstrates a 
decoupling of digit from vertebral numbers.

Vertebrate embryos share their greatest similarity at the phylo-
typic stage (Seidel, 1960; Slack, Holland, & Graham, 1993), which 
is marked by pronounced inductive signalling between embryonic 
regions (Galis & Metz, 2001; Galis, Van Alphen, & Metz, 2001). In 
amniotes, both the limb buds and somites are developing during 
this time and may be strongly integrated by shared inductive sig-
nals. Amphibian limb development is more modular (Galis, Wagner, 
& Jockusch, 2003; Galis et al., 2001) and therefore somewhat inde-
pendent from somitogenesis and vertebral column development. In 
salamanders, the appearance of limb buds varies during embryonic 
and larval development (Collazo & Marks, 1994). This independence 
should allow for evolutionary flexibility to produce diverse combina-
tions of appendicular and axial traits.

4.3 | Parcellation of serial homologous structures in 
aquatic environments

Serial homology is generated by duplicating existing structures, 
and their associated developmental programs, in a new location 
(Hall, 1995). The shared origin of serially homologous structures 
is thought to facilitate initially strong correlation (integration) due 
to common developmental pathways (Olson & Miller, 1958; Young 
& Hallgrímsson, 2005). Forelimbs and hindlimbs are evolutionar-
ily linked by shared genetic, developmental and functional con-
straints generally hypothesized to originate from serial homology 
(Hallgrímsson, Willmore, & Hall, 2002; Hallgrímsson et al., 2009; 
Margulies, Kardia, & Innis, 2001; Petit, Sears, & Ahituv, 2017; 
Shou, Scott, Reed, Hitzemann, & Stadler, 2005; Shubin et al., 1997). 
However, we acknowledge that serial homology in this system has 
been challenged (see Diogo & Ziermann, 2015).

We show a significant decrease in correlation between limb 
lengths in aquatic compared to terrestrial salamanders. Our previ-
ously discussed results show patterns of limb reduction and elevated 
rates of morphological evolution in aquatic salamanders (Supporting 
Information Tables S1–S4) suggesting loss of constraint. These 
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results corroborate loss of constraint that leads to lower levels of 
integration between limb lengths. In spite of shared homology, limbs 
seem to be more free to vary independently of each other in aquatic 
environments. Fully terrestrial direct developing salamanders 
often have the most similarity between fore- and hindlimb lengths. 
Salamanders of the family Sirenidae show the greatest disassocia-
tion as they have entirely lost hindlimbs but retain functional fore-
limbs (Azizi & Horton, 2004), which emphasizes the independence 
that can be reached in paedomorphic lineages. However, recently 
diverged lineages such as terrestrial and semi-aquatic salamanders 
of the genus Desmognathus show the next largest disparity in length 
between the hind- and forelimb, while some more recently derived 
paedomorphic lineages of the genus Eurycea have relatively simi-
lar limb lengths. This suggests again that aquatic life history is not 
sufficient to predict patterns of integration between forelimbs and 
hindlimbs and it is likely that multiple optima are present within our 
defined regimes.

Recently, Tomašević Kolarov et al. (2017) investigated limb cor-
relation in a polymorphic newt species that has both paedomorphic 
and biphasic (“metamorphic”) individuals. They found that both 
morphs have similar patterns of hindlimb to forelimb correlation, 
but paedomorphs had higher partial correlations between some limb 
measurements such as tibia to radius length. These newts are facul-
tatively paedomorphic and live in a range of disparate habitats where 
polymorphism has been attributed to variations in environmental 
conditions (Denoël & Ficetola, 2014). Differences in correlation be-
tween morphs may result from developmental plasticity rather than 
broad-scale evolutionary patterns. Paedomorphic newts in more 
stable aquatic environments may have reduced developmental error 
rates due to less perturbation in habitats with low environmental 
variation. More research is needed to test whether environmental 
variation has an impact on limb integration across salamander taxa.

Deviations from quadrupedal movement in vertebrates have 
been shown to create functional disassociation between limbs due 
to adaptations for specialization. Examples can be seen in marsupi-
als (Kelly & Sears, 2011), primates (Young, Wagner, & Hallgrímsson, 
2010) and flying tetrapods (Bell, Andres, & Goswami, 2011). In each 
case, parcellation of shared developmental mechanisms between 
limbs has to occur, fuelled by independent selection (Young & 
Hallgrímsson, 2005). Here, we show that life cycle shifts can reduce 
correlation between limbs, and that this is not necessarily associated 
with limb specialization. In fact, combined with other analysis we 
hypothesized that correlation between limbs may be reduced due 
to lack of selection for, or selection against, retaining limbs in the 
most elongate paedomorphic salamanders. Changes in selective re-
gime can have drastically different effects on each limb in some lin-
eages (e. g. Sirenidae). This hypothesis may be further supported by 
increased variance in limb length and digit number in paedomorphs 
as this is thought to be a sign of drift due to lower levels of integra-
tion (Young, 2017). As fully aquatic salamander lineages shift from 
quadrupedal to undulatory movement, locomotion selects for dis-
associations between forelimb and hindlimb and between limbs and 
vertebral column.

5  | CONCLUSION

Shifting to aquatic environments produces higher rates of limb 
evolution and limb reduction in salamanders. It also produces sig-
nificant shifts in patterns of integration between digits and verte-
bral number, and forelimbs and hindlimbs. These results suggest 
that terrestriality imposes strong constraint on limb evolution that 
can be lifted upon reversion to aquatic habitats. This study has 
implications for how we understand the evolution of terrestriality 
and pentadactyly in early tetrapods as well as the many subse-
quent reversions to aquatic habitats, and provides an example of 
ecological and life cycle variation producing changes in patterns of 
integration among species.
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