Computation Offloading over Fog and Cloud using
Multi-Dimensional Multiple Knapsack Problem

Junhua Wang*, Tingting Liuf, Kai Liu*, BaekGyu Kim?, Jiang Xie® and Zhu Han7l
*College of Computer Science, Chongqging University, Chongging, China
School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
J;Toyota InfoTechnology Center, Mountain View, CA, USA
§Department of Electrical and Computer Engineering, The University of North Carolina at Charlotte, Charlotte, NC, USA
YDepartment of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
”Department of Computer Science and Engineering, Kyung Hee University, Seoul, South Korea

Abstract—Computation offloading over fog and cloud is criti-
cal to improve service quality and efficiency of future networks.
Mobile vehicles have also been considered as potential fog nodes
by sparing their computation capability to nearby users. In this
paper, we propose a multi-layer computation offloading archi-
tecture, consisting of the user layer, mobile fog layer, fixed fog
layer and cloud layer. Multiple wireless roadside units (RSUs) are
deployed in the network to collect computation tasks from user
layer, and offload the tasks to other layers. Each layer has distinct
multi-dimensional characteristics, such as different transmission
rates and computation capabilities. The computation tasks may
consume different communication and computation resources
when they are uploaded to different layers. However, the
available resources of each layer are limited. Consider that each
user will pay for the offloaded computation tasks according to
their sizes, we aim to maximize the total profits of computa-
tion offloading from the infrastructure perspective. Specifically,
the offloading problem is formulated as a generalized multi-
dimensional multiple knapsack problem (MMKP), in which each
layer is considered as a large knapsack and the computation
tasks are treated as items. We propose a modified branch-and-
bound algorithm to obtain the optimal solution, and a heuristic
greedy method to obtain approximate performance with much
lower computational overhead. A comprehensive simulation is
conducted to compare the proposed two algorithms. Simulation
results demonstrate that the proposed computation offloading
architecture together with the task allocation algorithms can
achieve the purpose of maximizing the total profits of offloaded
tasks.

I. INTRODUCTION

Recently, cloud computing has been widely adopted as an
efficient solution to the extension of network computation
capacity and application demands. However, it gradually
becomes insufficient to support the phenomenal growth of
big data generated by billions of intelligent devices. Fog
computing, which was first introduced by Cisco in 2012 to
address the challenges of IoT applications, has been con-
sidered as a promising solution to breakthrough the band-
width bottleneck of wired/wireless access networks in cloud
computing. Basically, fog nodes act as efficient spots in the

* K. Liu is the corresponding author.
The authors would like to thank Dr. Chung-Wei Lin and Dr. Shinichi
Shiraishi of Toyota InfoTechnology Center for their helpful suggestions.

middle layer between data sources and cloud by providing
their computation, storage and networking resources. Since
fog nodes are more accessible to end users, fog computing is
expected to benefit from the advantages of geo-distribution,
location awareness and fast response of fog nodes.

Currently, abundant researches have been developed on
five types of fog nodes, namely, servers, networking devices,
cloudlets, base stations and vehicles [1]. The fog servers can
be geo-distributed at public places such as shopping centers
and parks. As traditional network devices, gateway routers and
switches can act as fog nodes and share their system resources
with requesting users. In addition, cloudlets and base stations
are expected to extend cloud services for seamless network
communication. Furthermore, vehicles at network edge may
also have attractive incentives to provide their computation
facilities as fog nodes. With powerful onboard units (OBUs)
and onboard computers installed on vehicles, they can down-
load the computation tasks from roadside units (RSUs), and
cooperatively handle with the requirements by forming a
mobile fog layer.

Note that fog computing is not intended to replace cloud
computing but to provide complimentary services [2]. Great
efforts have been put on computation offloading between
cloud and fog nodes. The work in [3] studied the workload
offloading strategy to improve quality of experience (QoE). A
fog node can forward part of its workload to other local fog
nodes or to cloud with extra power consumption. Then, the
tradeoff between QoE of users and power efficiency of fog
nodes are analyzed before applying the optimal algorithm,
which is based on alternative direction method of multipliers
(ADMM). The work in [4] presented an architecture of vehic-
ular fog computing (VFC) to augment the computation and
storage power of fog computing architecture. Consider that
parked vehicles nearby a shopping mall may have tremendous
unexploited computing power, the maximum computation
capacity of parked vehicles in a VFC zone is determined while
predicting the need of computational resources.

In this paper, we consider a multi-layer network archi-
tecture, in which multiple RSUs are distributed to collect
the computation tasks from user layer. The roadside cameras

978-1-5386-4727-1/18/$31.00 ©2018 IEEE

and sensors can be the potential users. For example, the
roadside cameras may collect traffic information without
enough process capabilities to analyze them. They can upload
their computation tasks to nearby RSUs, which will make the
offloading decisions based on a certain criteria. There are three
options for computation offloading. First, the computation
tasks can be offloaded to the mobile fog layer. The mobile
vehicles complete the computation tasks by utilizing the
idle computation resources of onboard computers. Once the
computation is finished, corresponding results will be returned
to the nearby RSU directly or through multihop vehicle-
to-vehicle (V2V) communications. Second, the computation
tasks can be offloaded to the fixed fog or the cloudlet such
as base stations and distributed computation servers in smart
buildings. Third, the computation tasks can be offloaded to
the remote cloud layer.

Based on the above framework, we formulate the compu-
tation offloading problem as a generalized multi-dimensional
multiple knapsack problem (MMKP). Each layer is considered
as a knapsack with distinct two-dimensional features in terms
of communication and computation resources. The computa-
tion tasks are treated as items which will consume different
resources when they are allocated to different layers. The main
contributions are outlined as follows:

o We present a multi-layer network architecture for com-
putation offloading. We show the potential competitive-
ness of the mobile vehicles to share their computation
resources by forming a mobile fog layer.

o« We formulate the computation offloading problem as
a generalized MMKP which aims to achieve the best
profit of offloaded tasks. The problem itself is an integer
programming problem.

o We modified the branch-and-bound algorithm to derive
the optimal solution. By utilizing the Lagrangian relax-
ation, we decompose the original problem into multiple
instances of two-dimensional knapsack problem. The
upper bound at each branch node of original problem is
obtained by computing the optimal solution of multiple
subproblems. Further, the heuristic greedy algorithm is
also developed to compare the results.

« Extensive simulations are conducted to demonstrate the
effectiveness of the proposed offloading architecture and
task allocation algorithm in maximizing the total profits
of offloaded tasks. The simulation results also reflect
the individual features of different layers in terms of
communication and computation resources.

The reminder of this paper is organized as follows. Section
IT presents the system model. In Section III, we formulate
a generalized MMKP. In Section IV, we propose an adapted
branch-and-bound algorithm and a heuristic greedy algorithm.
The simulation results are given in Section V. We conclude
the paper in Section VL.

II. SYSTEM MODEL

There are four layers in the proposed network architecture,
including user layer, mobile fog layer, fixed fog layer and

cloud layer, which are shown in Fig. 1. The last three
layers are equipped with computation capability. These three
layers differentiate from each other concerning the available
communication and computation resources. A large number
of RSUs are deployed in the concerned network to serve as
access points, which support multiple communication inter-
faces such as 3G/4G and millimeter wave (mmwave) [5], etc.
The RSUs will firstly collect users’ computation tasks, and
then offload tasks to different layers. In the following, we
elaborate the distinct characteristics of each layer as well as
the communication modes between RSUs and different layers.

1) User Layer: User layer includes intelligent devices,
roadside cameras and sensors, etc. These terminal de-
vices will produce numerous computation tasks which
cannot be executed by local computation resources. Due
to energy constraint or other concerns, they choose to
offload their computation tasks to the nearby RSUs. We
assume that multiple RSUs are connected with each
other by wired backhauls.

2) Mobile fog Layer: Mobile fog layer is formed by a
large number of mobile vehicles which drive in cities
randomly (i.e. cars and taxis) or routinely (i.e. bus-
es). They will receive computation tasks when passing
through or stopping within the communication range of
RSUs. Consider a certain area where several RSUs are
connected to share computation resources, all mobile
vehicles will contribute to the computation capability of
mobile fog layer. We assume that vehicles are equipped
with mmwave communication interfaces for task of-
floading. Therefore, mobile fog has a high transmission
rate. Once the computation tasks are completed, if the
RSU is still in their transmission range, they will return
the results directly, or otherwise, via multi-hop V2V
communication [6]. An example is shown in Fig. 1.
Vehicle h received computation tasks from the first
RSU, and computed it during driving. After completing
computation, the vehicle (h’) has arrived at another
RSU. The computation results are transmitted to the
nearby RSU and then returned to the original one.

3) Fixed fog Layer: Some smart buildings, parking lots and
base stations provide computation resources to users by
forming a fixed fog layer. Similar to the mobile fog
layer, the computation capability of fixed fog layer is
the total available computation resources of all fixed fog
nodes located at the concerned area and connected to
nearby RSUs. Considering that single fixed fog node has
more powerful computation capability than a mobile ve-
hicle, we assume the computation capability of the fixed
fog layer is more powerful than that of the mobile fog
layer. The fixed fog layer can support multiple commu-
nication technologies according to different types of fog
nodes, such as WLAN, MAN, 3G/4G/LTE, etc. [7]. We
assume RSUs offload computation tasks to the fixed fog
layer through LTE. Thus, the available communication
resources of the fixed fog layer is usually smaller than

Cloud layer

J:
d © | A

Fixed fog layer ‘

Smart Comutaiinn ’ Parking
building server Macro BS lot
fi
== o 0l=o=
Mobile fog layer O g b _compue || | g
upload (l(rl)) ‘upload download
[6))
fe—2" 6)

$on

Fig. 1: System model

User layer

the mobile fog layer.

4) Cloud Layer: A cloud data center can act as a cloud
layer, which can be physically located at remote areas
far away from users. The cloud center usually has
extremely powerful computation capability than the
aforementioned two layers. However, due to the long
distance and limited transmission power, the transmis-
sion rate of the cloud layer is much smaller than the
fixed fog layer and the mobile fog layer. However, the
wired communication link between the cloud center to
the RSUs is more reliable than the other two layers.

We briefly summarize the characteristics of different of-
floading layers in Table L.

III. PROBLEM FORMULATION
A. Notations

We consider the computation offloading problem in a limit-
ed city area. The mobile vehicles driving across this area, the
fixed fog nodes located within this area and the remote cloud
center form different network layers to provide their idle com-
putation resources for the nearby users. Let L = {ly,15,13}
represent the mobile fog layer, fixed fog layer and cloud layer,
respectively. Denote the task set as A = {al,ag, ...,a|A|}.
The set of profits is denoted as P = {pl,pg, D)4 } where
p; = pomj (1 < j <|AJ|), m; represents the size of compu-
tation task a; (i.e., Giga cycles), and py denotes the price
for one unit of computation resource (i.e., $ per Giga cycles).
Note that we didn’t consider the computation cost of different
layers. Denote the maximum transmission rate (i.e., bit per
second) of each layer as R = {Ry, Rz, R3} and denote the
maximum computation capability (i.e., the number of cycles
per second) of each layer as V = {V;, V5, V3}. We use binary
variables z; ; (1 <i<3,1<j <|A|) to represent whether
task a; is processed by layer I;. If a; is processed by [;, then
x;; = 1; otherwise, it is 0. Denote the allocated transmission
rate for task a; by [; as r; ;. Denote the allocated computation
capability for task a; by I; as v; ;.

Without loss of generality, we assume that profit p;, allo-
cated transmission rate 7; ; and computation capability v; ;,
as well as the maximum transmission capacity R; and the
maximum computation capability V; are all positive integer
numbers. Consider that in the wireless communication envi-
ronment, the allocated resources cannot exceed the system
capacity of each network layer, we have

Ti5 S Ri7vi,j S V; (l = 172737j = 17"'7 ‘AD . (1)
B. Problem Formulation

Given a task set A and the corresponding profit set P, as
well as the intended transmission rate 7; ; and the demanding
computation capability v; j, we propose to maximize the total
profits gained from offloading computation tasks under the
constraints of transmission rate and computation capacity in
each layer.

|L] 4]
P1: maxz ij'l‘i7j,
Tij =1 j=1
1A
s.t. (Cl) : Z Tij*Tij < Ri,i = 1, ceey |L|7
j=1
|A|
(02) : Vij* Ti,j < V;,Z =].7 ceey ‘L| s
j=1
|L]
(03) : T4 < 17] = 17"'7 ‘A|)
i=1
(C4) 1T € {0, 1} i=1,..., |L‘ ,0=1,.. ‘A| s
2
where |L| = 3, Cl is the constraint of communication

resources of each network layer. It requires the sum of
allocated transmission rates of all tasks uploaded to the ith
layer no larger than the maximum transmission rate. C2 is
the constraint of computation resources. It means that the
total computation capabilities allocated for the tasks that
are uploaded to the ith layer should be within its available
computation resources. C3 guarantees that each task a; can be
allocated to at most one offloading layer. C4 is the constraint
of binary variables, which represents the task’s indivisibility.
The above problem is a generalized multi-dimensional multi-
ple knapsack problem (MMKP). Each offloading layer can be
considered as a knapsack with distinct transmission rates and
computation capabilities; and each task can be considered as
an item with two weights (i.e. intended communication rate
and demanding computation capability).

It has been proved that the standard 0-1 knapsack problem
is a NP-hard problem [8]. Different from the traditional knap-
sack problem, the proposed problem P1 faces the challenges
from the combination of the multiple dimensions and multiple
knapsacks. Compared with the multi-dimensional knapsack
problem (d-KP) and multiple knapsack problem (MKP), the
weight of items (i.e. the allocated transmission rate and
computation capability) is variable with the selected knapsack
(i.e. offloading layer). For example, the task will be allocated
with less communication resources but more computation
resources by the cloud layer; while a higher transmission rate
and lower computation capability from the mobile fog layer
may be assigned.

TABLE I: Characteristics of different offloading layers

Properties Transmission Computation Connection to
Layers Rate Capability RSU
Mobile fog layer High slightly weak Near, dynamic
Fixed fog layer Medium Medium Medium distance
Cloud layer Lower Powerful Remote, reliable

IV. PROPOSED ALGORITHM
A. Upper bound at branch node

To obtain the optimal solution, we modify the branch-and-
bound algorithm which is intended for MKP [9]. A good
upper bound is critical to prune unfeasible search space
and achieve fast convergency. As shown in P2, by adding
constraint C3 to the objective function, we get the Lagrangian
relaxation of original problem P1.

P2: 2 (L(P1\) =
|L| |A] [Al |L|
max ZPJ Tij — ZlAj > wig—1],
j= i=1

Tij 4= 1j=
|4
s.t. Zr” zi; < Rji=1,..,]L],

j=1

|A]
E Vi,j * Ti,j S V;‘,i = 1, ceey |L‘ s
j=1
Tij; € {0, 1} =1, |L| 7]' =1,..., |A| .
(3
Then, we set Lagrangian multipliers Ay, ..., A4 = 0 and

decompose Pl into |L| subproblems. Each subproblem is
actually a two-dimensional knapsack problems (2-KP).

In the following, we describe how to compute the upper
bound at branch nodes by using the optimal solution of |L|
subproblems. In the branch-and-bound algorithm, to deter-
mine whether a branch x; ; = 1 can lead to a potential feasible
solution, we compute the upper bound associated with branch
node /;. Denote as G the set of items that have been put into
different knapsacks. The upper bound at I; is computed by

B =3 . 0)+z(A-G)+p(G), @

where O = A—G —{a;}, 2} (O) (O C A) represents the
optimal solution of knapsack [, when only considering the
tasks in subset O. p(G) is the total profits of computation
tasks in set (G. The first part in (4) computes the sum of
optimal solution of the other subproblems by considering the
remaining tasks without a;; while the second part computes
the optimal solution of knapsack [; by considering all remain-
ing tasks.

We can observe that, by decomposing P1 into multiple
independent subproblems, the constraint that the computa-
tion tasks consume different communication and computation
resources on different layers is eliminated when computing
the upper bound of the branch nodes. For each subproblem
of 2-KP, we still use the branch-and-bound algorithm to get
the optimal solution. For the ¢th subproblem, the Lagrangian
relaxation is obtained by adding the constraint of transmission
rate to the objective function.

P3: =z (L (Pi,’yi)) =
4] 4]
max Z Dj T — i Zl Tij Ti5 —
‘7:

Ti,j j=1

Rz))

&)
Then the upper bound associated with each branch node is
determined by solving the Lagrangian dual problem, where
we select a nonnegative multiplier ~; such that z (L (P?,7;))
is minimized.
z (LD (P")) =minz (L (P', 7)) - (6)
Vi

[4]
st iy wi; < Vi
=1
Ti; € {0, 1} ,j =1,.., |A| .

The subgradient optimization technique is used to yield the
least upper bound. For each 2-KP, since the following proce-
dure to derive the upper bound and obtain the optimal solution
follows the standard branch-and-bound algorithm, we ignore
detailed description due to page limitation.

B. Initial upper and lower bound

Except the upper bound associated with each branch node,
we compute the initial upper bound and lower bound for the
original problem P1. We use the surrogate relaxation to get
the initial upper bound by merging the set of constraints into
one constraint.

IL] |A]
P4: z(S(Pl,u,0)) =max > Z Dj - Tij,
Tij i=1j=
L |4 |L]
st Do iy, Tig T < Y il
=1 j=1 i=1
L Al |L]
200 2 Vi Ty < 3 0V,
=1 j=1 i=1

|L|
waglj_l 5 A,

x” €{0,1},i=1,..,|L]|,j=1,...,]4]|.

)
For any instance of MKP, the optimal choices of multipliers
[y ooy b 10 2 (S (P, 1)) is set to k, where m is the number
of knapsacks, and k is a positive constant [8]. Therefore, we
set ,uz =0, =1fori=1,...,|L|. Let binary variable 2'; =
Z _4 T;,; indicate whether task a; has been selected in any
knapsack ;(i = 1, ...,|L|). By considering only one constraint

each time, we get two relaxed subproblems P5-1 and P5-2.

|A]
P5—1: max) p;-a,
z'; j=1
4| ®)
st. > r';-2'; <R,
j=1

2 €{0,1},5=1,..,]4].

|A]
P5—-2: max ij ',
z'i =1
4] (€]

s.t. Ev] ' <V,
i=

o |LI} R = Z'L‘ R, v; =
= ZL:‘l V;i. Denote the
*. We get the

where r’; = min{r; ; |i = 1,.
min {v; ; |1 =1,...
optimal solution of (8) and (9) as zr* and zv
upper bound as

(10)

Another way to get the upper bound is based on the
Lagrangian relaxation. As described above, we remove the
constraint C3 to enable each subproblem of 2-KP to be solved
independently. Each knapsack is filled by selecting from all
computation tasks. Then, we can compute the total profits of
|L| knapsacks and get the upper bound Us. Therefore, the
upper bound of MMKP can be derived by

U= min{U]_,Ug}.

Uy = min{zr*, zv"}.

an

We compute the initial lower bound using a heuristic greedy
method. Define the efficiency of task a; as [8]:
Ej =
Dj
) + iy - (Elell Vig z))
12)

We roughly estimate the overall approximate capacity of
knapsack [; as C; = R; - V. Firstly, we fill the knapsack
with the minimum approximate capacity by selecting tasks
from set |A|. The branch-and-bound algorithm for 2-KP is
adopted to get the optimal solution for the first knapsack.
Then, the knapsack with the second minimum capacity is
filled by optimally choosing from the remaining tasks. Finally,
the remaining tasks are filled in the last knapsack. Actually,
on the basis of initial lower bound, another heuristic method
is to exchange tasks from one knapsack to another knapsack
if this change can lead to increasing profit of the computation
tasks which will be put in.

L A
Z‘ | (Ti,j (Z‘j ‘1 Tij —

C. Exact algorithm

As described above, by setting the Lagrangian multipliers
Aj=0,5=1,..,|A| the original MMKP can be decomposed
into |L| instances of 2-KP. First, by selecting a task which
appears in k' (2 < k' < |L|) solutions of independent 2-KP, &’
nodes are generated with the first &' — 1 branches to assign the
task to each knapsack, and the last branch to exclude the first
k" —1 knapsacks. For example, if a; is assigned to knapsacks
k1, k2 and k3. Three branches are generated, i.e., a; ; = 1,
az,; = 1 and a; ; = as ; = 0. For the last branch, if the upper
bound corresponding to the exclusion of the three knapsacks
is lower than current optimal solution, then the third branch
is represented by as ; = 1. The branch-and-bound algorithm
for MMKP is shown as Table II.

TABLE II: The branch-and-bound algorithm.

Algorithm 1 The branch-and-bound algorithm.

Input: Task set A, profit set P, required transmission rate r; ; and com-
putation capability v; ; from a; to I;; transmission rate R; and computation
capacity V;
Output: Allocation matrix [z]
Steps:
1: Step 1: Initialize
2: Compute the lower bound of MMKP; set [z*] = and P* = LB.
3: for:=1,...,|L|: do
4 solve 2-KP associated with each knapsack /; using branch-and-bound
algorithm; denote the solution vector and solution value in [z] and Z, ;,
respectively.
: end for
6: Set ' = A, set de = {h‘mhj = 1} and e = 1. Compute upper
bound U of MMKP.
7: Step 2: Branch
8: for increasing a; € F' such that Z

9: Setdef{h‘mhjfl}

10: end for

11: if no such task exists, a feasible solution is found, and go to step 5.

12: Step 3: Bound

13: for h € de do

14: Solve the single knapsack problem associated with knapsack h using
the tasks excluding the ones that have been assigned and the current one.
Denote the solution value by z. Set Z;, = z + Z

15: end for
16: for h € de do
17: Compute the upper bound of each node as Bejp =

Zze(A det{h}) Ze—_1,i + Zze(d(,) Z ¢ k. Order the nodes in
decreasing order of B, j, values.

18: end for

19: Step 4: Go on

20: For nodes with B, ; < P*, go to step 6. If the condition xp ; = 1
can be assigned to the branch, set ' = F' — {a;}, Ry, = Ry — rp 5,
Vi =Vp — Vh,j

21: for i € (de {h}) do

22: Set Ze7h—Ze,h,6—e+1.

23: Set the ith row of [z] equal to the last solution vector determined at
level e for knapsack ¢ and go to Step 2.

24: end for

25: Step 5: Update

26: If Bcj, < P*, go to Step 6. If P* = U, stop. Otherwise, set P* =
Be,hs [z*] = [=].

27: Step 6: Backtrack

28: Go to the last layer e = e — 1. If e = 0, stop.

29: if a; € (A — F) then

30: Set F=FU{a;}, R = Ry + 715, Vi = Vi, + v 5.

31: end if

32: for i € (de {h}) do

33: Set Ze; = Ze—1,i, and set the ith row of [z] equal to the last
solution vector determined at level e — 1 for knapsack 4.

34: end for

35: Find the next node following h in de and go to Step 4.

W

ieL| Tid > 1do

JEIAlxp ;=1 i

In the first step, the lower bound is computed using the
heuristic method as described above. The upper bound of
MMKP is computed based on (11). Variable e is the current
tier of branch tree. The set d. includes all knapsacks that
have repeatedly added the same task. In step 3, the right
part of Z, ;, adds the profits of tasks that have been assigned
to node [;,. The upper bound B, ; at node [; is computed
according to (4). In step 4, for the nodes whose upper bound
is lower than the current best profit, we prune the branch and
execute backtrack in step 6. The condition that task a; can
be assigned to [;, includes two cases: one is that a; is not

the last one in set d.; the other one is that the upper bound
computed by removing a; from all knapsacks is smaller than
the current optimal solution. For above example, the second
condition remove the possibility of a3 ; = 0 from condition
a1,; = as,j = 0, and thus lead to a3 ; = 1. If task a; can be
imposed on the branch, then the corresponding knapsack will
reduce the capacity. The allocation solution of other knapsacks
in d. will be set as the solution without a;. Then the tier of
branch tree increases, and the algorithm will go to step 2 to
repeat the process of depth search. In step 5, it checks the
upper bound and update the optimal value is as the current
optimal solution. In step 6, the algorithm goes back to tier
e — 1 and recover the solutions at tier e by removing the
task from current knapsack and trying to put it in the next
knapsack in set d.. Once there is no task to be found in
multiple knapsacks, a feasible solution is found. Then, the
algorithm will continue going backtrack until reach the upper
bound or traverse all feasible solution space.

D. A scheduling example

We give an example with 6 tasks, the demanding com-
munication rates, computation capacities for three offloading
layers are r={10681349;45810123;128 1039 11},
and v={3645810;834945;512810 89}, respective-
ly. The profits of the tasks are p={612 8 10 3}. The com-
munication and computation capacities of different layers
are R = {12108} and V = {8 11 15}, respectively. By
running the branch-and-bound algorithm, we get the exact
solution as follows: task as is offloaded to kq; task a; and
ao are offloaded to ko; and task a4 is offloaded to k3. The
optimal solution value is 25. By using the heuristic method,
the solution value is 19. It assigns task as to kq, task a4 to
ko, and task as to k3. We can find that the exact algorithm
assigns tasks to a layer when it has smaller requirements for
this layer.

V. SIMULATION RESULTS

We build the simulation model and implement the exact
algorithm and the heuristic method with Matlab. The exper-
iments are conducted in the regular laptop with 4GHz CPU
frequency. The communication rate from RSU to cloud is
set to 15 Mbps [3], and 1.5 Gbps to mobile fog [5], and 80
Mbps to fixed fog. The computation capability of fog nodes is
20 x 108 cycles/s [10]. We consider an area with 10 vehicles
and 2 fixed fog nodes. Then, the maximum computation
capacity of mobile fog layer is 200 x 10® cycles/s. Consider
that the fixed fog node such as base station has much more
computation resources than mobile vehicles, we assume the
available computation resources of a fixed fog node is 10
times than that of a mobile vehicle. Thus, the maximum
computation capability of fixed fog layer is 400 x 10® cycles/s.
The computation capacity of cloud is unlimited, but it usually
can assign the speed of 100 x 10® cycles/s [11] for each user
or regular task. Assume that |A| is not larger than 40. Then
the maximum computation capacity can be set as 4000 x 108.
For each task, the intended transmission rates for different

—=a— Heuristic - @ - B&B --4- - Upper bound

[} [} ~
=} @ o
1 1 1

I3
a
1

Total profits

Number of tasks

Fig. 2: The total profits of completed tasks

layers are uniformly generated from the range [1,50] Mbps,
[1,20] Mbps and [1,10] Mbps, respectively. The demanding
computation capabilities for different layers are uniformly
distributed in the range of [1, 15] x 10® cycles/s, [1,20] x 108
cycles/s and [1,200] x 10% cycles/s, respectively. The unit
price po of computation resource is set to 0.1 [12]. The size
of computation task is uniformly distributed in [1, 50] Geycles.
We run each sample for 50 times to compute the average value
of all samples.

As shown in Fig. 2, with the number of tasks increasing,
more computation tasks can be allocated to upper offloading
layers. Although not all the tasks can be offloaded, the chances
of tasks to be uploaded increase accordingly. Then the total
profits of offloaded tasks will increase. The purple dotter line
represents the upper bound of the total profits. The results of
branch-and-bound algorithm and heuristic method are shown
in dashed line and solid line, respectively. As expected, the
branch-and-bound algorithm gains the optimal solution, which
is a little lower than the upper bound, and higher than the
heuristic method. The heuristic method can produce a quite
good performance in all scenarios.

Furthermore, we compare the running time of branch-and-
bound and heuristic method. As shown in Fig. 3, with the
increasing number of computation tasks, the running time of
branch-and-bound algorithm increases rapidly. As described
above, we modified the branch-and-bound algorithm which
was proposed for MKP to the proposed MMKP. Although,
the algorithm complexity cannot be described explicitly since
the actual number of nodes in branch tree cannot be bounded,
the running time complexity in worse-case is extremely high
(i.e. exponential growth). Instead, the heuristic algorithm has
no obvious changes along with the increasing number of tasks,
and the values of running time keep lower than 10 s in all
settings.

In default setting, there is a potential relationship between
the allocated transmission rate and computation capability.
Assume that the average size of input data of these tasks
is C'M, and the average size of computation tasks is C'P,
then (CM /r; max + CP/Vimax) € [ED — e, ED + €] holds
for all layers ¢ = 1,2, 3. 7 max and v; max are the maximum

—a— Heuristic - ® - B&B

T T T T
120 -
»
/
100 ‘ 9
/
/
/
@ 80+ ;
o r 1
-g 60 =
o)) 7
g » 4
S 404 e
4 e
7
20 _. 4
.’/ ﬁ
0 —
T T T T T
10 15 20 25 30

Number of tasks

Fig. 3: The running time of two algorithms

[_JCloud [_]Fixed fog [l Mobile fog
T T T T

18 4 —

Number of completed tasks

Rate of demands

Fig. 4: The percentage of tasks completed at each layer

transmission rate and maximum computation capability de-
manded by the tasks. ED+¢ is the range of average expected
delay. In above settings, we set the ratio of CP to CM to be
1. By varying the ratio as 1/3, 1/2, 1/1, 2/1 and 3/1, we get
five scenarios as shown in Fig. 4. From scenarios 1 to 5, the
ratio of computation demands becomes higher, and the tasks
consume more computation resources than communication
resources, and the number of tasks completed by cloud (i.e.
shown as blank columnar) increases. On the contrary, from
scenarios 5 to 1, the number of tasks completed by mobile
fog (i.e. shown as deep blue) increases because that mobile
fog can satisfy the increasing demands of communication
resources.

VI. CONCLUSION

In this paper, we have presented a multi-layer network
architecture for computation offloading. The mobile vehicles
are utilized and modeled as a powerful mobile fog layer to
provide computation resources for users. We have described
the unique characteristics of different offloading layers in
terms of transmission rates and computation capabilities. On
this basis, the task allocation is formulated as a generalized
MMKP, which is an integer programming problem. The
differences between MMKP and the d-KP or the MKP are

described. By modifying the branch-and-bound algorithm, we
decompose MMKP into multiple independent 2-KP. Then
the constraint that the computation tasks consume different
communication and computation resources when uploaded
to different layers is eliminated. We adopt the Lagrangian
relaxation and surrogate relaxation to obtain the upper bound
of MMKP. The adapted branch-and-bound algorithm as well
as the heuristic greedy method are realized and compared.
Through a comprehensive performance evaluation, we have
demonstrated that the proposed offloading architecture and
the task allocation algorithms are able to achieve the maxi-
mization of total profits of computation offloading.

VII. ACKNOWLEDGEMENT

This work was supported in part by the National Natural
Science Foundation of China (No. 61572088, 61702258), the
China Postdoctoral Science Foundation (No. 2016M591852),
Postdoctoral research funding program of Jiangsu Province
(No. 1601257C), US MURI, NSF CNS-1717454, CNS-
1731424, CNS-1702850, CNS-1646607, and the DGIST R&D
Program of the Ministry of Science and ICT (18-EE-01),
the Frontier Interdisciplinary Research Fund for the Central
Universities (No. 2018CDQYJSJ0034).

REFERENCES

[1] R. Mahmud, R. Kotagiri, and R. Buyya, Fog Computing: A Taxonomy,
Survey and Future Directions. Springer Singapore, 2018, pp. 103—130.

[2] M. H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in IEEE Conference on Computer Communi-
cations (INFOCOM), Atlanta, GA, May 2017.

[3] Y. Xiao and M. Krunz, “Qoe and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in IEEE Conference
on Computer Communications (INFOCOM), Atlanta, GA, May 2017.

[4] M. Sookhak, F. R. Yu, Y. He, H. Talebian, N. S. Safa, N. Zhao,
M. K. Khan, and N. Kumar, “Fog vehicular computing: Augmentation
of fog computing using vehicular cloud computing,” IEEE Vehicular
Technology Magazine, vol. 12, no. 3, pp. 55-64, Sept. 2017.

[5] T. Baykas, C. S. Sum, Z. Lan, J. Wang, M. A. Rahman, H. Harada,
and S. Kato, “Ieee 802.15.3c: the first ieee wireless standard for data
rates over 1 gb/s,” IEEE Communications Magazine, vol. 49, no. 7, pp.
114-121, Jul. 2011.

[6] K.Liu,J. K. Ng, V.C. Lee, S. H. Son, and I. Stojmenovic, “Cooperative
data scheduling in hybrid vehicular ad hoc networks: Vanet as a
software defined network,” IEEE/ACM Transactions on Networking,
vol. 24, no. 3, pp. 1759-1773, Jun. 2016.

[7]1 H. Zhang, Q. Zhang, and X. Du, “Toward vehicle-assisted cloud com-
puting for smartphones,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 12, pp. 5610-5618, Dec. 2015.

[8] D. Pisinger and P. Toth, Knapsack Problems.
299-428.

[9] S. Martello and P. Toth, “Solution of the zero-one multiple knapsack
problem,” European Journal of Operational Research, vol. 4, no. 4, pp.
276 — 283, 1980.

[10] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-
max fairness guarantee,” IEEE Transactions on Communications, Dec.
2017.

[11] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795-2808, Oct. 2016.

[12] H. Shah-Mansouri, V. W. S. Wong, and R. Schober, “Joint optimal
pricing and task scheduling in mobile cloud computing systems,” IEEE
Transactions on Wireless Communications, vol. 16, no. 8, pp. 5218—
5232, Aug 2017.

Springer US, 1999, pp.

