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Abstract

Quantifying mutual information between inputs and outputs of a large neural circuit is

an important open problem in both machine learning and neuroscience. However, evaluation

of the mutual information is known to be generally intractable for large systems due to

the exponential growth in the number of terms that need to be evaluated. Here we show

how information contained in the responses of large neural populations can be effectively

computed provided the input-output functions of individual neurons can be measured and
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approximated by a logistic function applied to a potentially nonlinear function of the stimulus.

Neural responses in this model can remain sensitive to multiple stimulus components. We

show that the mutual information in this model can be effectively approximated as a sum of

lower-dimensional conditional mutual information terms. The approximations become exact

in the limit of large neural populations and for certain conditions on the distribution of

receptive fields across the neural population. We empirically find that these approximations

continue to work well even when the conditions on the receptive field distributions are not

fulfilled. The computing cost for the proposed methods grows linearly in the dimension of

the input, and compares favorably with other approximations.

1 Introduction

Information theory has the potential of answering many important questions about how neurons commu-

nicate within the brain. In particular, it can help determine whether neural responses provide sufficient

amounts of information about certain stimulus features, and in this way determine whether these features

could possibly affect the animal’s behavior (Rieke et al., 1997; Bialek, 2012). In addition, a number of

previous studies have shown that one can understand many aspects of the neural circuit organization as

those that provide maximal amounts of information under metabolic constraints (Laughlin et al., 1998;

Bialek, 2012). Key to all of these analyses is the ability to compute the Shannon mutual information

(Cover and Thomas, 2012). When estimating the information transmitted by neural populations from

experimental recordings, all empirical methods produce biased estimates (Paninski, 2003). There are

several approaches to trying to reduce or account for this bias (Nemenman et al., 2004; Strong et al.,

1998; Brenner et al., 2000; Treves and Panzeri, 1995), but these approaches do not have finite-sample

guarantees and are generally ineffective when the population response is high dimensional. In order to

make progress on this problem, we consider the case where the response functions of individual neurons

can be measured and where the stimulus-conditional (“noise”) correlations between neural responses can

be described by pairwise statistics (Schneidman et al., 2006). Historically, even with these assumptions

the mutual information is notoriously difficult to compute in part due to the large number of possible

responses that a set of neurons can jointly produce (Nemenman et al., 2004; Strong et al., 1998). The

number of patterns grows exponentially with both the number of time points (Strong et al., 1998; Dettner
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et al., 2016) and the number of neurons.

In this paper we will describe a set of approaches for computing information conveyed by responses

of large neural populations. These methods build on recent advances for computing information based

on linear combinations of neural responses across time (Dettner et al., 2016; Yu et al., 2010) and/or neu-

rons (Berkowitz and Sharpee, 2018). We will show that when each individual neuron’s firing probability

depends monotonically on a (potentially nonlinear) function of the stimulus, the information contained

in the full population response can be completely preserved by a linear transformation of the population

output. This calculation still involves computing information between high dimensional vector variables.

Therefore, we further show how the full information can be effectively approximated using a sum of con-

ditional mutual information values between pairs of low-dimensional variables. The resulting approach

makes it possible to avoid the “curse of dimensionality” with respect to the number of neurons when

computing the mutual information from large neural populations.

2 Framework setup

Our analysis will target neural responses considered over sufficiently small time windows such that no

more than one spike can be produced by any given neuron. We model the neural population as a set of

binary neurons with sigmoidal tuning curves with response probability described by:

P (rn = 1|~s ) =
1

1 + e2fn(~s )
, (1)

where ~s ∈ RD is the input, rn ∈ {−1, 1} is the activity of the nth neuron, and fn(~s ) is a scalar function

of ~s representing the activation function of the nth neuron. The population consists of N such neurons,

and the population response is denoted as ~r = (r1, ..., rN). For clarity of the derivation, we will initially

assume that neural responses are independent conditioned on ~s:

P (~r |~s ) =
∏
n

P (rn|~s ), (2)

and later discuss under what conditions our results generalize to the case where neural responses are

correlated for a given stimulus ~s. A few lines of algebra suffice to show that Eq. (2) can be expressed in
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the following form:

P (~r |~s ) = exp

(∑
n

rnfn(~s )− An(~s )

)
,

An(~s ) = log(2 cosh(fn(~s )). (3)

This formulation will assist all of the approaches described below for computing the mutual information.

3 An unbiased estimator of information for large neural pop-

ulations

In order to test the approaches described in subsequent sections, we first developed a Monte-Carlo method

for computing the “ground-truth” mutual information that works for large neural populations. The

approach relies on the knowledge of neural response parameters {fn(~s )} to produce unbiased estimates

of mutual information between ~R and ~S for different choices of {fn(~s )} or P (~s ). Here and in what

follows, upper case letters (e.g. ~S) represent random variables, while lower case letters (e.g. ~s) represent

specific values of the associated random variables. The input distribution P (~s ) is defined by drawing

Nstim samples; we denote this set of samples as {~sµ}. Because of this approximation however, I(~R, ~S )

will be bounded above by log(Nstim) (as will be any unbiased estimator of mutual information).

Although there are several formulations of the mutual information in terms of the entropies of ~R and

~S it serves to examine just one:

I(~R, ~S ) = H(~R )−H(~R |~S ). (4)

Here, H(~R ) is the Shannon entropy of the marginal distribution of ~R and H(~R |~S ) is the conditional

entropy of ~R given ~S. Because we intend to use this estimator as a way to test the quality of other

approximations, we will only consider here the case of conditionally independent neural responses ~R. In

this case, the noise entropy H(~R |~S = ~S ) decomposes into a sum over neurons:

H(~R |~S = ~s ) =
∑
n

r̄n(~s )fn(~s )− An(~s ), (5)
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where r̄n(~s ) is the expected value of Rn given ~s:

r̄n(~s ) = tanh(fn(~s )). (6)

We denote Ĥ(~R |~S ) as the finite sample approximation to H(~R |~S ):

Ĥ(~R |~S ) = − 1

Nstim

∑
µ

∑
n

r̄n(~sµ)fn(~sµ)− An(~sµ). (7)

The conditional entropy Ĥ(~R |~S ) can be evaluated in O(N ∗ Nstim) time, not including the cost of

evaluating fn(~s ). However, the marginal distribution of ~r will in general not factor. Thus evaluating

H(~R ) requires computing the marginal P (~r ) for all ~r ∈ {−1, 1}N . This computation grows like O(N ∗

Nstim ∗ 2N). Thus, evaluation of Eq. (4) is known to become intractable for realistic population sizes. To

derive our estimator, we begin by rewriting H(~R ):

H(~r ) = −
∑
~r

P (~r ) log(P (~r )) = −〈F (~r )〉~r,

F (~r ) = log (〈P (~r |~s )〉~s) . (8)

We approximate the log-marginal F (~r ) with an empirical average:

F̂ (~r ) = log

(
1

Nstim

∑
µ

P (~r |~sµ)

)
= log

(
1

Nstim

∑
µ

exp

(∑
n

rnfn(~sµ)− An(~sµ)

))
(9)

In terms of numerical implementation, F̂ (~r ) can be efficiently and stably evaluated in O(Nstim) time

using the logsumexp function that is implemented in many numerical libraries. To approximate the

averaging with respect to P (~r ) we draw B samples of ~r for every ~sµ, which is easily done with (1) and

(2), and denote these samples as {~rν}. We can thus produce an unbiased estimate of −〈F̂ (~r )〉~r:

Ĥ(~R ) =
1

BNstim

∑
ν

log

(
1

Nstim

∑
µ

exp

(∑
n

rnνfn(~sµ)− An(~sµ)

))
(10)

Importantly, the response entropy Ĥ(~R ) requires O(N ∗B∗N2
stim) operations, a substantial improvement

over exact evaluation of H(~r ) when B ∗Nstim � 2N . We note that even though we are able to produce
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unbiased estimates of Ĥ(~R ), this estimator systematically underestimates the “infinite sample” entropy

computed with respect to P (~s ) explicitly, i.e. not defined by input samples (see Appendix A). Our

Monte-Carlo estimator of I(~R, ~S ) is the straightforward combination of Ĥ(~R ) and Ĥ(~R |~S ):

Î(~R, ~S ) = Ĥ(~R )− Ĥ(~R |~S ) (11)

Although Î(~R, ~S ) is an unbiased estimator of the mutual information (after accounting for the approxi-

mation of P (~s ) by samples {~sµ}) the variance of Ĥ(~r ) and thus of Î(~R, ~S ) can be difficult to quantify.

However, F (~r ) is a bounded function because ~r has finite support (or, more generally, F (~r ) can be

treated as a continuous function on the compact set [−1, 1]N). Thus, standard concentration bounds

show that Ĥ(~R ) is a consistent estimator of H(~R ).

In order to test our derivation that Î(~R, ~S ) is an unbiased estimator of I(~R, ~S ), we analyzed the

statistics of Î(~R, ~S ) on a tractable neural population where I(~R, ~S ) can be computed exactly. We let

N = 10 and fn(~s ) = ~φn · ~s with ~φn uniformly distributed along the unit circle. P (~s ) is a spherical,

two-dimensional Gaussian distribution and Nstim = 8, 000. We evaluate I(~R, ~S ) exactly, and get that

I(~R, ~S ) = 1.3384 nats. This is well below the upper bound of log(8, 000) ≈ 8.987 nats. We computed

Î(~R, ~S ) 100 times for B = 1 and B = 3, with {sµ} fixed. For each repetition we record the residual

Î(~R, ~S )− I(~R, ~S ). Distribution plots of the residuals are shown in Figure 1. For both distributions the

sample mean is not significantly different from zero with P = 0.848 (B = 1) and P = 0.851 (B = 3) in

a two-sided t-test. The simulation results therefore support the derivation of zero-bias in the proposed

model-based Monte-Carlo estimator.

4 Simplifying the mutual information with sufficient statistics

4.1 A vector-valued sufficient statistic

The method introduced in Section 3 can be applied for very general formulations and parametrizations

of the activation functions. However, when we constrain the activation functions to be affine we can

show that P (~r |~s ) has especially useful properties. Specifically, we assume the following parametrization

of fn(~s ):

fn(~s ) = ~wn · ~s− αn, ∀n (12)
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Figure 1: between exact calculation and the Monte Carlo results for the test neural population described

in Section 3. Dashed black line indicates zero, while red marker and error bar are the sample mean and

standard deviation.

While Eq. (12) implies a strong restriction on how stimuli drive the neural responses, some results of

this section can be generalized to other activation functions. The reason for this is that even the general

formulation of P (~r |~s ) given in Eq. (3) can be viewed as an exponential family, with sufficient statistic

~r and natural parameter ~f (~s ). In particular, the framework can be extended to quadratic activation

functions, which are an important model for describing neurons that are sensitive to multiple stimulus

features. See Appendix E for further discussion.

If Eq. (12) holds, then Eq. (2) can be rewritten as follows:

P (~r |~s ) = h(~r ) exp(~s · ~t (~r )− A(~s )), (13)

where,

~t (~r ) = W · ~r, W ≡ (~wT1 , ..., ~w
T
N) (14)

h(~r ) = e−
∑
n rnαn , (15)
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A(~s ) =
∑
n

log (2 cosh(~wn · ~s− αn)) . (16)

Equation (13) is an exponential family with sufficient statistic ~t ∈ RD, natural parameter ~s, base measure

h(~r ), and log-partition function A(~s ) (Wainwright and Jordan, 2008).

The stimulus-conditional probability distribution P (~t |~s ) can be defined by marginalizing over all ~r

that map to the same ~t:

P (~t |~s ) =
∑
~r

δ
(
~t,~t (~r )

)
h(~r ) exp(~s · ~t (~r )− A(~s ))

= exp(~s · ~t− A(~s ))
∑
~r

δ
(
~t,~t (~r )

)
h(~r )

= exp(~s · ~t− A(~s ))h(~t ). (17)

Note that h(~t′) = 0 if there does not exist an ~r such that ~t′ = ~t (~r ). An important property of sufficient

statistics is the conservation of information (Cover and Thomas, 2012):

I(~S, ~R ) = Ivector(~S, ~T ) (18)

with ~T defined by Eq. (14). Although ~T does not lose information relative to ~r, it is worth making a

few comments on ~T and Eq. (18). Because ~R is a discrete variable (with cardinality of at most 2N)

and ~T is a deterministic function of ~R, then ~T is also a discrete variable with finite cardinality. Indeed,

outside of cases of degeneracy between the columns of W, there will generally be a one-to-one mapping

between values of ~R and ~T . Thus, even in cases where D � N , computing H(~T ) can be just as difficult

as computing H(~R ). Furthermore, unlike ~R, the components of ~T will generally not be conditionally

independent. H(~T |~s ) will thus be similarly intractable. While it may seem that we have not gained any

computational advantage by transforming from ~R to ~T we will now show that Eq. (18) can be expressed

in a convenient form that facilitates several useful approximations.

4.2 Decomposition of mutual information based on sufficient statistics

We start by noting that the ordering of the components of ~S and ~T is arbitrary, because applying any

matching permutation to the components of ~S and ~T does not affect I(~S, ~R ). We will use the following

notations for components of vectors ~s = (s1, ..., sD) : s¬d = (s1, ..., sd−1, sd+1, ...sD), s<d = (s1, ..., sd−1),
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and similarly for s>d, s≥d, and s≤d. Note that S¬d = (S<d, S>d). Additionally, we will at times consider

information theoretic quantities involving variables that are the concatenation of two other variables,

such as X and Y . Such compound variables will be denoted as {X, Y }. Using these notations and

applying the chain rule for mutual information to Eq. (18) yields: (Cover and Thomas, 2012):

Ivector(~S, ~T ) =
D∑
d=1

I(Sd, ~T |S<d). (19)

In Eq. (19), I(Sd, ~T |S<d) is the mutual information between ~T and Sd conditioned on S<d.

I(Sd, ~T |S<d) = H(Sd, S<d) +H(~T , S<d)−H(Sd, ~T , S<d)−H(S<d)

= TC(S<d, Sd, ~T )− I(S<d, Sd)− I(S<d, ~T )

= I(~T , {S<d, Sd})− I(~T , S<d) = I(~T , S≤d)− I(~T , S<d)

= 〈I(Sd, ~T |s<d)〉s<d , (20)

where TC(S<d, Sd, ~T ) is the total correlation between S<d, Sd, and ~T . All four formulations of I(Sd, ~T |S<d)

are equivalent provided they all exist. A notable situation is when there is functional dependence be-

tween Sd and S<d, such as when the support of S≤d lies on a manifold of intrinsic dimension < d. In

this case I(S<d, Sd) diverges and the second line of Eq. (20) is ill-defined. However, it easy to show that

I(Sd, ~T |S<d) = 0 if such a functional dependency exists using the fourth line of Eq. (20). Formally, let

sd ≡ g(s<d) where g(s<d) : Rd−1 → R is a function defined explicitly or implicitly. Then we note that

the mutual information between two variables is zero if at least one variable is constant:

I(Sd, ~T |s<d) = I(g(s<d), ~T |s<d) = 0. (21)

Thus, I(Sd, ~T |S<d) will also be zero:

I(Sd, ~T |S<d) = 〈I(Sd, ~T |s<d)〉s<d = 〈I(g(s<d), ~T |s<d)〉s<d = 0. (22)

Computing just I(Sd, ~T |s<d) remains challenging for the same reasons as computing Ivector(~S, ~T ). How-

ever, we can achieve a further reduction by taking advantage of the fact that P (~t |~s ) is an exponential
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family. To see this we first express two important marginalized forms of (14):

P (~t |sd, s<d) = h(~t ) exp(s<d · t<d + sdtd)〈exp(s>d · t>d − A(~s ))〉s>d|s≤d . (23)

P (~t |s<d) = h(~t ) exp(s<d · t<d)〈exp(s≥d · t≥d − A(~s ))〉s≥d|s<d . (24)

The notation 〈f(~s )〉s>d|s≤d denotes the expectation of f(~s ) with respect to P (s>d|s≤d), with analo-

gous meanings for 〈f(~s )〉s≥d|s<d and so forth. Marginalization over conditioned variables is expressed

implicitly: P (~t |s<d) = 〈P (~t |~s )〉s≥d . The important consequence of (23) and (24) is that the log-

likelihood ratio of P (~t |sd, s<d) and P (~t |s<d) is independent of t<d. From this we can show that

I(Sd, ~T |s<d) = I(Sd, T≥d|s<d):

I(Sd, ~T |s<d) =

〈∑
~t

P (~t |sd, s<d) log

(
P (~t |sd, s<d)
P (~t |s<d)

)〉
sd

=

〈∑
t≥d

P (t≥d|sd, s<d) log

(
P (t≥d|sd, s<d)
P (t≥d|s<d)

)〉
sd

.

= I(Sd, T≥d|s<d) (25)

This leads to our next reduction:

Ivector(~S, ~T ) =
D∑
d=1

I(Sd, T≥d|S<d). (26)

We note that the dth term in (19) has D+d+1 degrees of freedom, whereas the corresponding term in (26)

has D+1 degrees of freedom. This effective dimension reduction has important algorithmic implications

for the nonparametric estimators we use to compute the individual terms of (26) (c.f. Section 5). In

section 5.1 and 5.2, we use Eq. (26) to evaluate Ivector(~S, ~T ).

4.3 Lower bounds for the mutual information

While Eq. (26) represents a significant improvement in complexity over naive evaluation of I(~S, ~T ),

individual terms of Ivector(~S, ~T ) may be still too high dimensional to reliably evaluate. In this section,

we will present a series of lower bounds on Ivector(~S, ~T ) that are more easily estimated. In particular

we consider bounds that arise by replacing T≥d in the dth term of Eq (26) by a lower dimensional,
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deterministic transformation of T≥d denoted Zd. Applying the Data Processing Inequality (DPI) to each

term in Eq (26), will yield a lower bound for the mutual information. There are many possible lower

bounds to Ivector(~S, ~T ) of this form. We focus on a variable Zd = {Td, |T>d|} where |T>d| is the L2-norm

of T>d. This leads to the following lower bound approximation to Ivector(~S, ~T )

Iiso(~S, ~T ) =
∑
d

I(Sd, {Td, |T>d|} |S<d), (27)

which we term isotropic. In Appendix B, we show that this approximation becomes exact in the asymp-

totic limit of large neural populations, meaning that Iiso(~S, ~T ) = Ivector(~S, ~T ), when the stimulus dis-

tribution is isotropic and the distribution of receptive fields (RF) ~w across the population is such that

A(~s ) = A(|~s|). Notably, this is achieved when RFs uniform cover the stimulus space, meaning that P (~w)

is described by an uncorrelated Gaussian distribution. For finite number of neurons, A(~s ) will never

be perfectly isotropic. However, for large populations (N � 1) where the receptive fields ~w are drawn

from an isotropic distribution and the distribution of α is independent of ~w, A(~s ) will become isotropic

asymptotically as N →∞, cf. appendix B.1 for further details. The analogue of approximation Eq. (27)

for the case where RFs and ~s are described by a matching correlated Gaussian distribution is described

in appendix B.2.

The next reduction we consider is to drop |T>d| from each term of Eq. (27):

Icomp-cond(~S, ~T ) =
D∑
d=1

I(Sd, Td|S<d). (28)

By the data-processing inequality, it again follows that Iiso(~S, ~T ) ≥ Icomp-cond(~S, ~T ). Overall, one obtains

a series of bounds:

Ivector(~S, ~T ) ≥ Iiso(~S, ~T ) ≥ Icomp-cond(~S, ~T ). (29)

Our final, simplest approximation is to drop the conditioning on S<d in each term of Eq. (28).

Icomp-ind(~S, ~T ) =
D∑
d=1

I(Sd, Td). (30)

We show in Appendix C, that this last approximation becomes exact in the case where neural populations

split into independent sub-populations with orthogonal RFs between sub-populations. Mathematically,
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this corresponds to the case where both the stimulus distribution P (~s) and the function A(~s) factor in

the same basis:

P (~s ) =
D∏
k=1

P (s′k), A(~s ) =
D∑
k=1

A(s′k). (31)

In general, Icomp-ind(~S, ~T ) may be greater or less than Icomp-cond(~S, ~T ) (or Ivector(~S, ~T )) (Renner and

Maurer, 2002). However when P (~s ) =
∏

d P (sd), the following additional inequality holds:

Icomp-cond(~S, ~T ) ≥ Icomp-ind(~S, ~T ). (32)

To derive (32) we first note that we can decompose I(Sd, {Td, S<d}) (for d > 1) in two different ways:

I(Sd, {Td, S<d}) = I(Sd, Td|S<d) + I(Sd, S<d)

= I(Sd, S<d|Td) + I(Sd, Td) (33)

Equating the first and second lines of (33) we can rewrite the residual I(Sd, Td|S<d)− I(Sd, Td):

I(Sd, Td|S<d)− I(Sd, Td) = I(Sd, S<d|Td)− I(Sd, S<d) (34)

Though either side of (34) may be positive or negative in general, when we make the assumption that P (~s )

factors across dimension, then I(Sd, S<d) = 0. Thus (34) is nonnegative and I(Sd, Td|S<d) ≥ I(Sd, Td),

implying (32).

In the opposite extreme case where the value of Sd is a deterministic function of S<d, Eq. (22) can

be generalized to show that I(Sd, Td|S<d) = 0. Thus, in this case I(Sd, Td) ≥ I(Sd, Td|S<d), which in

turn indicates that Icomp-ind(~S, ~T ) ≥ Icomp-cond(~S, ~T ). For example, when the support of P (~s ) lies on

a one-dimensional curve, e.g. ~S represents position along a one-dimensional nonlinear track, Sd is fully

determined from the values of other variables S<d ∀d regardless of component ordering. In this case,

Icomp-ind(~S, ~T ) ≥ Icomp-cond(~S, ~T ).

In the intermediate cases with some statistical dependencies between stimulus components, Icomp-ind(~S, ~T )

is not generally guaranteed to be a lower bound to either Icomp-cond(~S, ~T ) or Ivector(~S, ~T ). Nevertheless,

we observed that even for some correlated P (~s ) Icomp-ind(~S, ~T ) < Icomp-cond(~S, ~T ), c.f. section 5.2.
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4.4 Alternative Approximations of I(~R, ~S )

Previous authors have proposed other approximations to the mutual information. There exists a non-

parametric upper bound to the mutual information computed in terms of pairwise relative entropies

between P (~r |~s ) and P (~r |~s ′) (Haussler et al., 1997; Kolchinsky et al., 2017):

Ik-w(~R, ~S ) = −
∫
d~sP (~s ) log

(∫
d~s ′P (~s ′) exp (−DKL(P (~r |~s )||P (~r |~s ′))

)
(35)

The model we consider for P (~r |~s ) is an exponential family and thus has a tractable relative entropy

(Banerjee et al., 2005):

DKL(P (~r |~s )||P (~r |~s ′) =
∑
n

(tanh(fn(~s ))fn(~s )− An(~s ))− (tanh(fn(~s ))fn(~s ′)− An(~s ′)) (36)

In Eq. (35) we have used the generalized definitions of Section 3. The evaluation of the upper bound

(35) is quadratic in the sample size Nstim as opposed to O(Nstim log2Nstim) for the estimator in sec-

tion 5. In the limit where N � D, another popular approximation exist based on Fisher information

(Brunel and Nadal, 1998); it can be computed with O(Nstim) operations. Recent work has shown that

this approximation is valid only for certain classes of input distributions (Huang and Zhang, 2018). In

appendix D we discuss the relationship between this approximation and IFisher(~R, ~S ). We include nu-

merical comparisons between Ik-w(~R, ~S ) and the methods proposed in this paper in sections 5.1 and 5.2.

However, we found that the Fisher Information approximation drastically overestimated the true mutual

information. Therefore to avoid obscuring differences between other results, the approximation based on

Fisher Information is not included in Figures 2-3. Full plots including this approximation can be found

in Appendix D.

We note that there are other variational approximations to mutual information (Belghazi et al.,

2018; Barber and Agakov, 2003). However, because comparing the information for different choices of

the parameters of P (~r |~s ) and P (~s ) requires training a different variational approximation each time,

direct comparison requires substantial computational resources and we leave them for future work.
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5 Numerical Simulations

We now test the performance of the above described bounds under several representative situations that

include correlated and uncorrelated stimulus distributions, and isotropic and anisotropic receptive field

distributions, including experimentally recorded receptive fields from the primary visual cortex, as well

as the case where intrinsic “noise” correlations are present.

To empirically estimate the bounds on mutual information [I(Sd, Td), I(Sd, Td|S<d), I(Sd, {Td, |T>d|} |S<d),

and I(Sd, T≥d|S<d)], we use the KSG estimator (Kraskov et al., 2004), a non-parametric method based on

distributions of K nearest-neighbor distances. We chose to use the KSG estimator because even though

we have reduced the mutual information between two high-dimensional variables into a sum over pairs

of scalars, computing even just I(Sd, Td) can still be a daunting task, even more so for terms involving

conditional informations. Td may still have exponentially large cardinality, and complicated interdepen-

dencies between components of ~T present difficulties in forming explicit expressions for P (td|sd), so exact

evaluation of H(Td) and H(Td|Sd) is not feasible at present. The KSG estimator requires only that we can

draw Nstim samples of ~S and ~T from P (~s,~t ), discarding the unused components. Sampling from P (~s,~t )

is easily done given samples from P (~s ). Given a sample ~s, we draw ~r from P (~r |~s ), which is easily done

because of Eq. (2), and transform ~r into ~t using (14). This estimator has complexity O(Nstim log2Nstim)

when implemented with KD-Trees. For the case of two scalar variables the `2 error of the estimate

decreases like 1/
√
Nstim (Gao et al., 2018), though if the true value of the mutual information is very

high then the error may still be large (Gao et al., 2015). In order to partially alleviate this error, we

use the PCA based Local Nonuniformity Correction of (Gao et al., 2015) (KSG-LNC). We extend this

estimator to compute the conditional mutual information terms using a decomposition analogous to the

second line of Eq. (20), and set the nonuniformity threshold hyperparameter according to the heuristics

suggested in (Gao et al., 2015). Additionally, we assume that the distribution of ~S (and thus S≤d, S<d,

and Sd ∀d) is non-atomic. Thus, because ~T is discrete but real valued, the KSG estimator is applicable

as neither ~T nor ~S is a mixed continuous-discrete variable (Gao et al., 2017).

5.1 Large populations responding to uncorrelated stimuli

We evaluated the performance of the bounds on information developed in section 4.3 for large populations

ranging from N ≈ 100 to 1, 000. Specifically, to test the performance of Iiso(~S, ~T ) we chose a highly
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isotropic population and stimulus distribution. We set D = 3, M = 8, 000, and let P (~s ) be a zero mean

gaussian with unit covariance matrix. For each value of N , the ~wn were placed uniformly on the surface

of the unit sphere, using the regular placement algorithm of (Deserno, 2004). Because N is too large for

exact evaluation of H(~r ) ground truth values were estimated using the Monte Carlo estimator Î(~R, ~S )

of section 3 with B = 3. Results are plotted in Figure 2. We find that for large N , Iiso(~S, ~T ) tightly

approximates Ivector(~S, ~T ) and both are accurate approximations to Î(~R, ~S ), strongly outperforming

Ik-w(~R, ~S ). We note that for this case the upper bound of log(Nstim) = log(8, 000) ≈ 9 (nats) is well

above all of the curves other than Ik-w(~R, ~S ), which is already known to be an upper bound to I(~R, ~S ),

demonstrating that we are in the well-sampled regime. Once again we see that inequalities (29) and (32)

hold.

5.2 Correlated stimulus distributions

We now consider the case of correlated Gaussian stimuli. and model P (~s ) as a zero-mean Gaussian with a

full-rank non-diagonal covariance matrix C. To better understand the effects of stimulus correlations we

also perform computations in stimulus bases where components are independent. For this, we decompose

C as C = VΛVT where V is an orthogonal matrix whose columns are the eigenvectors of C.

Ŝ = VT ~S, T̂ = VT ~T . (37)

Note that we have t̂ · ŝ = ~t · ~s. It is easy to see that P (t̂|ŝ) is also an exponential family. Additionally

because the mappings from ~s to ŝ and ~t to t̂ are diffeomorphisms the information is preserved:

Ivector(~S, ~T ) = Ivector(Ŝ, T̂ ). (38)

We note that while Eq. (38) holds in principle, in practice we may see variation as the KSG family of

estimators is not invariant to under diffeomorphisms. Importantly we also note that Eq. (25) holds for

(Ŝ, T̂ ). Given samples from P (~s,~t ), we automatically have samples from P (ŝ, t̂). We can straightfor-

wardly generalize Ivector(~S, ~T ), Icomp-cond(~S, ~T ), Icomp-ind(~S, ~T ), and Iiso(~S, ~T ) to I(Ŝ, T̂ ), Icomp-cond(Ŝ, T̂ ),

Icomp-ind(Ŝ, T̂ ), and Iiso(Ŝ, T̂ ) respectively. Eq. (38) does not generalize to Iiso, Icomp-cond, or Icomp-ind

as they are not expressible as mutual information quantities between two variables. We note that
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Figure 2: Information curves for neural populations with uncorrelated RF and stimulus distributions.

Lines and error bars are mean and standard deviation over ten repeats of the estimator. Insets show RF

distribution for several population sizes.
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I(~R, ~S ) = I(~R, Ŝ) so we do not modify Î(~R, ~S ).

Simulations in Figure 3 were done using the following stimulus covariance matrix

C =


1.74716093 1.3103707 0.87358046

1.3103707 1.74716093 1.3103707

0.87358046 1.3103707 1.74716093

 . (39)

For this choice of C ρ1,2 = ρ2,3 = 0.75, ρ1,3 = 0.5, and |C| = 1. The covariance matrix of Ŝ is diagonal:

Ĉ =


0.283 0 0

0 0.868 0

0 0 4.032

 . (40)

The receptive field configurations are the same as in Section 5.1. We note that in the ~s coordinates, all

components have the same variance, whereas this symmetry is broken in the decorrelated components

ŝ. We compared sorting the components of ŝ in increasing and decreasing order of variance (triangles

and squares respectively) in Figure 3A-C. Component order does not matter for Icomp-ind(Ŝ, T̂ ), Figure

3D. We find that for both Ivector and Iiso it is optimal to perform computation in the original basis, with

both quantities accurately matching Î(~R, ~S ). For Icomp-cond and Icomp-ind accuracy is increased by using

decorrelated components and, for Icomp-cond, sorting components by decreasing variance.

5.3 Highly asymmetric receptive field distributions

Next, we consider a small population (N = 9) with a highly asymmetric distribution of redundant

receptive fields in two stimulus dimensions. In particular we are interested in a population where many

different configurations of ~R map to the same configuration of ~T , demonstrating the utility of using ~T

as a non-trivial sufficient statistic of ~R. With this in mind, we chose a heavily redundant configuration

of {~wn}: ~wn = (0, 1) (n = 1, 2, 3), ~wn = (1, 0) (n = 4, 5, 6), ~wn = (1, 1) (n = 7, 8, 9). The cardinalities

of ~R, ~T , T1 and T2 are 512, 37, 7, and 7 respectively. Because N is small, ground truth values of

I(~R , ~S ) were computed by exactly evaluating P (~r |~s ) ∀~r ∈ {−1, 1}N , for every sample of ~s. Given

P (~r |~s ) we average across ~s to get P (~r ) explicitly, and calculate H(~R ), H(~R |~S ), and I(~R, ~S ) from
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Figure 3: Information curves for neural populations with correlated RF distributions, cf. section 5.2.

Lines and errorbars are mean and standard deviation over ten repeats of the estimator. In all panels,

circles represent information computed in the original basis, while squares and triangles are computations

performed in decorrelated basis. Ivector (A) and Iiso (B) recover full information. These two computa-

tions do not benefit from working in the decorrelated stimulus basis. Stimulus decorrelation improves

the performanceof Icomp-cond (C) and Icomp-ind (D)). In (D), computations are invariant to ordering of

components.
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these distributions. P (~s ) is gaussianly distributed with diagonal covariance matrix, in accordance with

(32). We set Nstim = 10, 000. To test how the relative values of I(S1, T1) and I(S2, T2) impact the optimal

ordering of components in Icomp-cond(~S, ~T ) we fixed σ2 = 1 and varied σ1 between 0.5 and 2.5. Results

are plotted in Figure 4. As predicted, the hierarchy of bounds (29) and (32) holds for all σ1. It is also

notable that in this case, just like in the case of large neural populations, for computing Icomp-cond(~S, ~T ),

it always seems best to start the information computation with the stimulus component that has the

largest variance. As expected, the ordering or components does not strongly impact Ivector(~S, ~T ).

5.4 Experimental stimuli and receptive fields

In the previous three experimental sections we considered synthetic distributions of low-dimensional

stimuli and artificial configurations of receptive fields. In this section we analyze a population of model

neurons with receptive fields and α values that were fit to responses of primary visual cortex neurons (V1)

elicited by natural stimuli (Sharpee et al., 2006). We use 147 pairs of (~wn, αn) values that were fit using

the Maximally Informative Dimension (MID) algorithm as in (Sharpee et al., 2006). Stimuli are 10 pixel

by 10 pixel patches extracted from the same set of images used to fit the model parameters. Receptive

fields are normalized and centered on the patch, and we chose a 10× 10 sub-patch of the original 32× 32

shaped receptive fields so that all dimensions are well sampled by receptive fields. That is, for all pixels

of the 10×10 patch, at least 115 of the 147 neurons have a nonzero value in the corresponding component

of their receptive field. Additionally, the stimuli are z-scored by subtracting the mean and dividing by

the standard deviation, with both quantities computed across all samples and pixels collectively.

Because of high stimulus dimensionality we could only compute the Icomp-ind(~S, ~T ) bound (via the

KSG estimator) and the ground truth information (via the Monte Carlo method). Because the pixels of

natural image patches are clearly not independent, we also computed Icomp-ind in two additional coordinate

systems. The first coordinate system is simply the linearly decorrelated components Ŝ and ~T defined

in Eq. (37). The second coordinate systems uses independent components derived using independent

component analysis on ~S

S̃ = U~S, , T̃ = (U−1)T ~T (41)

Here, U is an unmixing matrix computed using Infomax ICA (Bell and Sejnowski, 1997) on the samples

of ~S. As is done in (Bell and Sejnowski, 1997), U includes a linear whitening matrix. We note that
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Figure 4: Information curves for the example population with highly redundant RFs from Sec. 5.3. Lines

and errorbars are mean and standard deviation over ten repeats of the estimator. Although neither

the component-conditional nor the component information are guaranteed to tightly approximate the

information, both provide good approximation to the full information (as estimated via unbiased Monte

Carlo method), reaching values within ≥ 80% of the maximum. For the vector-sufficient statistic, both

component orderings accurately reproduced the full information. The next best approximation to the

full information is provided by the component-conditional computation with components added in the

order from largest to smallest variance. This approximation reaches accuracy within 95% of the full

value over the range of neural population sizes.
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in Eq. (41), ~T is multiplied by (U−1)T and not U because the ICA unmixing matrix is generally not

orthogonal and we require that ~t ·~s = t̃ · s̃. As before Ivector(~S, ~T ) = Ivector(Ŝ, T̂ ) = Ivector(S̃, T̃ ). However,

the same cannot be said for Icomp-ind expressed in different coordinate systems.

To evaluate the effect of using different coordinate systems to evaluate Icomp-ind for different population

sizes we first ranked the 147 neurons in descending order by the information each neuron carried about

the stimulus. We computed I(Rn, ~S ) ∀n ∈ {1, ..., 147}, which is easily done exactly since Rn is a binary

variable, and then sorted neurons so that I(Rn, ~S ) >= I(Rn+1, ~S ) ∀n. We considered populations of

size N = 60, 70, ..., 140, where each population contained the first N neurons under the aforementioned

ordering. For each value of N we computed Î(~R, ~S ) (B = 3), Icomp-ind(~S, ~T ), Icomp-ind(Ŝ, T̂ ), and

Icomp-ind(S̃, T̃ ). We note that log(Nstim) = log(49, 152) ≈ 10.8 nats. Results are plotted in Figure 5.

We observe that both Icomp-ind(~S, ~T ) and Icomp-ind(Ŝ, T̂ ) overestimate the true information, especially

Icomp-ind(~S, ~T ). This overestimation occurs because stimulus components are not independent. By com-

parison, computation performed in the ICA basis, Icomp-ind(S̃, T̃ ), lower bounds the mutual information

for all N , achieving ≥ 75% of the full information across the range of population sizes.

5.5 Handling intrinsically correlated neurons

In order to simplify derivations, we assumed that the neural responses were independent after condition-

ing on ~s. However, all of the analytic results in Section 4.2 can be extended to specific forms of intrinsic

interneuronal correlation to allow for the presence of correlations in neural responses for a given stimulus

~s. Formally, we modify the base measure h(~r ) to include a pairwise coupling term:

h(~r,J) = e
∑
mn Jmnrmrn−

∑
n rnαn . (42)

In Eq. 42, J is a symmetric N ×N matrix where Jmn describes the intrinsic coupling between the mth

and nth neurons. In this case P (~r |~s,J) can still be written as an exponential family in a canonical form:

P (~r |~s ) = h(~r,J) exp(~s · ~t (~r )− A(~s,J)),

A(~s,J) = log

(∑
~r

h(~r,J) exp(~s · ~t (~r ))

)
. (43)
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Figure 5: Information curves for populations based on experimentally recorded RFs and probed with

D = 100 natural visual stimuli. The full information (solid black line) is computed via the Monte

Carlo method and is compared to Icomp-ind approximations computed in two different bases: the PCA

basis (blue dashed line) and the ICA basis (blue dotted line). We do not show the calculation in the

original pixel basis, because itIcomp-ind(~S, ~T ) is omitted as it was yielded values ∼ 25 nats across the

range of population sizes and obscured the other curves. Because of non-Gaussian statistics of natural

stimuli, PCA components remain correlated, and as a result the approximation is no longer guaranteed

to be a lower bound of the true information. Computation in the ICA basis respects the lower bound

requirements, and achieves ≥ 75% of the full information across the range of population sizes.
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The form of the sufficient statistic remains unchanged, though A(~s,J) generally lacks a closed form.

Nevertheless, all of the decompositions, equalities, and inequalities in Section 4.2 require only for the

exponential family to be in canonical form and remain valid.

We tested the accuracy of our approximations on a small (N = 10) population of intrinsically cor-

related neurons. Receptive fields are uniformly distributed on the unit circle, αn = 0 ∀n, and P (~s)

is a standard two-dimensional Gaussian (Nstim = 20, 000). Intrinsic coupling is set proportional to the

overlap between receptive fields with a coupling strength J0, the sign of which determines whether the

intrinsic couplings perform stimulus decorrelation or error-correction (Tkačik et al., 2010).:

Jmn = J0 ~wm · ~wn. (44)

The algorithms of Sections 5 and 3 all depend on being able to sample easily from P (~r |~s ). For large N

and general J this is usually difficult, particularly for configurations of J that exhibit glassy dynamics.

Additionally, evaluating Eq. (9) requires explicit knowledge of A(~s ), though methods such as mean-field

theory or the TAP approximation may be used to approximate A(~s ) (Opper et al., 2001). Since this

population is small, we evaluate the ground truth information exactly as in Section 5.3. Likewise, we

sample ~r from P (~r |~s ) exactly by computing all 2N (1, 024) probabilities for every sample of ~s. Analyzing

the error introduced in using approximate sampling strategies such as Markov Chain Monte Carlo is left

to future investigation. Results are plotted in Figure 6. As predicted, Ivector(~S, ~T ) matches the ground

truth values of the information. Similarly the hierarchy of bounds (29) and (32) is preserved, though

for strongly negative couplings Icomp-cond(~S, ~T ) ≈ Icomp-ind(~S, ~T ). In sum, the presence of noise correla-

tions does not invalidate the approximations and bounds that are derived above. However, numerical

computation can become more difficult in the presence of noise correlations.

6 Conclusions and Future Work

We have presented three approximations that can be used to estimate the information transmitted by

large neural populations. Each of these three approximations represents different trade-offs between

accuracy and computational ease and feasibility. The best performance in terms of accuracy was pro-

vided by the isotropic approximation Iiso. This approximation worked well even in cases where is not

23



Figure 6: Information curves for populations with intrinsic correlations. Lines and errorbars are mean

and standard deviation over ten repeats of the estimator.
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guaranteed to become asymptotically exact with increasing population size. For example, the isotropic

approximation was derived assuming a matching covariance matrix for both the stimulus and RF dis-

tributions, cf. Appendix B. Yet, this approximation matched the full ground-truth information values

even for correlated stimuli with RFs remaining uncorrelated across the neural population (Fig. 3.) This

approximation provided the best overall performance among the bounds tested, consistent with the

theoretically expected inequalities between these bounds, cf. Eq. (29).

The component-conditional information Icomp-cond offered the second-best performance. This approx-

imation performed especially well when computed in the stimulus basis where stimulus components

were not correlated. This approximation is less computationally difficult compared to Iiso, because each

conditional information is evaluated between just two quantities Sd and Td compared to Sd and a con-

junction of Td and |T>d| as in Iiso. For this reason, the finite-sample bias of Icomp-ind can also be less than

Iiso, because bias in the evaluation of the mutual information is usually larger for higher-dimensional

calculations.

The last approximation Icomp-ind is the least accurate of the three approximation but is computation-

ally the easiest. It is the only approximation among the three we considered here that we were able to

implement in conjunction with high dimensional stimuli. This approximation becomes most accurate in

the stimulus bases where stimulus components are independent. There is strong evidence that neural

receptive fields are organized along the ICA components of natural stimuli (Bell and Sejnowski, 1997;

Olshausen and Field, 2004; Smith and Lewicki, 2006). This raises the possibility that the approaches pro-

posed here will fair well when applied to recorded neural responses. Indeed, we found that Icomp-ind ≥ 75%

of the full information value for large neural populations constructed using experimentally recorded RFs

and probed with natural stimuli.

At present, the main limitation for computing the conditional approximations Icomp-cond and Icomp-iso

is not the number of neurons but rather the stimulus dimensionality. For stimulus distributions where

P (s≥d|s<d) can be easily sampled from, such as Gaussian distributions, we can take advantage of the

fourth line of Eq. (20) to compute unbiased estimates of Icomp-cond and Iiso, albeit with possibly high

variance. Developing methods that can efficiently approximate these conditional computations represents

an important opportunity for future research.
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A Bias of Ĥ(~R )

In this section we give a self-contained proof that Ĥ(~R ) systematically underestimates the ”true” entropy

H(~R ). We first assume that P ({~sµ}) =
∏
µ P (~sµ): The ~sµ are drawn independently from P (~s ), whether P (~s )

is a smooth density on RD or some larger set of samples. We define a an empirical version of the marginal

distribution on P (~r ):

P̂ (~r |{~sµ}) =
1

M

∑
µ

P (~r |~sµ) (45)

The true marginal distribution is the expected value of P̂ (~r |{~sµ}): 〈P̂ (~r ; {~sµ})〉P ({~sµ}) = P (~r ). The Shannon

entropy is a concave function of P̂ (~r ; {~sµ}), which can be considered a random vector in the 2N dimensional

probability simplex. Thus, by Jensen’s inequality we have the following:

〈
Ĥ(~R )

〉
P ({~sµ})

≤ H(~R : P = 〈P̂ 〉) ≡ H(~R ) (46)
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This bias holds even in the case of evaluating Ĥ(~R ) through exact enumeration. We note that we are able to

produce unbiased estimates of Ĥ(~R ) because we have full access to P (~r |~sµ): We can evaluate P (~r |~sµ) explicitly

and deterministically, and thus F̂ (~r ) as well (up to factors of numerical precision). If we were always constrained

to drawing samples from P (~r |~sµ), then we would once again be limited to making biased estimates of Ĥ(~R )

(Paninski, 2003).

B On the asymptotic tightness of Iiso(~S, ~T )

Consider a large population (N � 1) where the distribution of ~w and α is such that A(~s ) = A(|~s |) (in some

sense to be made more precise later). Consider the likelihood ratio in the definition of (25):

P (t≥d|sd, s<d)
P (t≥d|s<d)

=
〈exp(sdtd + s>d · t>d −A(~s ))〉s>d|s≤d
〈exp(sdtd + s>d · t>d −A(~s ))〉s≥d|s<d

=
〈exp(sdtd + s>d · t>d −A(|~s|))〉s>d|s≤d
〈exp(sdtd + s>d · t>d −A(|~s|))〉s≥d|s<d

(47)

Additionally we consider a stimulus distribution that is similarly isotropic so that the conditional distribution

P (s>d|s≤d) can be written in a convenient factored form:

P (~s ) = P (|~s |) = P

(√
s2<d + s2d + s2>d

)

P (s>d|s≤d) =
P (~s )

P (s≤d)
=
P
(√

s2<d + s2d + s2>d

)
P (s≤d)

We will show that in this situation, we can replace T≥d in (25) with the variable that is the concatenation of Td

and |T>d| without loss of information:

I(Sd, T≥d|s<d) ≈ I(Sd, {Td, |T>d|} |s<d) (48)

To show this using the Fisher-Neyman factorization theorem, it suffices to show that the numerator and denom-

inator in (47) can be factored as follows:

〈exp(sdtd + s>d · t>d −A(|~s |))〉s>d|s≤d = g1(s<d, sd, td, |t>d|)g2(t>d)

〈exp(sdtd + s>d · t>d −A(|~s |))〉s≥d|s<d = f1(s<d, td, |t>d|)f2(t>d)

(49)
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With the requirement that f2(t>d) = g2(t>d), so that dependence on t>d cancels out in (47). We note that the

first line of (49) implies the second so we examine that term in more detail.

〈exp(sdtd + s>d · t>d −A(|~s |))〉s>d|s≤d = exp(sdtd)

∫
exp

(
s>d · t>d −A

(√
s2<d + s2d + s2>d

))
P (s>d|s≤d)ds>d

=
exp(sdtd)

P (s≤d)

∫
exp

(
s>d · t>d −A

(√
s2<d + s2d + s2>d

))
P

(√
s2<d + s2d + s2>d

)
ds>d

(50)

We note that s>d is a K = D − d dimensional vector. We assume that d < D − 1, so that K > 1, otherwise

no further reduction of (50) is possible. We convert the integral over RK in (50) into spherical coordinates

and break it into three parts: Integration over ρ ∈ [0,∞) where |s>d| = ρ; integration over θ ∈ [0, π] where

s>d · t>d = ρ|t>d| cos(θ), and ϕ ∈ ΩK−1 is the set of all directions in RK with constant θ. The integrand of (50)

doesn’t depend on ϕ so we can integrate over it automatically, yielding a constant BK that is a function only of

K. We can now restate (50) in these coordinates:

. . . =
BK exp(sdtd)

P (s≤d)

∫ ∞
0

∫ π

0
dρdθρK−1 sinK−2(θ)P

(√
s2<d + s2d + ρ2

)
exp

(
ρ|t>d| cos(θ)−A

(√
s2<d + s2d + ρ2

))
=

BK exp(sdtd)

P (s≤d)

∫ ∞
0

dρρK−1P

(√
s2<d + s2d + ρ2

)
exp

(
−A

(√
s2<d + s2d + ρ2

))∫ π

0
dθ sinK−2(θ) exp (ρ|t>d| cos(θ))

(51)

We next evaluate the integral over θ in (51).

∫ π

0
dθ sinK−2(θ) exp(ρ|t>d| cos(θ)) =

√
π

Γ
(
K
2 −

1
2

)
Γ
(
K
2

) 0F1

(
K

2
,
ρ2|t>d|2

4

)
≡ FK(ρ|t>d|) (52)

Where Γ(x) is the Gamma function, and 0F1(a, z) is the confluent hypergeometric limit function. We have our

final expression for the first term in (49):

. . . =
BK exp(sdtd)

P (s≤d)

∫ ∞
0

dρρK−1P

(√
s2<d + s2d + ρ2

)
exp

(
−A

(√
s2<d + s2d + ρ2

))
FK(ρ|t>d|)

=
BK exp(sdtd)

P (s≤d)
g(s<d, sd, |t>d|) (53)

By setting g1 in (49) equal (53), and letting g2 = f2 = 1, we have established (48).
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B.1 Approximating A(~s ) for Gaussian P (~w )

In the previous section we assumed that the distribution P (~w ) and P (α) are such that A(~s ) = A(|~s |). In

the special case when N � 1, P (α) = δ(α), and ~w are Gaussianly distributed we can approximate A(~s ) in a

semi-closed form. Let P (~w ) be a zero-mean Gaussian with with positive-definite covariance matrix C:

A(~s ) = N

∫
d~w

exp
(
−1

2 ~w
TC−1 ~w

)√
det(2πC)

log(2 cosh(~w · ~s ))

= N

∫
dx

exp
(
−x2
2σ2
x

)
√

2πσ2x
log(2 cosh(x)) (54)

σx =
√
~sTC~s (55)

Where we have taken advantage of the fact that ~w · ~s is a scalar gaussian variable with standard deviation that

depends on ~s and C. We next take an infinite series expansion of log(2 cosh(x)).

log(2 cosh(x)) = |x|+ log (1 + exp(−2|x|)) = |x|+
∞∑
m=1

(−1)m+1

m
exp(−2m|x|) (56)

As an aside, the first equality in (56) is a useful and numerically stable expression for A(x). The ”softplus”

function l(y) = log(1 + exp(y)) is implemented in many scientific computing packages, and using this alternate

form for A(x) sidesteps computing the hyperbolic cosine. We next take the appropriate Gaussian average of

each term in (56):

1√
2πσ2x

∫ ∞
−∞

dx exp

(
−x2

2σ2x

)
|x| =

√
2

π
σx (57)

1√
2πσ2x

∫ ∞
−∞

dx exp

(
−x2

2σ2x
− 2m|x|

)
= erfcx(

√
2mσx) (58)

Where erfcx(y) is the scaled complementary error function. Thus we have our final form for A(~s ):

A(~s ) = N

√
2

π
σx +N

∞∑
m=1

(−1)m+1

m
erfcx(

√
2mσx) (59)

We note that erfcx(y) monotonically decreases to zero, so for large values of
√
~sTC~s, A(~s ) is well approximated

by the first term in (59). Regardless we see that A(~s ) depends on ~s only through
√
~sTC~s:

A(~s ) = A
(√

~sTC~s
)

= A (|U~s |) (60)
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Where U = C
1
2 is the cholesky decomposition of C.

B.2 Generalizing Iiso(~S, ~T ) for matched anisotropy

In this section we will show that a generalized form of Iiso(~S, ~T ) will also asymptotically converge to Ivector(~S, ~T )

when both P (~s ) and A(~s ) obey a certain form of ”matched” anisotropy. Specifically we assume that P (~s ) and

A(~s ) depend on on ~s through a quadratic function of ~s with positive-definite kernel C.

P (~s ) = P
(√

~sTC~s
)

= P (|U~s |) (61)

A(~s ) = A
(√

~sTC~s
)

= A (|U~s |) (62)

Where, as in Section B.1, U = C
1
2 is the cholesky decomposition of C. Let us transformed versions of ~S and ~T :

S̃ = U~S (63)

T̃ = U−T ~T (64)

Where U−T is the transpose of the inverse of U, which is well defined since C was positive definite. We note

that t̃ · s̃ = ~t · ~s and P (t̃|s̃) can once again be written as an exponential family in canonical form:

P (t̃|s̃) = exp(s̃ · t̃−A(s̃))h(t̃) (65)

As the mappings from ~S to S̃ and ~T to T̃ are diffeomorphisms, we have that Ivector(~S, ~T ) = Ivector(S̃, T̃ ).

Furthermore, equation (65) implies that an analogous form of equation (26) holds for Ivector(S̃, T̃ ):

I(S̃d, T̃ |S̃<d) = I(S̃d, T̃≥d|S̃<d) (66)

Additionally, A(s̃) = A(|s̃|) and P (s̃) = P (|s̃|). Thus, we may reuse the derivation of section 48 to derive the

following analogy of equation (48):

I(S̃d, T̃≥d|s̃<d) ≈ I
(
S̃d,
{
T̃d, |T̃>d|

} ∣∣∣∣s̃<d) (67)

Therefore Iiso(S̃, T̃ ) is asymptotically equal to Ivector(~S, ~T ):

Iiso(S̃, T̃ ) =
∑
d

I

(
S̃d,
{
T̃d, |T̃>d|

} ∣∣∣∣S̃<d) ≈ Ivector(~S, ~T ) (68)
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We note that an example of such a matched isotropy situation would be where both the stimuli and receptive

fields (for a large population) are distributed according to a Gaussian distribution with covariance matrix C

(c.f. section B.1).

C Independent Sub-populations

In this section we present an example where one of our proposed approximations, Icomp-ind(~S, ~T ) in this case, is

equal to Ivector(~S, ~T ). Let (ê′1, ..., ê
′
D) be an orthonormal basis for RD. Suppose that the distribution of ~s and

~w are such that both P (~s ) and A(~s ) factor when expressed in this basis (s′k = ~s · ê′k):

Similarly defining t′k = ~t · ê′k we have that ~t · ~s = ~t′ · ~s′. Because mutual information is invariant under

bijective transformations of the variables (e.g. a change of basis) (Cover and Thomas, 2012) we have that

Ivector(~S, ~T ) = I(~S′, ~T ′). It is easy to show that P (~t′|~s′) can be written as follows:

P (~t′|~s′) = h(~t′)
∏
k

exp(s′kt
′
k −A(s′k)) (69)

Eq (69) implies that the log-likelihood ratio of P (~t′|~s′) to P (~t′) decomposes across s′k:

log

(
P (~t′|~s′)
P (~t′)

)
=
∑
k

log

(
P (t′k|s′k)
P (t′k)

)
(70)

Thus we have the following reduction of Ivector(~S, ~T ):

Ivector(~S, ~T ) = Ivector(~S
′, ~T ′) =

∑
k

I(S′k, T
′
k) = Icomp-ind(~S′, ~T ′) (71)

We note that (31) includes the case where for some k, ~wn · ê′k = 0 ∀n. In such a case A(s′k) = A(0) = log(2),

t′k = 0 with probability one, and I(S′k, T
′
k) = 0. Thus, in the case of independent subpopulations, Ivector(~S, ~T )

can be reduced to computing Icomp-ind(~S, ~T ) following a change of basis.

D Relationship between Ik-w(~R, ~S ) and IFisher(~R, ~S )

In this appendix we relate Ik-w(~R, ~S ) to the Fisher Information based approximation of (Brunel and Nadal,

1998):

IFisher(~R, ~S ) = H(~S ) +
1

2

∫
d~sP (~s ) log

(
|J(~s )|
(2πe)D

)
(72)
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Where J(~s ) is the Fisher Information Matrix of P (~r |~s ):

Jab(~s ) =

〈
∂2

∂a∂b
logP (~r |~s )

〉
P (~r |~s )

(73)

We begin by considering the inner expectation over ~s ′ in Ik-w(~R, ~S ):

L(~s ) =

∫
d~s ′P (~s ′) exp

(
−DKL(P (~r |~s )||P (~r |~s ′)

)
(74)

We next assume that the activation function fn(~s ) is affine (e.g. (13)), and thus in canonical form. We also

assume that, P (~r |~s ) is identifiable:

DKL(P (~r |~s )||P (~r |~s ′) = 0⇔ ~s = ~s ′ (75)

For (13) a necessary and sufficient condition for identifiability is that the matrix W has full rank, a reasonable

assumption when N � D. We utilize the following properties of exponential families in canonical form:

1. ∂2

∂ ′a∂
′
b
DKL(P (~r |~s )||P (~r |~s ′) = ∂2

∂ ′a∂
′
b
A(~s ′) = J(~s ′).

2. A(~s ′) is convex and J(~s ′) is positive semi-definite. When P (~r |~s ) is identifiable replace A(~s ′) becomes

strictly convex, J(~s ′) positive definite, and DKL(P (~r |~s )||P (~r |~s ′) has a global minimum with respect to

~s ′ of 0 at ~s ′ = ~s.

In the limit N � D we approximate L(~s ) using Laplace’s Method (Bender and Orszag, 1999), expanding around

~s ′ = ~s:

L(~s ) ≈ P (~s )

√
(2π)D

|J(~s )|
(76)

Plugging (76) into the definition of Ik-w(~R, ~S ) we have the following asymptotic expression for Ik-w(~R, ~S ):

Ik-w(~R, ~S ) ≈ H(~s ) +
1

2

∫
d~sP (~s ) log

(
|J(~s )|
(2π)D

)
= IFisher(~R, ~S )− D

2
(77)

For stimulus distributions where the entropy H(~S ) is known a priori, such as the Gaussian distributions in

sections 5.1 and 5.2, IFisher(~R, ~S ) can be computed in O(M) time. If not, then H(~S ) must be estimated, a

challenging task in high dimensions. In figure 7, we replot the results of sections 5.1 with the inclusion of

IFisher(~R, ~S ). We see that IFisher(~R, ~S ) is a very loose upper bound of I(~R, ~S ) and of Ik-w(~R, ~S ), indicating
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Figure 7: Information curves for the population of section 5.1 compared to Fisher approximation. Lines

and errorbars are mean and standard deviation over ten repeats of the estimator. Î(~R, ~S ) (solid black

line), Ik-w(~R, ~S ) (dashed black line), Ivector(~S, ~T ) (solid yellow line), IFisher(~R, ~S ) (dotted black line),

Icomp-cond(~S, ~T ) (solid red line), Icomp-ind(~S, ~T ) (solid blue line), Iiso(~S, ~T ) (solid green line)

that the convergence of Laplace’s Method may be very slow in this situation.

E Extension to polynomial activation functions

In section 4.1 we assumed that the activation functions were affine functions of the stimulus vector ~s. In this

appendix we will show how to generalize some of the results of section 4.1 to polynomial activation functions.

For clarity of exposition we will demonstrate this generalization for quadratic functions as the procedure for

higher order polynomials follows quickly. To begin, we add a quadratic term to Eq (12):

fn(~s ) = ~sTγn~s+ ~wn · ~s− αn (78)
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γn ∈ RD×D is a symmetric D × D matrix representing the quadratic kernel of the nth neuron’s activation

function. We note that ~sTγn~s = ~s~sT ◦ γn where A ◦ B is the hadamard product between equally shaped

matrices A and B and ~s~sT ∈ RD×D is the outer product of ~s with itself. We define a vector embedding of ~s

into RD+D2
, ~ψ(~s ):

ψ(~s )d =


sd if d ≤ D

sa ∗ sb if d > D

Where a = d mod D and b = bd/Dc are index mappings that map a D ×D matrix into a vector of length

D2. We define a similar vector embedding of ~wn and γn, ~τn(~wn, γn):

τn(~wn, γn)d =


wn,d if d ≤ D

γn,ab if d > D

For the sake of brevity we henceforth omit the dependence of ~τn on ~wn and γn. By construction we have the

following equivalence:

~sTγn~s+ ~wn · ~s = ~τn · ~ψ(~s ) (79)

If all neurons have activation functions of the form in (78) then P (~r |~s ) may once again be written as an

exponential family

P (~r |~s ) = h(~r ) exp(~t quad(~r ) · ~ψ(~s )−A(~s ))

A(~s ) =
∑
n

log(2 cosh(~τn · ~ψ(~s )− αn))

~t quad(~r ) =
∑
n

~τnrn (80)

As ~t quad(~r ) ∈ RD+D2
is the sufficient statistic for this family, and ~ψ(~s ) is the natural parameter. As before,

I(~R, ~S ) = I(~T quad, ~S ). However, we note that P (~r |~S ) can be written entirely in terms of ~ψ. Additionally, we

note that the support of ~ψ lies on a D-dimensional manifold in RD+D2
and ~s maps injectively into this manifold.

Thus I(~T quad, ~S ) = I(~T quad, ~Ψ ).

We note several properties of I(~T quad, ~Ψ ). First, we can in principle expand I(~T quad, ~Ψ ) like Eq. (19):

I(~T quad, ~Ψ ) =

d=D+D2∑
d=1

I(~T quad,Ψd|Ψ<d) (81)
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Secondly, the same reduction as Eq. (26) holds for I(~T quad,Ψd|Ψ<d):

I(~T quad,Ψd|Ψ<d) = I(T quad
≥d ,Ψd|Ψ<d) (82)

Most notably however, is that I(~T quad,Ψd|Ψ<d) = I(T quad
≥d ,Ψd|Ψ<d) = 0 for d > D. This holds because

ψd = g(ψ≤D) for d > D, where g(ψ≤D) is just the product of the two relevant components of ψ≤D. Because

of this functional dependence we can just apply the generalization of Eq. (22). Therefore the expansion of

I(~T quad, ~Ψ ) can be truncated after D terms.

I(~T quad, ~Ψ ) =
d=D∑
d=1

I(T 2
≥d,Ψd|Ψ<d) =

d=D∑
d=1

I(T quad
≥d , Sd|S<d) (83)

In fact, we can make an even stronger reduction by noting that conditioning on components of ~S = ψ≤D

effectively also conditions on elements of ψ>D. For clarity of exposition we break down ~T quad into vector and

matrix valued components:

~T quad ≡
{
T≤D, T

≤D
≤D

}
T quad
≤D → T≤D ∈ RD

T quad
>D → T≤D≤D ∈ R

D×D

We note that conditioning on Sd conditions on the components of ~ψ corresponding to Td and T dd . Additionally

conditioning on S<d conditions on the components of T<d and on the components of T d2d1 for all indices d1 and

d2 such that 1 ≤ d1, d2 < d. Thus Eq. (83) can be further generalized:

I(~T quad, ~S ) =
d=D∑
d=1

I

({
T≥d, T

≥d
≥d

}
, Sd

∣∣∣∣S<d) (84)

The dth term in Eq (83) has D2+D+1 degrees of freedom while the dth term in Eq (84) has D2+D+1−(d−1)2

degrees of freedom. The above procedure can be generalized to polynomial activation functions of arbitrarily high

but finite order, though the dimensionality of the sufficient statistic and natural parameter grow exponentially

with the order. However, Eq. (84) holds for any order of polynomial, so that one one needs only compute the

first D terms of the expansion of the mutual information between the sufficient statistic and natural parameter.
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