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A demonstration for how neural activity can be read out with minimal information loss

The read-out linearly weighs neural responses

More reliable neurons receive greater weight

The read-out does not need to adjusted when correlations between neurons change



Title: Linking neural responses to behavior with information-preserving population vectors.

Abstract: All systems for processing signals, both artificial and within animals, must obey fundamental
statistical laws for how information can be processed. We discuss here recent results using information theory
that provide a blueprint for building circuits where signals can be read-out without information loss. Many
properties that are necessary to build information-preserving circuits are actually are observed in real neurons,
at least approximately. One such property is the logistic nonlinearity that relates inputs to neural response
probability. Such nonlinearities are common in neural and intracellular networks. With this nonlinearity type,
there is a linear combination of neural responses that is guaranteed to preserve Shannon information
contained in the response of a neural population, no matter how many neurons it contains. This read-out
measure is related to a classic quantity known as the population vector that has been quite successful in
relating neural responses to animal behavior in a wide variety of cases. Nevertheless, the population vector did
not withstand the scrutiny of detailed information-theoretical analyses that showed that it discards substantial
amounts of information contained in the responses of a neural population. We discuss recent theoretical
results showing how to modify the population vector expression to make it “information-preserving”, and what
is necessary in terms of neural circuit organization to allow for lossless information transfer. Implementing
these strategies within artificial systems is likely to increase their efficiency, especially for brain-machine

interfaces.

Distributed computation is thought to be one of the hallmarks of the brain computation where signals
are processed in parallel across many, often quite variable, neural responses. On short times, responses of
individual neurons are binary, because neurons respond to stimulation by producing all-or-nothing events in
the voltage traces across their membranes termed “spikes”. However, the representational capacity of neural
circuits grows quickly with the number of neurons. Given N neurons, even for a short time interval where each
neuron can produce at most a single spike, one can construct 2" binary responses patterns using 1s and Os to
represent spikes and no spikes from each neuron. This quickly yields astronomical numbers of possible
response patterns, even for modestly sized populations. However, to take advantage of this large response
capacity, one needs to be able to take into account the identity of neurons when reading out their responses.

Otherwise, the combinatorial expansion in the number of possible response patterns will be lost. Supporting
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this idea, studies show that one needs to keep track of neuronal identity, in ways that go beyond simply
specifying the preferred stimulus pattern for each neuron, in order to avoid substantial information loss [1**,2*].

These information-theoretic studies, however, do not specifically describe how the information can be read out.

The counter-point to this line of argument is that such combinatorial read-outs are too difficult to
implement in the nervous system. Indeed, practice shows that many aspects of animal’s behavior, including
arm and eye movements, can be accurately predicted using a relatively simple readout of neural activity known
as the population vector [3-7]. In the population vector, each neuron “votes” for its preferred stimulus by the

number of spikes it produces
Viry .y} = Ziw@@r - 1), (1)

Here, r; is a binary variable that takes values 1 or 0 when the ith neuron produces a spike; vector w®
corresponds to the preferred stimulus or movement pattern for the ith neuron, the quantity also known as the
neuron’s receptive field (RF). According to the population vector expression, spikes from the ith neuron shift it
towards the preferred stimulus for that neuron; the absence of spikes from the neuron shifts the population
average in the opposite direction. Thus, both spikes and their absences carry information [1**,8]. The
population vector has a simple construction and in many cases makes it possible to accurately predict animal
behavior [3,4,6,9]. However, its key assumption -- that spikes from neurons with the same preferred stimulus
can be simply added — has been explicitly refuted by the above mentioned studies of similarly tuned neurons
[1**,2*]. In both of these studies, the authors found that the population count discarded a substantial portion of

information that is available in the full population response.

Recent theoretical work [10,11*] shows how this dilemma can be resolved provided neural responses are
structured in a certain way. It turns out that it is possible to modify the population vector such that it retains the
computational simplicity but at the same time is guaranteed not to lose information contained in the responses
of a neural population, such those described in [1**,2*]. The key modification it to introduce an additional

weighting factor g; that characterizes the reliability of the ith neuron:

T{ry, ry} = 2 fw®(2r; — 1) : (2)



We will refer to T as the sufficient population vector, because it represents a “sufficient statistic” [12] for neural

responses, provided certain conditions are met that are detailed below. Compared to the original population

vector, the sufficient population vector T weighs neural responses by both their RFs w® and the reliability

factors g;.

What are these reliability factors §; and why are they sufficient to capture full information contained in
neural responses compared to, for example, other parameters such as the maximum spike rate or the width of
orientation tuning curves? Parameters f5; can be computed from the knowledge of the peaks of tuning curves
and their widths (Figure 1), but have a simpler interpretation in the framework of the so-called linear-nonlinear
(LN) model. For neurons whose preferred stimulus pattern can be described by a single parameter, such as
orientation, there is one-to-one correspondence between the peak and width parameters of a tuning curve and
parameters of the LN models (Figure 1). However, LN models can also be used in cases where RFs of
neurons are more complex and cannot be described with just one parameter, as in the case of neurons whose
tuning changes depending on the time interval before the spike. In its simplest form, the LN model describes

the instantaneous spiking rate r;(s) for the ith neuron in response to input s as:

2\ — Rmax
ri(8) = 1+exp(—2ﬂi (3w —q; )) . (3)

Here, R,,.. is the maximal spike rate, parameters a; and B; describe the threshold and steepness of the
nonlinearity. The steepness parameter 5; can be incorporated into the definition of the RF, but we keep RFs
normalized to unit length ( [W®| = 1) for two reasons. First, with this choice, Eq. (1) corresponds to the original
definition of the population vector [3-7]. Second, with this choice, parameters g; in Egs. (2) and (3) directly
reflect neuronal reliability. The second property arises because larger § values correspond to steeper
nonlinearities (Figure 1), and this in turn corresponds to fewer inputs for which the responses fluctuate

between spiking and no spiking on repeated trials.

The linearity of the argument of the logistic function defined in Eq. (3) will be important for many of the
information-preserving properties discussed below. This linearity effectively allows only for two independent

parameters a and g to describe tuning around the preferred stimulus. In particular, this constraints the peak
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and the lowest value of the tuning curve relative to each other (Fig. 1C). For different values of threshold «,
increasing the steepness parameter § simultaneously decreases the lowest (background) value of the tuning
curve and increases the difference between the smallest and largest value (gain). Notably, the resultant
inverse correlation between the background and gain values of the tuning curve agrees with experimental
observations on tuning curves in the primary visual cortex (V1) [13**]. The study [13**] also reported a lack of
correlation between average spike rate across the neural population and the Fisher information. This
phenomenon is also consistent with the logistic model of neural nonlinearity, at least qualitatively as one might
be cautious when directly comparing results using Fisher and Shannon mutual information. In the logistic
model, increase in the spike rate can result from either a smaller threshold a or from a smaller steepness value
B. Smaller thresholds typically increase the Shannon mutual information, whereas smaller steepness values
decrease it. Thus, similarly to Fisher information analysis [13**], within the logistic model also, increasing the
overall population spike count can be accompanied by increased information from neurons whose thresholds
are lowered and decreased information from neurons whose tuning becomes less steep. Thus the observed

variation in neural tuning curves [13**] provides additional support for the logistic neuronal tuning model.

We now illustrate how one can capture full information contained in the responses structured according
to Eq. (3) using the sufficient population vector, and why the procedure works even in cases where the original
population vector does not do so. Figure 2A illustrates the case where all neurons in a population have the
same RFs (and therefore preferred orientation). In this case, the original population vector reduces to a
“population count”, i.e. the number of spikes produced by the population as a whole. As reported previously
[1**,2%], population count losses significant amount of information in this situation. Importantly, this information
loss is avoided when using the sufficient population vector. This is despite the fact that the sufficient population
vector is also reduced to in this case to its scalar magnitude, which may be termed the sufficient population
count. Just like the population count, the sufficient population count takes discrete values. But with the
sufficient population count, neuronal identity is coded into different discrete values. For example, joint spiking
from neurons 1 and 2 that have, respectively, g; and S, values, corresponds to $; + 8, value of the sufficient
population count. The response pattern where neuron 1 spikes but neuron 2 does not spike corresponds to the

B, — B, value, whereas the pattern where neuron 1 does not spike but neuron 2 spikes maps onto the 5, — ;
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value. Finally, silence from both neurons is represented by the —p; — 8, value. Thus, four possible responses
across the four neurons are represented by four different values of the magnitude of the sufficient population

vector.

These results generalize to the more common case where neurons in the population have different RFs
(Figure 2B). Here, both the original and sufficient population vectors are vectors of the same dimensionality.
The dimensionality of these vectors also matches that of RFs and of the input space where neural RFs are
defined. Both of the population vectors take a discrete set of values. But this set is such that the sufficient
population vector is guaranteed to capture full information, whereas the original population vector does not
always do so. For example, if there are neurons in the population that have different tuning around the same
preferred stimulus, then the original population vector will lose information (Figure 2B). This loss does not

happen for the sufficient population vector.

The mathematical reason that the sufficient population vector captures full information under these
diverse circumstances is that when the neuronal nonlinearity is described by a logistic function, as is the case

in Eq. (3), then the probability of neural responses across the population can be written in the form where the

sufficient population vector T is the only term that couples neural responses 7 to inputs s [10,11*]:
P(F8) = AGH e TS, (4)

where A(S) and H(#) are some functions of the input and neural responses, respectively. This makes T the

“sufficient statistic” [12] for neural responses. Monitoring neural responses using any other measure that does

not distinguish distinct values of T will lead to information loss. This includes the original population vector.

It is worth pointing out that the sufficient population vector can preserve information even in the case
where the number of discrete values that it can take is less than 2N. For example, if two neurons have the
same RF and the same B; values, then the two response patterns where just one of these neurons spikes will
be mapped onto the same value of the sufficient population vector. A larger population may have many of such
redundant sub-groups, and so the sufficient population vector will take much fewer number of values than the
2N number of different response patterns that the population can produce. Despite this compression in the
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representation values, the sufficient population vector continues to preserve the information in this case (Figure
2B). The original population vector continues to lose information because it also maps responses of neurons
with different §; values onto the same value. Only in the case where all neurons with the same RFs also have
the same B; values do the original and sufficient population vectors fully match, with both capturing full

information (Figure 2C).

The last example is intriguing because here neurons have different tuning curves width, yet their
responses can be summed without information loss. To understand why these differences between tuning
curves can be ignored, we recall that these is a one-to-one correspondence between the parameters of LN
models and the tuning curve widths. The differences in tuning curves in Figure 2C were due to differences in
threshold values «a; not the steepness parameters ;. While changing thresholds affects the overall amount of
information conveyed by the neural population [14-21], the knowledge of thresholds is not needed for reading-
out these neuronal responses without loss. These results illustrate one of the properties of the sufficient
population vector, namely that it does not explicitly depend on neuronal thresholds. It depends on thresholds
only indirectly, through the observed neural responses, whose probabilities are affected by threshold settings.
These analyses illustrate how one can separate which aspects of neuronal tuning diversity [22*,23-24] affect
the efficiency of encoding stimuli into neural responses and which need to be taken into account when reading

out neural responses.

These results remain valid in the presence of certain types of correlated variability across neurons (the
so-called noise correlation reviewed in [9,25]) on encoding and read-out. Depending on their structure, noise
correlations can either increase or decrease the overall information provided by the neural responses [9,24,26-
31]. In particular, the differential noise correlations [28*], while often small, can disproportionately limit the
amount of information that the neural population can transmit. However, it turns out that one can continue to
capture full information — whether it is increased or decreased by noise correlations — with the same
expression for the sufficient population vector (Fig. 2D). This result holds true provided the noise correlations
do not change with the stimulus (although differences between neuronal pairs are premissible). The main
technical requirement is that the probability of responses across the population can still be written in a form

similar to Eq. (4) [32]:



P(FI3) = A/ (SH (e T5+EIurir), (4)

where 4;(s) is now a different function of the stimulus that depends on the noise correlation matrix J;;. In Figure

2D we show the results of model simulations with noise correlations that vary between neuronal pairs

according to how close are their preferred input orientations, J;; = %\%_m. These correlations approximate

differential correlations for similarly tuned neurons [28]. We note that in the presence of correlation, tuning

curves can have complicated shapes but information preservation is still possible.

For the sufficient population vector to be valid, the nonlinearity in the LN model has to be a logistic
function [11]. This type of nonlinearity provides good approximation for many types of neural response
[13,22%,33,34], but of course not all. One therefore might be curious how the sufficient population works with
real neurons responses. Figure 3A shows the results for neurons from the primary visual cortex (V1) whose
responses were recorded when presenting natural stimuli [35]. We first estimated for each neuron its preferred
orientation and nonlinearity by finding the first maximally informative dimension (MID) [36] for relating the
presented set of natural stimuli to the observed responses of that neuron. The steepness parameters £ (and
thresholds a) were estimated by fitting the nonlinearity of the MID model using logistic regression. The MID
features themselves were used to estimate the preferred orientation for each neurons. The corresponding
orientation values were consistent with values estimated directly using moving gratings [37]. To account for
experimental uncertainties in the orientation values and to ensure that population vectors (either the standard
or the information-preserving) were not assigned distinct value due to differences in preferred orientation
values that were smaller than their error-bars, we used a coarse-grained set of orientations. Specifically,
starting with the set of orientation values estimated from the MIDs, we computed the d’ values for each pair of
orientation values and then merged them in a greedy, pairwise manner starting with the pair of values with the
smallest d’ value. Once the selectivity of each neuron is represented by a preferred orientation (plus the tuning
around it as described by parameters a and £8), the population vectors, both the standard and the sufficient,
become two-dimensional vectors (Figure 3B,C). One can then compare the full amount of information provided
by the neural responses with the information provided by the standard and sufficient population vectors. One

finds that just like in the model neural populations, the sufficient population vector (but not the standard
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population vector) captured all the information (Figure 3A) provided by the responses of simultaneously
recorded neurons.

It is worth pointing out that the Bernoulli noise model considered here corresponds to a short-time
interval approximation to commonly used probabilistic model of neural population responses based on a set of
conditionally independent Poisson neurons [32]:

e~ fi®

ri!

e—fi®+riloglfi()]

P35 =1I;

fi®m=; , S

ri!

where 7; is generalized to being a nonnegative number and the function f;(s) is the tuning curve of neuron i,
such that the average number of spikes produced by neuron i to stimulus s is f;(s). Although Eq. (5) still
describes an exponential family, as is the case for the logistic nonlinearity model, for general choices of the set
of tuning curves {f;(5)}, there is no lower dimensional sufficient statistic for the response 7 other than 7 itself.

However, if the tuning curves of the Poisson model can be described as log affine in § for all neurons:
fi® = exp[-pi (3- WY —a; )], (6)

Then the sufficient population vector we defined will also be a sufficient statistic for this family. For short time
bins where r; is effectively binary, Poisson models can be approximated as binary spiking probability using just
the first two terms of the Poisson distribution: P(r; |s) o f;($)™, and r; = 0,1. After normalization, and taking

into account (6), one obtains the original logistic spiking model:

1

P(r; =15 = Tren(F GO

(7)

as a short time approximation of a Poisson model. In Eq. (7) the probability is evaluated over bins At = ! ,

max

which corresponds to spike rate provided in Eq. (3).

Overall, these analyses simultaneously explain why the original population vector has been so
successful in linking neural activity to behavior [3,4,6,9] and its deficiencies revealed by detailed analyses
[1**,2*]. The population vector has a similar enough expression to the sufficient population vector to work well

under many circumstances. At the same detailed analyses show that its expression is not general enough to



avoid information loss. The empirical linear decoder [22*] addressed this issue by adjusting the weights to
increase the accuracy of the decoding. The sufficient population vector of Eq. (2) shows what the weights
should be using first principles of information theory, obviating the need for optimization. The fact that the read-
out remains a linear function of neural responses should make for an easy implementation within brain-
machine interfaces. At the same time it is important to point out the nonlinear relationship between the input
vector and the sufficient population vector. Because of limitations on the neural spike rates, the sufficient
population vector typically represents, on average, a compressed function of the input vector, making this

decoder different from the optimal linear decoder proposed previously [6].

Further improvements may come from extending the population vector analysis to cases where
individual neurons are sensitive to multiple input components. With successive stages of neural processing,
neural responses acquire more complex dependencies on input than is afforded by the LN model from Eq. (3).
Cortical neurons in particular often exhibit sensitivity to multiple input components [38-41], some of which
excite and/or suppress the neural responses. Extending the population vector approaches to apply to these

more complex neural responses is likely to be key for effective decoding from cortical neurons.

Figure 1. The relationship between receptive field (RF) and tuning curve descriptions of the neural
response. (A) Three representative model nonlinearities that describe neural response as a saturating
function of stimulus component along RF. The black and cyan lines have the same threshold (midpoints) «
but different steepness values . The magenta lines has the same steepness value as the black lines but a
different threshold value. Inset shows an example orientation selective RF. (B) Corresponding tuning curves
from (A) but as a function of stimulus angle. Thin horizontal lines at the top of the tuning curves illustrate the
width of these tuning curves computed as the inverse of the square root of the second derivative of the log of
the tuning curve at the peak. Equations show the expressions for the tuning curve width and peak as a function
of the LN model parameters. Both the threshold and the steepness value of the LN model affect them. (C)
Inverse relationship between the background (lowest) value of the tuning curve and the tuning curve
modulation (the difference between the peak and the lowest values of the tuning curve). Each curve
corresponds to a different value of the threshold, with steepness values varying between 0 and 2 along each

curve.



Figure 2. The sufficient vector captures all information from diverse neural populations and with
correlated variability across neurons. In all panels, we compare information transmitted by a population
response (black line) with information transmitted by the sufficient population vector (red) and the standard
population vector (dashed gray). Neural populations tuned to the same (A, C) or different (B, D) preferred
stimuli. In (A) differences in neural tuning curves are due to differences in steepness values, whereas in (C)
they are due to differences in thresholds. Dotted lines show the information values obtained by binning
response variables. Dotted lines overlap with solid curves. (D) same as (B) but with noise correlations. Insets

show example population tuning curves.

Figure 3. The sufficient population vector captures all the information provided by responses of
simultaneously recorded V1 neurons. (A) Curves for the information provided by neural responses (black
line) and that captured by the sufficient population vector (red circles) overlap. The standard population vector
(grey) and population count (blue) transmit less information. Error bars are standard deviations.

The values for sufficient (B) and standard (C) population vector for n=7 neuronal population, along a subset of
different trials of natural scenes. Points of the same color show vector values on the repeated presentations of
the same stimulus. Different colors correspond to different stimuli. Crosses show the mean value of the
sufficient population vector for each stimulus. Note that there are many overlapping points at (0,0)
corresponding to the absence of spiking. Compared to the sufficient population vector, there is more spread in

the values of the original population vector across repeats of the same stimuli.
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