
Highlights: 

 A demonstration for how neural activity can be read out with minimal information loss 

 The read-out linearly weighs neural responses 

 More reliable neurons receive greater weight 

 The read-out does not need to adjusted when correlations between neurons change 
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Title: Linking neural responses to behavior with information-preserving population vectors. 

Abstract: All systems for processing signals, both artificial and within animals, must obey fundamental 

statistical laws for how information can be processed. We discuss here recent results using information theory 

that provide a blueprint for building circuits where signals can be read-out without information loss. Many 

properties that are necessary to build information-preserving circuits are actually are observed in real neurons, 

at least approximately. One such property is the logistic nonlinearity that relates inputs to neural response 

probability. Such nonlinearities are common in neural and intracellular networks. With this nonlinearity type, 

there is a linear combination of neural responses that is guaranteed to preserve Shannon information 

contained in the response of a neural population, no matter how many neurons it contains. This read-out 

measure is related to a classic quantity known as the population vector that has been quite successful in 

relating neural responses to animal behavior in a wide variety of cases. Nevertheless, the population vector did 

not withstand the scrutiny of detailed information-theoretical analyses that showed that it discards substantial 

amounts of information contained in the responses of a neural population. We discuss recent theoretical 

results showing how to modify the population vector expression to make it “information-preserving”, and what 

is necessary in terms of neural circuit organization to allow for lossless information transfer. Implementing 

these strategies within artificial systems is likely to increase their efficiency, especially for brain-machine 

interfaces. 

Distributed computation is thought to be one of the hallmarks of the brain computation where signals 

are processed in parallel across many, often quite variable, neural responses. On short times, responses of 

individual neurons are binary, because neurons respond to stimulation by producing all-or-nothing events in 

the voltage traces across their membranes termed “spikes”. However, the representational capacity of neural 

circuits grows quickly with the number of neurons. Given N neurons, even for a short time interval where each 

neuron can produce at most a single spike, one can construct 2N binary responses patterns using 1s and 0s to 

represent spikes and no spikes from each neuron. This quickly yields astronomical numbers of possible 

response patterns, even for modestly sized populations. However, to take advantage of this large response 

capacity, one needs to be able to take into account the identity of neurons when reading out their responses. 

Otherwise, the combinatorial expansion in the number of possible response patterns will be lost. Supporting 
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this idea, studies show that one needs to keep track of neuronal identity, in ways that go beyond simply 

specifying the preferred stimulus pattern for each neuron, in order to avoid substantial information loss [1**,2*]. 

These information-theoretic studies, however, do not specifically describe how the information can be read out. 

The counter-point to this line of argument is that such combinatorial read-outs are too difficult to 

implement in the nervous system. Indeed, practice shows that many aspects of animal’s behavior, including 

arm and eye movements, can be accurately predicted using a relatively simple readout of neural activity known 

as the population vector [3-7]. In the population vector, each neuron “votes” for its preferred stimulus by the 

number of spikes it produces 

𝑉⃗ {𝑟1, … 𝑟𝑁} = ∑ 𝑤⃗⃗ (𝑖)(2𝑟𝑖 − 1),𝑖        (1) 

Here, 𝑟𝑖 is a binary variable that takes values 1 or 0 when the ith neuron produces a spike; vector 𝑤⃗⃗ (𝑖) 

corresponds to the preferred stimulus or movement pattern for the ith neuron, the quantity also known as the 

neuron’s receptive field (RF). According to the population vector expression, spikes from the ith neuron shift it 

towards the preferred stimulus for that neuron; the absence of spikes from the neuron shifts the population 

average in the opposite direction. Thus, both spikes and their absences carry information [1**,8]. The 

population vector has a simple construction and in many cases makes it possible to accurately predict animal 

behavior [3,4,6,9]. However, its key assumption -- that spikes from neurons with the same preferred stimulus 

can be simply added – has been explicitly refuted by the above mentioned studies of similarly tuned neurons 

[1**,2*]. In both of these studies, the authors found that the population count discarded a substantial portion of 

information that is available in the full population response.  

Recent theoretical work [10,11*] shows how this dilemma can be resolved provided neural responses are 

structured in a certain way. It turns out that it is possible to modify the population vector such that it retains the 

computational simplicity but at the same time is guaranteed not to lose information contained in the responses 

of a neural population, such those described in [1**,2*]. The key modification it to introduce an additional 

weighting factor 𝛽𝑖 that characterizes the reliability of the ith neuron: 

𝑇⃗ {𝑟1, … 𝑟𝑁} = ∑ 𝛽𝑖𝑤⃗⃗ 
(𝑖)(2𝑟𝑖 − 1)𝑖  .     (2) 
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We will refer to 𝑇⃗  as the sufficient population vector, because it represents a “sufficient statistic” [12] for neural 

responses, provided certain conditions are met that are detailed below. Compared to the original population 

vector, the sufficient population vector 𝑇⃗  weighs neural responses by both their RFs 𝑤⃗⃗ (𝑖) and the reliability 

factors 𝛽𝑖. 

What are these reliability factors 𝛽𝑖 and why are they sufficient to capture full information contained in 

neural responses compared to, for example, other parameters such as the maximum spike rate or the width of 

orientation tuning curves? Parameters 𝛽𝑖 can be computed from the knowledge of the peaks of tuning curves 

and their widths (Figure 1), but have a simpler interpretation in the framework of the so-called linear-nonlinear 

(LN) model. For neurons whose preferred stimulus pattern can be described by a single parameter, such as 

orientation, there is one-to-one correspondence between the peak and width parameters of a tuning curve and 

parameters of the LN models (Figure 1). However, LN models can also be used in cases where RFs of 

neurons are more complex and cannot be described with just one parameter, as in the case of neurons whose 

tuning changes depending on the time interval before the spike. In its simplest form, the LN model describes 

the instantaneous spiking rate 𝑟𝑖(𝑠 ) for the ith neuron in response to input 𝑠  as: 

𝑟𝑖(𝑠 ) =
𝑅𝑚𝑎𝑥

1+𝑒𝑥𝑝(−2𝛽𝑖 (𝑠 ∙𝑤⃗⃗ 
(𝑖)−𝛼𝑖 ))

 .     (3) 

Here, 𝑅𝑚𝑎𝑥 is the maximal spike rate, parameters 𝛼𝑖 and 𝛽𝑖 describe the threshold and steepness of the 

nonlinearity. The steepness parameter 𝛽𝑖  can be incorporated into the definition of the RF, but we keep RFs 

normalized to unit length ( |𝑤⃗⃗ (𝑖)| = 1) for two reasons. First, with this choice, Eq. (1) corresponds to the original 

definition of the population vector [3-7]. Second, with this choice, parameters 𝛽𝑖  in Eqs. (2) and (3) directly 

reflect neuronal reliability. The second property arises because larger 𝛽 values correspond to steeper 

nonlinearities (Figure 1), and this in turn corresponds to fewer inputs for which the responses fluctuate 

between spiking and no spiking on repeated trials.  

The linearity of the argument of the logistic function defined in Eq. (3) will be important for many of the 

information-preserving properties discussed below. This linearity effectively allows only for two independent 

parameters 𝛼 and 𝛽 to describe tuning around the preferred stimulus. In particular, this constraints the peak 
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and the lowest value of the tuning curve relative to each other (Fig. 1C). For different values of threshold 𝛼, 

increasing the steepness parameter 𝛽 simultaneously decreases the lowest (background) value of the tuning 

curve and increases the difference between the smallest and largest value (gain). Notably, the resultant 

inverse correlation between the background and gain values of the tuning curve agrees with experimental 

observations on tuning curves in the primary visual cortex (V1) [13**]. The study [13**] also reported a lack of 

correlation between average spike rate across the neural population and the Fisher information. This 

phenomenon is also consistent with the logistic model of neural nonlinearity, at least qualitatively as one might 

be cautious when directly comparing results using Fisher and Shannon mutual information. In the logistic 

model, increase in the spike rate can result from either a smaller threshold 𝛼 or from a smaller steepness value 

𝛽. Smaller thresholds typically increase the Shannon mutual information, whereas smaller steepness values 

decrease it. Thus, similarly to Fisher information analysis [13**], within the logistic model also, increasing the 

overall population spike count can be accompanied by increased information from neurons whose thresholds 

are lowered and decreased information from neurons whose tuning becomes less steep. Thus the observed 

variation in neural tuning curves [13**] provides additional support for the logistic neuronal tuning model. 

We now illustrate how one can capture full information contained in the responses structured according 

to Eq. (3) using the sufficient population vector, and why the procedure works even in cases where the original 

population vector does not do so. Figure 2A illustrates the case where all neurons in a population have the 

same RFs (and therefore preferred orientation). In this case, the original population vector reduces to a 

“population count”, i.e. the number of spikes produced by the population as a whole. As reported previously 

[1**,2*], population count losses significant amount of information in this situation. Importantly, this information 

loss is avoided when using the sufficient population vector. This is despite the fact that the sufficient population 

vector is also reduced to in this case to its scalar magnitude, which may be termed the sufficient population 

count. Just like the population count, the sufficient population count takes discrete values. But with the 

sufficient population count, neuronal identity is coded into different discrete values. For example, joint spiking 

from neurons 1 and 2 that have, respectively, 𝛽1 and 𝛽2 values, corresponds to 𝛽1 + 𝛽2 value of the sufficient 

population count. The response pattern where neuron 1 spikes but neuron 2 does not spike corresponds to the 

𝛽1 − 𝛽2 value, whereas the pattern where neuron 1 does not spike but neuron 2 spikes maps onto the 𝛽2 − 𝛽1 
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value. Finally, silence from both neurons is represented by the −𝛽1 − 𝛽2 value. Thus, four possible responses 

across the four neurons are represented by four different values of the magnitude of the sufficient population 

vector. 

These results generalize to the more common case where neurons in the population have different RFs 

(Figure 2B). Here, both the original and sufficient population vectors are vectors of the same dimensionality.  

The dimensionality of these vectors also matches that of RFs and of the input space where neural RFs are 

defined. Both of the population vectors take a discrete set of values. But this set is such that the sufficient 

population vector is guaranteed to capture full information, whereas the original population vector does not 

always do so. For example, if there are neurons in the population that have different tuning around the same 

preferred stimulus, then the original population vector will lose information (Figure 2B). This loss does not 

happen for the sufficient population vector.  

The mathematical reason that the sufficient population vector captures full information under these 

diverse circumstances is that when the neuronal nonlinearity is described by a logistic function, as is the case 

in Eq. (3), then the probability of neural responses across the population can be written in the form where the 

sufficient population vector 𝑇⃗  is the only term that couples neural responses 𝑟  to inputs 𝑠  [10,11*]: 

𝑃(𝑟 |𝑠 ) = 𝐴(𝑠 )𝐻(𝑟 )𝑒−𝑇⃗ ∙𝑆 ,    (4) 

where 𝐴(𝑠 ) and 𝐻(𝑟 ) are some functions of the input and neural responses, respectively. This makes 𝑇⃗  the 

“sufficient statistic” [12] for neural responses. Monitoring neural responses using any other measure that does 

not distinguish distinct values of  𝑇⃗  will lead to information loss. This includes the original population vector.  

It is worth pointing out that the sufficient population vector can preserve information even in the case 

where the number of discrete values that it can take is less than 2N. For example, if two neurons have the 

same RF and the same 𝛽𝑖 values, then the two response patterns where just one of these neurons spikes will 

be mapped onto the same value of the sufficient population vector. A larger population may have many of such 

redundant sub-groups, and so the sufficient population vector will take much fewer number of values than the 

2N number of different response patterns that the population can produce. Despite this compression in the 
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representation values, the sufficient population vector continues to preserve the information in this case (Figure 

2B). The original population vector continues to lose information because it also maps responses of neurons 

with different 𝛽𝑖 values onto the same value. Only in the case where all neurons with the same RFs also have 

the same 𝛽𝑖 values do the original and sufficient population vectors fully match, with both capturing full 

information (Figure 2C).  

The last example is intriguing because here neurons have different tuning curves width, yet their 

responses can be summed without information loss. To understand why these differences between tuning 

curves can be ignored, we recall that these is a one-to-one correspondence between the parameters of LN 

models and the tuning curve widths. The differences in tuning curves in Figure 2C were due to differences in 

threshold values 𝛼𝑖 not the steepness parameters 𝛽𝑖. While changing thresholds affects the overall amount of 

information conveyed by the neural population [14-21], the knowledge of thresholds is not needed for reading-

out these neuronal responses without loss. These results illustrate one of the properties of the sufficient 

population vector, namely that it does not explicitly depend on neuronal thresholds. It depends on thresholds 

only indirectly, through the observed neural responses, whose probabilities are affected by threshold settings. 

These analyses illustrate how one can separate which aspects of neuronal tuning diversity [22*,23-24] affect 

the efficiency of encoding stimuli into neural responses and which need to be taken into account when reading 

out neural responses. 

These results remain valid in the presence of certain types of correlated variability across neurons (the 

so-called noise correlation reviewed in [9,25]) on encoding and read-out. Depending on their structure, noise 

correlations can either increase or decrease the overall information provided by the neural responses [9,24,26-

31]. In particular, the differential noise correlations [28*], while often small, can disproportionately limit the 

amount of information that the neural population can transmit. However, it turns out that one can continue to 

capture full information – whether it is increased or decreased by noise correlations – with the same 

expression for the sufficient population vector (Fig. 2D). This result holds true provided the noise correlations 

do not change with the stimulus (although differences between neuronal pairs are premissible). The main 

technical requirement is that the probability of responses across the population can still be written in a form 

similar to Eq. (4) [32]: 
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𝑃(𝑟 |𝑠 ) = 𝐴𝐽(𝑠 )𝐻(𝑟 )𝑒−𝑇⃗ ∙𝑠 +∑𝐽𝑖𝑗𝑟𝑖𝑟𝑗 .    (4) 

where 𝐴𝐽(𝑠 ) is now a different function of the stimulus that depends on the noise correlation matrix 𝐽𝑖𝑗 . In Figure 

2D we show the results of model simulations with noise correlations that vary between neuronal pairs 

according to how close are their preferred input orientations, 𝐽𝑖𝑗 =
1+cos(𝜑𝑖−𝜑𝑗)

10√𝑁
. These correlations approximate 

differential correlations for similarly tuned neurons [28]. We note that in the presence of correlation, tuning 

curves can have complicated shapes but information preservation is still possible. 

For the sufficient population vector to be valid, the nonlinearity in the LN model has to be a logistic 

function [11]. This type of nonlinearity provides good approximation for many types of neural response 

[13,22*,33,34], but of course not all. One therefore might be curious how the sufficient population works with 

real neurons responses. Figure 3A shows the results for neurons from the primary visual cortex (V1) whose 

responses were recorded when presenting natural stimuli [35].  We first estimated for each neuron its preferred 

orientation and nonlinearity by finding the first maximally informative dimension (MID) [36] for relating the 

presented set of natural stimuli to the observed responses of that neuron. The steepness parameters 𝛽 (and 

thresholds 𝛼) were estimated by fitting the nonlinearity of the MID model using logistic regression.  The MID 

features themselves were used to estimate the preferred orientation for each neurons. The corresponding 

orientation values were consistent with values estimated directly using moving gratings [37]. To account for 

experimental uncertainties in the orientation values and to ensure that population vectors (either the standard 

or the information-preserving) were not assigned distinct value due to differences in preferred orientation 

values that were smaller than their error-bars, we used a coarse-grained set of orientations. Specifically, 

starting with the set of orientation values estimated from the MIDs, we computed the d’ values for each pair of 

orientation values and then merged them in a greedy, pairwise manner starting with the pair of values with the 

smallest d’ value. Once the selectivity of each neuron is represented by a preferred orientation (plus the tuning 

around it as described by parameters 𝛼 and 𝛽), the population vectors, both the standard and the sufficient, 

become two-dimensional vectors (Figure 3B,C). One can then compare the full amount of information provided 

by the neural responses with the information provided by the standard and sufficient population vectors. One 

finds that just like in the model neural populations, the sufficient population vector (but not the standard 
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population vector) captured all the information (Figure 3A) provided by the responses of simultaneously 

recorded neurons.  

It is worth pointing out that the Bernoulli noise model considered here corresponds to a short-time 

interval approximation to commonly used probabilistic model of neural population responses based on a set of 

conditionally independent Poisson neurons [32]: 

𝑃(𝑟 |𝑠 ) = ∏
𝑒−𝑓𝑖(𝑠⃗ )

𝑟𝑖!
𝑖 𝑓𝑖(𝑠 )

𝑟𝑖=∏
𝑒−𝑓𝑖(𝑠⃗ )+𝑟𝑖𝑙𝑜𝑔[𝑓𝑖(𝑠⃗ )]

𝑟𝑖!
𝑖  ,  (5) 

where 𝑟𝑖 is generalized to being a nonnegative number and the function 𝑓𝑖(𝑠 ) is the tuning curve of neuron 𝑖, 

such that the average number of spikes produced by neuron 𝑖 to stimulus 𝑠 is 𝑓𝑖(s). Although Eq. (5) still 

describes an exponential family, as is the case for the logistic nonlinearity model, for general choices of the set 

of tuning curves {𝑓𝑖(𝑠 )}, there is no lower dimensional sufficient statistic for the response 𝑟   other than 𝑟  itself. 

However, if the tuning curves of the Poisson model can be described as log affine in 𝑠   for all neurons: 

𝑓𝑖(𝑠 ) = 𝑒𝑥𝑝[−𝛽𝑖 (𝑠 ∙ 𝑤⃗⃗ (𝑖) − 𝛼𝑖  )],    (6) 

Then the sufficient population vector we defined will also be a sufficient statistic for this family. For short time 

bins where 𝑟𝑖 is effectively binary, Poisson models can be approximated as binary spiking probability using just 

the first two terms of the Poisson distribution: 𝑃(𝑟𝑖 |𝑠 ) ∝ 𝑓𝑖(𝑠 )
𝑟𝑖 ,  and 𝑟𝑖 = 0,1. After normalization, and taking 

into account (6), one obtains the original logistic spiking model: 

𝑃(𝑟𝑖 = 1|𝑠 ) =
1

1+𝑒𝑥𝑝(−𝛽𝑖 (𝑠 ∙𝑤⃗⃗ 
(𝑖)−𝛼𝑖 ))

,     (7) 

as a short time approximation of a Poisson model. In Eq. (7) the probability is evaluated over bins Δt =
1

𝑅𝑚𝑎𝑥
,  

which corresponds to spike rate provided in Eq. (3). 

Overall, these analyses simultaneously explain why the original population vector has been so 

successful in linking neural activity to behavior [3,4,6,9] and its deficiencies revealed by detailed analyses 

[1**,2*]. The population vector has a similar enough expression to the sufficient population vector to work well 

under many circumstances. At the same detailed analyses show that its expression is not general enough to 
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avoid information loss. The empirical linear decoder [22*] addressed this issue by adjusting the weights to 

increase the accuracy of the decoding. The sufficient population vector of Eq. (2) shows what the weights 

should be using first principles of information theory, obviating the need for optimization. The fact that the read-

out remains a linear function of neural responses should make for an easy implementation within brain-

machine interfaces. At the same time it is important to point out the nonlinear relationship between the input 

vector and the sufficient population vector. Because of limitations on the neural spike rates, the sufficient 

population vector typically represents, on average, a compressed function of the input vector, making this 

decoder different from the optimal linear decoder proposed previously [6].  

Further improvements may come from extending the population vector analysis to cases where 

individual neurons are sensitive to multiple input components. With successive stages of neural processing, 

neural responses acquire more complex dependencies on input than is afforded by the LN model from Eq. (3). 

Cortical neurons in particular often exhibit sensitivity to multiple input components [38-41], some of which  

excite and/or suppress the neural responses. Extending the population vector approaches to apply to these 

more complex neural responses is likely to be key for effective decoding from cortical neurons. 

Figure 1. The relationship between receptive field (RF) and tuning curve descriptions of the neural 

response.   (A) Three representative model nonlinearities that describe neural response as a saturating 

function of stimulus component along RF.  The black and cyan lines have the same threshold (midpoints) 𝛼  

but different steepness values 𝛽.  The magenta lines has the same steepness value as the black lines but a 

different threshold value. Inset shows an example orientation selective RF.  (B) Corresponding tuning curves 

from (A) but as a function of stimulus angle. Thin horizontal lines at the top of the tuning curves illustrate the 

width of these tuning curves computed as the inverse of the square root of the second derivative of the log of 

the tuning curve at the peak. Equations show the expressions for the tuning curve width and peak as a function 

of the LN model parameters. Both the threshold and the steepness value of the LN model affect them. (C) 

Inverse relationship between the background (lowest) value of the tuning curve and the tuning curve 

modulation (the difference between the peak and the lowest values of the tuning curve). Each curve 

corresponds to a different value of the threshold, with steepness values varying between 0 and 2 along each 

curve. 
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Figure 2. The sufficient vector captures all information from diverse neural populations and with 

correlated variability across neurons. In all panels, we compare information transmitted by a population 

response (black line) with information transmitted by the sufficient population vector (red) and the standard 

population vector (dashed gray).  Neural populations tuned to the same (A, C) or different (B, D) preferred 

stimuli. In (A) differences in neural tuning curves are due to differences in steepness values, whereas in (C) 

they are due to differences in thresholds. Dotted lines show the information values obtained by binning 

response variables. Dotted lines overlap with solid curves. (D) same as (B) but with noise correlations. Insets 

show example population tuning curves.  

 

Figure 3. The sufficient population vector captures all the information provided by responses of 

simultaneously recorded V1 neurons. (A) Curves for the information provided by neural responses (black 

line) and that captured by the sufficient population vector (red circles) overlap. The standard population vector 

(grey) and population count (blue) transmit less information. Error bars are standard deviations.  

The values for sufficient (B) and standard (C) population vector for n=7 neuronal population, along a subset of 

different trials of natural scenes. Points of the same color show vector values on the repeated presentations of 

the same stimulus. Different colors correspond to different stimuli. Crosses show the mean value of the 

sufficient population vector for each stimulus. Note that there are many overlapping points at (0,0) 

corresponding to the absence of spiking. Compared to the sufficient population vector, there is more spread in 

the values of the original population vector across repeats of the same stimuli. 
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