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Scaling, Growth, and Size Effects
on the Mechanical Behavior of a
Topologically Interlocking
Material Based on Tetrahedra
Elements
The present study is concerned with the deformation response of an architectured material
system, i.e., a 2D-material system created by the topological interlocking assembly of poly-
hedra. Following the analogy of granular crystals, the internal load transfer is considered
along well-defined force networks, and internal equivalent truss structures are used to
describe the deformation response. Closed-form relationships for stiffness, strength, and
toughness of the topologically interlocked material system are presented. The model is val-
idated relative to direct numerical simulation results. The topologically interlocked material
system characteristics are compared with those of monolithic plates. The architectured
material system outperforms equivalent size monolithic plates in terms of toughness for
nearly all possible ratios of modulus to the strength of the material used to make the build-
ing blocks and plate, respectively. In addition, topologically interlocked material systems
are shown to provide better strength characteristics than a monolithic system for low
strength solids. [DOI: 10.1115/1.4044025]

1 Introduction
Plates are planar structural elements that can carry transverse

mechanical loads. Theories for the analysis of deflection and
stresses in plates as continuous solids have been established [1],
including those for thin and thick plates. It is however not necessary
that a transverse load carrying structure should be monolithic. In
several studies [2–5], it has been demonstrated that arranging poly-
hedra in topological interlocking geometric configurations also
leads to a planar system that can carry transverse load. In the
same way as graphene is considered a 2D material (sometimes
described by a continuum plate theory), the assembly of polyhedra
is also considered as a 2D material, i.e., a topologically interlocked
material (TIM) system. Since in TIM systems, the mechanical
response emerges from geometry (the polyhedra geometry and
assembly) with the building blocks larger than the microscopic fea-
tures of the material used to make the building block, TIM systems
are included in the emerging class of architectured material systems
[4]. In TIM systems, the overall deformation response of the planar
assembly subjected to a transverse load emerges from the elastic
deformation of the unit building blocks and from contact and
sliding between building blocks. For these material systems,
several interesting mechanical properties have been demonstrated,
and past studies have applied several different analysis approaches
to interpret the experimental findings.
Computational models using discrete element methods [6] or

finite element computations [7] directly mirror the experimental
observations on the mechanical response of TIM systems but
lack generality in their outcomes. Analytical methods consider a
partially cracked beam analogy [8], a masonry approach [9], a
thrust line approach motivated by a granular material analogy
[7,10], an augmented continuum mechanics homogenization
approach [11], or on a model combining block sliding and elastic
deformation [12].

Here, the thrust line approach is followed. This considers TIM
systems as granular crystals, i.e., an arrangement of macroscopic
particles on a lattice, and relates the internal load transfer in the
TIM system to the arrangement of the building blocks. Then, the
internal structure of the force network can be defined. An equivalent
truss structure representing the material in the volume occupied by
the force network can be established, and the deformation of the
equivalent truss structure is used to identify the mechanical
response of the TIM system. The present work thereby extends
prior work by the authors on the elastic TIM response to predictions
of strength and toughness.
The analysis presented here is performed for one key topological

interlocking configuration, which is the densest planar packing of
tetrahedra. Square-shaped assemblies are supplemented with
boundary conditions and subjected to a central load. Finally, a com-
parison to equivalent monolithic plates is performed.

2 Experiment
Topologically interlocked material systems are assemblies of all

identical and convex polyhedra. The specific system of consider-
ation in this study is based on tetrahedra building blocks of edge
length a0 (Fig. 1(a)), arranged in a planar configuration. Two
pairs of tetrahedra (AA and BB) constrain a central tetrahedra (C)
against the motion in two axes. The resulting 2D assembly corre-
sponds to the densest planar packing of tetrahedra [13]. Figure 1(b)
depicts a drawing of an assembly with N2= 49 tetrahedra.
An external constraint structure is required (Fig. 1(b)) which is

provided by four wedge-shaped bodies. The boundary provides
the in-plane constraint confining the granular system. The boundary
also acts as a support for the transverse loading configuration. With
the wedge shape boundary bodies, the tetrahedra to boundary
element contact is only half of that when compared with the tetra-
hedra to tetrahedra contacts in the interior of the assembly. Conse-
quently, tetrahedra at the boundary are only partially constraint,
allowing for their rotation relative to the assembly plane.
The internal load transfer following from transverse loading is

visualized by the use of a photoelastic experiment. A TIM system
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with N2= 49 tetrahedra of the edge length of a0= 25 mm was con-
sidered. The number of tetrahedra along one edge of the square
assembly (Fig. 1(b)) is N. The TIM system was additively manu-
factured using of a Connex 350 Polyjet printer with the manufac-
turer supplied VeroClear resin and FullCure 705 Support resin
(Stratasys™). All 49 building blocks and the surrounding support
were printed as a combined assembly with the support resin
printed to fill any overhang and all gaps between building blocks.
A gap of 0.2 mm between parts of the assembly is used to enable
the release of each of the parts from its neighbors. The tetrahedra-
to-tetrahedra gap is filled with support material during printing.
The as-printed TIM system was cleaned by use of a waterjet to
remove the support material, including that filling the gaps
between adjacent parts. Shim stock was inserted between the sur-
rounding support structure and the tetrahedra.
Photoelastic experiments have been used to determine the load

transfer pattern in 2D granular solids under in-plane confinement
and loads [14]. Parts made of the Veroclear resin are photoelastic.
For the photoelasticity-based investigation of the load transfer
pattern in TIM systems, the experimental setup needs to be designed
to allow for the photoelastic visualization under consideration of
out-of-plane stress components. The photoelastic visualization
setup consists of a light table covered with a linear polarizing film
sheet. The transparent 3D-printed TIM system was placed on top
of the light table using a rigid support structure to provide a free
space between the light table and the TIM system. A C-clamp was
used to impose a deflection onto the center of the TIM system, and
the light table provided the opposing reaction. A monochrome
CCD camera equipped with a polarizing lens was placed with the
optical axis aligned normal to the TIM system plane (i.e., parallel
to the action of the loading device) used to record the photoelastic
darkfield image. The photoelastic experiment provides a darkfield
image where regions of high stresses are brighter.
Figure 2(a) depicts the image from the transverse loading of the

TIM system built from photoelastic building blocks. The experi-
ment reveals that the load transfer in the TIM system is distinctly
different from that in a monolithic plate under equivalent loading
and boundary conditions. The internal load transfer can be

characterized by the formation of force networks leading to discrete
locations where reaction forces occur (Fig. 2(b)).
In common granular media, the under-constraint of the particle

arrangement makes the force network structure non-unique. In the
TIM system, all particle locations are known, and a force network
structure can be proposed. In particular, for the tetrahedra assembly
under a centrally applied load and the simply supported boundary
conditions, a central force network paths develops starting from
the point of applied load on the upper surface of the assembly,
passing through the row of tetrahedra F1, and finally to the
support structure where the contact between the outermost tetrahe-
dra of F1 contacts the support on the lower surface of the assembly
(Fig. 2(b)). Additional force network paths develop orthogonal (F2)
and parallel (F3) to the central network path (F1). In noncentral
network paths, no external load is applied but the topological con-
straints of the assembly impose a displacement field on the upper
surface of the assembly such that the imposed center displacements
along F2 and F3 network paths are proportional to the distance of
the force network path from the externally applied load.

3 Theory
In order to construct a model for the transverse force-deflection

response of the TIM system, it is necessary to consider the deforma-
tion of material elements along the force network paths. A sche-
matic section cut along F1 in the deformed state in which the
force network path in F1 is depicted (Fig. 3). In an abstraction of
this configuration, it is proposed to describe the deformation of
the TIM system in F1 by inscribing an equivalent Mises truss
(ABCD). This approach was also confirmed by direct numerical
simulation in Ref. [7]. The response of the Mises truss can be
defined in terms of the geometric parameters of the unit blocks

(a) (b)

Fig. 2 (a) Photoelastic image of a transversely loaded topolog-
ically interlocked material system (a0=25 mm, N2=49). In the
darkfield image, bright regions correspond to higher stresses.
Green lines indicate the location and orientation of the tetrahedra
edges on the top surface of the assembly. (b) Corresponding
sketch of the topologically interlocked material system. Vectors
indicate locations of load transfer to the support corresponding
to force network paths F1, F2, andF3. The center circle is the loca-
tionof the load application.Dashed lines indicate locationswhere
the simple support condition leads to load transfer into the
support structure.

Fig. 3 Schematic of the section through the force network path
F1 in the deformed configuration. An equivalent Mises truss
ABCD along the force network path is used as an equivalent
systemtocalculate the force-deflectionresponseof theTIMsystem

Fig. 1 Interlocking assembly of tetrahedra of edge length a0:
(a) assembly process and (b) assembly with N2=49 tetrahedra
with supports and transverse point loading
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(the tetrahedra edge length a0 and the elastic modulus of the mate-
rial used to construct the building blocks E) and the assembly (the
number of tetrahedra N along the assembly edge, with the present
theory restricted to square assemblies with N being an odd
number). The Mises truss is supported at points A and D, where
all displacements are constrained but rotations are not. Since indi-
vidual building blocks interact by contact only, the Mises truss dis-
integrates once the angle of inclination of the forces network path
with the assembly plane becomes negative, and the tensile part of
the problem is irrelevant. Similar arguments are then made for the
noncentral force network paths.
The span of the truss (AD) is equal to LT and remains constant

LT = a0
N + 1
2

( )
= const (1)

The height of the truss in the initial configuration is H0 = a0/
��
2

√
.

Each truss consists of three members, two lateral members (AB,
CD), and one central member (BC).
In the undeformed state, the central member is parallel to the

assembly plane and possesses an initial length of a0. Furthermore,
the two lateral members (AB, CD) possess an initial length of L0
and are inclined by the angle θ0 to the assembly plane:

L0 = a0

��������������
1
2
+
(N − 1)2

16

√
= a0α (2a)

tan θ0 =
H0

L0
=

��
2

√

2α
(2b)

The horizontal extension of the lateral members (AB, CD) in the
initial configuration is L0x= a0(N− 1)/4.
In the deformed state, the height of the truss is h, which is a func-

tion of the applied displacement v: h=H0− v. Both the two lateral
members and the central member deform elastically as a displace-
ment v is applied. The absolute values of length change of the
lateral and central members (eL and eC, respectively) were followed
from the Hooke’s law.

eL =
FLL0
EA

=
FLa0
EA

α, eC =
FCa0
EA

(3)

The compressive forces (FL and FC) in the lateral and central
members relate to each other through the angle of inclination θ as
FL cos θ=FC. The current length of the central member is eC= a−
a0 and that of lateral members is eL=L−L0. The current truss
height h and member length L define the angle of the inclination of
the lateral members

cos θ =
Lx
L
=

Lx��������
L2x + h2

√ (4)

For the lateral members, the horizontal extension is denoted as Lx,
which can be defined as Lx= (LT− a)/2= (LT− a0− eC)/2. The elon-
gation of the lateral members can be expressed from the current and
initial member length

eL =
��������
L2x + h2

√
− L0 (5)

The compatibility condition is

eCα sec θ = eL or
α

��������
L2x + h2

√
Lx

(LT − a0 − 2Lx) =
��������
L2x + h2

√
− L0

(6)

From Eq. (6), solutions for Lx are obtained numerically in depen-
dence of h (thus v) by solving a fourth-order equation. The vertical
reaction force in the central Mises truss Ry,1 is then

Ry,1 = 2hEA
1��������

L2x + h2
√ −

1
L0

( )

= 2(H0 − v)EA
1�����������������������

L2x + H2
0 − 2H0v + v2

√ −
1
L0

( )
(7)

The assembly structure imposes the displacement loading condi-
tion vi for each of the Mises trusses corresponding to each force
network path (F1, F2, and F3 in Fig. 2(b)). For each force network
path (truss i), the ratio di= vi/v is defined, which relates the local dis-
placement to the applied displacement. For the present configuration
in particular, one central Mises truss (i= 1) and (N− 3)/2 additional
Mises trusses exist.

d1 = 1, d1+i =

N + 1
2

( )
− i

N + 1
2

( ) , i = 1,
(N − 3)

2

[ ]
(8)

The mechanical response of the entire assembly, Eq. (7), is com-
puted from Ryi versus vi for each of the equivalent internal Mises
trusses. The overall response of the TIM system is then obtained
by summation of individual contributions:

Ry = Ry,1(v) + 2 ·
∑(N−3)/2
i=1

Ry,i+1(vdi+1) (9)

For the central Mises truss, the tangent stiffness K(v) and the initial
stiffness K(v= 0) are

∂Ry,1

∂v
=K1(v)

= 2EA
H0(H0 − v−LxL′x)

(H2
0 − 2H0v+L2x + v2)3/2

+
1
L0

−
H2

0 −H0v− vLxL′x +L2x
(H2

0 − 2H0v+L2x + v2)3/2

[ ]

(10)

K1(v = 0) = 2
EA

L0
−
EA(H0Lx0L′x0 + L2x0)

(H2
0 + L2x0)

3/2

[ ]

= 2EA
L20 − H0Lx0L′x0 − L2x0

L30

( ) (11)

where L′x = dLx/dv and L′x0 = (dLx/dv)(v = 0). For the assembly
overall, the initial stiffness is obtained from the contribution of all
Mises trusses:

K* = 1 + 2 ·
∑(N−3)/2
i=1

di+1

( )
K1(v = 0)

= 1 + 2 ·
∑(N−3)/2
i=1

N + 1
2

( )
− i

N + 1
2

( )
⎡
⎢⎢⎣

⎤
⎥⎥⎦EA

1 −
(N − 1)2

8 + (N − 1)2

a0

��������������
1
2
+
(N − 1)2

16

√ −

32(N − 1)2

a0[8 + (N − 1)2]
5/2

(N − 1)2

8 + (N − 1)2
+

��������������
2 +

(N − 1)2

4

√
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(12)
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Considering further simplifications and considering A = λa20, where λ characterizes the cross-sectional area of the force network path,

K =
N2 + 2N − 7

N + 1

( )
Eλa0

32

[8 + (N − 1)2]
3/2 −

32(N − 1)2

[(N − 1)2(8 + (N − 1)2)
3/2

+ (1/2)(8 + (N − 1)2)
3
]

{ }
(13)

An approximation for the TIM system stiffness (K*) is obtained
from Eq. (13) for values N> 7:

K* = 32Eλa0N
−2 (14)

As the assembly must follow the response of a Mises truss, the
deflection to reach the maximum force is proportional to H. The
load carrying capacity of the TIM system is then estimated as F*

F* = K*(ηa0) = 32Eηλa20N
−2 (15)

where ηa0 is the deflection at which the linearized TIM system
(described with K*) reaches the value of the load carrying capacity
of the actual TIM system. The value of η is dependent on the
sequence of loading the internal Mises trusses. Finally, the geome-
try of the assembly allows for the calculation of the deflection to
reach failure. The condition that the outermost truss, i.e., number
(N− 3)/2, locally reaches a deflection of v=H0, establishes the
applied v at final failure as

vf = a0(N + 1)/(4
��
2

√
) (16)

The area under the force-deflection curve W*, approximated as a
triangle, is the toughness of the material system:

W* =
1
2
F*vf = 2

��
2

√
Eηλa30N

−2(N + 1) ≈ 2
��
2

√
Eηλa30N

−1 (17)

4 Results
4.1 Model Analysis and Model Validation. The model is

implemented in MATLAB, and numerical solutions for the fourth-
order equation are obtained. For the following, the cases of N=
7 and N= 11 are considered. The case N= 7 corresponds to
Fig. 2, and there exists a central Mises truss (F1) and two addi-
tional pairs of Mises trusses (F2 and F3) such that
d1 = 1(F1), d2 = 3/4 (F2), d3 = 1/2 (F3). In the case of N= 11,
there is a central Mises truss and four pairs of additional trusses

with d1 = 1 (F1), d2 = 5/6 (F2), d3 = 2/3 (F3), d4 = 1/2 (F4),
d5 = 1/3 (F5). Figure 4 depicts the overall force-deflection response
(Ry− v) together with the individual contribution of the central truss
and the additional trusses (pairs) Ryi− vi. The model describes a
force-deflection response that is initially linear. A peak force is
reached as the load carrying capacity of the equivalent Mises
trusses starts to decline. The ratio F*/(K*a0) = η is determined as
approximately 0.2 and can subsequently be used in Eqs. (15) and
(17). Subsequently to reaching the load carrying capacity, the
force declines gradually as individual Mises trusses lose their capac-
ity to carry load. The final failure is reached once the outer most
Mises truss loses the capacity to carry load. This overall force-
deflection response is in excellent qualitative agreement with the
experimental data [2,4,7,9,12].
To validate the model, a comparison with a direct numerical

simulation model by the use of finite element simulations of TIM
assemblies is conducted. Details of the FE model are based on
Ref. [15]. The FE computations considered a0= 25 mm, E=
1.827 GPa, and ν= 0.33. The contact model is a “hard” contact rela-
tionship that minimizes the penetration of the slave surface into the
master surface (ABAQUS). The coefficient of friction was set to a high
numerical value (μ= 100) to minimize the slip between building
blocks, with details on the influence of friction on the TIM
system response given in Ref. [10]. The validation test is considered
successful if for one TIM system configuration (here N= 7), the
analytical model can be calibrated to the FE model using solely
the maximum load computed with the FE model. Then, the analyt-
ical model is validated if (1) the remainder of the force-deflection
response for N= 7 matches that of the FE model computation and
(2) the analytical model calibrated at N= 7 is also successful in pre-
dicting the response computed with the FE model for N= 11
without any further model adjustment. In the calibration process,
the value of the parameter λ (Eq. (14)) is determined as 0.8.
Figure 5(a) depicts the results for the force-deflection response

for the case N= 7. The analytical model is calibrated to the
maximum force, and with this calibration, the analytical model pre-
dicts the overall force-deflection record in excellent agreement with

Fig. 4 The force-deflection response of the TIM system emerges from the summation of the response of individ-
ual Mises trusses representing the load transfer in selected rows of the tetrahedra assembly: (a) for N=7, the
overall force F (and stiffness K*) emerges from Mises trusses F1, F2, and F3 and (b) for N=11 the overall force
F (and stiffness K*) emerges from Mises trusses F1, F2, F3, F4, and F5 (Eλa0 = 1 [N])
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the FE model. Figure 5(b) depicts the results for the case of N= 11.
The analytical model, calibrated with the FE model maximum force
at N= 7, is able to predict the entire force-deflection response
obtained with the FE model without further calibration.

4.2 Behavior of Topologically InterlockedMaterial Systems
of Varying Assembly. The model for the computation of the

transverse loading response is now used to compute the transverse
stiffness K* [10], maximum load carrying capacity F*, and tough-
ness W* (for three sets of TIM system configurations, Fig. 6).
For the size case (Fig. 6(a)), the results of the analysis are given

in Fig. 7. An increase in the size of the building block a0 and
keeping the number of building blocks the same (N= const.0)
increases the transverse stiffness of the assembly [10] and increases
the load carrying capacity. Both the normalized deflection (v/a0*

Fig. 5 Comparison between force-deflection response from the analytical model and direct numerical simula-
tion: (a) N=7 is used for model calibration and (b) N=11 is prediction without further parameter fit

Fig. 6 Assemblies considering (a) a change in the size of the unit element (size), (b) a change in
the number of unit elements of a given size (growth), and (c) a change in the number of unit ele-
ments in a given assembly domain (scaling)
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with a0* a references unit size) to reach peak load also and the
normalized deflection at which final loss of load occurs increase
with a0. Following Eqs. (14), (15) and (17), stiffness scales as
(a0/a0*), strength as (a0/a0*)2, and toughness as (a0/a0*)3.
These exponents are in good agreement with the results of the anal-
ysis of the full model (Figs. 7(b)–7(d )). The relationship between
toughness and load carrying capacity is W* ∝ (F*)3/2.
For the growth case (Fig. 6(b)), the results of the analysis are

given in Fig. 8. An increase in the number N of identical building
block with size a0 decreases the transverse stiffness of the assembly
[10] as well as the load carrying capacity. The normalized deflection
(v/a0) to reach the peak load remains constant but the normalized
deflection at which the final loss of load occurs increases with N.
Following Eqs. (14), (15) and (17), stiffness scales as N−2, strength
as N−2, and toughness as N−1. These exponents are in good agree-
ment with the results of the analysis of the full model for stiffness
and load carrying capacity (Figs. 8(b) and 8(c)). The predictions
of the full model (Fig. 8(c)) and Eq. (17) deviate in their prediction
of the toughness W*, an outcome attributed to the change of in
shape of the force-deflection curve with changing N (Fig. 8(a)).
The relationship between toughness and load carrying capacity
is W* ∝ (F*)1/2 following Eqs. (15) and (17) and W* ∝ (F*)0.79

from the full model.
For the scaling case (Fig. 6(c)), the results of the analysis are

given in Fig. 9. Here, the constraint of constant in-plane dimension
of the TIM system is considered as Na0= const. An increase in the
number N of building blocks with size proportional to a0∝N−1

decreases the transverse stiffness of the assembly [10] as well as
the load carrying capacity. The normalized deflection (v/a0) to

reach the peak load also declines but the normalized deflection at
which final loss of load occurs remains constant. Following
Eqs. (14), (15), and (17), stiffness scales as N−3, strength as N−4,
and toughness as N−4. These exponents are in good agreement
with the results of the analysis of the full model for stiffness and
load carrying capacity (Figs. 9(b) and 9(c)). The predictions of
the full model (Fig. 9(c)) and Eq. (17) deviate in their predic-
tion of the toughness W*, an outcome attributed again to the
change of in shape of the force-deflection curve with changing N
(Fig. 9(a)). The relationship between toughness and load carrying
capacity is W* ∝ (F*) following Eqs. (15) and (17) and W* ∝
(F*)1.15 from the full model.

5 Discussion
It is useful to compare the behavior of the TIM assemblies to con-

ventional monolithic plates. For comparison, a plate under simply
supported conditions and a central load is considered. This config-
uration best approximates the boundary conditions imposed on the
TIM assembly of the present study. It is assumed that the plate
(thickness t∝ a0, in-plane dimension b∝LT, and load domain
diameter e∝ a0) is made of a material with elastic modulus E
and that its brittle failure strength σf relates to its elastic modulus
as σf=E/χ. Plate stiffness, maximum load, and toughness (again
as area under the force-deflection curve) are as follows [16]:

Kplate =
E

k1

t3

b2
∝ E

a30
L2T

∼ Ea20N
−2 (18)

Fig. 7 Size of the TIM system (N=const., a0 varying): (a) force-deflection response, (b) stiffness versus building
block dimensions, (c) load carry capacity versus building block dimensions, and (d ) toughness versus building
block dimensions
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Fplate
max =

σf t2π

1.5 (1 + ν) ln
2b
πe

( )
+ k2

[ ] ∝
(E/χ)a20
ln (N)

(19)

Wplate =
1
2
(Pplate

max )
2

Kplate
=
1
2

σ2f
E

tb2

ln (b/πe)
∝
1
2
E

χ2
a20N

3/2 (20)

Comparing Eqs. (14)–(19), it is seen that the TIM assembly
approach provides a different scaling of properties than the mono-
lithic plate, except for stiffness for which the plate and the TIM
assembly are found to scale the same way with thickness and
in-plane dimension. This finding is relevant if it is desired to alter
relative relationships between stiffness, strength, and toughness.
A critical value of χ is determined as

χ̂ ∼ N3/2 (21)

for which the TIM system with element size a0 would provide
higher maximum force than the corresponding plate. Similarly, a
critical value of χ is determined as

χ̃ ∼ a1/20 N1/4 (22)

for which the TIM system would provide higher toughness than the
corresponding monolithic plate. While these comparisons are some-
what limited by the range of good validity of the plate theories for
all combinations of Na0, the analysis nevertheless indicates that
TIM systems are a potential viable solution for structures to be
built from low strengths materials. For such TIM systems, both

strength and toughness are larger than those for the monolithic
plate. The comparison of χ̂ to χ̃ indicates that TIM systems are
more suited to the case where toughness is the desired property as
it is much easier to realize a TIM systems that exceed the monolithic
plate in toughness than in load carrying capacity. This outcome of
the analysis is in good qualitative agreement with experimental
results in Ref. [12]. These authors demonstrate that for a TIM
system possessing similar load carrying capacity as the correspond-
ing monolithic plate, the toughness of the TIM system far exceeds
that of the monolithic plate.
Further investigations on the effects of boundary conditions

(simply supported versus clamped) and the loading conditions
could be considered as further steps even for the TIM system
based on tetrahedra. The present model is limited to conditions
where slip does not play a role. The incorporation of additional
components of sliding would allow for a realistic representation
of experimental conditions. As architecture plays a central role in
the TIM systems and determined the force network structure, it is
also necessary to establish variants of the present theory for TIM
systems with building blocks other than the tetrahedra.

6 Conclusion
This paper provides a model for the analysis of the deflection

under transverse loading of a 2D architectured material system con-
structed as a topologically interlocked assembly of tetrahedra.
Photoelastic experiments were used to aid in providing insight
into the internal force network. The force network structure is trans-
lated into a model where trusses are used to represent the TIM

Fig. 8 Growth of the TIM system (a0=const., N varying): (a) force-deflection response, (b) stiffness versus build-
ing block dimensions, (c) load carry capacity versus building block dimensions, and (d ) toughness versus build-
ing block dimensions
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system. The theory leads to a solution for the full force-deflection
record for the TIM system under simple support and transverse
point loading. In addition, closed-form equations for stiffness,
load carrying capacity, and toughness of a model TIM system has
been presented. Model predictions are in good quantitative agree-
ment with direct numerical simulations and in good qualitative
agreement with findings in the related experiment. It is demon-
strated that the TIM system possesses scaling relationships that
differ from those of equivalent monolithic systems. Thus, TIM
systems provide new approaches to mechanically loaded 2D struc-
tures with the TIM systems of particular relevance if brittle materi-
als with high modulus to stiffness ratio are of concern.

Acknowledgment
Qichang Chu’s contribution to the photoelastic experiments is

gratefully acknowledged. He was supported by a Bottomley Scho-
larship for undergraduate research in the School of Mechanical
Engineering at Purdue University.

Funding Data

• National Science Foundation under Grant No. 1662177
(Funder ID: 10.13039/501100008982).

References
[1] Reddy, J. N., 2006, Theory and Analysis of Elastic Plates and Shells, CRC Press,

Boca Raton, FL.
[2] Dyskin,A.V., Estrin,Y.,Kanel-Belov,A. J., andPasternak, E., 2001, “Toughening

by Fragmentation—How Topology Helps,” Adv. Eng. Mat., 3(11), pp. 885–888.

[3] Ashby, M. F., and Bréchet, Y. J. M., 2003, “Designing Hybrid Materials,” Acta
Mater., 51(19), pp. 5801–5821.

[4] Dyskin, A. V., Estrin, Y., Kanel-Belov, A. J., and Pasternak, E., 2003, “A New
Principle in Design of Composite Materials: Reinforcement by Interlocked
Elements,” Compos. Sci. Technol., 63(3–4), pp. 483–491.

[5] Siegmund, T., Barthelat, F., Cipra, R., Habtour, E., and Riddick, J., 2016,
“Manufacture and Mechanics of Topologically Interlocked Material
Assemblies,” ASME Appl. Mech. Rev., 68(4), p. 040803.

[6] Dugue, M., Fivel, M., Brechet, Y., and Dendievel, R., 2013, “Indentation of
Interlocked Assemblies: 3D Discrete Simulations and Experiments,” Comp.
Mat. Sci., 79, pp. 591–598.

[7] Khandelwal, S., Siegmund, T., Cipra, R. J., and Bolton, J. S., 2012, “Transverse
Loading of Cellular Topologically Interlocked Materials,” Int. J. Solids Struct.,
49(18), pp. 2394–2403.

[8] Dyskin, A. V., Pasternak, E., and Estrin, Y., 2012, “Mortarless Structures Based
on Topological Interlocking,” Front. Struct. Civ. Eng., 6(2), pp. 188–197.

[9] Mather, A., Cipra, R., and Siegmund, T., 2012, “Structural Integrity During
Remanufacture of a Topologically Interlocked Material,” Int. J. Struct. Integ.,
3(1), pp. 61–78.

[10] Khandelwal, S., Siegmund, T., Cipra, R. J., and Bolton, J. S., 2014, “Scaling of
the Elastic Behavior of Two-Dimensional Topologically Interlocked Materials
Under Transverse Loading,” ASME J. Appl. Mech., 81(3), p. 031011.

[11] Brocato, M., 2018, “Continuum Mechanics—A Continuum Model
of Interlocking Structural Systems,” Rend. Lincei Mat. Appl., 29(2018),
pp. 63–83.

[12] Mirkhalaf, M., Zhou, T., and Barthelat, F., 2018, “Simultaneous Improvements of
Strength and Toughness in Topologically Interlocked Ceramics,” PNAS, 37(115),
pp. 9128–9133.

[13] Conway, J. H., and Torquato, S., 2006, “Packing, Tiling, and Covering With
Tetrahedra,” PNAS, 103(28), pp. 10612–10617.

[14] Daniels, K. E., Kollmer, J. E., and Puckett, J. G., 2017, “Photoelastic Force
Measurements in Granular Materials,” Rev. Sci. Instr., 88(5), p. 051808.

[15] Feng, Y., Siegmund, T., Habtour, E., and Riddick, J., 2015, “Impact Mechanics
of Topologically Interlocked Material Assemblies,” Int. J. Impact Eng., 75(1),
pp. 140–149.

[16] Young, W. C., Budynas, R. G., and Sadegh, A. M., 2002, Roark’s Formulas for
Stress and Strain, Vol. 7, McGraw-Hill, New York.

Fig. 9 Scaling of the TIM system (Na0=const.): (a) force-deflection response, (b) stiffness versus
building block dimensions, (c) load carry capacity versus building block dimensions, and (d ) tough-
ness versus building block dimensions

111007-8 / Vol. 86, NOVEMBER 2019 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/86/11/111007/5428794/jam
_86_11_111007.pdf by Purdue U

niversity at W
est Lafayette, Thom

as Siegm
und on 16 Septem

ber 2019

http://dx.doi.org/10.1002/1527-2648(200111)3:11%3C885::AID-ADEM885%3E3.0.CO;2-P
http://dx.doi.org/10.1016/S1359-6454(03)00441-5
http://dx.doi.org/10.1016/S1359-6454(03)00441-5
http://dx.doi.org/10.1016/S0266-3538(02)00228-2
http://dx.doi.org/10.1115/1.4033967
https://dx.doi.org/10.1016/j.commatsci.2013.07.014
https://dx.doi.org/10.1016/j.commatsci.2013.07.014
http://dx.doi.org/10.1016/j.ijsolstr.2012.04.035
http://dx.doi.org/10.1007/s11709-012-0156-8
http://dx.doi.org/10.1108/17579861211210009
http://dx.doi.org/10.1115/1.4024907
http://dx.doi.org/10.4171/rlm/793
http://dx.doi.org/10.1073/pnas.1807272115
http://dx.doi.org/10.1073/pnas.0601389103
http://dx.doi.org/10.1063/1.4983049
https://dx.doi.org/10.1016/j.ijimpeng.2014.08.003

	1  Introduction
	2  Experiment
	3  Theory
	4  Results
	4.1  Model Analysis and Model Validation
	4.2  Behavior of Topologically Interlocked Material Systems of Varying Assembly

	5  Discussion
	6  Conclusion
	 Acknowledgment
	 Funding Data
	 References

