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Abstract. Motivated by our recent study of patient flow data from an Israeli emergency
department (ED), we establish a sample path periodic Little’s law (PLL), which extends the
sample path Little’s law (LL). The ED data analysis led us to propose a periodic stochastic
process to represent the aggregate ED occupancy level, with the length of a periodic cycle
being 1 week. Because we conducted the ED data analysis over successive hours, we
construct our PLL in discrete time. The PLL helps explain the remarkable similarities
between the simulation estimates of the average hourly ED occupancy level over a week
using our proposed stochastic model fit to the data and direct estimates of the ED oc-
cupancy level from the data. We also establish a steady-state stochastic PLL, similar to the
time-varying LL.
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1. Introduction
Many service systems with customer response times
extending over hours or days can be modeled as pe-
riodic queues, with the length of a periodic cycle being
1 week. Examples are hospitals wards, order fulfillment
systems, and loan-processing systems. In this paper, we
establish a periodic version of Little’s law (LL),which can
provide insight into the performance of these periodic
systems.

We formulate our periodic Little’s law (PLL) in
discrete time, assuming that there are d discrete time
points within each periodic cycle. In discrete time, the
PLL states that, under appropriate conditions,

Lk �
∑∞
j�0

λk−j Fc
k−j,j, k � 0, 1, . . . , d − 1, (1)

where d is the number of time points within each pe-
riodic cycle, Lk is the long-run average number in the
system at time k, λk is the long-run average number of
arrivals at time k, and Fc

k,j, j ≥ 0, is the long-run pro-
portion of arrivals at time k that remain in the system
for at least j time points, which can be viewed as the
complementary cumulative distribution function (ccdf)
of the length of stay (LoS) of an arbitrary arrival. The
long-run averages are over all indices of the form k +md,
m ≥ 0. These quantities λk, Fc

k, and Lk are periodic func-
tions of the time index k, exploiting the extension of these
periodic functions to all integers: negative as well as
positive.

In many applications, time is naturally continuous,
in which case the analog of (1) is

L(t) �
∫ c

0
λ(t)Fc(t − s, s) ds, 0≤ t< c, (2)

where c is the length of each periodic cycle. When time
is continuous, we can construct a discrete time version
by letting there be d subintervals of equal length within
each continuous time periodic cycle, whichwe can refer
to as time periods. We then obtain discrete time processes
by appropriately counting what happens in each time
period. However, neither equal length time subintervals
in continuous time nor a continuous time reference are
needed to have a bona fide discrete time system.
However, if time is actually continuous, then we can

use the discrete time sample path PLL to define what
we mean by a corresponding continuous time sample
path PLL: we say that a continuous time PLL holds
with (2) if the discrete time PLL holds for all sequences
of versions with d periods in each continuous time cycle
with d→∞ and there is sufficient regularity in the limit
functions so that the limits in (1) can serve successive
Riemann sums converging to the integral (2) (Section 2.7
has additional discussion).
We were motivated to develop the PLL because of

a remarkable similarity between two curves that we
observed in our recent study of patient flow data from
an Israeli emergency department (ED) in Whitt and
Zhang (2017). As part of that study, we developed an
aggregate stochasticmodel of an EDbased on a statistical
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analysis of patient arrival and departure data from the
ED of an Israeli hospital using 25 weeks of data from the
data repository associated with the study by Armony
et al. (2015). In section 6 of Whitt and Zhang (2017), we
conducted simulation experiments to validate the ag-
gregate model of ED patient flow. One of these com-
parisons compared direct estimates of the average ED
occupancy level from data with estimations from sim-
ulations of the stochastic model, where the distributions
of the daily number of arrivals, the arrival rate function,
and the LoS distribution are estimated from the data.
Figure 1 shows that the two curves are barely distin-
guishable. The PLL provides an explanation.

In Whitt and Zhang (2017), we suggested that this
remarkable fit could be explained, at least in part, by
the time-varying LL from Bertsimas and Mourtzinou
(1997) and Fralix and Riano (2010). In this paper, we
elaborate on that idea by providing the new sample path
version of PLL, because we think that it may be im-
portant for constructing data-generated models of ser-
vice systemsmore broadly. Although our primary focus
here is on the PLL, in Section 3.4 and the e-companion,
we provide evidence in support of the model that we
proposed in Whitt and Zhang (2017).

The main contribution of this paper is the sample
path PLL in discrete time, Theorem 1, extending the
sample path LL (L = λW) established by Stidham (1974)
(also see Little 1961; Whitt 1991, 1992; El-Taha and
Stidham 1999; Fiems and Bruneel 2002; Little 2011; and
Wolfe and Yao 2014). This sample path PLL is different
in detail from all previous sample path LL results
(known to us). For example, in addition to the usual
limits of averages of the arrival rates and LoS (waiting
times), we need to assume a limit for the entire LoS
distribution. The necessity of this condition is shown by
Example 1 in Section 2.3.

We also establish steady-state stochastic versions of
the PLL, which relate more directly to the time-varying
LL in Bertsimas and Mourtzinou (1997) and Fralix and
Riano (2010). This involves the usual two forms of

stationarity associated with arrival times and arbitrary
times that emerge from the Palm theory of stochastic
point processes (e.g., Baccelli and Bremaud 1994, Sigman
1995), but now, both are in discrete time, such as in
Miyazawa and Takahashi (1992) and section 1.7.4 of
Baccelli and Bremaud (1994). Our steady-state stochastic
versions of the PLL extend (and are consistent with) an
early PLL for the Mt ∕GI ∕ 1 queue in proposition 2 of
Rolski (1989).
The rest of the paper is organized as follows: In

Section 2, we state and discuss the sample path PLL. In
Section 3, we establish the steady-state stochastic versions
of the PLL. In Section 3.4 and the e-companion, we
elaborate on the ED application, reviewing themodel that
we built in Whitt and Zhang (2017), illustrating how it
relates to the PLL, and providing evidence that the
conditions in the theorems are satisfied in our application.
In Section 4, we provide the proofs of theorems in Sec-
tion 2. Finally, in Section 5, we draw conclusions. Ad-
ditional supportingmaterial appears in the e-companion.

2. Sample-Path Version of the PLL
In this section, we develop the sample path PLL. This
version is general in that (i) we do not directly make any
stochastic assumptions and (ii) we do not directly impose
any periodic structure. Instead, we assume that natural
limits exist, whichwe take to bewith probability 1 (w.p.1).
It turns out that the periodicity of the limit emerges au-
tomatically from the assumed existence of the limits.
This section is organized as follows. In Section 2.1,

we introduce our notation and definitions. In Section
2.2, we state our main limit theorem. In Section 2.3, we
discuss our assumptions and give an example showing
that the extra condition beyond what is needed for the
LL is necessary. In Section 2.4, we establish a second
limit theorem, showing that the natural indirect esti-
mator for the average queue length based on the arrival
rate and waiting time is consistent. In Section 2.5, we
establish a limit for the departure process as a corollary
to the main theorem. Finally, we conclude with some

Figure 1. (Color online) A Comparison of the Estimated Mean ED Occupancy Level from (i) Simulations of Multiple
Replications of the Model Fit to the Data with (ii) Direct Estimates from the Data

Whitt and Zhang: Periodic Little’s Law
268 Operations Research, 2019, vol. 67, no. 1, pp. 267–280, © 2019 INFORMS



additional discussion to add insight. In Section 2.6, we
discuss the connection between our averages and asso-
ciated cumulative processes. In Section 2.7, we discuss the
different orderings of events at discrete time points and
the relation between continuous time and discrete time.

2.1. Notation and Definitions
We consider discrete time points indexed by integers
i, i ≥ 0. Because multiple events can happen at these
times, we need to carefully specify the order of events,
just as in the large literature on discrete time queues
(e.g., Bruneel and Kim 1993). We assume that all arrivals
at one time occur before any departures. Moreover, we
count the number of customers (patients in the ED in our
intended application) in the system after the arrivals but
before the departures. Thus, each arrival can spend time
j in the system for any j ≥ 0. Our convention yields
a conservative upper boundon the occupancy.Wediscuss
other possible orderings of events and the relation be-
tween continuous time and discrete time in Section 2.7.

With these conventions, we focus on a single se-
quence, X ≡ {Xi,j : i ≥ 0; j ≥ 0}, with Xi,j denoting the
number of arrivals at time i that have LoS j. We also
could have customers at the beginning, but without
loss of generality, we can view them as a part of the
arrivals at time 0. We define other quantities of interest
in terms ofX. In particular, with ≡ denoting equality by
definition, the key quantities are:

• Yi,j≡∑∞
s�j Xi,s: the number of arrivals at time iwith

LoS greater than or equal to j, j ≥ 0;
• Ai ≡ Yi,0 � ∑∞

s�0 Xi,s: the total number of total ar-
rivals at time i; and

• Qi ≡∑i
j�0Yi−j,j � ∑i

j�0 Ai−j
Yi− j, j

Ai− j
: the number in

system at time i,
all for i ≥ 0. In the last line and throughout the paper,
we understand 0/0 ≡ 0, so that we properly treat times
with 0 arrivals.

We do not directly make any periodic assumptions,
but with the periodicity in mind, we consider the
following averages over n periods:

λ̄k(n) ≡ 1
n

∑n
m�1

Ak+(m−1)d,

Q̄k(n) ≡ 1
n

∑n
m�1

Qk+(m−1)d� 1
n

∑n
m�1

∑k+(m−1)d

j�0
Yk+(m−1)d−j,j

( )
,

Ȳk,j(n) ≡ 1
n

∑n
m�1

Yk+(m−1)d,j, j≥ 0,

F̄c
k,j(n) ≡

Ȳk,j(n)
λ̄k(n) �

∑n
m�1Yk+(m−1)d,j∑n
m�1 Ak+(m−1)d

, j≥ 0, and

W̄k(n) ≡
∑∞
j�0

F̄c
k,j(n), 0≤ k≤ d − 1, (3)

where d is a positive integer.

Clearly, λ̄k(n) is the average number of arrivals at
time k, 0 ≤ k ≤ d − 1, over the first n periods. Similarly,
Q̄k(n) is the average number of customers in the system
at time k, whereas Y¯k,j(n) is the average number of
customers that arrive at time k that have an LoS greater
than or equal to j. Thus, F̄c

k,j(n) is the empirical ccdf,
which is the natural estimator of the LoS ccdf of an
arrival at time k. Finally, W̄k(n) is the average LoS of
customers that arrive at time k. We will let n → ∞.

2.2. The Limit Theorem
With the framework introduced above, we can state
our main theorem: the sample path version of the PLL.
We first introduce our assumptions, which are just as in
the sample path LL, with one exception. In particular,
we assume that

(A1) λ̄k(n)→λk, w.p.1 as n→∞, 0≤ k≤ d − 1,

(A2) F̄c
k,j(n)→ Fc

k,j, w.p.1 as n→∞,
0≤ k≤ d − 1, j≥ 0, and

(A3) W̄k(n)→Wk ≡
∑∞

j�0F
c
k,j w.p.1 as n→∞,

0≤ k≤ d − 1, (4)

where the limits are deterministic and finite. For the
sample path LL, d = 1, and we do not need (A2).
The assumptions above only assume the existence of

limits within the first period, but the limits immediately
extend to all k ≥ 0, showing that the limit functions
must be periodic functions. We then extend these
periodic functions to the entire real line, including the
negative time indices. We give a proof of the following
in Section 4.1.

Lemma 1 (Periodicity of the Limits). If the three assump-
tions in (4) hold, then the limits hold for all k ≥ 0, with the
limit functions being periodic with period d.

We are now ready to state ourmain theorem;we give
the proof in Section 4.2.

Theorem 1 (Sample Path PLL). If the three assumptions
(A1), (A2), and (A3) in (4) hold, then Q̄k(n) defined in (3)
convergesw.p.1 as n→∞ to a limit that we call Lk.Moreover,

Lk �
∑∞
j�0

λk−j Fc
k−j,j <∞, 0≤ k≤ d − 1, (5)

where λk and Fc
k,j are the periodic limits in (A1) and (A2)

extended to all integers, negative as well as positive.

Remark 1 (The Extension to Negative Indices). To have
convenient notation, we have extended the periodic
limit functions to the negative indices, but we do not
consider the averages and their limits in assumptions
(A1), (A2), and (A3) for negative indices.
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2.3. The Assumptions in Theorem 1
When d = 1, the PLL reduces to the nontime-varying
ordinary LL. In that case, k = 0 represents all time in-
dices, because it is nontime varying. In Theorem 1, L0 ≡
limn→∞Q̄0(n) is the limiting time average number of
customers in the system, whereas limn→∞λ̄0(n) � λ0 is
the limiting average number of arrivals at each time,
and the right-hand side of (5) becomes∑∞

j�0
λk−j Fc

k−j,j � λ0
∑∞
j�0

Fc
0,j � λ0W0. (6)

Additionally, Theorem 1 claims that

L0 � λ0W0,

which is exactly the ordinary LL. Of course, the ordi-
nary LL can be applied to the time-varying case as well,
but then, we will lose the time structure and get overall
averages.

There is a difference between our assumptions in (4)
and the assumptions in the LL. For the LL, we let L be
the limiting time average number in the system, λ be
the limiting average arrival rate of customers, and W
be the limiting customer average waiting time (time
spent in the system or LoS). Then, if both λ andW exist
and are finite, then L exists and is finite, and L = λW.
Our limit for λ̄k(n) in (A1) is the natural extension; the
only difference is that now we require that λ̄k(n)
converges w.p.1 for each k, 0 ≤ k ≤ d − 1. The third limit
for W̄k(n) in (A3) parallels the limit for the average
waiting time, but again, we require that W̄k(n) con-
verges w.p.1 for each k, 0 ≤ k ≤ d − 1. However, these
two limits alone are not sufficient to determine the
number of customers for the periodic case. Now, we
need to require that the LoS distribution converges
for each k, 0 ≤ k ≤ d − 1, as stated in (A2). We show
that this extra condition is needed in the following
example.

Example 1 (The Need for Convergent ccdf’s). We now
show that we need to assume the limit F̄c

k,j(n)→ Fc
k,j in

(4). For simplicity, let d = 2, so that we have two time
points in each periodic cycle. Suppose that we have two
systems. In the first one, we deterministically have
two arrivals at the first time of each periodic cycle (i.e.,
two arrivals at each even-indexed time), with one of
them having LoS 0 and the other having LoS 2. In the
other system,we also deterministically have two arrivals
in the first time of each periodic cycle but with both of
them having LoS 1. Suppose that there is no arrival at
the odd indexed time for both of the systems. Now,
the two systems have the same λk andWk (λ0 = 2, λ1 = 0,
W0 = 2, and W1 = 0). However, if we count the num-
ber of customers in the system, we have limn→∞Q̄0(n)
� 3 for the first system and limn→∞Q̄0(n) � 2 for the
second one.

2.4. Indirect Estimation of Lk via the PLL
The PLL in Theorem 1 provides an indirect way to
estimate the long-run average occupancy level Lk
through the right-hand side of (5) as discussed in
Glynn and Whitt (1989b) for the ordinary LL. Here, we
show that the indirect estimator for Lk is consistent with
the direct estimator.
Because we only have data going forward in time

from time 0, we start by rewriting (1) as

∑∞
j�0

λk−j Fc
k−j,j �

∑k
i�0

λi
∑∞
l�0

Fc
i,k−i+ld +

∑d−1
i�k+1

λi
∑∞
l�1

Fc
i,k−i+ld,

0≤ k≤ d − 1.
(7)

Guided by (7), we let our indirect estimator for Lk be

L̄k(n) ≡
∑k
i�0

λ̄i(n)
∑∞
l�0

F̄c
i,k−i+ld(n) +

∑d−1
i�k+1

λ̄i(n)
∑∞
l�1

F̄c
i,k−i+ld(n),

0≤ k≤ d − 1,
(8)

where λ̄i(n) and F̄c
i,j(n) are defined in (3). With data, it

is likely that the infinite sums in (8) would be truncated
to finite sums but at a level growing with n; we do not
address that truncation modification, which we regard
as minor.
We now show that the estimator L̄k(n) in (8) is as-

ymptotically equivalent to the direct estimator Q̄k(n)
in (3); wewill prove this result together with Theorem 1
in Section 4.2.

Theorem 2 (Indirect Estimation Through the PLL). Under
the conditions of Theorem 1,

lim
n→∞L̄k(n) � Lk w.p.1 for 0≤ k≤ d − 1, (9)

where L̄k(n) is defined in (8) and Lk is as in Theorem 1.

In applications, the LoS often can be considered to
be bounded (i.e., for somem > 1, Xi,j = 0 when j ≥md). In
that case, condition (A3) is directly implied by condition
(A2), and it is possible to bound the error between the
direct and indirect estimators for Lk, defined as

Ēk(n) ≡ |L̄k(n) − Q̄k(n)|, (10)

for Q̄k(n) in (3) and L̄k(n) in (8) as we show now.

Corollary 1 (The Bounded Case). If, in addition to con-
ditions (A1) and (A2) in Theorem 1, there exists some mu> 0,
such that Xi,j = 0 for i ≥ 0, j ≥ dmu, then assumption (A3) is
necessarily satisfied. If, in addition, there exists some λu > 0,
such that Ai ≤ λu for i ≥ 0, then

R̄n ≡ max
0≤k≤d−1

{Ēk(n)} ≤λud(mu + 2)2
2n

, n≥mu, (11)

for �Ek(n) in (10).
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Proof. Here, we show the proof of the first part of the
corollary (i.e., if the LoS is bounded, then assumption
(A3) is implied from (A2)), and we postpone the second
half of the proof to Section 4.3, because it depends on part
of Proof of Theorem 1 and part of Proof of Theorem 2.

If Xi,j = 0 for i ≥ 0, j > dmu, then F̄k,j(n) � 0 for 0 ≤ k ≤
d − 1 and j ≥ dmu. Therefore,

W̄k(n) �
∑dmu

j�1
F̄c
k,j(n), 0≤ k≤ d − 1,

is a finite summation, and Fc
k,j � 0 for 0 ≤ k ≤ d − 1 and

j > dmu. Then,

lim
n→∞W̄k(n) � lim

n→∞
∑dmu

j�0
F̄c
k,j(n) �

∑dmu

j�0
lim
n→∞F̄

c
k,j(n)

� ∑dmu

j�0
Fc
k,j � Wk,

which is assumption (A3). □

Remark 2 (When (A2) Implies (A3)). In addition to the
boundedness condition presented in Corollary 1, there
are other mathematical conditions under which (A2)
implies (A3) (i.e., under which we can interchange the
order of the limits). Uniform integration is a standard
condition for this purpose (cf. p. 185 of Billingsley 1995
and section 2.6 of El-Taha and Stidham 1999). We prefer
(A3) plus (A2), because that makes our conditions easier
to compare with the conditions in the ordinary LL.

2.5. Departure Processes
Other than relating the occupancy level with the arrival
processes and the LoS as in the LL,we can also establish
the relationship between the departure processes and
the other quantities. This will also be helpful to un-
derstand the error between different ways of counting
what happens at each time point as we will explain in
Section 2.7.

LetDi ≡ ∑i
j�0Xi−j,j, i≥ 0, be the number of departures

at time i. Given that the arrivals occur before departures
at each time, it is easy to see that

Di � Qi −Qi+1 + Ai+1 for i≥ 0. (12)

Paralleling (3), we look at the averages

δ̄k(n) ≡ 1
n

∑n
m�1

Dk+(m−1)d for 0≤ k≤ d − 1. (13)

Corollary 2 (Departure Averages). Under the conditions of
Theorem 1, δ̄k(n) defined in (13) convergesw.p.1 as n→∞
to a periodic limit that we call δk. Moreover,

δk �
∑∞
j�0

λk−j f k−j,j ≡
∑∞
j�0

λk−j (Fc
k−j,j − Fc

k−j,j+1) (14)

for 0 ≤ k ≤ d − 1, where λk and Fc
k,j are the same periodic

limits as in Theorem 1 and f k,j ≡ Fc
k,j − Fc

k,j+1 is the discrete
time probability mass function of the LoS.

Proof. The proof is easy given that we have Theorem 1
and Equation (12). By Equations (3) and (12),

δ̄k(n) � 1
n

∑n
m�1

Dk+(m−1)d � 1
n

∑n
m�1

(Qk+(m−1)d −Qk+1+(m−1)d

+ Ak+1+(m−1)d)

�
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Q̄k(n) − Q̄k+1(n) + λ̄k+1(n), 0≤ k< d − 1,

Q̄d−1(n) − Q̄0(n + 1) + λ̄0(n + 1) + 1
n
Q0 − 1

n
A0,

k � d − 1.
(15)

Because limn→∞ 1
nQ0 � 0 and limn→∞ 1

nA0 � 0, by
Theorem 1 and (A1), we have

lim
n→∞δ̄k(n) � Lk − Lk+1 + λk+1

� ∑∞
j�0

λk−j Fc
k−j,j −

∑∞
j�0

λk+1−j Fc
k+1−j,j + λk+1

� ∑∞
j�0

λk−j (Fc
k−j,j − f ck−j,j+1) − λk+1 + λk+1

� ∑∞
j�0

λk−j f k−j,j. □ (16)

2.6. Connection to Cumulative Processes
The direct and indirect estimators of the occupancy
level that we introduced in (3) and (8), respectively,
can be related through the cumulative processes as
depicted in Figure 2.
We focus on the two cumulative processes associated

with the occupancy level and total LoS, respectively;
that is,

CQ(n) ≡∑n
m�1

∑d−1
k�0

Qk+(m−1)d �
∑nd−1
i�0

Qi,

CL(n) ≡
∑n
m�1

∑d−1
k�0

∑∞
j�0

( j + 1)Xk+(m−1)d,j

� ∑n
m�1

∑d−1
k�0

∑∞
j�0

Yk+(m−1)d,j

� ∑nd−1
i�0

∑∞
j�0

Yi,j. (17)

The first,CQ(n), is the cumulative occupancy level up to
time n, whereas the second, CL(n), is the cumulative
total LoS of customers that arrived up time n.
Figure 2 helps us understand the two cumulative

quantities. In the figure, we plot the time intervals
that each of the first 35 arrivals spends in the system
as horizontal bars, each with height 1 placed in
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order of the arrival times. The left end point is the
arrival time, whereas the right end point is the
departure time, which need not be in order of ar-
rival. We can see that CQ(n) and CL(n) correspond to
two areas.

We can further relate the two cumulative processes
to the averages in (3) and (8) as stated in the following
proposition.

Proposition 1. The cumulative processes and the averages
are related by

Area(A) � CQ(n) � n
∑d−1
k�0

Q̄k(n),

Area(A∪B) � CL(n) � n
∑d−1
k�0

λ̄k(n)W̄k(n) � n
∑d−1
k�0

L̄k(n).
(18)

Proof. The proof follows directly from the definitions,
especially for CQ(n). For CL(n), observe that

CL(n) �
∑n
m�1

∑d−1
k�0

∑∞
j�0

Yk+(m−1)d,j� n
∑d−1
k�0

∑∞
j�0

Ȳk,j(n)

� n
∑d−1
k�0

∑∞
j�0

λ̄k(n)F̄c
k,j(n) � n

∑d−1
k�0

λ̄k(n)W̄k(n). (19)

By (8), if we sum over 0 ≤ k ≤ d − 1 and adjust the order
of summation, we have

∑d−1
k�0

L̄k(n) �
∑d−1
k�0

∑∞
j�0

λ̄k(n)F̄c
k,j(n) �

∑d−1
k�0

λ̄k(n)W̄k(n). □

(20)

In the context of Figure 2, Theorems 1 and 2 assert that

Ē(n) ≡∑d−1
k�0

Ēk(n) � Area(B)/n→ 0 as n→∞, (21)

where �Ek(n) defined in (10).

We remark that Figure 2 is a variant of figure 1 in
Whitt (1991) and figures 2 and 3 in Kim and Whitt
(2013) as well as similar figures in earlier papers. The
figures in Kim andWhitt (2013) are different because of
the initial edge effect, which we avoid by treating ar-
rivals before time 0 in the system as arrivals at time 0.

2.7. Different Orders of Events in Discrete Time
We have assumed that all arrivals occur before all
departures at each time and that we count the number
in the system after the arrivals but before the departures.
That produces an upper bound on the system occupancy
for all possible orderings. Suppose instead that all

Figure 2. (Color online) An Example of a Periodic Queueing System with d = 5 and n = 4

Notes. The vertical line is placed at discrete time period (DTP) nd = 20. Area A corresponds to CQ(4) in (18), whereas Area A ∪ B corresponds to
CL(4) in (18).
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departures occur before all arrivals at each time and that
we count the number in the system after the departures
but before the arrivals. That obviously produces a lower
bound. The consequence of any other orderingwill fall in
between these two.

For a discrete time system, the order may be given, but
many applications start with a continuous time system. In
that case, themodeler can choosewhich ordering to use in
the discrete time version.We have chosen the conservative
upper bound. In this section, we derive an expression for
the alternative lower bound and the difference between
the upper bound and the lower bound. From that dif-
ference, we can see that the difference between an initial
continuous time system and a discrete time “approxi-
mation” will become asymptotically negligible as we re-
fine the discrete time version by increasing the number of
discrete time points within a fixed continuous time cycle.

For the alternative departure first (lower-bound)
ordering, let QL

i be the number of customers in the
system at time i, and let

Q̄
L
k (n)≡

1
n

∑n
m�1

QL
k+(m−1)d. (22)

Assume that we keep the meaning of Xi,j and Yi,j .

Proposition 2 (The Lower-Bound Occupancy). Under the
conditions of Theorem 1, Q̄

L
k (n) converges w.p.1 as n → ∞

to a limit that we call LLk , and we have

LLk � Lk − δk − 2λk + λk f k,0 ≤ Lk for 0≤ k≤ d − 1,
(23)

where Lk is in Theorem 1, λk is in (A1), and δk and fk,0 are
the same as in Corollary 2.

Proof. For the new departures first ordering, the number
of customers at time i is

QL
i � ∑i

j�1
Yi−j,j+1 − Yi,0 �

∑i

j�1
Yi−j,j −

∑i

j�1
Xi−j,j − Yi,0

� ∑i

j�0
Yi−j,j −

∑i

j�0
Xi−j,j − 2Ai + Xi,0

� Qi −Di − 2Ai + Xi,0,

(24)

where we regard the summation as 0 if the lower
bound is larger than the upper bound. By Equations
(22) and (24), we have

Q̄
L
k (n) �

1
n

∑n
m�1

QL
k+(m−1)d

� 1
n

∑n
m�1

(Qk+(m−1)d −Dk+(m−1)d − 2Ak+(m−1)d

+ Xk+(m−1)d,0)
� Q̄k(n) − δ̄k(n) − 2λ̄k(n)+ (Ȳk,0(n) − Ȳk,1(n)).

(25)

Next, observe that (A1) and (A2) imply that limn→∞ Ȳk,j(n) �
λkFc

k,j, so that

lim
n→∞Q̄

L
k (n) � Lk − δk − 2λk + λk (Fc

k,0 − Fc
k,1)

� Lk − δk − 2λk + λk f k,0. □ (26)

We can apply Proposition 2 to deduce that the error
in an incorrect ordering of events is asymptotically
negligible if we start with a continuous time system
and choose sufficiently short time periods. For the
arrival process A(t), we assume that

t−1A(t)→Λ(t) as t→∞, (27)

where

Λ(t) �
∫ t

0
λ(u) du and 0<λU ≤λ(u) ≤λU <∞

(28)

for all nonnegative u and t, with λ being a periodic
functionwith period c.Wemake a similar assumption for
the departure process D(t) with the limiting rate be-
ing δ(t).

Corollary 3 (From Continuous to Discrete Time). Suppose
that we start with a continuous time periodic system with
period c and construct a discrete time system by considering
d evenly spaced time intervals within each periodic cycle. If the
arrival and departure processes satisfy (27) and (28) and if
the conditions of Theorem 1 hold for each d, then the error in
the discrete time approximation owing to the order of events
at each time point goes to zero as d → ∞.

Proof. From (23), we know that 0≤Lk −LLk � δk+2λk−
λk f k,0. Hence, if we consider a sequence of systems
indexed by d, then the condition implies thatλd,k→ 0 and
δd,k → 0 as d → ∞. □

We can use Corollary 3 to define what we mean
by a continuous time sample path PLL. We also exploit
basic properties of Riemann integrals (section 6 of
Rudin 1976).

Definition 1 (Continuous TimeSample Path PLL). Consider
a continuous time system with arrival process having a
periodic arrival rate and satisfying (27) and (28). A
continuous time sample path PLL holds, yielding re-
lation (2) if
(i) the discrete time PLL holds for each d when we

form d time periods within each periodic cycle, and
(ii) the sequence of discrete time PLLs in (1) can be

regarded as converging Riemann sum approximations
for the continuous time relation in (2).

3. Steady-State Stochastic Versions of
the PLL

We now discuss stochastic analogs of Theorem 1. In
Section 3.1, we define a stationary framework in
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continuous time. In Section 3.2, we derive a steady-state
stochastic PLL by applyingTheorem 1. In Section 3.3, we
establish a version of PLL for theGt ∕GIt ∕∞ time-varying
infinite server model proposed in Whitt and Zhang
(2017). In Section 3.4, we conduct additional analysis
of the ED data to provide additional support for the
stochastic model proposed in Whitt and Zhang (2017),
despite the negligible support provided by Figure 1.
Finally, in Section 3.5, we establish a continuous time
stochastic PLL, which primarily follows from Rolski
(1989) and Fralix and Riano (2010).

For this initial version, we aim for simplicity. Thus,
we assume that the basic stochastic process is both
stationary and ergodic, so that steady state means
coincide with long-run averages. The main idea is that
we now interpret the key quantities Lk and λk appearing
in (1) as appropriate expected values of random vari-
ables associated with the system in periodic steady
state. As we see it, there are two main issues:
(i) What is meant by periodic steady state?
(ii) What is Fc

k,j, or equivalently, what is the prob-
ability distribution of the LoS of an arbitrary arrival in
period k?

3.1. Periodic Steady State
To construct periodic steady state, we assume that the
basic stochastic process Yn:n ∈Z}{ with

Yn ≡ {Ynd+k,j : 0≤ k≤ d − 1; j≥ 0} (29)

introduced in Section 2.1 is a stationary sequence of
nonnegative random elements indexed by the in-
teger n. For each integer n, the random element Yn

takes values in the space (Zd)∞ ≡ Zd ×Zd ×⋯ (chapter 6
of Breiman 1968, Baccelli and Bremaud 1994, and
Sigman 1995 have background on stationary processes
and their application to queues). Just as for the time-
varying LL, as discussed in Fralix and Riano (2010), it is
important to apply the Palm transformation, but we
avoid that issue by exploiting the established limits for
the averages.

Without loss of generality, we now regard our sto-
chastic processes as stationary processes on the integers
Z, negative as well as positive (proposition 6.5 of Breiman
1968). As usual, we mean strictly stationary; that is, the
finite-dimensional distributions are independent of
time shifts, which in turn, means that, for each k and
each k-tuple (n1, . . . ,nk) of integers in Z,

(Yn1, . . . , Ynk) �d (Yn1+m, . . . , Ynk+m) for all m ∈Z,
with �d denoting equality in distribution.

As a consequence of the stationarity assumed for
{Yn :n ∈Z}, we also have stationarity for the associated
stochastic process {(And+k,Qnd+k) :n ∈Z}, where And+k is
the number of arrivals at time nd + k and Qnd+k is the
number of customers in the system at time nd + k, both

of which are defined in Section 2.1, but now, we have
stationarity on all integers, negative as well as positive.
Thus, we have

And+k ≡ Ynd+k,0 and Qnd+k ≡
∑∞
j�0

Ynd+k−j,j.

Hence, with some abuse of notation, we let ({Yk,j : j ≥ 0},
Ak,Qk) be a stationary random element. In this stochastic
setting, we have

λk ≡ E[Ak] � E[Yk,0] and

Lk ≡ E[Qk] �
∑∞
j�0

E[Yk−j,j]. (30)

3.2. The Stochastic PLL
We now come to the second issue. In the stochastic
setting, it remains to define Fc

k,j ≡ P(Wk > j), whereWk is
the time in the system for an arbitrary arrival in period k.
It is natural to define Fc

k,j by requiring that it agrees with
the limit of the averages F̄c

k,j(n) in (3). That limit is well
defined if we assume that the basic sequence is ergodic
as well as stationary, with 0 < E[Yk,0] < ∞ for all k.
With the stationary framework on all of the integers,

positive and negative, the stochastic PLL becomes very
elementary, because there are no edge effects.

Theorem 3 (Stochastic PLL). Suppose that {Yn :n∈Z}
in (29) is stationary and ergodic with 0 < λk ≡ E[Yk,0] <∞,
0 ≤ k ≤ d − 1. Then, for each k, 0 ≤ k ≤ d − 1, j ≥ 0,

F̄c
k,j(n)→ Fc

k,j ≡
E[Yk,j]
E[Yk,0] w.p.1 asn→∞, (31)

and

Lk ≡ E[Qk] �
∑∞
j�0

λk−j Fc
k−j,j. (32)

Proof. First, the stationary and ergodic condition with
the specified moment assumptions implies that

Ȳk,j(n)→ E[Yk,j] � λkFc
k,j as n→∞ w.p.1

for all k and j in view of (3), (30), and the definition of
Fc
k,j in (31). Then, (31) follows immediately by conti-

nuity under the division operation by a quantity with
a strictly positive limit. If we multiply and divide by λk

within the representation for E[Qk] in (30), then we
see that

E[Qk] �
∑∞
j�0

E[Yk−j,j] �
∑∞
j�0

λk
E[Yk−j,j]

λk
�∑∞

j�0
λkFc

k−j,j. □

In closing this section, we remark that the distribu-
tion Fk,j can be seen to be correspond to an underlying
Palm measure, but we do not develop that framework
here (Sigman and Whitt 2018).
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3.3. The Discrete-Time Periodic Gt /GIt /∞ Model
The candidate model for the ED proposed in Whitt
and Zhang (2017) was a special case of the periodic
Gt/GIt/∞ infinite server model, in which the LoS
variables are mutually independent and independent
of the arrival process, with a ccdf Fc

k,j ≡ P(Wk ≥ j) for
a steady-state LoS in time period k that depends only
on the time period kwithin the periodic cycle (a week).
This strong local condition provides a sufficient condi-
tion for the steady-state stochastic PLL. That can be seen
from the following proposition.

Proposition 3 (The Gt / GIt /∞ Special Case). For the
stationary Gt / GIt /∞ infinite server model specified above,
where Y ≡ {Yn :n ∈Z} in (29) is strictly stationary with
finite mean values, then

E[Yk,j] � Fc
k,jE[Yk,0],

consistent with Equation (31).

Proof. Let {Wk,i : i≥ 1} be a sequence of independent and
identically distributed LoS variables associated with
arrivals in time period k that is also independent of the
arrival process and the other LoS variables. Under those
conditions,

E[Yk,j] �
∑∞
m�1

∑m
i�1

P(Wk,i > j)P(Ak � m)

� ∑∞
m�1

mFc
k,jP(Ak � m) � Fc

k,jE[Ak]
� Fc

k,jE[Yk,0]. □

3.4. Additional Statistical Tests of the Infinite-
Server Model

We now report results directly testing the GIt as-
sumption in the stochastic model proposed in Whitt
and Zhang (2017). We briefly review the data analysis
in the e-companion here.

Now, we first test whether the LoS distribution in
period k can be regarded as being independent of the
number of arrivals in period k. To be specific, letA(m)

k be
the number of arrivals in hour k of weekm, where in our
ED case, 1 ≤ k ≤ 7 × 24 = 168 andm is from 1 to 25. Also,
letW(i)

k be the average LoS of arrivals in hour k of week
m. For each k, we compute the estimated (sample)
Pearson correlation coefficients of A(i)

k and W(m)
k using

samples where A(m)
k > 0 (p. 169 of Casella and Berger

2002 has background). The plot at the top of Figure 3
shows the correlation coefficients (rk) of all 168 hours in
a week, where (if A(m)

k > 0 for all m)

rk �
∑25

m�1(A(m)
k − Āk)(W(m)

k − W̄k)�����������������������∑25
m�1(A(m)

k − Āk)2
√ �������������������������∑25

m�1(W(m)
k − W̄k)2

√ ,

where Āk ≡ (1/25)∑25
i�1A

(m)
k and W̄k ≡ (1/25)∑25

i�1W
(m)
k .

For anym, such thatA(m)
k � 0, we remove those terms in

the summation and the average correspondingly.

The middle left plot of Figure 3 compares the quantile
of the coefficients with the normal distribution, and it
indicates that the distribution of the 168 correlation co-
efficients is approximately normal, with sample mean
0.056 and sample standard error 0.21. It shows that there
is no significant evidence indicating that the LoS dis-
tribution is related to the number of arrivals within
each hour. The middle right plot of Figure 3 is a scatter
plot of (A(m)

36 ,W(m)
36 ) (i.e., at noon on Monday, excluding

samples with no arrivals), and the solid line is the mean
of W(m)

36 with the same number of arrivals. Finally, the
bottom plot of Figure 3 shows the number of hours
with no arrival for each hour in a week (i.e., the number
of i, such that A(m)

k � 0 for k = 1, 2, . . ., 7 × 24 = 168).
In summary, the statistical results in this section

provide additional support for the stochastic model of
the ED proposed in Whitt and Zhang (2017). In the
e-companion to this paper, we review the data analysis
in Whitt and Zhang (2017) and show the results of our
studies that give evidence that the ED data are consistent
with the conditions of Theorem 1 and Proposition 3.

3.5. Exploiting the Palm Theory in Continuous Time
Finally, we observe that the Palm theory in Rolski (1989)
and Fralix and Riano (2010) also provides a general
steady-state stochastic PLL in the conventional con-
tinuous time setting. For this steady-state stochastic re-
sult, we now assume that the arrival process is a simple
point process (arrivals occur one a time) on the entire real
line with a well-defined arrival rate λ(t) at time t. This
was satisfied in the ED, because the arrival times actually
have very detailed time stamps.
Thus, letting N(t) − N(s) be the number of arrivals in

the interval [s, t], we assume that

E[N(t)] − E[N(s)] �
∫ t

s
λ(s) ds, (33)

where the arrival rate function λ(t) is a periodic function
with periodic cycle length c, which is also right con-
tinuous with left limits.
As in section 2 of Fralix and Riano (2010), we letW( t)

be the waiting time of the last arrival before time t. That
convention yields a well-defined waiting time pro-
cess {W(t) : t∈R}.
As a continuous time analog of the periodic statio-

narity assumed in Section 3.1, we assume that the queue
length (number in system) process Q ≡ {Q(t) : t∈R} has
a distribution that is invariant under time shifts by c. The
arrival process is included by the upward jumps on Q.
As a consequence of this c stationarity, the set of Palm
measures {Ns :s∈R} associated with the arrival process
N is periodic with period c. The mean queue length is
expressed in terms of the tail probabilities

Fc
t,x ≡ Pt(W(t)> x) (34)
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Figure 3. Statistical Tests of the Infinite-Server Model

Notes. (Top) Estimated linear correlation between the number of arrivals and the mean LoS for each hour of a week. (Middle left) The Q−Q
(quantile) plot of the correlation coefficients compared with a Gaussian distribution. (Middle right) An example of the relationship between the
number of arrivals and the mean LoS at noon on Monday; the solid line is the average for each column of points. (Bottom) The number of hours
with no arrival for each hour in a week.
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under the Palm measures Pt, which are periodic with
period c.

Then, paralleling the remark after theorem 3.1 of
Fralix and Riano (2010), theorem 3.1 of Fralix and Riano
(2010) implies the following continuous analog of (1),
which was already given for the Mt ∕ GI ∕ 1 special case
in Rolski (1989).

Theorem 4 (Continuous Time PLL Following from Rolski
1989 andFralix andRiano 2010). Under the conditions above,

E[Q(t)] �
∫ ∞

0
Fc
t−s,sλ(t − s) ds,

where Fc
t−s,s is defined in (34).

4. Proofs
We now provide the postponed proofs of Lemma 1,
Theorems 1 and 2, and Corollary 1. Here, all of the
limits are in the sense of almost sure convergence.
Hence, we can focus on one sample pathwhere all of the
limits exist.

4.1. Proof of Lemma 1

Proof. Wewill show that, under assumptions (A1), (A2),
and (A3) in (4), we have limn→∞λ̄k+ld(n), limn→∞ F̄c

k+ld,j(n),
and lim

n→∞W̄k+ld(n) exist for all 0 ≤ k ≤ d − 1, l ≥ 0, j ≥ 0 and

lim
n→∞λ̄k+ld(n) ≡ λk+ld � λk,

lim
n→∞F̄

c
k+ld,j(n) ≡ Fc

k+ld,j � Fc
k,j, and

lim
n→∞W̄k+ld(n) ≡ Wk+ld � Wk, (35)

where λk, Fc
k,j, and Wk are the same constants as in (4).

By the definition of λk,

λk � lim
n→∞λ̄k(n) � lim

n→∞
1
n

∑n
m�1

Ak+(m−1)d

� lim
n→∞

1
n

(
Ak +

∑n−1
m�1

A(k+d)+(m−1)d

)
� lim

n→∞
n − 1
n

1
n − 1

∑n−1
m�1

A(k+d)+(m−1)d

� λk+d. (36)

Next, by (3), we have Ȳk,j(n) � λ̄k(n)F̄c
k,j(n). By as-

sumptions (A1), (A2), and (A3) in (4), we know that
limn→∞ Ȳk,j(n) � λkFc

k,j exists for all 0≤ k≤ d− 1 and j≥ 0.
Using the same argument as for λk, we know that
limn→∞ Ȳk+d,j(n) � limn→∞ Ȳk,j(n) for all 0 ≤ k ≤ d − 1, j ≥
0. Then,

Fc
k+d,j � lim

n→∞F̄
c
k+d,j(n) �

lim
n→∞Ȳk+d,j(n)
lim
n→∞λ̄k+d(n) � λkFc

k,j

λk
� Fc

k,j

for all 0≤ k≤ d − 1, j≥ 0. (37)

Similarly, for Wk+d, we have

Wk+d �
∑∞
j�0

Fc
k+d,j �

∑∞
j�0

Fc
k,j � Wk for all 0≤ k≤ d − 1.

(38)
By induction, we proved (35).

4.2. Proofs of Theorems 1 and 2

Proof. The proof is done in two steps. In Step 1, we
show that limn→∞L̄k(n) � ∑∞

j�0λk−j Fc
k−j,j for k = 0,

1, . . ., d − 1, and then, in Step 2, we show that

L ≡ limn→∞Q̄k(n) � limn→∞L̄k(n), thus completing Proof
of Theorem 1 and Proof of Theorem 2 together.

Step 1. Given a fixed � > 0, by assumption (A1), there
exists N1, such that, for any n > N1, we have sup 0≤k≤d−1
|λ̄k(n) − λk | < ε. Given assumption (A2), by the series
form of Scheffé’s lemma (p. 215 of Billingsley
1995), we know that assumption (A3) is equiva-
lent to

lim
n→∞

∑∞
j�0

| F̄c
k,j(n) − Fc

k,j | � 0. (39)

Therefore, there exists N2, such that, for any n > N2,
we have sup 0≤k≤d−1

∑∞
j�0 | F̄

c
k,j(n) − F̄c

k,j | < ε. Let N3 =
max{N1, N2}; then, when n > N3,

|L̄k(n) −
∑∞
j�0

λk−j Fc
k−j,j |

�
∣∣∣∣∣∑ki�0 λ̄i(n)

∑∞
l�0

F̄c
i,k−i+ld(n) +

∑d−1
i�k+1

λ̄i(n)
∑∞
l�1

F̄c
i,k−i+ld(n)

−∑k
i�0

λi
∑∞
l�0

Fc
i,k−i+ld −

∑d−1
i�k+1

λi
∑∞
l�1

Fc
i,k−i+ld

∣∣∣∣∣
�
∣∣∣∣∣∑kj�0 λ̄k−j(n)F̄c

k−j,j(n) +
∑∞
m�1

∑d
j�1

λ̄d−j(n)F̄c
d−j,(m−1)d+j+k(n)

−∑k
j�0

λk−j Fc
k−j,j −

∑∞
m�1

∑d
j�1

λd−j Fc
d−j,(m−1)d+j+k

∣∣∣∣∣
≤
∣∣∣∣∣∑kj�0 λk−j F̄c

k−j,j(n) +
∑∞
m�1

∑d
j�1

λd−j F̄c
d−j,(m−1)d+j+k(n)

− ∑k
j�0

λk−j Fc
k−j,j −

∑∞
m�1

∑d
j�1

λd−j Fc
d−j,(m−1)d+j+k

∣∣∣∣∣
+ ε

∑k
j�0

F̄c
k−j,j(n) +

∑∞
m�1

∑d
j�1

F̄c
d−j,(m−1)d+j+k(n)

( )
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≤
(
max

0≤k≤d−1
λk

) ∑k
j�0

| F̄
c
k−j,j(n) − F̄

c
k−j,j |

(

+∑∞
m�1

∑d
j�1

| F̄c
d−j,(m−1)d+j+k(n) − Fc

d−j,(m−1)d+j+k |

)

+ ε
∑k
j�0

F̄c
k−j,j(n) +

∑∞
m�1

∑d
j�1

F̄c
d−j,(m−1)d+j+k(n)

( )

≤
(
max

0≤k≤d−1
λk

)
dε + εd

(
max

0≤k≤d−1
Wk + ε

)
. (40)

Hence, limn→∞ |L̄k(n) −∑∞
j�0λk−j Fc

k−j,j | � 0 for all 0 ≤ k ≤
d − 1.

Step 2. Next, we show that Lk ≡ limn→∞Q̄k(n) �
limn→∞L̄k(n). To do so, actually, we will prove that

Ē(n) ≡ ∑d−1
k�0

Ēk(n) ≡
∑d−1
k�0

|L̄k(n) − Q̄k(n)|→ 0 as n→∞.

(41)

We further divide this step into two substeps. In the
first substep, we compute the expression of �E(n), and
then, in the second substep, we show that it goes to zero
as n goes to infinity.

Step 2.1. By some transformation, we know that

Q̄k(n)≡ 1
n

∑n
m�1

Qk+(m−1)d � 1
n

∑n
m�1

∑k+(m−1)d

j�0
Yk+(m−1)d−j,j

( )

� 1
n

∑n
m�1

∑k
j�0

Yk−j+(m−1)d,j + 1
n

∑n
m�2

∑k+(m−1)d

j�k+1
Yk−j+(m−1)d,j

� 1
n

∑n
m�1

∑k
j�0

Yk−j+(m−1)d,j + 1
n

∑n−1
m�1

∑md

j�1
Yd−j+(m−1)d,j+k

� 1
n

∑n
m�1

∑k
j�0

Yk−j+(m−1)d,j + 1
n

∑n−1
m�1

∑d
j�1

Yd−j+(m−1)d,j+k

+ 1
n

∑n−2
m�1

∑md

j�1
Yd−j+(m−1)d,j+k+d

� 1
n

∑n
m�1

∑k
j�0

Yk−j+(m−1)d,j

+ 1
n

∑n−1
s�1

∑n−s
m�1

∑d
j�1

Yd−j+(m−1)d,j+k+(s−1)d

and

L̄k(n) �
∑k
j�0

Ȳk−j,j(n) +
∑∞
s�1

∑d
j�1

Ȳd−j,j+k+(s−1)d(n)

� 1
n

∑n
m�1

∑k
j�0

Yk−j+(m−1)d,j

+ 1
n

∑∞
s�1

∑n
m�1

∑d
j�1

Yd−j+(m−1)d,j+k+(s−1)d. (42)

We may now study the absolute difference between
L̄k(n) and Q̄k(n). Here,

Ēk(n) ≡ |L̄k(n) − Q̄k(n)|
� 1
n

∑n−1
s�1

∑n
m�n−s+1

∑d
j�1

Yd−j+(m−1)d,j+k+(s−1)d

+ 1
n

∑∞
s�n

∑n
m�1

∑d
j�1

Yd−j+(m−1)d,j+k+(s−1)d

� 1
n

∑n
m�1

∑d
j�1

∑∞
s�n−m+1

Yd−j+(m−1)d,j+k+(s−1)d, (43)

and summing over k = 0, 1, . . ., d − 1 further gives

Ē(n) ≡∑d−1
k�0

Ēk(n) �
∑d−1
k�0

1
n

∑n
m�1

∑d
j�1

∑∞
s�n−m+1

Yd−j+(m−1)d,j+k+(s−1)d

� 1
n

∑n
m�1

∑d
j�1

∑∞
s�(n−m)d

Yd−j+(m−1)d,j+s. (44)

Step 2.2. Now it suffices to show that �E(n)→ 0 as n→∞.
For that purpose, let N1, N2, and N3 be the same as in
the beginning of the proof, depending on given �.
Then, when n > N3, we have

∣∣∣∣∣∑∞j�0 Ȳk,j(n) −
∑∞
j�0

λkFc
k,j

∣∣∣∣∣ �
∣∣∣∣∣∑∞j�0 λ̄k(n)F̄c

k,j(n) −
∑∞
j�0

λkFc
k,j

∣∣∣∣∣
≤
∣∣∣∣∣∑∞j�0 λk F̄c

k,j(n) −
∑∞
j�0

λkFc
k,j

∣∣∣∣∣
+ ε

∑∞
j�0

F̄c
k,j(n)

≤λk
∑∞
j�0

| F̄c
k,j(n) − Fc

k,j |+ ε(Wk + ε)
≤λkε + ε(Wk + ε). (45)

Assumptions (A1) and (A2) indicate that
limn→∞ Ȳk,j(n) � λkFc

k,j. Again, by Scheffé’s lemma,
(45) is equivalent to

lim
n→∞

∑∞
j�0

| Ȳk,j(n) − λkFc
k,j | � 0. (46)

For any � > 0, because
∑∞

j�0λkFc
k,j converges for

each k = 0, 1, . . ., d − 1, we know that there exists J,
such that

∑d−1
k�0

∑∞
j�J

λkFc
k,j < ε.
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Let N4 ≡ dJ/de, where dxe means the smallest integer
greater than x; then, when n ≥ N4, we have nd > J. By
(46), there exists N5, such that, when n > N5,∑d−1

k�0

∑∞
j�0

| Ȳk,j(n) − λkFc
k,j | < ε.

Also, let N6 ≡ max{N4, N5}; then, when n ≥ N6,∑d−1
k�0

∑∞
j�N6d

Ȳk,j(n) ≤ 2ε. (47)

Additionally, let N7 ≡ dN6/�e; then, when n > N7, we
have (n −N6)/n> 1 − �. Finally, when n>max{N7, 2N6},

Ē(n) � 1
n

∑n
m�1

∑d
j�1

∑∞
s�(n−m)d

Yd−j+(m−1)d,j+s

� ∑d
j�1

1
n

∑n−N6

m�1

∑∞
s�(n−m)d

Yd−j+(m−1)d,j+s

+∑d
j�1

1
n

∑n
m�n−N6+1

∑∞
s�(n−m)d

Yd−j+(m−1)d,j+s

≤∑d
j�1

1
n

∑n−N6

m�1

∑∞
s�N6d

Yd−j+(m−1)d,j+s

+∑d
j�1

1
n

∑n
m�n−N6+1

∑∞
s�0

Yd−j+(m−1)d,s

≤∑d
j�1

1
n

∑n
m�1

∑∞
s�N6d

Yd−j+(m−1)d,j+s

+∑d
j�1

1
n

∑n
m�n−N6+1

∑∞
s�0

Yd−j+(m−1)d,s

� ∑d
j�1

∑∞
s�N6d

Ȳd−j,j+s(n)

+∑d
j�1

∑∞
s�0

(
Ȳd−j,s(n) − n −N6

n
Ȳd−j,s(n −N6)

)
≤ 2ε + 2ε + ε

(∑d−1
k�0

∑∞
j�0

λkFc
k,j + ε

)
. (48)

The inequality in the third line is just relaxing the index
s, the next inequality is relaxing the indexm for the first
term, and the last inequality is given by the definition
of N6 and N7, where the first term is bounded by 2�
by using (47) and the second term is bounded by∑d

j�1

∑∞
s�0

(
Ȳd−j,s(n) − n −N6

n
Ȳd−j,s(n −N6)

)
≤∑d

j�1

∑∞
s�0

(Ȳd−j,s(n) − (1 − ε)Ȳd−j,s(n −N6))

�∑d
j�1

∑∞
s�0

(Ȳd−j,s(n) − Ȳd−j,s(n −N6)) + εȲd−j,s(n −N6)

≤ 2ε + ε

(∑d−1
k�0

∑∞
j�0

λkFc
k,j + ε

)
. (49)

Therefore, we have proved that Lk ≡ limn→∞Q̄k(n) �
limn→∞L̄k(n), which completes Proof of Theorem 1 and
Proof of Theorem 2.

4.3. Proof of the Second Half of Corollary 1

Proof. Here, we give the second half of Proof of
Corollary 1 (i.e., the explicit bound in (11)).
From Equation (43), we know that

Ēk(n) � 1
n

∑n
m�1

∑d
j�1

∑∞
s�n−m+1

Yd−j+(m−1)d,j+k+(s−1)d.

By the condition,we know thatYi,j= 0 for i≥ 0 and j≥ dmu.
Hence, when n ≥ mu,

Ēk(n) � 1
n

∑d
j�1

∑n
m�n−mu

∑mu+1

s�n−m+1
Yd−j+(m−1)d,j+k+(s−1)d

≤ 1
n

∑d
j�1

∑n
m�n−mu

∑mu+1

s�n−m+1
Ad−j+(m−1)d

≤ 1
n

∑d
j�1

∑n
m�n−mu

∑mu+1

s�n−m+1
λu

� 1
n
λud

(mu + 1)(mu + 2)
2

≤λud(mu + 2)2
2n

. (50)

Therefore, we have proved Corollary 1.

5. Conclusions
In Sections 2 and 3, we have established sample path
and stationary versions of a PLL; we think that they can
add insight into the performance of periodic stochastic
models, which are natural for many service systems. In
particular, these new theorems explain the extraordi-
nary model fit that we found in our data analysis of an
ED in Whitt and Zhang (2017), which is shown in
Figure 1. Nevertheless, in Section 3.4, we present ad-
ditional evidence supporting the infinite server model
proposed in Whitt and Zhang (2017).
There are many directions for future research. We

ourselves have already established a central limit
theorem (CLT) version of the PLL in Whitt and Zhang
(2019), which parallels the CLT versions of LL in
Glynn and Whitt (1986, 1987, 1988) and Whitt (2012);
these have important statistical applications as in
Glynn and Whitt (1989b) and Kim and Whitt (2013).
Related to Section 3, there should be more related

good theory to develop associated with discrete time
and periodic Palm measures and their application to
queues, supplementing Whitt (1983), Miyazawa and
Takahashi (1992), section 1.7.4 of Baccelli and Bremaud
(1994), and section 1.4 and appendixD of Sigman (1995).
Indeed, a contribution is in Sigman and Whitt (2018).
As noted in Glynn and Whitt (1989a), Whitt (1991),

and El-Taha and Stidham (1999), there are many
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important generalizations of LL, such as the relation
H = λG. It remains to establish such results in a periodic
setting (Sigman and Whitt 2018).
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