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A recent robust queueing approximation for open queueing networks exploits partial characterizations
of each arrival process by its rate and index of dispersion for counts (IDC), which is a scaled version of
the variance-time curve. Even though only means and variances (as functions of time) are involved, we
show that the IDC provides a basis for more accurate approximations than traditional two-moment partial
characterizations. For the GI/GI /1 queue, this approach applied to the arrival and service processes fully
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1. Introduction

The purpose of this paper is to describe the advantages of a
new non-parametric method for approximating steady-state per-
formance measures in queueing models. The main idea is to ap-
proximately characterize each arrival counting process by its rate
and index of dispersion for counts (IDC) instead of a few parameters,
such as the first two moments. The IDC is a scaled version of the
variance-time function. In particular if A(t) is an arrival counting
process, assumed to be stationary with rate A, then as in section 4.5
of [7], the IDC is

Var(A(t))  Var(A(t))
I(t) = =

E[A(t)] At
where = denotes equality by definition. The IDC is independent of
the rate, showing how the variability evolves over time.

It is important that the IDCs be available for each model count-
ing process. First, they can be estimated from simulation output
or from the large data sets that are becoming common for appli-
cations. For many stochastic models, closed-form expressions are
available, as we illustrate in (20) in Section 5 here. They often can
be accurately and rapidly computed. For a renewal arrival process
specified by an interarrival-time cdf F having a probability density
function f with Laplace transform (LT)

f(s) = c(f)is) = f e SUf(t)dt = f e StdF(t), 2)
0 0

, t>0, (1
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its IDC is readily computed by numerical inversion of the LT of the
associated variance function, as we indicate here in Section 2.

The biggest challenge is using this complex partial specification
of a queueing model to generate effective approximations for per-
formance measures. While the main idea is quite general, much
depends on the context. We have extended the robust queueing
(RQ) in [2] to include IDCs in [24] and applied it to approximate
the mean steady-state workload in a G/GI/1 queue, with general
arrival process specified by its rate and IDC. We subsequently
have shown that this approach can be extended to yield useful
steady-state performance approximations for generalized Jackson
queueing networks (GJQNs).

A GJQN can be viewed as an open network generalization of
the GI/GI/1 queue. A GJQN has Markovian routing of a single
class of customers through single-server queues with unlimited
waiting space and the first-come first-served service discipline.
There are mutually independent renewal external arrival processes
and sequences of independent and identically distributed (i.i.d.)
service times, where each interarrival time and service time has a
general cumulative distribution function (cdf) with finite first two
moments.

Previous approximations for the steady-state performance
measures (assuming stability) primarily depend on each
interarrival-time and service-time cdf only through its first two
moments or, equivalently, its mean and squared coefficient of
variation (scv, variance divided by the square of the mean). The
two-parameter approach is applied in parametric-decomposition
approximations such as the Queueing Network Analyzer (QNA)
[18] and the first Robust Queueing Network Analyzer (RQNA)[2] as
well as in the QNET [12] and sequential bottleneck decomposition
(SBD) [8] approximations based on multidimensional reflected
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Brownian motion (RBM) stemming from the heavy-traffic limit
established in[14].In[20,21,23,24] we use IDCs with RQ to obtain a
new RQNA and show that it is effective in simulation experiments.

In this paper we expose the advantage of using the rate and
the index of dispersion for counts (IDC) of each arrival counting
process instead of the first two moments. Unlike the papers [20,
21,23,24] which develop the new RQNA based on IDCs and con-
duct simulation experiments to demonstrate its effectiveness, our
purpose here is to show that the new partial characterization (i)
contains much more information about the model than traditional
two-parameter characterizations and (ii) that the extra information
can have a significant impact upon performance. Our new RQNA
shows that this additional model information can be used, but
that does not directly (without experimental evidence) imply that
RQNA is necessarily effective. When RQNA falls short, we now see
that the IDCs provide room for improvement.

To meet our goal, we consider different models with the same
two-moment parameters, so that the previous approximations
necessarily give the same answer, but the IDC captures important
differences. While the IDC is indeed just a normalized variance, it is
for the stationary version of the arrival process and it is a function
of time, and therefore provides much more information about the
arrival process. Here we provide strong theoretical support for
this claim for a single GI/GI/1 queue and we provide simulation
evidence for several queues in series.

Here is how this paper is organized: In Section 2 we show (i)
how to calculate the IDC of a stationary renewal process and (ii)
that a stationary renewal arrival process is fully characterized by
its rate and IDC. Thus the RQNA algorithm in [21] which uses the
rate and IDC of both the arrival and service processes has full
information about the GI/GI/1 queue. (This result follows quite
directly from existing theory.) In Section 3 we review the theory of
extremal queues in [4,5], which exposes the wide range of possible
values given the usual two-moment partial characterization. In
Section 4 we briefly review the RQ algorithm for the G/GI/1 queue
from [24] and then its extension to GJQNs. We give numerical
results for the H,/M /1 queue in Section 5 and simulation results
for queues in series in Section 6.

2. The IDC of a renewal process

We show how to calculate the IDC of a renewal process and
observe that the rate and the IDC provide a full characterization of
a renewal process and the GI/GI/1 queue. First, it is important to
note that the IDC is defined in terms of the equilibrium renewal
process instead of the ordinary renewal process; e.g, see [6] or
Sections 3.4 and 3.5 of [ 15]. Thus the IDC is independent of the rate.

We start with a rate-A renewal process N = {N(t) : t > 0}.
Let F be the cdf of the interval U between points having mean
E[U] = A~ ! and finite second moment. As a regularity condition,
we also assume that F has a probability density function (pdf) f.

The stationary or equilibrium renewal process differs from the
ordinary renewal process only by the distribution of the first in-
terarrival time. Let F, be the cdf of the equilibrium distribution,
which has pdf f,(t) = A(1 — F(t)). Note that we can construct F,
given F, but we cannot construct F given F,, but the pair (A, F) fully
characterizes F: F(t) = 1 — A7 1f,(t), t > 0.

Let E°[-] and E°[-] denote the expectations with first interval
distributed according to F, and F, respectively. Conditioning on
the first arrival, the renewal equations for the mean and second
moment of N(t), the number of points in an interval [0, t], are:

m(t) = E°[N(t)] = F(t)+/ m(t — s)dF(s),
0

m(t) = EFIN(O)] = Fult) + / m(t — s)dE(s),
0

o(t) = E°[N%(t)] = F(t) + 2/ m(t — s)dF(s)
0
+ / o(t — s)dF(x),
0
oult) = EXINY(0)] = Fu(t) + 2 / m(t — s)dF.(s)
0

+ / o(t — s)dF.(x).
0

Note that the IDC is simply I.(t) = [oo(t) — (At)?]/At and
m(t) is the familiar renewal function. To simplifying the relations
among these expressions involving convolution integrals, we use
the Laplace Transform (LT)in (2). Let a subscript e denote a quantity
associated with the equilibrium renewal process. Then the LT of f,
is
. A1 —f(s . fils
by M) | p o RO

s s
where 2~1 = [ tf(t) dt is the mean.
Applying the LT to the renewal equations, we obtain

) = —3 (L A 3)
(1 - 7)) SA—Fe)

_f) +2sim(s)f(s) _ )1 +F(s)

6(s) - < , (4)
s(1 —f(s)) S(} —f(s)?

con A 2 MT+f(s)

Oe(s) = 2 ?m S)= 572(] —f(S)) (5)

From (3), we see that E6[N(t)] = At, t > 0. From (5), we see that,
given A, we can compute I.(t) = [o,(t) — (At)?]/At by numerically
inverting the LT &.(s), e.g., as in section 13 of [1]. We are now
ready to state the basic characterization theorem, which is not new,
e.g., [6] and [7], but deserves to be better known.

Theorem 2.1. (renewal process characterization theorem) A renewal
process with an inter-renewal distribution having pdf f and cdf F
having finite first two moments with positive mean A~ is fully char-
acterized by any one of the following:

. the pdf f(t) of the time between renewals;

. the cdf F(t) of the time between renewals;

. the LT f(s);

. the renewal function m(t);

. the LT m(s);

. the rate A and the variance function of the equilibrium renewal
process o(t);

. the rate A and the LT 6.(s);

8. the rate A and the IDC I.(t) = [oo(t) — (At)*]/At of the

equilibrium renewal process.

AU WN =

~

Proof. The equivalence of the time functions and their transforms
follows from the basic theory of Laplace transforms. Hence, we
obtain the equivalence by explicit expressions in terms of the
Laplace transformes, i.e.,
A si(s) A §284(s) — A
f)= ————andf(s) = 5;° ——.

1+ sm(s) $206(S) + A
Then, from the definition of the IDC, we obtain

oe(t) = I(OA(t) + (At ),

(6)

t>0. =

Corollary 2.1. (full characterization of a GI /GI /1 queue) The GI /GI /1
queue with interarrival-time cdf F and service-time cdf G having
finite second moments is fully characterized by the four-tuple (X, I(t),
T, I§(t)), where T is the mean service time and I,(t) (I;(t)) is the IDC
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of the equilibrium renewal process associated with the interarrival
(service) times.

Corollary 2.1 is exploited strongly in the approximations for
departure processes in (16). The final formula is an approximation,
exploiting heavy-traffic limits, but Corollary 2.1 implies that the
true formula must be a function of the four-tuple (X, I,(t), T, L(t)).

3. The limitations of two moments for the GI /GI /1 queue

To show that the extra information beyond the first two mo-
ments of F and G in the GI /GI /1 queue can be important, we review
the theory of extremal queues in [4,5]; also see the references
there. It focuses on the mean steady-state waiting time, which is
related to the mean steady-state workload via (10).

For the GI/GI/1 queue partially specified by the vector (X, cg,
T, csz), a commonly used approximation for the mean steady-state
waiting time is
To(c2 +¢2)

2(1—p)
because it is exact (being the classical Pollaczek-Khintchine for-
mula) for the M/GI/1 special case, when the interarrival time
has an exponential distribution, in which case ¢2 = 1, and is
asymptotically correct in heavy-traffic,i.e., 2(1—p)E[W(p)]/Tp —
c2+cZasp — 1.

An insightful way to examine the quality of approximations for
E[W] given the parameter vector (A, Cg, T, csz) is to examine the
range of possible values, which is the interval [LB*, UB*], where LB*
is the tight lower bound (LB) and UB* is the tight upper bound (UB).
These tight bounds are studied in [5]. The most familiar UB given
(&, ¢2, T, ¢2) is the Kingman [ 13] UB,

s Cos

tp(lci/p*] +c2)
21—-p)
which is asymptotically correct in heavy traffic, just like (7). A
better UB depending is the Daley [9] UB, which replaces the term
c2/p? by (2 — p)c2/p. But even the Daley bound is not tight; a
better (not tight) UB is given in Theorem 1 of [5], while a numerical
algorithm to compute the tight UB is given in [4]. The explicit
formula for the tight LB, which has long been known, is

((1+c2)p -1t
2(1-p)

where x™ = max {x, 0}.

Tables 1 and 2 plus Tables EC.1 and EC.2 in [5] give a numerical
overview of the upper and lower bounds for E[W], given the
parameter vector (A, ¢2, T, ¢2), in the four cases for which c2 and
c2 assume all combinations of the two values 0.5 (less variable
than exponential) and 4.0 (more variable than exponential). We
illustrate by reproducing a portion of Table 1 of [5] here in Table 1.
Paralleling (14), to focus on the impact of the variability indepen-
dent of the traffic intensity p, so in Table 1 we display values
for the normalized or scaled mean waiting time c&v(p) = 2(1 —
P)E[W(p)]l/pt, which shows the impact of the total variability in
the arrival and service processes as a function of p, and assumes
the constant value cg + cs2 for the approximation in (7).

One conclusion from Table 1 is that the basic approximation in
(7) is consistent with the possible values for all p. A second con-
clusion is that the quality of approximations depends on the traffic
intensity. Consistent with [10], it is not possible to obtain reliable
approximations for E[W]in light traffic based only on (A, cg, T, 652 ).
In contrast, the heavy-traffic approximation in (7) and all the upper
bounds are asymptotically equivalent in the heavy-traffic limit for
the scaled mean waiting time 2(1— p)E[W(p)]/pt in heavy-traffic.
Even in heavy traffic, this is an iterated limit; i.e., we first fix the
interarrival-time distribution with given cg and thenwelet p 1 1.

Ew]~ ; (7)

E[W] < (8)

EW(LB)] = -2 , 9)

Table 1

A comparison of the scaled bounds and approximations for E[W], i.e., for ¢2,(p) =
2(1— p)E[W(p)]/p, given the parameter vector (A, cﬁ, T, csz) as a function of p for
the case ¢2 = ¢? = 4.0.

P Tight LB (7) Tight UB Daley Kingman (8)
0.10 0.0 8.0 76.0 80.0 404.0

0.30 1.7 8.0 234 26.6 48.4

0.50 3.0 8.0 14.0 16.0 20.0

0.70 3.6 8.0 10.4 114 12.2

0.90 3.9 8.0 8.6 8.9 9.0

0.99 4.0 8.0 8.1 8.1 8.1

However, an important conclusion from Table 1 is that the
lower bound is surprisingly low, even in heavy traffic, so that the
range of possible values consistent with the parameters is surpris-
ingly wide. That occurs because the LB is attained asymptotically
at the associated D/GI/1 queue with ¢2 = 0. That D distribution is
approached by a distribution that has a very small mass at a very
large value, and the rest of the mass just less than the mean. That
allows very small values of E[W].

The heavy-traffic limit of the lower bound is the heavy-traffic
limit for the associated D/GI/1 model, which in Table 1 would
be 4.0. The values in Table 1 are obtained by, first, fixing p and
then letting the interarrival-time distribution approach D. Table 1
implies that, for any given p, the least possible value is attained in
the corresponding D/GI /1 model. This is why the distance between
the LB and the UB remains large for all p.

While we should regard the LB as something of an anomaly,
these numerical results clearly indicate that the mean waiting time
is not so well approximated by the parameter vector (A, Cg, T, CSZ).
Moreover, the difficulty is primarily caused by the arrival process.
For example, for M/GI/1, the mean E[W] is fully determined by
(7), but for GI/M /1 there is a wide range.

In contrast, Corollary 2.1 implies that there would be no error
at all if we found the exact value E[W] determined by the rate and
the IDC of the arrival and service processes. Unfortunately, that is
not achieved by RQNA, but there is potential to do better with the
information being used. We illustrate by examples in the next two
sections.

4. Brief review of the robust queueing approximation

To show how the IDC can be used, we first focus on the GI /GI /1
queue with interarrival times U,, and service times V), distributed
as U and V, partially characterized by the parameter vector (A, ¢2,
7,¢2), where A-! = E[U], ¢ = ¢2 = Var(U)/E[U? and T =
w ' = E[V],¢? = ¢ = Var(V)/E[V]*, where p = A/p < 1to
ensure stability.

We will focus on the expected steady-state waiting time (for
each arrival until starting service) E[W] and workload (remaining
work in the system at each time) E[Z] at each queue. These are
related by the conservation law H = AG or Brumelle’s formula, [3],
which for the G/GI/1 model is

E[V?] (c2+1)

) = pE[W] + pt 2

E[Z] =A<E[WV]+ (10)
These in turn are related to the mean number in queue and in
system by Little’s law.

The main RQ approximation in [24] is for the expected steady-
state workload at each queue. It uses the index of dispersion for work
(IDW) associated with the cumulative input process Y, defined by

At)
I,(t) Var(y(t)))] and Y(t) = Z Vi, t>0. (11)
k=1

= EIV4IELY(t
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as in [11]. For the G/GI/1 model, where the arrival process is
general but independent of an i.i.d. sequence of service times, the
IDW is related to the IDC by

Iw(t):Ic(t)+C52’ t>0; (12)

see Section 4.3.1 of [24]. In both (11) and (12), the arrival process
is assumed to be stationary, just as in (1).

Given the IDW, the RQ approximation for the mean workload
as a function of the traffic intensity p when the mean service time
is fixed at T = 1 appears in (28) in section 4.1 of [24], being simply

ElZ) = EIZ,] ~ Z; = sup {—(1 — oX/p + bf\/xzw(x)} o (3)

where by is a parameter to be specified, which we take to be V2,
which we explain below. (See [22] for additional background on
the RQ approximations.)

Strong positive results for the RQ approximation in (13) with
by = V2 for the G/GI/1 queue appear in Theorems 2-5 of [24].
Theorem 2 states it is exact for the M/GI/1 queue, while Theorem
5 states that it is asymptotically correct in both light and heavy
traffic. To state it, we define the normalized or scaled (steady-
state) workload by comparing to what it would be in the associated
M/D/1 model; i.e.,

2(p) = ElZ,] _ 201 = p)EIZ,] and
E[Z,; M/D/1] 0
2(1— p)E[Z*
(p) = %p)[]. (14)

The normalizations in (14) expose the impact of variability sepa-
rately from the traffic intensity. Theorem 5 of [24] states, that

lim cZ.(p) = I,,(c0) = limcZ(p) and

P11 p11

lim c2.(p) = 1,,(0) = lim c2(p), 15
lim c; (0) (0) lim 7(0) (15)

where (12) holds with I.(co) being the scaled version of the asymp-
totic variance of the arrival process (the normalization constant in
the central limit theorem). The heavy-traffic limit in (15) implies
that RQ is asymptotically exactin a G/GI/1 with general stationary
(including non-renewal) arrival process, provided that we use the
exact IDC.

The GJQNs are substantially more complicated. Drawing on (74)
and (75) of [23], each departure IDC is approximated by a convex
combination of the arrival and service IDCs, i.e.,

lgp(8) = wp(O)a(t) + (1 — wp(E))s(t), >0, (16)
where the p-dependent weight is
w,(t) = w*(1 = p)*at/pc2) for w*(t) = 1 — (1 — c*(t))/2t, (17)

with c*(t) being the correlation function of the stationary version
of canonical (drift -1, variance 1) RBM; see (24)-(27) of [23]. The
new RQNA for GJQNs in [21] is supported by heavy-traffic limits
and simulation experiments. However, if all queues go into heavy
traffic together, then SBD in [8] reduces to QNET in [12] and only
it is asymptotically correct in heavy-traffic. On the other hand, if
there is a single bottleneck (only one queue goes into heavy traffic),
then SBD and RQNA are asymptotically correct in heavy-traffic. The
main potential advantage of RQNA is away from the heavy-traffic
regime.

5. The case of an H,/M /1 queue
For the GI/M /1 queue with interarrival-time pdf f, the steady-

state performance depends on a single root of a transform equa-
tion. In particular,

E[W] =

241
and E[Z] = pt (%+C§+ ) (18)
— 0

1—0 2

where o is the unique rootin (0, 1) of the equationf(u( 1-0))=o.

Consider an H,/M/1 queue, which is a GI/GI/1 queue with
an exponential service distribution and a hyperexponential (H;)
interarrrival-time distribution, i.e., a mixture of two exponential
distributions, which has pdf

f(t) =prie™ 1" + (1 — p)age 2,

and thus the parameter triple (p, A1, A2). Equivalently, it has as pa-
rameters its first three moments or the mean A~!, scv ¢2 and the ra-
tio between the two components of the meanr = py/A1/(p1/*1 +
D2/X2) where A1 > X,. The third parameter is often specified by
stipulating balanced means, i.e, r = 0.5, as in (37) on p. 137
on [17]. The behavior as a function of the third parameter has been
studied in [19]. As far as the congestion in the queue is concerned,
the H, arrival process can be as smooth as a Poisson process with
the same rate or as bursty as a batch Poisson process with the same
scv; see (9) in section IV of [ 19]. The consequence is illustrated for
c2 =2andc¢? = 12 inTables I and Il on p. 170 of [19].
From p. 50 of [6], the IDC is

t >0, (19)

— 221 ot
L(t)=c; yt(l e,
where 8 = (c2 — 1)/2 and y = 28((m3/3) — (c2 + 1)?/2) with m3
being the third moment, which is increasing in r. Note that I,(t) in
(20) in strictly increasing in t from 1att = 0 to cs2 att = oo.

By virtue of Theorem 2.1, the set of H, arrival processes for
given rate and scv cg are in fact fully characterized by their rate
and IDC. The range of possible behavior of these IDCs can be seen
from the IDCs of the two extremal H, arrival processes. The IDC of
the lower bound is identically 1, while the IDC of the upper bound
is identically c2. All other IDCs increase from 1 at 0 to ¢ at infinity.

Fig. 1 compares the RQ approximation for the workload via (13)
and then the waiting time via (10) with simulation estimates for
the H,/M /1 model with cg =8andr =0.1andr = 0.9. The IDW
and normalized mean workload increase from 2 to 9.

Fig. 1 shows that the RQ approximation is not nearly exact even
though the RQNA algorithm has full information about the GI/GI /1
model; there is room for improvement. For p > 0.5 (the region
of primary interest), the RQ results for r = 0.1 are remarkably
good. Fig. 1 is consistent with the heavy-traffic and light-traffic
limits for the mean workload in [24]. The poor performance for the
mean waiting time in light traffic occurs because the light-traffic
limit does not hold for it. Focusing on the third parameter r, we
see that the performance and the approximations remain closer to
the M/M/1 lower bound with r = 1forr = 0.9 thanr = 0.1.
Finally, note that the standard two-moment approximations yield
constant values independent of p in each case. Clearly no such
approximation can be effective for all p.

t>0, (20)

6. Simulation comparisons for a series of queues

We now consider simulation experiments for a series of single-
server queues. We consider the heavy-traffic bottleneck examples
from [16], which are for a non-Poisson arrival process feeding a
series of 9 single-server queues, each with an exponential service
cdf, where p; = 0.6 for 1 < i < 8, and pg = 0.9, so that the last
queue is a bottleneck queue. In particular, we compare the new
RQNA algorithm in [23] and RQ, the algorithm in (13) from [24]
with the exact estimated IDC, to the performance of QNA from [ 18],
QNET from [12] and SBD from [8]. The QNET method uses the
multi-dimensional reflected Brownian motion resulting from the
heavy-traffic limit in [ 14].

Table 2 compares five approximation methods to simulation for
9 exponential (M) queues in series fed by a highly-variable rate-1
H, renewal arrival process with cg = 8 and the usual balanced
means. Table 2 compares the various approximations of the mean
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H,(8)/M/1 single-server queue with r = 0.1

Simulation: workload
= = RQ: workload
Simulation: waiting time
= = RQ: waiting time

N~ o

Normalized mean workload/waiting time
>

0.2

0.4

0.6 0.8

Traffic intensity

Normalized mean workload/waiting time

H,(8)/M/1 single-server queue with r = 0.9

Simulation: workload ’,
= = RQ: workload /

Simulation: waiting time / /
— = RQ: waiting time / 1

0.2 0.4
Traffic intensity

0.6

0.8

103

Fig. 1. A comparison of the robust queueing approximation for the mean workload and waiting time in (10) and (13) for the H, /M /1 model with ¢2 = 8 and r = 0.1 (left)
and r = 0.9 (right) to simulation estimates.

Table 2

Table 3

A comparison of five approximation methods to simulation for the expected waiting
time E[W] at each of 9 exponential (M) queues in series with p; = 0.6, 1 <i < 8§,
and pg = 0.9 fed by a highly-variable rate-1 H, renewal arrival process with ca2 =8
and r = 0.5, i.e., the usual balanced means.

A comparison of RQNA and RQ to simulation for the expected waiting time at each
queue for the same model in Table 2 except the third parameter of the H, renewal
arrival process with cf = 8 is changed fromr = 0.5tor = 1.0,0.9 and 0.1.

r 1.0 0.9 0.1

node Sim QNA QNET SBD RQNA RQ node exact Sim RQNA RQ Sim RQNA RQ

1 3.36 4.05 4.05 4.05 3.95 3.95 1 0.90 1.16 1.13 1.13 5.69 5.84 5.83
2 2.32 2.92 1.81 1.82 1.58 2.61 2 0.90 1.16 0.95 1.12 2.46 271 2.40
3 1.96 2.19 1.47 1.49 0.98 2.04 3 0.90 1.15 091 1.11 1.98 1.28 1.83
4 1.77 1.73 1.16 1.19 0.92 1.72 4 0.90 1.14 0.90 1.10 1.76 0.97 1.56
5 1.64 143 1.07 1.10 0.90 1.53 5 0.90 1.14 0.90 1.10 1.63 0.91 141
6 1.56 1.24 1.03 1.06 0.90 1.41 6 0.90 1.13 0.90 1.09 1.54 0.90 1.31
7 1.49 1.12 1.00 1.03 0.90 1.32 7 0.90 1.13 0.90 1.08 1.48 0.90 1.24
8 1.44 1.04 0.98 1.01 0.90 1.27 8 0.90 1.12 0.90 1.08 1.42 0.90 1.20
9 29.2 8.9 6.0 36.4 29.1 37.1 9 8.10 19.6 27.2 36.5 29.6 29.3 36.3
sum 45.3 24.6 18.6 49.8 40.1 52.9 sum 15.3 28.8 33.8 45.3 47.5 43.7 53.1

steady-state waiting time at each station, as well as the total
waiting time in the system, to simulation estimates. The simulation
estimates for E[W;] and the IDC are based on a C** program and
run of length 5 x 107, discarding the initial 10° customers to
approach steady state. The half width of the confidence interval at
the final bottleneck queue was about 0.2% in every case. The QNA
approximation appears in [16]; the heavy-traffic approximations
QNET from [12] and SBD appear in [8].

Table 2 shows poor performance of QNA [ 18] at the last bottle-
neck queue originally exposed in [ 16]. It also shows the significant
improvement provided by the sequential bottleneck approxima-
tion (SBD) reported in [8], which is largely matched by RQNA and
RQ.

To illustrate the impact of additional information about the
arrival process, Table 3 is the analog of Table 2 in which we use
three alternative rate-1 H, arrival processes, all with ¢2 = 8.0 but
different r, in particular for r = 1.0, 0.9 and 0.1. The case r = 11is
the lower-bound H, renewal arrival process with the same mean
and ¢2 = 8, which is the Poisson process, for which both RQNA
and RQ are exact. For r = 0.1, the arrival process is close to a
batch Poisson process. For these cases, the QNA, QNET and SBD
approximations are the same as in Table 2.

From Tables 2 and 3, we see that the mean waiting time in-
creases as r decreases. We also see that both RQNA and RQ are
very accurate at the first H,/M/1 queue, where the arrival process
is a renewal process, but are far less reliable at later queues,
which have non-renewal arrival processes. For queues 3-8, RQNA
seriously underestimates E[W;]; since RQ does not, we include the
difficulty lies in the IDC approximation in (16) under lighter loads.
Consistent with the heavy-traffic limit in [23], RQNA performs

well at the final bottleneck queue, although RQ does not, which
is partly explained by the relevant times are those where the IDC
experiences most of its increase. RQNA also does reasonably well
predicting the sum of the waiting times.

The RQNA from [2] seems to perform far worse, as shown in
Tables 1 and 2 of [22], but it provides tuning parameters that can
yield significantimprovement given additional information. In[22]
we show that the specific version of RQNA from section 7.2 of [2]
corresponds to the asymptotic method from [17] for all the arrival
processes and the Kingman upper bound from [13] at each queue.

Finally, we observe that the casesr = 0.9andr = 0.1inTable 3
provide a rough estimate of the range of reasonable approximation
values for unspecified third parameter.

7. Conclusions

In this paper we have shown that the partial characterization
of an arrival process by its rate and IDC provides significantly
more information than the familiar two-moment partial charac-
terizations, and so can serve as a basis for improved performance
approximations. The new robust queueing approximations show
how the IDC can be used, but the examples in Sections 5 and 6 show
that there remains room for improvement.

Acknowledgment

The authors thank US NSF for research support (grant CMMI
1634133).



104

W. Whitt and W. You / Operations Research Letters 47 (2019) 99-104

References

[1] J. Abate, W. Whitt, The Fourier-series method for inverting transforms of

(2]
3]

(4]

[5]

(6]
[7]

probability distributions, Queueing Syst. 10 (1992) 5-88.

C. Bandi, D. Bertsimas, N. Youssef, Robust queueing theory, Oper. Res. 63 (3)
(2015) 676-700.

S.Brumelle, On the relation between customer averages and time averages in
queues, J. Appl. Probab. 8 (3) (1971) 508-520.

Y. Chen, W. Whitt, Algorithms for the upper bound mean waiting time in
the GI/GI/1 queue, working paper, Columbia University, 2018, Available at
http://www.columbia.edu/~ww2040/allpapers.html.

Y. Chen, W. Whitt, Extremal GI/GI/1 queues given two moments, Oper.
Res. (2018) submitted for publication, Available at http://www.columbia.edu/
~ww2040/allpapers.html.

D.R. Cox, Renewal Theory, Methuen, London, 1962.

D.R. Cox, P.A.W. Lewis, The Statistical Analysis of Series of Events, Methuen,
London, 1966.

[8] J. Dai, V. Nguyen, M.I. Reiman, Sequential bottleneck decomposition: An

[9

[10]

[11]

approximation method for generalized Jackson networks, Oper. Res. 42 (1)
(1994) 119-136.

D.J. Daley, Inequalities for moments of tails of random variables, with queue-
ing applications, Z. Wahrscheinlichkeitsetheorie Verwandte Geb. 41 (1977)
139-143.

D. Daley, T. Rolski, A light-traffic approximation for a single-server queue,
Math. Oper. Res. 9 (4) (1984) 624-628.

K.W. Fendick, W. Whitt, Measurements and approximations to describe the
offered traffic and predict the average workload in a single-server queue, Proc.
IEEE 71 (1) (1989) 171-194.

[12] J.M.Harrison, V. Nguyen, The QNET method for two-moment analysis of open

queueing networks, Queueing Syst. 6 (1) (1990) 1-32.

[13] J.F.C. Kingman, Inequalitiesfor the queue GI/G/1, Biometrika 49 (3/4) (1962)

(14]

[15]
[16]

[17]
(18]
[19]

(20]

(21]

(22]

(23]

[24]

315-324.

M.L. Reiman, Open queueing networks in heavy traffic, Math. Oper. Res. 9 (3)
(1984) 441-458.

S.M. Ross, Stochastic Processes, second ed., Wiley, New York, 1996.

S. Suresh, W. Whitt, The heavy-traffic bottleneck phenomenon in open queue-
ing networks, Oper. Res. Lett. 9 (6) (1990) 355-362.

W. Whitt, Approximating a point process by a renewal process: Two basic
methods, Oper. Res. 30 (1982) 125-147.

W. Whitt, The queueing network analyzer, Bell Lab. Tech. J. 62 (9) (1983)
2779-2815.

W. Whitt, On approximations for queues, III: Mixtures of exponential distrib-
tuoons, AT&T Bell Lab. Tech. J. 63 (1) (1984) 163-175.

W. Whitt, W. You, Heavy traffic limit for stationary network flows, working
paper, Columbia University 2018, Available at: http://www.columbia.edu/
~ww2040/allpapers.html.

W. Whitt, W. You, A robust queueing network analyzer based on indices
of dispersion, working paper, Columbia University 2018, Available at: http:
[/www.columbia.edu/~ww2040/allpapers.html.

W. Whitt, W. You, Supplement on Robust Queueing Approximations for the
GI/GI/1 Queue and Series of these Queues, Columbia University, 2018, http:
//www.columbia.edu/~ww2040/allpapers.html.

W. Whitt, W. You, Heavy-traffic limit of the GI/GI/1 stationary departure
process and its variance function, Stoch. Syst. 8 (2) (2018) 143-165.

W. Whitt, W. You, Using robust queueing to expose the impact of dependence
in single-server queues, Oper. Res. 66 (1) (2018) 184-199.


http://refhub.elsevier.com/S0167-6377(18)30333-X/sb1
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb1
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb1
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb2
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb2
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb2
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb3
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb3
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb3
http://www.columbia.edu/~ww2040/allpapers.html
http://www.columbia.edu/~ww2040/allpapers.html
http://www.columbia.edu/~ww2040/allpapers.html
http://www.columbia.edu/~ww2040/allpapers.html
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb8
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb8
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb8
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb8
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb8
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb9
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb9
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb9
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb9
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb9
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb10
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb10
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb10
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb11
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb11
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb11
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb11
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb11
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb12
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb12
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb12
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb13
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb13
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb13
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb14
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb14
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb14
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb15
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb16
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb16
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb16
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb17
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb17
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb17
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb18
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb18
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb18
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb19
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb19
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb19
http://www.columbia.edu/~ww2040/allpapers.html
http://www.columbia.edu/~ww2040/allpapers.html
http://www.columbia.edu/~ww2040/allpapers.html
http://www.columbia.edu/~ww2040/allpapers.html
http://www.columbia.edu/~ww2040/allpapers.html
http://www.columbia.edu/~ww2040/allpapers.html
http://www.columbia.edu/~ww2040/allpapers.html
http://www.columbia.edu/~ww2040/allpapers.html
http://www.columbia.edu/~ww2040/allpapers.html
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb23
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb23
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb23
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb24
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb24
http://refhub.elsevier.com/S0167-6377(18)30333-X/sb24

	The advantage of indices of dispersion in queueing approximations
	Introduction
	The IDC of a Renewal Process
	The Limitations of Two Moments for the GI/GI/1 queue
	Brief Review of the Robust Queueing Approximation
	The Case of an H2/M/1 queue
	Simulation Comparisons for a Series of Queues
	Conclusions
	Acknowledgment
	References


