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1. Introduction

There is great interest in patient flow in emergency depart-
ments (EDs) because EDs are often plagued by congestion. Even
though there have been many studies, e.g., [1-4], there remain
opportunities to develop new analysis methods. In this paper we
contribute by studying methods to forecast future daily arrival
totals and predict hourly occupancy levels by using recent history,
i.e,, given all previous arrival and departure times, and useful
exogenous variables such as holiday indicators and temperature
records. For example, the goal may be to forecast the daily total
number of arrivals tomorrow or predict the occupancy level two
hours from now.

This is an extension of our recent study [5], in which we de-
veloped an aggregate stochastic model to describe patient flow in
an emergency department (ED) based on 25 weeks of the publicly
available patient flow data from the large 1000-bed Rambam
Hospital in Haifa, Israel, from 2004-7, associated with the patient
flow analysis by Armony et al. [6]. Such a stochastic model could
be used to study operational issues, such as the optimal staffing
of doctors or nurses, by simulation or analytical approximations,
as discussed in [7,8], §4 of [9] and references therein. We did not
previously consider the problem of real-time prediction for the
ED that we consider here.
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However we did learn from the data analysis we did before.
First, as should be expected, we concluded that the model should
be time-varying. In particular, the stochastic model in [5] is
periodic, with one week serving as the cycle length. There is a
two-time-scale model of the arrival process, in which the daily
arrival totals are modeled as a Gaussian process, while the arrivals
during each day are modeled as a nonhomogeneous Poisson pro-
cess, given the estimated arrival rates. In other words, the arrival
process is modeled as a periodic doubly stochastic nonhomoge-
neous Poisson process (also known as Cox process). The length
of stay (LoS) variables of the successive arrivals were assumed to
come from a sequence of independent random variables, where
the periodic LoS distribution depends on the day of the week and
the hour of the day. In this paper, we show that our proposed
stochastic model can be very helpful for predicting the occupancy
level.

To develop and test our prediction methods, we want to have
a test set that is independent of the set we use to select and fit the
model. For this purpose, we use a larger dataset of 200 weeks and
split the data into a training set and a test set. We assess several
prediction models on the same test set. By using 200 weeks of
data instead of the 25 in [5], we identify (i) long-term trends in
both the arrival process and the length-of-stay distributions and
(ii) dependence among successive daily arrival totals, which were
undetectable before. We conclude that the previous stochastic
model may be good to study various operational questions, but
the more complex time-series model here is better for prediction.

Here we forecast daily arrival totals and predict hourly oc-
cupancy levels. There is a substantial literature on forecasting,
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both for ED’s, e.g., [10-15], and for other service systems more
generally, e.g., as in call centers [16,17]. In this paper we examine
several alternative models to forecast the daily arrival totals,
including a linear regression based on calendar and weather vari-
ables, seasonal autoregressive integrated moving average with
exogenous regressors (SARIMAX) model and the multilayer per-
ceptron (MLP) model, which is an artificial neural network ma-
chine learning method. All the models can be viewed as gener-
alizations of the two-time-scale Gaussian-NHPP model proposed
in [5]. We find that, being consistent with our analysis in [5],
the day-of-week factor explains most of the variance in the daily
arrival totals. However, the holiday indicators and daily high/low
temperatures are also significant in the regression, and will in-
crease the accuracy of our daily arrival totals prediction. To be
specific, the daily arrival totals slightly drop before and on the
holidays and are higher than usual on the days right after them,
and the local temperature has a positive relationship with the
daily arrival totals.

We also investigate how machine learning techniques can
be applied to our problems. There is great interest in advanced
neural network models, because they have been successful in
solving many challenging tasks in different areas. However, our
exploration shows that the neural network models, with only
patient arrival and departure data, do not perform as well as the
highly structured time-series SARIMAX models. With a relatively
small dataset compared to the “big data” applications, as in
social media applications, a well-structured model evidently out-
performs the extremely flexible machine learning model, which
exploits the large dataset to learn the features of the system.

Based on our daily arrival totals prediction, we propose a real-
time occupancy predictor which exploits the currently observed
occupancy level and the empirical hazard functions, given the
elapsed LoS for each patient in the system. That is a variant of
the approach suggested in §6 of [18]; see [19,20] and references
there for related work. We conclude that exploiting real-time
information can be helpful in predicting the near future status
of the system. This also illustrates how our forecasting model for
the arrival process can be useful for other operational purposes.

We stress that the data we use is available to the public at
the SEELab of the Technion, so that interested researchers can
replicate and maybe improve our results. In particular, we use
this dataset without any extra information provided by hospital
administrators. There is a record of the arrival times and LoS of
each patient that visited the ED. As discussed in [5], the departure
time is the time that an admission decision is made in the ED,
which does not include the extra “boarding” time required to
find a bed for admitted patients. We refer to [5,6] for more
information about this dataset. We preprocess the data as we did
in [5], only considering the patients that visited the emergency
internal medicine unit (EIMU), which is the majority of all the
new visits to the ED.

There is a natural question about what in our study is ap-
plicable or generalizable to other hospitals in other countries.
Generally, we think that EDs in many countries share a similar
structure, so that the data should be representative of what oc-
curs elsewhere. However, we do not advocate a direct application
of the estimated quantities here. Instead, it is our conclusions
about the forecasting and prediction methods that should be most
useful.

The paper is organized as follows: In Section 2 we review the
model framework in [5]. In Section 3 we look at the larger dataset
and relate it to our original model. In Section 4 we evaluate five
potential improvement methods for predicting the daily arrival
totals. Then in Section 5 we introduce our real-time predictor for
hourly occupancy level. Finally, in Section 6 we draw conclusions.

2. The integrated model for the ED patient flow

The model we proposed for the ED patient flow in [5] is
depicted abstractly in Fig. 1. The model has three parts: the
process generating daily arrival totals (M;), the arrival process
within each day (M,) and the length of stay (LoS) of each patient
(Ms).

In [5], after statistical analysis, we let M; be a single-factor
Gaussian model, which only depends on the day-of-week; i.e., the
daily arrival total on day t is modeled by

6
At:CO—}-Zd,‘th,-—i-e[, (1

i=0
where i from 0 to 6 represents day-of-week from Sunday to Sat-
urday, ¢ and d; are constants to be estimated, D; ; is the indicator
of day-of-week (i.e. D;; = 1 if day t is day-of-week i, and 0
otherwise) and ¢, ~ N(0, ?) is the iid. random term where
o is a constant. (We tested for a trend and for dependence, but
based on the limited data, neither was statistically significant.) By
definition, A; could be non-integer, but we always understand A;
is an integer by rounding it to the nearest one. Also, theoretically,
A; could be negative, in which case we round up to 0. Given the
estimated mean and variance, that is highly unlikely.

For M,, we assumed that the arrival process within each day
is a nonhomogeneous Poisson process (NHPP) given the daily
arrival total of that day. That means, for a given total number
of arrivals, the arrival epochs are i.i.d. with a probability density
function (pdf) that is proportional to the arrival rate function. We
also assume that the arrival rate function is piecewise constant,
changing hourly. To describe it explicitly, let A;;,i =0,1,...,6,
j=0,1,2,...,23 be the (constant) mean arrival rate for hour j
on day-of-week i. Fori = 0, 1, ..., 6, the pdf is

M e+,
£i(s) = 4 2P0 M )

0, otherwise,

while F{(s) = fjoo f(x)dx is the corresponding cumulative dis-
tribution function (cdf). Given Ay, for a specified day of the week
i, letary, k= 1,2,...,A; be the arrival times of the patients in
day t, then we assume that a;  are i.i.d. with pdf £

For M3, we assume that the patient LoS’s are mutually inde-
pendent, having a distribution that only depends on the arrival
time; i.e., if we let w; x be the corresponding LoS of those patients
that arrived at a; j, then w; ; are independent of each other and
the arrival process, and wy 4 flsj if day t is day-of-week i and
ark € [j,j+ 1), where ff] is a given pdf of LoS for day-of-week i
and hour j. As in [5]. we assume that the LoS distributions., just
like the arrival processes, are time-varying and periodic, with a
period of one week.

It is significant that our arrival process model captures over-
dispersion, a key property observed in the arrival data of the ED;
see [21] and references there. By combining M; and M;, we see
that the arrival process is a doubly stochastic nonhomogeneous
Poisson process or Cox process. We can equivalently regard it
as an NHPP where the hourly arrival rates within a day are
correlated Gaussian random variables. If we denote Ni(s), s €
[0, 24] to be the counting process of arrivals on day-of-week i,
then N;(24) ~ N(u;, 02), where u; = co + d;. If we introduce the
index of dispersion for counts (IDC), defined by

__Var(Ni(s))

)= Eins) ®
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Fig. 1. Illustration of the integrated ED patient flow model.

as we did in [5], then according to M,, we can easily deduce (as
a special case of general Cox process) that
o2
li(s) =1+ F(s)(— — 1). (4)
i
Formula (4) quantifies the over-dispersion. We have over-
dispersion whenever, Figure 5 of [5] shows an estimate of the IDC
function, demonstrating the over-dispersion, but it is not excep-
tionally high. Our Gaussian time series models also approximate
the generalized linear models that allow over-dispersion, such as
negative binomial regression, because a negative binomial distri-
bution can be approximated by the normal distribution when the
parameter is large. Such generalized linear regression methods
have been used when studying the ED patient flow [22,23].

As observed in [5], our model can be viewed as an infinite-
server queueing model with the arrival process being a Cox pro-
cess and independent service times. For infinite-server queues,
the arrival process can be independently thinned into two or
more processes, allowing more factors to be taken into account.
For example, in [5], we divided the patients into two groups
according to the admission decisions, and treated them separately
with different arrival rate functions and LoS distributions.

In retrospect, after looking at the larger dataset, we conclude
that the model components M, and M3 remain quite satisfactory,
but for model component M; (the daily arrival totals), we find
ways to improve the model, especially when we consider the
prediction problem.

3. Analysis of the larger dataset

In this section, we will do some exploratory data analysis and
basic regressions for the larger dataset, i.e., the data from January
2004 to October 2007, which is in total 1400 days. We will show
that there is a clear long-term trend in the daily arrival totals as
well as stochastic dependence.

3.1. An overview of the arrival data

Fig. 2 shows the daily arrival totals for the entire dataset,
where we can see that the daily arrival totals are stable over time,
but have a slight increasing trend. The blue line in the figure is the
estimated regression line. From this figure, we notice that there
is a period around the 950th day that the arrivals are significantly
lower compared to the adjacent period. This time coincides with
the 2006 Lebanon war, the war between Israel and Lebanon from

Table 1
Sample mean, variance and variance-to-mean ratio of daily arrival totals for each
day-of-week.

Sun Mon Tues Wed Thurs  Fri Sat Week

Mean 1637 1447 1406 1345 1393 1134 1066 1347
Var 276.1 2925 2947 2530 3026 181.1 163.6 571.0
V/IM 1.69 2.02 2.10 1.88 2.17 1.60 1.69 4.24

July 12 to August 14, 2006. We regard those points as outliers. If
we ignore that Lebanon war period, almost all points fall between
75 to 200. Fig. 3 shows the daily arrivals without that period.
Again, the blue line is the fitted regression line. The war period
has a significant impact on the estimated slope for the regression
line. (Since we are using ordinary least square estimation, the
estimators are not robust to abnormal data points.) Throughout
this paper, we exclude this war period unless specified otherwise.

The overall mean daily arrival total is 134.7, while the variance
is 571.0. The slope of the daily arrival totals is very small. The
mean daily volume increases about 1 every 100 days, but there is
a 13.5 difference between the estimated mean of the last (1400th)
day and the first day, which is about a 10% increment.

In [5] we found that the system has a significant periodic
structure with the period being 1 week, so we look at the daily
arrival totals for each day-of-week separately and the weekly
totals as well. Table 1 shows the sample mean, sample variance
and variance-to-mean ratio of the daily arrival totals for each day-
of-week. As in [5], we conclude that the variance-to-mean ratio is
significantly greater than 1 on every day. Sunday, as the first day
of week in Israel, has the highest number of patient visits while
Friday and Saturday (the weekend days) have relatively fewer
patient visits. Fig. 4 shows the weekly arrival totals, where we
also fitted a regression line. It is evident that the weekly totals
exhibit some time dependence structure. Fig. 5 presents a box
plot view showing that the distributions of daily arrival totals
vary over months. we expect more patients in the summer than
in the winter. This suggests the daily arrival totals may be related
to the temperature, as observed in [10,13-15]. We explore this
direction for improving our previous model later.

Next we look at the LoS distributions. In [5], we found that the
LoS distributions are also time-varying, depending on the patient
arrival time. Here we want to check if the LoS distributions
changes in the long term. Fig. 6 shows the LoS distributions in a
monthly view. At a glance, the LoS distributions looks quite stable,
except in 2006-08, right after the Lebanon war, where the LoS is
significantly low. Fig. 7 shows the regression lines for the monthly
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Fig. 2. The daily arrival totals for the whole dataset. The blue line is the regression line, d = 128.0 + 0.00781 * t, and the dashed red line is the average level.
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Fig. 3. The daily arrival totals without the war period. The blue line is the regression line, d = 128.0 + 0.00964 * t. The overall mean (shown by the red dashed

line) is 134.7, while the variance is 571.0.
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Fig. 4. Number of weekly arrival totals. The blue line is what we got if we regress the weekly arrival totals on the index of day, which is weekly totals =

896.72 + 0.378 * w, where w = 1,2, ..., 199 is the index of weeks.

mean LoS and median LoS. It shows that both have a small but
significant positive slope. This suggests that in the long term, we
should not ignore the change of LoS distribution, but perhaps in
a short term, we can safely assume it is stable.

3.2. Summary

After the analysis of the entire dataset, we conclude that
the model framework in [5] can still work, but with the larger
dataset, we detect a trend and autocorrelation structure in the
daily arrival totals. To be specific, we still consider that model
components M, and M3 are satisfactory, but we can be improve

M; to better predict the daily arrival totals. An extended Gaussian
model should still be appropriate. Moreover, it appears that we
should be able to estimate the parameters dynamically, only
using the recent data to fit the model and predict the near
future. We should be careful not to apply the model for long-
term forecasts, without focusing on the trend, because the daily
arrival totals are increasing slowly. The same is true for the LoS
distributions.

But even for short term forecasting, there are alternative
methods to consider. In the next section we will consider five
alternative forecasting methods.
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Fig. 5. Number of daily arrival totals in a month view. The box together with
the black bar show the quantiles of the daily arrival totals for each month, and
the blue dots are the corresponding sample means. The dashed red line is the
average level of daily arrival totals.

4. Forecasting the daily arrival totals

In this section, we consider alternative ways to forecast the
daily arrival totals. We first focus on one-day ahead prediction,
then we consider predicting more days into the future in
Section 4.7.

We divide the dataset into a training set and a test set. For
simplicity, we use the data before the Lebanon war as the training
set (923 days from Jan. 1, 2004 to July 11, 2006) and the rest
as the test set (443 days from Aug. 15, 2006 to Oct. 31, 2007).
We use the training set to find the optimal number of weeks we
should include when we make predictions for the next week and
estimate the parameters. Then we use the test set to check our
choice and compare with other methods. We use mean square
error (MSE, by which we mean the estimate) to measure the
precision of our prediction, defined by

N
1 N
MSE = = > (i — 3.

i=1

(5)

where N is the sample size, y; are the true values and y; are the
predicted values.
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Fig. 6. The quantiles of LoS distributions for each month. The box together with the black bar show the 0.25, 0.5 (median) and 0.75 quantile of the LoS distribution,
and the blue dots are the sample mean of the LoS distribution.
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Fig. 7. Linear regression of monthly mean and median LoS on time. The slopes are very small, but statistically significant. The mean LoS increases from about 4.1 h
to 4.5 h. while the median also grows at a lower rate. The dashed red lines are the mean and median of LoS of the entire data respectively.
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Fig. 8. Training MSE as a function of the number n of weeks history to predict
the daily arrival totals of the next day for the dynamic model in Section 4.1.
The minimum training MSE is achieved when n = 13.

Table 2
Training MSE as a function of the number n of weeks history to predict the
daily arrival totals of the next day for the dynamic model in Section 4.1.

n 1 2 3 4 5 6 7
MSE 430.4 304.6 2736 264.4 257.8 259.6 255.4
n 8 9 10 11 12 13 14
MSE 253.6 2504 249.2 249.2 249.6 248.3 2489
n 15 16 17 18 19 20 21
MSE 249.1 251.0 2515 252.4 255.2 256.8 257.6
n 22 23 24 25 26 27 28

MSE 257.3 257.2 255.6 256.8 257.9 259.8 260.2

4.1. A dynamic model

An easy way to revise our old model for the daily arrival totals
is to use it in a dynamic way; i.e., if we want to predict the daily
arrival totals for the next week, then we fit the model only using
a few weeks of history data right before it. We keep updating our
model parameter according to what we observe. In particular, if
we let A; represent the daily arrival totals for day t and A; be our
estimate for it, then the estimator is

~ 1
A = E(At—7 +A—1a+ -+ Ang) (6)

We need to determine n in the above equation. We try dif-
ferent value of n from 1 to 30 weeks and pick the one with the
smallest training MSE. Fig. 8 and Table 2 show the training MSEs
using different n. We see that it shows a typical U-shape as a
function of n, reaching the minimal training MSE 248.3 at n = 13,
so we choose this value of n and apply it on the test set. The
test MSE is 269.94. (The difference provides an estimate of the
overestimation of statistical precision caused by testing on the
same data used to fit the model.)

For comparison, we observe that the overall mean and vari-
ance are 134.7 and 571.0. If we use the single-factor model on
this new test set from [5], then the estimated residual variance is
264.6, which yields V/M = 1.9.

4.2. A SARIMA time series model

We observe that the predictor in (6) is actually a special case
of the classic autoregressive model

Ar=cH+aiAir+ Ao+ -+ oA + &, (7)

Table 3
MLE for the parameters of the SARIMA (6, 0, 0)(0, 1, 1); model in (8).
Parameter p; p2 p3 Da Ps Ds Q o?
MLE 0.181 0.012 0.062 0036 0070 0.144 —0.948 218.30
where we take c = 0,p = 7n, s = 1/nfori = 7,14,...,7n

and 0 otherwise. So we next try a more general and more flex-
ible autoregressive integrated moving average (ARIMA) model.
Because we have determined that there is periodicity, we use
a seasonal ARIMA (SARIMA) model. The model has 7 hyperpa-
rameters that need to be determined and can be denoted as
SARIMA(p, d, q)(P, D, Q),, where p, d and q are the order of
AR terms, the order of difference and the order of MA terms,
respectively, while P, D and Q are the corresponding seasonal
orders, and m is the period length of each season. This model is
quite standard in time series analysis; see Chapter 6 of [24].

Obviously we should take m = 7, because we think the period
is 1 week. From our analysis in Section 3.1, we know that the
arrival rate is increasing slowly. So it is reasonable to conduct a
difference for the original series, which is equivalent to assume
that the time series has a stationary increasing trend. But whether
to take the difference directly (i.e., setting d = 1, D = 0, to model
{A; — A;_1} by an ARMA model) or do it seasonally (i.e., setting
D =1,d =0, to model {A; — A;_7}) needs to be determined. We
will check them one by one.

Suppose that we make a difference directly and let {X; = A; —
A¢_1}. Fig. 9 examines {X;}. We firstly conduct the Dickey-Fuller
test to check whether this time series can be regarded as station-
ary. Because the p-value is 1.69 % 10723, we reject the hypothesis
that this time series has a unit root, and so tentatively conclude
that the process is stationary. Fig. 10 shows the autocorrelation
function (ACF) and partial autocorrelation function (PACF) of {X;},
which could help us determine the orders we choose in ARMA.
We see that the partial correlation function vanishes after some
point for both the seasonal factor and non-seasonal factor, while
the autocorrelation function does not go away, so that we try
to model it as an AR sequence. We try p from 1 to 6 and P
from 1 to 16. According to Akaike information criterion (AIC),
SARIMA(6, 1, 0)(15, 0, 0); is the best model, whose AIC is 7663.47
and training MSE is 227.31.

Similarly, for the other alternative, suppose we make a sea-
sonal difference and model {Y; = A; — A;_7}. Fig. 11 shows its
rolling mean and standard deviation, while Fig. 12 shows its ACF
and PACF. Again we conduct the Dickey-Fuller test and reject the
null hypothesis that the series has a unit root with a p-value
1.66 * 10!, We see that in contrary to {X.}, the ACF of {Y;}
cuts off after the first period, while the PACF does not vanish.
This suggests adding seasonal MA terms to the model. We try p
from 1 to 6. We find that a large value of Q causes the maximum
likelihood estimation to converge poorly, so that the AIC does not
improve significantly when we increase Q. Hence, we choose the
model SARIMA(6, 0, 0)(0, 1, 1);. Its AIC is 7564.73 and training
MSE is 221.51.

We conclude that the SARIMA(6, 0, 0)(0, 1, 1); outperforms
the previous SARIMA(6, 1, 0)(15, 0, 0);. Thus our fitted model is

6

(Ar — A7) — ZP;‘(AH' —A—i—7) =€ + Qi€e_7, (8)
i—1

where p;, i = 1,2,3,4,5,6, and Q; are coefficients, {¢, ~
N(0, 62)} are independent normal distributed noise. The maxi-
mum likelihood estimation for those parameters are shown in
Table 3.

For this model, we also checked whether the residuals are
approximately independent and normally distributed. A positive
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Fig. 10. The autocorrelation function and partial correlation function of {X;} = {A; — A;_1}) for the SARIMA model in Section 4.2.

conclusion is supported by the ACF and PACF in Fig. 13 and the
quantile-to-quantile (Q-Q) plot compared to normal distribution
in Fig. 14.

Finally, we test SARIMA(6, 0, 0)(0, 1, 1); on our test set and
find that the MSE is 263.40. We show the predicted daily arrival
totals versus the true values in Fig. 15, and in Fig. 16 we show
the 95% confidence interval for part of test set.

4.3. A regression method with more calendar and weather informa-
tion

Many researchers have found that calendar and weather vari-
ables can be very helpful for predicting the daily arrival totals
in the ED [10,13,14], so we want to explore this direction. Of
course, our original model in [5] is already a simple version,
but it considers only the day-of-week factor. We find that the
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Fig. 11. Daily arrival totals after taking a seasonal difference ({Y; = A; — A;_7}) for the SARIMA model in Section 4.2. We also show the rolling sample mean and

sample standard deviation using a window with width 7.
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Fig. 12. The autocorrelation function and partial correlation function of {Y; = A; — A;_7} for the SARIMA model in Section 4.2.

day-of-week factor is the most important one, but there is also
potential for taking advantage of other factors, including month,
temperature and holiday.

We consider a regression model that includes the following
independent variables: day-of-week, month, max daily tempera-
ture, min daily temperature, daily precipitation, and holiday+k.
The day-of-week and month factors are straightforward. For the
daily max/min temperature and the daily precipitation, since we

are considering a prediction model, ideally we should use the
temperatures in the weather forecast one day before, but we
could not find that information, so we used the real historical data
which is published by the Israel Meteorological Service (available
at https://ims.data.gov.il). We can understand this as the true re-
lationship between weather and the daily arrival totals, and when
applying, we can use the information from a weather forecast as
estimators. We think this approach is reasonable because, with
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Fig. 13. The autocorrelation function and partial correlation function of the residuals for model SARIMA(6, 0, 0)(0, 1, 1); in (8).
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Fig. 14. The Q-Q plot of the residuals for model SARIMA(6, 0, 0)(0, 1, 1); in (8).

modern technology, we can predict the weather on the next day
quite accurately. Another issue is the location where the weather
data is collected. The hospital itself does not have a meteorologi-
cal station, so we choose the nearest one to the Rambam Hospital
which is located at Haifa port. It turns out that there is missing
data for one week in September 2007 and one day in January
2007. Hence, for those days we use the temperature data from the

nearest meteorological station, which is located at the Technion,
as proxies for the missing data.

Holidays can be another potential factor affecting the daily
arrival totals. In [10], they considered the holiday and near-
holiday factor when predicting the daily patient volume of three
EDs in the United States. They defined a day as near-holiday if
it is one day before or after a public holiday. Here we think we
should distinguish days before and after a holiday, so we actually
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Fig. 16. Confidence interval (95%) for the predicted daily arrival totals by SARIMA(6, 0, 0)(0, 1, 1); as in (8) on the test set.

use 7 indicators to tell if a day is holidayt+k day, where k =
—-3,-2,—-1,0,1, 2,3. We mark a day as holiday only if it is a
national holiday. In summary, the full model we propose is

A = /30 + ,BSunISun(t) + ﬂMonIMon(t) +--+ ﬂSatISat(t)
+Bjanljan(t) + Brevlren(t) + - -+ + Bpeclpec(t)
+,3T—mameax(t) + 5T—minTmin(t) + IBrainR(t) + ﬁH—3IH—3(t)
+Bu—2ln—2(t) + Bu-1lu—1(t) + Bulu(t) + Bur1ln41(t)
+ Br2ln4a(t) + Brrslnys(t) + €, (9)

where A; again represents the total arrivals of day ¢,
IMonth/Day—of —week(t) is the indicator of that month or day-of-week,
Timax(t) and Ti(t) are the highest and lowest temperature of
day t, R(t) is the precipitation (in cm) of day ¢, Iy.k(t) is the
indicator of near holiday effect as we explained above, 8’s are the
corresponding coefficients and constant and finally €; ~ N(0, ¢2)
is a normal distributed error term.

Of course, we do not regard the model above as the best
one, because so far we have included all possible factors. The
regression result shown in Table 4 indeed indicates that some
factors such as precipitation may not be important. To select
our final model, we use a two-way stepwise model selection
procedure based on AIC; i.e., we start from the full model as above

and in each step, we exclude or include one factor at a time, based
on the AIC; see section 9.4 of [25]. After this procedure, the re-
maining factors are day-of-week, month, holiday+0, holiday+1,
holiday+2, holiday—1, holiday—3, max daily temperature and
min daily temperature. In the final model, we further exclude
the holiday+2 and holiday—3, because they are the least two
important factors among those above and the AIC will increase
only 0.5 from 4962.8 to 4963.3 if we exclude them. Also we think
including holiday—1, holiday—3 but not holiday—2 is not very
reasonable. So in the end we select the model in (10).

At = Bo + Bsunlsun(t) + BumonImon(t) + - - - + Bsarlsar(t)
+Bandjan(t) + Breplren(t) + - - - + Bpeclpec(t)
+ﬂT—mameax(t) + ﬂT—minTmin(t)
+ Bu-1ly—1(t) + Bulu(t) + Buialn+1(t) + €. (10)

Table 5 shows the estimation of coefficients for the final model
using the training set. We can see that the day-of-week factor
and the holiday+-0 are the most important ones. There are fewer
patients the day before a holiday and more patients the day after
a holiday. We also see that both the max and min daily tempera-
tures have positive coefficients, while the precipitation does not
play an important role in the regression. From the regression, if
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Table 4
Estimated coefficients for the full linear regression model with calendar and
weather variables in (9) in Section 4.3. (Friday and April are chosen as the base
line for the categorical variables day-of-week and month based on alphabetical
order.)

Table 5

Estimated coefficients for the selected linear regression model with calendar
and weather variables from (10) in Section 4.3. (Friday and April are chosen
as the base line for the categorical variables day-of-week and month based on
alphabetical order)

Estimate Standard error p-value Estimate Standard error p-value
Intercept(Bo) 92.56 4.95 <0.001 Intercept(Bo) 92.83 4.76 <0.001
Sunday(Bsun) 51.46 1.80 <0.001 Sunday(Bsun) 51.23 1.79 <0.001
Monday(Buon) 3259 1.80 <0.001 Monday(Buon) 3234 1.80 <0.001
Tuesday(Brue) 28.09 1.80 <0.001 Tuesday(Brue) 27.96 1.80 <0.001
Wednesday(Bwed) 20.91 1.80 <0.001 Wednesday(Bweq) 20.89 1.80 <0.001
Thursday( ) 24.75 1.79 <0.001 Thursday(Bmy) 2483 1.80 <0.001
Friday(Bp:) 0 Friday(Beri) 0
Saturday(Bsq ) —-7.31 1.79 <0.001 Saturday(Bsq:) —7.43 1.79 <0.001
January(Byen) 0.20 2.68 0.942 January(Byan) 0.29 2.53 0.908
February(Bres) -0.93 2.67 0.729 February(Bres) —0.86 253 0.734
March(Buyar) 2.70 2.44 0.268 March(Buar) 2.77 2.29 0.226
Aprill Bapr) 0 April( Bapr) 0
May(Buay) —5.29 2.32 0.023 May(Buay) —5.07 228 0.026
June(Bun) —5.17 277 0.062 June(Byun) —4.94 2.69 0.067
July(Bur) —5.83 3.25 0.073 July(Bur) —5.64 3.16 0.074
August(Bug) —-7.75 3.43 0.024 August(Bag) —7.54 3.34 0.024
September(fsep) —5.75 3.14 0.067 September(fsep) —5.66 3.11 0.069
October(Boc ) —5.43 2.65 0.041 October(Boc ) —5.13 2.64 0.053
November(Byoy) —7.61 2.62 0.004 November(Bnoy) —7.48 2.49 0.003
December(Bpec) —3.83 2.67 0.151 December(Bpec) —3.72 2.59 0.152
Holiday+0(y) —21.17 2.86 <0.001 Holiday-+0(8y) —2120 2.81 <0.001
Holiday+1(Bu 1) 9.33 3.09 0.003 Holiday+1(By.1) 9.08 3.05 0.003
Holiday+2(B.42) 4383 3.08 0.117 Holiday—1(By_1) —17.15 3.05 <0.001
Holiday+3(By.3) 1.50 3.07 0.626 Max temp(Br—max) 0.44 0.22 0.044
Holiday—1(By-1) —17.25 3.10 <0.001 Min temp(Br—min) 0.70 0.30 0.019
Holiday—2(Bu-2) —1.56 3.11 0.616 o? 211.12
Holiday—3(B8y_3) —469 3.10 0.130
Max temp(Br_max) 0.45 0.22 0.042
Min temp(Br—min) 0.70 0.30 0.018
‘I;l‘zeclp-(ﬂmin) 3.101212 0.11 0.876 Q(B) =14+ 913 + 9232 ++ quq’

O(B) = 1+ O18° + 0,8 + ... ©yBY%,
A =1-—B,
. . S
both the max temperature and the min temperature rise 10 °C, A =1-P, (11)

the daily arrival totals will increase about 10. We conjecture that
higher temperatures in the mideast will increase the risk of being
sick. How weather affects the ED arrivals in different places in the
world is an interesting question in general.

We make prediction using the test set, and the MSE is 234.33.

4.4. The SARIMAX model

Though the model exploiting holiday and weather data in Sec-
tion 4.3 has pretty good results, it does not capture any internal
dependence. When we look at the residuals of final regression
model in Section 4.3, as is shown in Figs. 17 and 18, we can
see that the residuals have an increasing trend and positive
autocorrelation structure. We conducted the Mann-Kendall trend
test (see [26,27]) on the residuals and it strongly rejects the null
hypothesis that the series does not have a trend.

On the other hand, the SARIMA model we use in Section 4.2
does capture internal dependence, but does not include any use-
ful external information such as the holiday and temperature
factors that could improve the prediction results. We now con-
sider a SARIMAX model, which combines the two approaches.
In particular, it is an extended version of the SARIMA model,
includes both (seasonal and non-seasonal) AR and MA terms like
the SARIMA model and other independent variables.

To express the SARIMAX model clearly in a concise way, we
introduce the backshift (or lag) operator B, with By, = y; 1,
which is commonly used in time series analysis. We also define
the associated operators

@(B) = 1— 1B — ¢B° — - - - $,B,
®(B) = 1— &1B° — &,B* — ... — @pB™,

where ¢(-)/®(-) is the non-seasonal/seasonal AR polynomial,
0(-)/®(-) is the non-seasonal/seasonal MA polynomial and A/A;
is the non-seasonal/seasonal difference operator respectively. A
SARIMA(p, d, q)(P, D, Q); model can be formally represented by

¢(B)D(B)A? ADy, = 6(B)O(B)e,

where ¢, ~ N(0,¢?) is a Gaussian white noise. If we allow
external variables to explain the mean of the transferred time
series, then we get the SARIMAX model

P(B)P(B)A A%y, = X[ B + 0(B)O(B)ey, (12)

where x; is the external variables and § is the corresponding
coefficients. We see that this can be viewed as a generalization of
both the SARIMA model and the ordinary linear regression model.
See §6.6 of [24] for more about this model.

Based on our analysis in Section 4.3, we directly use the vari-
ables we chose there in (10) as external regressors. Then we con-
duct the same model selection procedure as we did in Section 4.2
based on AIC, and it turns out the model SARIMAX(6, 1, 0)(0, 0, 2);
is the best one. If we write it explicitly, it is

6
A =X BHAc 1+ dilAi—A 1 i) Het+Or€e7+Ose 14, (13)
i=1
where x; includes all the variables (except the constant term) in
(10). We see that the optimal model here is different from the
final model in Section 4.2. In Section 4.2 we take a seasonal differ-
ence on the original time series while here we take a nonseasonal
difference. But both imply that the original time series (daily
arrival totals) has a long-term trend. The estimated coefficients
by maximum likelihood estimation are shown in Table 6. We also
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Fig. 18. ACF and PACF of the residuals of the regression model (10) in Section 4.3.

checked the ACF and PACF of the residuals in Fig. 19 and find that
they no longer have any significant autocorrelation structure.

We apply our fitted SARIMAX model on the test set and find
that test MSE is 191.76, which is significantly better than both the
SARIMA model in Section 4.2 and the regression model with only
external variables in Section 4.3.

4.5. A neural network method

Finally, we consider predicting the daily arrival totals with an
even more flexible machine learning method, in particular, the
multilayer perceptron (MLP). We refer to Chapter 11 of [28] for
the basic concepts of MLP and to [29] for more on implementation

issues. Here we only give a very briefly introduction to assist
readers who are not familiar with machine learning get a rough
idea about what we are doing.

Suppose that we have samples (x;, y;) € (R, R), t =1,2,...,
T, where we want to use x; to predict y;, i.e. we think

Ve :f(Xt)+E,

for some unknown but determined function f and random error
. If we take f to be a linear function, then (14) is a classical linear
regression model. Usually, f could be a relatively complicated
nonlinear function, more like a black box. (Neural network mod-
els originally were inspired by trying to abstract how the human
brain works.)

(14)
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Fig. 19. ACF and PACF of the residuals of the SARIMAX(6, 1, 0)(0, 0, 2); model as in (13).

Table 6

Estimated coefficients for the SARIMAX (6, 1, 0)(0, 0, 2); model in (13) from
Section 4.4. (Again Friday and April are chosen as the base line for the categorical
variables day-of-week and month based on alphabetical order.)

Estimate Standard Estimate Standard

error error
Sunday(Bsun) 51.04 2.08 ¢ —0.90 0.03
Monday(Bumon) 32.04 2.01 ¢ —0.90 0.04
Tuesday(Brue) 27.66 2.01 ¢3 —0.84 0.05
Wednesday(Bweq) 20.68 2.08 ¢s —0.81 0.06
Thursday(Brm) 2477 1.72 ¢s —0.78 0.07
Friday(Bg) 0 ¢s —0.70 0.08
Saturday(Bsa) —7.48 1.72 ®; -0.70 0.09
January(Bjan) 1.01 4.00 ®, 0.08 0.03
February(Brp) -1.03 3,58 o? 1879
March(Buar) 2.12 2.81
April(Bapr) 0
May(Bwmay) —-5.71 2.67
June(Byun) —6.03 3.57
July(Bjur) —5.92 423
August(Baug) —7.43 481
September(fsep) —6.54 4.97
October(Boct) —8.46 491
November(Bnoy ) —1144 479
December(Bpec) —8.62 4.60
Holiday+0(8y) —20.23 264
Holiday+1(Bn4+1)  9.12 2.81
Holiday—1(By-1) —16.31  2.81
Max temp(Br_ma) 0.55 0.20
Min temp(Br_min) 0.62 0.28

For the basic MLP version of the neural network model that
we use here, we take f to be an iterated function, i.e, f = g/ o

g1 0---0gq, where each g; takes the form of

8i(x) = (Y(bir + x"wir), (b + x wa), ..., Y(bin, + x wip,)),
i=1,2---,1,

with by € R and wy, j = 1,2,...,h; are coefficients of the
proper dimension to be determined and v(-) is usually an S-shape
function called “the activation function”. Common choices of
are the logistic function, the hyperbolic tangent and the rectified
linear unit. The key point is that the non-linearity of i allows
that f could approximate a very broad family of functions. Within
this MLP model, [ is the number of layers and h; is the number of
neurons in the ith hidden layer. Each function ¥ mimics a neuron
which can be “activated” or not depending on the input and the
feature that the neuron can detect.

The training of a neural network (finding the best values for
the large number of coefficients) used to be an extremely chal-
lenging problem, but significant progress has been made recently
when general processing units (GPU’s) or even more special-
ized hardware were developed to make the heavy computation
feasible. Also some new optimization algorithms were invented
to speed up the training process, such as stochastic gradient
decent. Usually the hardest part of the traditional gradient-based
optimization algorithm is to compute the gradient. The main idea
of stochastic gradient decent is that since the form of objective
function (usually a loss function we defined, e.g., the training set
MSE) is a summation of similar components, instead of comput-
ing the full gradient, we can “sample” a small portion of the terms
in the objective function and compute the gradient and use that
to approximate the full gradient. At the expense of some lost
accuracy, the computation load is greatly reduced.
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Table 7
Validation loss for the single hidden layer MLP with different numbers of hidden
neurons.

h Mean cross validation MSE (standard deviation)

247.1 (12.68)
278.5 (21.68)
279.0 (27.27)
284.1 (23.30)
277.5 (29.12)
275.0 (22.44)
272.4 (24.91)
272.4 (14.44)
269.2 (17.19)

O WOoNOU A WN

—_

Now we will specify the inputs, the activation function and
other settings. Given that A; is the number of arrivals on day
t, we aim to predict A; given (A;_1,A_2,...,A;_s) as well as
other variables, just as in previous sections, where s is a param-
eter to be determined. Given s, we will have 923 — s samples
(each sample is a pair of input variable and output variable)
in the training set. We use all the candidate external variables
introduced in Section 4.3 together with 28 days history (i.e. s =
28) as input. We assume that the number of hidden layers
(d) can be 1 or 2. Since the final dimension of the input data
is 57 = 28(days of history arrivals) 4+ 3(weather variables) +
7(holiday indicators)+7(week indicators)+12(month indicators),
and the training sample size is about 900, we avoid more hidden
layers or hidden neurons, because that could cause over-fitting.

In summary, we tried models with a single hidden layer and
let the number of hidden neurons (h) range from 2 to 10. We
then selected the best according to cross-validation error. In each
round of training we randomly set 10% of the training samples
to be the validation set. We also add an [, regularization to
each hidden layer in order to prevent over-fitting. We used the
“Adam Optimizer” stochastic gradient decent algorithm. We let
the batch-size be 1 and stop the iteration if the validation loss is
not improved in 5 iterations. Then we record the validation loss
(which is mean square error for the validation set).

The training results are reported in Table 7. Since the opti-
mization algorithm and the cross-validation set are both random,
we repeated the training of each model 20 times and computed
the average cross-validation MSE and its standard deviation. We
see that a simple MLP with 2 hidden neurons actually works best.
So we use it by repeating the optimization 10 times and picking
the one with the minimum cross validation MSE.

Then we test it using the test set, and the test MSE is 265.84.
Fig. 20 compares the predicted number of arrivals to the actual
data. We see that the MLP approach for prediction performs
approximately as well as the dynamic model in Section 4.1 and
the SARIMA model in Section 4.2, but not as well as the other two
models, even though we included temperature and holiday data
with MLP, as in SARIMAX. (The MLP performs even worse if we
omit the extra holiday and temperature regressors.) This may be
due to the low dimension of our problem and/or the relatively
small sample size. Usually such flexible machine learning meth-
ods require a large dataset for training. Compared to the number
of parameters that need to be estimated, our sample size is still
relatively small.

4.6. Summary for all 5 methods

In this section we summarize the results for the five meth-
ods we considered in this section. Table 8 reports the training
MSE and the test MSE for these five methods as well as for
our original Gaussian model. It shows that the SARIMAX model
outperforms the others, while the regression with calendar and

Table 8

Summary of the training and test results for the five methods to predict the daily
arrival totals. Test MSE* is the test error when we train and test the method
with a different splitting point.

Method Training MSE Test MSE Test MSE*
Original 248.9 264.6 300.3
Dynamic 248.3 269.9 262.9
SARIMA 2215 263.4 -
Regression with calendar 206.0 2343 -

and weather var.

SARIMAX 181.6 191.8 186.5
MLP 205.7 265.8 -

weather variables is second best. Interestingly we see that the
dynamic prediction model, SARIMA model and the MLP evidently
do not perform better than our original Gaussian model with
a single day-of-week factor. This indicates that the model we
proposed in [5] actually does capture the main feature of the
arrival process.

However, upon further study, we also discovered that the good
result for our original model is not robust. When we looked at the
larger dataset before we noticed and disregarded the abnormal
Lebanon war period, we split our dataset from the beginning
of 2007 (i.e. we used 01/01/2004 to 12/31/2006 as training set
and 01/01/2007 to 10/31/2007 as test set). Then our original
model performs badly with a test MSE larger than 300, while
the dynamic prediction model and the SARIMAX model keep
their test error level at 262.94 and 186.50 respectively. These are
shown in the final column of Table 8.

In conclusion, for forecasting the daily arrival totals one day
ahead, we find that the SARIMAX model is best, with about 25%
improvement in test MSE. Since the mean absolute percentage
error (MAPE) is often reported, e.g., as in [ 10]), we also computed
the test MAPE for the SARIMAX, which is 8.4%.

4.7. Forecasting more than one day ahead

A natural question is whether we can accurately forecast the
daily arrival totals for 2 days, 3 days or even weeks ahead using
our method. First, we remark that according to our models, the
prediction results will stay the same for the original model and, as
long as we are predicting less than one week ahead, the dynamic
model, because we simply use the average daily arrival totals
on the same day of week in history as our prediction. However,
we expect the MSE to increase if we use the SARIMAX model
to predict more days ahead and, indeed, Table 9 shows that it
is the case. Table 9 shows the test MSE if we use our SARIMAX
model to predict 1 to 7 days ahead. The MSE for 1 day ahead is a
little different from Table 8 because we throw the last week away
in order to predict 7 days ahead. We see that the MSE indeed
increases as expected, but is not dramatically bad.

However, we need to point out again that there is a tricky
flaw in the result. Because we only have historical actual weather
record (not weather forecast, which we should use when make
predictions), the input of weather data is better than would have
in practice. This should not be a big issue if we consider 1 or 2
days ahead, but over longer time intervals the weather prediction
is likely to degrade significantly. Hence, the actual prediction
capability of SARIMAX for many days ahead should not be as good
as reported here.

5. Real-time predictor for the occupancy level
In this section we propose a real-time procedure for predicting

the hourly occupancy level, exploiting the predictions for daily
arrival totals in Section 4. We start by predicting the occupancy
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Table 9
Test MSE for predicting several days ahead using the SARIMAX model (13) in
Section 4.4.

# of days ahead 1 2 3 4 5 6 7
Test MSE 1932 197.1 198.1 2027 2042 2080 2110

level for 1 h ahead. Afterward, we show that the method can be
extended to more hours ahead, but losing predictive power as the
time interval increases. For this occupancy prediction, we exploit
the elapsed service times of the patients initially in the system.
Thus, an important reference point is the average LoS, which is
about 4 — 4.5 h. Clearly the value of information about current
patients will dissipate as the time interval increases to 4 h and
beyond.

5.1. Predicting occupancy level one hour ahead

We use the same discrete-time framework as we used in [5,30,
31] since we assume both the arrival rate and the LoS distribution
are fixed within an hour. Let Y;; denote the number of patients
that arrived in the kth discrete time period (DTP, in our case
one time period represents an hour) and had length-of-stay (LoS)
larger or equal to j hours, i.e. they left at or after time period k+j.
We assume all the arrivals occurred at the beginning of each time
period and departures occurred at the end of the time period and
we count the number of patients (occupancy level) in the middle
of each time period. (See [30] and [31] for discussion about such
counting assumption.) Under this rule, the occupancy level in DTP
k is

o0
Q= Z Yijj-
=0

Our goal is to approximate Q, assuming that we are given all the
arrival and departure epochs for each patient that occurred before
DTP k.

We built a stochastic model for the patients flow in [5]. As
reviewed in Section 2, that model describes the arrival process
and the time-varying LoS distributions quite well. Given the daily
arrival totals, hourly arrival rate curve and the LoS distributions
for each hour, we can easily calculate the occupancy level of the
system. But how can we predict the occupancy level for next hour
given all the history up to now? We propose a real-time predictor
as follow.

(15)

To predict Q, first we observed that we can use finite sum-
mation to approximate the infinite sum, because in reality we can
always view the LoS distributions as bounded. Actually only 3.60%
of all the patients had LoS greater or equal to 13 h. Hence we
divided Qi into two parts and estimated them separately, letting

12 00 12
Q= Z Yi—jj + Z Yijj= Z Yi—jj + R 13-
j=0 Jj=0

j=13

(16)

Note that Yj o is the total number of arrivals in DTP k. Since
we assume the arrival process can be modeled as a NHPP within
a day given the daily arrival totals (model M,), given that we have
already got the predicted daily arrival totals in Section 4, we only
need to estimate the arrival rate function within a day. We use
the empirical hourly arrival rate curve by combining the arrivals
on the same day-of-week of the latest 10 weeks as our estimated
arrival rate for a day because as we shown in Section 3. We
estimated the LoS distribution similarly by using the empirical
distribution of the same hour from the latest 10 weeks, because
the LoS distributions also change slowly.

To conveniently express our estimator, we re-index our time
period from k to a three-element tuple (w,d, h), where w €
{0, 1, 2,...} represents the week index, d € {0, 1,2, 3,4,5, 6}
is the day-of-week index and h € {0,1,2,...,23} is the hour
index. There is a one-to-one relation between these indices k and
the tuples (w, d, h), so that we will use them exchangeably in
the following part of the paper. We also let (w, d, h) &+ x denote
add/minus x time periods (hours) to time period (w, d, h). Let
Aw,qy be the predicted daily arrival totals of week w, day-of-week
d,and let A, ) = Ziio Y(w.d.m,0 to be the true daily arrival totals.
Then we let the estimator for Y, .m0 be

5 A Aw,d.hy
Ywdn.o = Awd) ¥ =55~
h=0 Mw.d.h)
10
P > izt Yw—idh.o
= Anw.g) % SETEEE (17)
> i1 Aw-id)

where X(w,d,h) = (1/10)221 Yw—i.dn.o is the estimated hourly
arrival rate for DTP (w, d, h).

To estimate Y_j; for j = 1,2,...,12, note that we can
observe Yj_jj_1 for j = 1,2,...,12 at time period k — 1,
i.e. the number of patients that arrived at time period k — j and
still stayed in the system at time period k — 1. Let 7 be the
information filtration; i.e., 7 denotes all the observable arrival
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and LoS information up to time k. Since in M3 we model the LoSs
as i.i.d. random variables given the arrival time, the conditional
expectation of Y_;; can be expressed as the product of Y,_;;_;
and the corresponding survival probability of each patient, which
is

E(Yk—jjl Fi—1) = Yijjo1 * Pj(W = jIW > j = 1)

= Yijj-1* Dk—jj—1, (18)
where W is a random variable following the LoS distribution of
customers that arrived at time period k — j, and py_;;_1 is the
probability of a patient that arrived at time period k — j and did
not leave the system up to time period (k—j)+(—1) = k—1 will
still be there at time period k. Again, we use the latest 10 weeks
history data to estimate that probability. We estimated p(, d,r);
by

10
A Y ict Yow—id
Pwdhj= ——q9 . >

10
2ic Yw—idh)j
After combining these components, the estimator for Y(,, 4,n)—j; is

j=0,1,...,11. (19)

Yow.dm—jj = Yw.dh)—jj-1 % Dw.dh—jj-1, j=1,2,...,12. (20)

Finally, we need to estimate Ry i3, the number of patients in
DTP k that had already been in the system for greater or equal
to 13 h. Instead of estimating Rk 13 directly, we actually estimate
13 = Re3/Qe=1— (ZJ o Yk—j,j)/Q by the history data of the
latest 10 weeks. Under the other indexing scheme, this can be
written as

i Y0 Yo )i
> Qu-idn

The reason we did like this is that we only used Y;; and Q; for
i<kandj=0,1,..., min{12, k—i}, which means we only need
to keep a finite dimen51onal record of the Y matrix. Of course the
number we chose here (12) is somewhat arbitrary, we could also
keep record of Yy ; for j up to 11 or 13, say. However, in making
this choice, we note that smaller values will cause us to waste
some information we have, while larger values will likely produce
inaccurate estimates of py; for large j's.

Combining the estimation for each part in (17), (19), (20) and
(21), we get the estimator for Q4.1 as

Zj oY(wdh) JJ
1 — fu.d 13

fw.damiz=1— (21)

Q(w,dt,h) (22)
We use the prediction results of daily arrival totals by
A SARIMAX(6, 1, 0)(0, 0, 2); as we introduced in Section 4.4 for
Aqw,q¢) in (17). Since we need 10 weeks data to estimate the arrival
rates and the LoS distributions before we start predicting the
occupancy level, we make the hourly occupancy prediction from
12 p.m. Oct.25, 2006, which is 10 weeks after the start of test set,
to 11 p.m. Oct.31, 2007, i.e. 8928 h or equivalently 372 days.
The MSE of 1-hour-ahead real-time occupancy prediction is
14.65 (MAPE 10.59). For comparison, we also apply two other
simple prediction methods applied to the same test period. The
first alternative method is to directly use the current hour occu-
pancy level as the prediction for the next hour's occupancy level
(i.e. Quu,a.n) = Quu,d,n—1)), and the MSE of this method is 23.04.
The second method is to use the average of 10 weeks’ observed
occupancy levels at the same hour in a week before the one we
want to forecast as predictor (i.e. Q(u,d,h) 1/10 Zl 1 Q(w i.d.h))
which parallels what we do for the daily arrival totals in Sec—
tion 4.1. In this second method, the MSE is 51.91. So we make a
30% improvement of the first naive prediction method and even
better to the second. Fig. 21 plots part of the prediction compared
to the actual values, showing that the prediction curve is quite
close to the true curve.

5.2. Predicting occupancy level more than one hour ahead

The real-time occupancy predictor for one hour ahead in the
last section can easily be generalized to estimate the occupancy
level two or more hours in the future. But as we predict farther
into the future, we encounter two problems: (i) the relevance of
the elapsed times of current patients will decrease and (ii) the
number of estimators we must use will increase. For both reasons,
we expect that the error will increase. We take predicting 2 h
ahead as an example to show how to construct the predictor;
others can be done in the same way.

Recall that
12 [e’s]
Quiam = Y Yudnij+ Y Ywdnij
j=0 j=13

12

= Z Yow,d,n)—jj + Row,d.h),13
j=0
as in (16). Since we are predicting 2 h ahead, we assume that we
are now at time (w, d, h) — 2. The estimator for Y(,, 4.n)—0,0 is the
same as in (17). However, we can no longer apply (20) to estimate
Y(w,d,n)—jj because Y, 4 n)—jj—1 is not available to us as we assume
we are now at (w, d, h) — 2. Analogous to (18), for j > 2, we have

E(Y(w,d.hy—jjl Flw.d.hy—2) = Yow.d.hy—jj—2 * Plw.d.n)—j
X(W = jlW >j-2)
= Yw,d h)—jj—2 * Plw.d,h)—jj-2.2> (23)
where we use p, 4, to denote the probability that a patient
arrived at time period (w, d, h) will stay for at least another [

hours given that the patient has been in the system for j hours.
Similar to (19), we estimate pe, 4 n)j,1 by

S0 Yooian

Dw,d,hyjl = —'1 oot AR (24)
Y Yoiam,

Hence, for Y, a.m-jj,j = 2,3, ..., 12, we use

Yiwdn)—ij = Yow.d h—jj—2 * Dk—jj—2,2 (25)

as the estimator. For Y(,, 4,)-1,1, since it is in the future, we use
the product of the predicted total arrivals and the corresponding
survival probability,; i.e.,, we use (19) for j = 1 and replace
Y(w,a,m—1,0 on the right hand side by 9(w,d,h)—1.o~ Finally, we use
the same equation (22) to get the estimator for Qg s q).

When making predictions for more than 1 h ahead, we need to
use predictions for daily arrival totals for two or more days ahead.
This can be seen from Eq. (17). When we predict the hourly total
arrivals, we need the forecast of daily arrival totals for that day.
However, we can make 1 day ahead daily volume prediction only
after 00:00 on that day. For example, assume that we are now at
23:00 on day k and we want to predict the occupancy level for
00:00-01:00 on day k + 1. According to our real-time prediction
procedure, we need to know both Ak and Ak+1 Note that here Ak
is the 1-day-ahead daily arrival total prediction while Akﬂ must
be 2-days-ahead daily arrival total prediction because we have
not observed the arrivals in 23:00-24:00 on day k so that we do
not know A yet and the last observed daily arrival total is Ay_5.

Table 10 shows the MSE for predicting the occupancy level
more than 1 h ahead for up to 6 h. For comparison, Table 11
shows the corresponding MSE by using rolling history occupancy
average using n weeks history.

Table 10 shows that beyond 4 h ahead, the error is larger
than the MSE 51.91 obtained by using rolling history occupancy
average using n = 10 weeks history. For another comparison,
the MSE is only 58.83 if we predict the occupancy level by the
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Fig. 21. Predicted occupancy level one hour ahead compared to the true occupancy level.
Table 10 prediction for forecasting occupancy level in the near future (<3
MSE for predicting the occupancy several hours ahead. h). We think that these occupancy predictors have great potential
# of hours ahead 1 2 3 4 5 6 to help improve operational decisions.
MSE 1465 2521 3505 6633 11359  160.16 There are many opportunities for future research. One di-
rection is to study the advantage of systematically including
Table 11 additional information. For our current study, we only used the
MSE for predicting the occupancy by the rolling averages of n weeks. arrival and departure epochs of the patients. The dataset of the
n 1 2 3 4 5 ED itself does not contain much more beyond that. Only gen-
MSE 82.24 64.29 5743 55.74 54.92 der, admission decision, age, the hospita}igation duration.(if any)
" G Z P 9 0 and the total number of departments visited by the patient are
available. For predicting future arrivals, it is possible that some
MSE 53.92 53.10 52.78 5252 51.91

observed occupancy level two hour ago. Hence, we conclude
that our real-time occupancy predictor outperforms the rolling
average predictor for forecasting from 1 to 3 h in the future, but
not longer. That is roughly what we expect, given that the mean
LoS for all patients is about 4 h. Beyond that time interval, the
current state information will not provide much information. At
the same time, we are required to make too many estimations in
the real-time estimation procedure, which will make it perform
worse than the rolling average estimator, which only removes
noise but does not use the recent system state.

6. Conclusions

In this paper we investigated forecasting methods for the
daily arrival totals and their application to predict the hourly
occupancy level based on the framework we proposed [5] and
its refinement. For that purpose, we exploited much more data,
which enabled us to detect both (i) a long-term trend in both
the arrival process and the LoS distributions and (ii) dependence
in the daily arrival totals. For daily arrival totals, in Section 4
we studied five prediction methods, including rolling averages,
highly structured time series models and a neural network model.
We found that the SARIMAX time series model exploiting both
exogenous variables (temperature and holiday effects) and inter-
nal dependence has the best predicting power. It suggests that
some local related data might be useful for predicting the ED
arrivals. It should be able to further improve the estimator if more
useful data are available.

In Section 5 we also proposed real-time predictors for hourly
occupancy levels, which take account of the current system state.
We found that our new method is superior to the rolling-average

of the arrivals to the ED are known in advance because they are
scheduled.

For predicting future occupancy levels, dividing the patients
into different groups based on age might be helpful to have a
better estimation of their length of stay. There will also likely
be much more relevant information available in the future. It
may be possible to know the patient’s medical problem, and the
patient status (severity). Information about the internal hospital
wards also could be relevant. Even without extra information,
further progress may be possible in the context of our study.
Because the data we use are readily available and our methods
are generalizable, others may be able to make improvements or
validate our findings on the same or other dataset.
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