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ABSTRACT

A battery swap station (BSS) is a facility where electric vehicle owners can quickly exchange their de-
pleted battery for a fully-charged one. In order for battery swap to be economically sound, the BSS op-
erator must make a long-term decision on the number of charging bays in the facility, a medium-term
decision on the number of batteries in the system, and short-term decisions on when and how many
batteries to recharge. In this paper, we introduce a periodic fluid model to describe charging operations
at a BSS facing time-varying demand for battery swap and time-varying prices for charging empty bat-
teries, with the objective of finding an optimal battery purchasing and charging policy that best trades
off battery investment cost and operating cost including charging cost and cost of customer waiting. We
consider a two-stage optimization problem: An optimal amount of battery fluid is identified in the first
stage. In the second stage, an optimal charging rule is determined by solving a continuous-time optimal
control problem. We characterize the optimal charging policy via Pontryagin’s maximum principle and
derive an explicit upper bound for the optimal amount of battery fluid which allows us to quantify the
joint effect of demand patterns and electricity prices on battery investment decisions. In particular, fewer
batteries are needed when the peaks and the troughs of these periodic functions occur at different times.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Today more and more people are opting for electric vehicles
(EVs), as plummeting battery prices and new battery technology
have enabled automakers to produce cheaper models with longer
ranges. On the horizon, the growth of shared mobility and the
emergence of self-driving vehicles strongly complement EVs, fur-
ther hastening EV market penetration. In addition, many govern-
ments have long incentivized EV purchases, considering numer-
ous environmental and socio-economic benefits. The transition to
widespread EV adoption is accelerating, yet there are still concerns
centering around (i) long charging times and (ii) grid overloading
due to mass EV charging. Charging times are decreasing, due to the
emergence of specialized fast-charging facilities, such as Tesla’s su-
perchargers that provide up to 135 KW of power and are able to
charge a battery to 80% in 45 minutes and to 100% in 75 min-
utes. But this is not as quickly as consumers would like, as a gas
station could serve dozens of cars in that time. Moreover, as EV
ranges get longer and batteries get bigger, fast-charge technology
is fighting physics. High-power charging could also present grid
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challenges, as distribution lines and transformers need to handle
enormous spikes of electrical demand when cars plug in. A recent
Bloomberg report projects global electricity consumption from EVs
to rise 300-fold, from 6 TWh in 2016 to 1,800 TWh by 2040. Ad-
ditionally, the report warns that the sharp rise in EV ownership
could increase pressure on the power network far beyond the cur-
rent capacity; many systems will have to be replaced or upgraded.

Battery swap, as an alternative refueling option realized in a
battery swap station (BSS), is being considered. For example, NIO,
a Chinese automobile manufacturer, has recently put 18 BSSs into
operation in 14 service areas and plans to deploy 1,100 additional
BSSs by 2020. Battery swap provides a way to address the afore-
mentioned issues associated the rapid charging. First, battery swap
provides a more rapid way of refueling EVs and can enable EVs to
travel essentially nonstop on long road trips. In addition, empty
batteries that are swapped out can be charged when electricity
is cheap or demand is low. By controlling the charging time, the
potential peak demand or overloading, caused by mass EV charg-
ing, can be flattened. Moreover, banks of batteries waiting to be
swapped can soak up extra energy and sell it at a profit, thus
balancing supply and demand. Battery-swap technologies make it
possible to charge batteries with a lower voltage, compared with
rapid charging hence should prolong their life expectancy.
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Fig. 1. Illustration of a BSS with an infinite-buffer queue for EVs and a closed queue
for batteries circulating inside.

1.1. Benefits for fleet vehicles

Companies with fleet vehicles may find BSSs especially attrac-
tive because one company owns all vehicles and batteries; that
is there is no ownership issue about the batteries. For instance,
BJEV, the leading new energy electro-mobile producer in China,
has built 106 new battery swap stations for electric cabs as of the
end of 2017 and planned to build over 3000 swapping stations in
100 cities nationwide by 2020. Recently, the company establishes a
joint venture with Didi Chuxing, China’s ride-hailing giant, to work
on projects related to ride-hailing, battery swap, and the operation
of shared EVs. BJEV estimates that there will be close to 4 million
vehicles using the technology with most coming from ride-hailing
services. Another example is Tesla Semi, the company’s upcoming
all-electric trucks. It is widely speculated a commercial applica-
tion of these electric trucks may rely on battery-swap technology.
According to a third-party analysis, recharging a semi to around
80 percent takes about 90 minutes. Since companies make money
by keeping the vehicles on the road, reducing a truck’s downtime
with a battery swap station can help boost productivity and prof-
its.

With autonomous driving solutions taking care of the driver
portion of any trip, charging is yet to be addressed for autonomous
vehicles and a battery swap solution could be extremely useful for
the hundreds of thousands of shared autonomous EVs that will be
flooding streets in the near future. Recent studies regarding the
performance characteristics of shared autonomous EV fleets sug-
gest that increasing charging power can reduce the desired fleet
size by 30% and the number of chargers by 50%; see Loeb, Kock-
elman, and Liu (2018), Bauer, Greenblatt, and Gerke (2018). With
battery-swap services, it is reasonable to expect that the fleet size
and the number of chargers can be further reduced.

1.2. A Preview of the model

Fig. 1 illustrates the daily operations of a BSS. Exogenous de-
mand for battery swap comes from vehicles arriving at the BSS.
That demand is fulfilled by exchanging a depleted battery (DB) for
a fully-charged battery (FB), but the EV must wait if an FB is not
available since an EV with a DB may not have sufficient energy
to reach another refueling facility. A BSS can dynamically control
the number of DBs to be charged at the same time, which we
characterize via the energy consumption rate. Two types of capac-
ity resources constrain the BSS’s capability of producing FBs. The
number of charging bays restricts the number of DBs that can be
charged simultaneously, whereas the number of batteries in the
system limits the utilization of the charging bays. These two re-
sources together determine the effective charging capacity of the

BSS. Here we regard the number of charging bays as part of long-
term planning and take it as given in our model.

Fig. 2(a) illustrates the percentage of the average hourly refuel-
ing demand of vehicles at gasoline stations over one week. Fig. 2(b)
shows the energy prices of New York City in Jul. 17-23, 2017, Oct.
17-23, 2017, Jan. 15-21, 2018, and Apr. 16-22, 2018. It is signif-
icant that a BSS operates in a highly dynamic time-varying en-
vironment. Both the demand rate for battery swap and the price
of electricity vary significantly over each day. Indeed, the arrival
rate of the residential EV charging demand could have a periodic-
ity where the period is one day (Zhang & Grijalva, 2015). The daily
travel patterns are also likely to exhibit periodicity based on the
National Household Travel Survey in 2009.! The electricity price
also exhibits strong daily and weekly periodicity and can often be
accurately forecasted, according to Amjady and Keynia (2009). Ac-
cordingly, we take the demand rate and the electricity price to be
jointly periodic functions in the present study.

As alluded to earlier, in order for a BSS to run efficiently, the
BSS owner not only should know the initial number of batter-
ies to be purchased, but also should perform charging in a time-
scheduled fashion on the basis of electricity prices and demand
volume. It would clearly be beneficial for the BSS to recharge bat-
teries at full capacity when the electricity price is low in order to
cut down on energy cost. On the other hand, high demand for bat-
tery swap produces a greater number of DBs that can be used for
recharging; hence the BSS owner would also like to recharge bat-
teries when the demand volume is high so as to increase the uti-
lization of the batteries. These conflicting goals suggest that opti-
mization could help to manage a BSS.

1.3. Our contribution

We make four contributions in this paper.

1. We develop a dynamic (time-varying) fluid model that serves
as a deterministic and continuous approximation of a large BSS
with stochastic arrival of demand and random battery charging
times.

2. We propose a fluid-based optimization framework for optimiz-
ing battery purchasing and charging operations. Leveraging the
fluid-model analysis, we obtain useful managerial insights for
optimizing the operations of a BSS under time-varying demand
and electricity price: (i) When the degree of similarity between
demand and electricity price is high, namely, the high-demand
period coinciding with the high-price period, the trade-off be-
tween the charging and the waiting cost becomes more salient.
(ii) Each additional battery can help mitigate the trade-off, but
the marginal gain of doing so decreases in the number of bat-
teries.

3. We propose a variant of the problem that allows to achieve
high service levels (i.e., zero waiting). Since the effect of de-
mand uncertainty is more pronounced without backlogs, we
introduce a robust optimization formulation to deal with de-
mand uncertainty. We show that the robust formulation is of
the same order of complexity as its nominal counterpart.

4. We illustrate through extensive numerical examples the effect
of key parameters on the solution to the battery purchasing and
charging problem. We identify the key factors that one should
focus on in order to improve the performance of a BSS.

The remainder of the paper is structured as follows. In
Section 2, we review related literature. In Section 3, we introduce

T The report gathers information about daily travel patterns of different types of
households in 2009, and shows that the daily travel statistics are very similar for
each weekday and weekend.
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Fig. 2. Illustrating the battery-swapping demand and the energy price.

our fluid-based optimization framework and provide important an-
alytical results. In Section 4, we present extensive numerical ex-
periments using real-world data to gain engineering insights. In
Section 5, we present a robust optimization formulation for the
optimal charging problem where backlogged demand is not per-
mitted. We draw conclusions and discuss related applications in
Section 6.

2. Literature review

Our research problem is similar to some inventory control prob-
lems, especially the research on a closed-loop supply-chain inven-
tory system in which failed items (DBs) are returned and replaced
by functioning ones (FBs), and the returned items are then re-
paired (recharged) and put back into the inventory. Early work
on supply chains with repairable items dates back to the work of
Sherbrooke (1968) where the repair capacity is assumed to be in-
finite. Extensions of these models with limited repair capacity are
sometimes framed as a closed queueing network; see, e.g., Gross,
Miller, and Soland (1983) and Diaz and Fu (1997). These papers as-
sume the repair cost (if any) to be constant and the demand to
be time-stationary and mainly focus on steady-steady state analy-
sis, whereas we take both the charging cost and the demand (for
battery swap) to be time-varying. In addition, the time scale for
these inventory problems is drastically different from that for the
BSS problem. For repairs the time scale is days or weeks whereas
charging times in a BSS tend to be of a much shorter time scale.

Our paper is also related to a fluid approximation of a time-
varying stochastic system, which tends to be appropriate for large-
scale systems. While the reference list presented here is by no
means exhaustive, it should give an indication of the many re-
search studies making use of this technique. The fluid model analy-
sis is often used in the study of queueing and production/inventory
systems. Whitt (2006) relies on deterministic fluid models to de-
rive staffing solutions for a call center with uncertain arrival
rate and employee absenteeism. The use of fluid model analy-
sis also appears in the revenue management literature. For in-
stance, Maglaras and Meissner (2006) perform a unified analysis of
the pricing and capacity control problem in the context of multi-
product revenue management and develop a deterministic fluid
formulation that gives rise to a closed-form characterization of the
optimal control which in turn leads to useful fluid heuristics.

We are by no means the first to consider the battery purchas-
ing and recharging problem for a BSS. A problem that concurrently
optimizes the number of batteries and the charging decisions has

been formulated and carefully studied by Schneider, Thonemann,
and Klabjan (2017) under a Markov decision process (MDP) frame-
work. In contrast to their study, we propose a fluid-based opti-
mization framework, inspired by the current implementations of
battery-swap technology in China and its potential application to
future urban mobility systems. In addition, our fluid-based anal-
ysis produces operational insights that can be absent under an
MDP framework. Since BSSs are still in the early planning stage,
research on optimizing the operation of a BSS remains limited.
Mak, Rong, and Shen (2013) analyzes a BSS location problem us-
ing a robust optimization approach. Jie, Yang, Zhang, and Huang
(2019) studies a two-echelon capacitated EV routing problem with
BSSs to determine the delivery strategy for city logistics. In the
paper Tan, Sun, Wu, and Tsang (2017), the authors model a BSS
as a mixed queueing network and analyze the system capacity
parameters as the number of batteries approaches infinity. Using
the same queueing-theoretic approach, in the paper Sun, Tan, and
Tsang (2018a), the authors formulate the charging operation prob-
lem as a stationary constrained MDP to minimize the charging cost
while ensuring a certain quality of service. Widrick, Nurre, and
Robbins (2018) formulates and analyzes a finite-horizon, discrete-
time, non-stationary MDP. They consider a scenario, in which the
BSS is able to discharge energy back to the power grid, but they
do not take into account the cost of waiting due to backlogged de-
mand. In contrast to Widrick et al. (2018), we do not consider dis-
charging operations but take system congestion as an important
component in the operating cost. More recently, Sun, Yang, and
Yang (2018b) applies a multi-range robust optimization approach
to jointly optimize the location, battery investment and charging
strategy for a network of BSSs. They also prohibit backlogged de-
mand and take the recharging time to be the length of one time
slot, which oversimplify the charging operations in BSSs based on
current battery charging technologies. In addition, as the authors
point out, the problem is NP-complete and can be computationally
expensive for large-size systems.

Our BSS model is related to EV sharing systems as considered
by He, Mak, Rong, and Shen (2017). By assuming all customer
requests to be lost when there are no available EVs, He et al.
(2017) models the EV fleet operations as a closed queueing net-
work. The same modeling approach is adopted by Bellos, Ferguson,
and Toktay (2017) to model a car sharing system with a fixed num-
ber of vehicles in circulation. In contrast to He et al. (2017) and
Bellos et al. (2017), we assume that all unfilled demands will wait
in queue instead of being lost. Due to the striking resemblance be-
tween these shared transportation systems and the BSS, we believe
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that the modeling framework provided here can be easily adapted
to suit EV fleet management problems.

3. The fluid-based optimization

We start by introducing a dynamic (time-varying) fluid model
to describe system dynamics. Fluid is a deterministic divisible
quantity. Here we model the state of the battery at a fundamen-
tal level. Hence, each quantum of the battery fluid is either fully-
charged or depleted. Since the consumption of an FB automatically
creates a DB, the total amount of battery fluid is kept a constant.
Throughout the rest of this section, we will use ¥ and b to de-
note the maximum amount of DB fluid on charging mode and the
total battery fluid quantity, respectively. The total EV fluid input
(demand for battery swap) over an interval [0, t] is

At) = /()tk(u)du, t>0,

where A ={A(t)|t >0} is the demand (arrival-rate) function. We as-
sume A(t) to be a periodic function in time with the cycle length
equal to 7; ie., A(t) =A(t+ ). We model the system such that
the amount of time for a quantum of fluid to receive a full charge
to be exponentially distributed with rate parameter w. This means
that the remaining charging time per quantum of DB fluid does
not depend on how long time it has been charging; i.e., if the to-
tal DB fluid content in the charger is m(t), then the rate at which
new FB fluid is produced is wm(t). While the exponential distribu-
tion may not capture the exact charging-time distribution in prac-
tice, it is close to reality since it captures (i) the mean charging
times and (ii) the independence between different batteries, and
has been used in some known references to model battery charg-
ing times; see, e.g., Bayram, Michailidis, Devetsikiotis, and Granelli
(2013), Yang, Dong, and Hu (2017) and Gnann et al. (2018). The
assumption is mostly motivated by mathematical convenience. In-
deed, the memoryless property allows us to gain much analyti-
cal tractability which is not possible for other probability distri-
butions. However, to validate the potential implementation of our
fluid approach in practice with general charging time distributions,
we have numerically shown the effectiveness of the charging so-
lution from our model with exponential charging time distribution
even when the charging time is uniformly or deterministically dis-
tributed in Section 3.2.

3.1. System equations and problem formulation

Let x(t) be the state variable representing the amount of FB
fluid at time t and p(t) be the electricity price at time t. We assume
p(t) to be a periodic function with cycle length t so that A(t) and
p(t) are jointly periodic functions with the same cycle length. We
recall there are two types of resource constraints, ¥k and b, rep-
resenting the maximum possible amount of DB fluid that can be
charged simultaneously and the total amount of battery fluid in
circulation, respectively. We use c¢ to denote the waiting cost per
unit of time for an EV waiting for service. Further assuming bat-
tery investment cost to be y per unit of time (e.g., if a battery
costs $3,500, or $350 per year considering a 10% amortization rate,
then y ~1 if we use day as the units of time), we can formulate
the BSS battery purchasing and charging problem as
min ytb + V() ., (first-stage) (1)
b0 — —

battery cost  operating cost

where the second-stage problem, which we also refer to as the
charging problem, is given by

V() = min /O p(Om()dt + ¢ /O X (H)dt (2a)

st.x(t) =pum(t) —A(t) O<t<rt, (2b)
O<m()<k Ost<r, (20)
m()+x*(t)<b O<t<r, (2d)
x(0) = x(T) = Xo. (2e)

The goal of the charging problem is to determine a charging
policy m* and an initial FB fluid content x§j that minimize the sum
of the charging cost and the cost of waiting within one cycle, and
we denote its optimal objective value by V(b) so as to indicate
the dependence of the solution on the value of b. Here the state
variable x(t) can take either positive or negative values. Positive
values indicate that we have an amount of x(t) FB fluid in stock
whereas negative values occur when demand for FB fluid exceeds
its supply in which case there is an amount of —x(t) EV fluid in
queue. Constraint (2b) is the basic flow equation derived of con-
servation laws. Constraint (2c¢) stems from the fact the amount of
charger fluid at any time is nonnegative and cannot exceed the
maximum charger fluid «. Constraint (2d) states that the amount
of DB fluid being charged and the amount of FB fluid combined
cannot exceed the total amount of battery fluid in system. Finally,
we impose the terminal condition (2e) which is primarily moti-
vated by the existence of a periodic-stationary optimal policy *
to the MDP in Appendix A whose induced FB inventory has a
periodic-stationary distribution; i.e., x; equals in distribution to X;..
Since our fluid model can be seen as a deterministic approxima-
tion of the MDP, it would be reasonable to have x(t) = x(t + 7) in
the fluid model with a periodic-stationary control. Loosely speak-
ing, by adding constraint (2e), we restrict ourselves to the space of
periodic-stationary solutions.

Note that constraint (2e) requires the amount of FB fluid pro-
duced over [0, 7] to be equal to the demand occurred over the
same cycle. Indeed, combining (2b) and (2e) yields

A7) :,u/orm(t)dt. 3)

Further let 6 be such that ux6 = A(t), or simply 6 = A(t)/(uk).
From (2c) and (3), it is readily seen that € is the minimum amount
of time that the BSS has to spend on charging batteries within a
cycle. The result below guarantees the existence of an optimal so-
lution over the decision space R x L for the problem specified by
(2). The proof makes use of an equivalent formulation and is de-
ferred to the appendix.

Theorem 3.1. Suppose 6 < t. Then there exists at least one optimal
solution (x5, m*) to the second-stage problem given by (2).

The next result provides convexity of the charging problem in
b, the total amount of battery fluid circulating through the system.

Theorem 3.2. Under the condition of Theorem 3.1, the function V(b)
is convex.

Proof of Theorem 3.2. It suffices to show for arbitrary b; and b,,
V(ob1 +0b2) <oV(b1)+0V(by) for 0<p<1 and
o=1-p.

Let (x;(0), m;) denote an optimal solution associated with b;, and

let x; denote the optimal trajectory of the state, i = 1, 2. Consider

m=pmy + 0m, and x = pxy + 0x,. We argue that (x(0), m) is fea-
sible for the problem with b= pb; + gb,. Note that constraints

(2b), (2¢), and (2e) are trivially satisfied. For the third constraint,

we have

m(t) +x*(t) = omy (t) + 0ma(t) + [0x1 () + 0X2 () ]*

< o(mq(t) +x7(8)) + 0 (my(t) + x5 (1)),
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where the right-hand side is no greater than ob; + ¢ob, which in
turn equals b. This shows that constraint (2d) is indeed satisfied
and therefore the solution (x(0), m) is feasible. The proof is com-
plete by observing that

V(b) < fot p(t)m(t)dt—&-c/orx’(t)dt

= Q(/O p(t)my (t)dt+c/0 x;(t)dt)

+ @(/Ot p(6)my (t)dt + c/or X (t)dt)
= 0oV (by) + 0V (by).

This shows that the value function V(b) is convex in b. O

Theorem 3.2 suggests that although adding an additional
battery can help reduce the charging and waiting costs alto-
gether, the marginal gain of doing so diminishes. Moreover,
Theorem 3.2 shows that the first-stage problem given by (1) is con-
vex and its solution is guaranteed to exist.

3.2. Maximum principle for the fluid optimization

In this section, we characterize the solution to the second-stage
problem using Lagrangian form of Pontryagin’s maximum princi-
ple; see Chapter 3 of Sethi and Thompson (2000); see also Chapter
3 of Bertsekas (1995). To do that, we associate an adjoint function
o with Equation (2b) and write down the Hamiltonian function

H = Hx(t), m(t), a(t)) = —p(t)m(t)

—ox () +a ) (um(t) = A(t)). (4)
In (4), we have used the negative of the integrand in (2a), since
the minimization of V(b) in (2a) is equivalent to the maximization

of —V(b). To apply the Pontryagin’s maximum principle, we differ-
entiate (4) to get

H——-i—oz
ﬁ—pu,

so that the optimal control is of the bang-bang form:

0 if p> e,
m* = {min(A/u, k,b—x") if p=pa, (5)
min(k, b —x*) if p<po.

The adjoint variable «(t) can be interpreted as the future value
(at time t) of one unit of FB at time t. Therefore, the decision
rule (5) has a clear economic interpretation: The BSS is willing to
charge DB fluid at the maximum (possible) capacity if the marginal
benefit of producing an additional FB fluid exceeds the associated
cost; similarly, if the marginal benefit falls short of cost, it is ben-
eficial for the BSS not to charge battery at all. To proceed, we form
the Lagrangian

L =L(x(t), m(t),c(t), v(t)) = H+ vy ()m(t)
+12(0) (k = m(t)) +v3(t) (b —m(t) —x* (1)), (6)

where the set of Lagrange multipliers v=(vq, v,, v3) satisfies the
complementary slackness (CS) conditions:

Vl(t) > 0, vl(t)m(t):O,
V() =0, v(t)(k —m(t)) =0,
v3(t) =0, wv3(O)(b—m(t) —x*(t)) =0. (7)

In addition, the optimal state trajectory, optimal control, and the
corresponding Lagrange multipliers must satisfy

aL

g = ~PO +pa(®) +vi(0) —v2() —v3(t) =0 and (8)

. oL .
a(t) = A —Clix(ey<0p + 1 P Lxer=0.—pc=p(t)<0}
+ V3(O) 1 ix(0)~0}- 9)

One can easily check by combining the CS conditions (8) and
(9) that v3(t) = poe(t) — p(t) if x(t) + m(t) = b and v3(t) = 0 oth-
erwise.

In canonical control problems, it is usually assumed that the
initial state x(0) is fixed. Here the initial state is free but the tra-
jectory must return to it. It turns out that this set-up can be
easily handled by using a version of the transversality condition,
which involves the values of the adjoint function both at the ini-
tial time and at the terminal time. More precisely, this condition
requires («(0), —x (7)) to be orthogonal to (x(0), x(7)); see, e.g.,
equation (4.46) at page 107 in Liberzon (2011). Because (2e) stipu-
lates x(0) = x(t), we have

a(0) = a(r). (10)

When the final state is not fixed, there must also be a terminal
condition for the adjoint equation. Here that condition is not nec-
essary because we have the extra boundary condition (2e) main-
taining the balance between boundary conditions and unknowns.
To summarize, the optimal solution (xj, m*) to the second-stage
problem is completely characterized by (2e), (5), and (7)-(10).

We conclude this section by numerically testing the accuracy
of the fluid model approximation. To that end, we solve the MDP
in Appendix A and the second-stage fluid optimization under the
same settings, and then compare the results from the two ap-
proaches. To make the problem manageable for the MDP, we run
our experiments on a medium-size system with K = 20 chargers,
B = 40 batteries, price function p(t) =2.45—1.05sin(;rt/12) and
arrival-rate function A(t) = 16 — 8sin(swt/12). The cycle length is
thus 7 = 24 hours. We set the average charging time of each bat-
tery to be 1/ =1 hour and the waiting cost factor to be ¢ =0.1
$/min/EV. The fluid optimization can be solved fairly quickly by
a simple discretization procedure as described in Appendix B. We
apply the iterative algorithm in Riis (1965) with a discount factor
close to one to compute the optimal policy for the infinite-horizon
periodic MDP in Appendix A. This optimal policy is derived by as-
suming an exponentially distributed battery charging time. To fur-
ther investigate the impact of charging time distribution on the op-
timal charging policy, we apply the optimal charging policy to the
BSS systems with different charging time distributions, and simu-
late their mean FB inventory levels and the numbers of working
chargers (averaged over 1000 sample paths under the optimal pol-
icy from the MDP). We compare those simulated results with the
time-varying FB fluid x and the working-charger fluid m computed
from the fluid-model approximation in Fig. 3. The effectiveness of
the fluid-model approximation is visually confirmed from Fig. 3,
in which both state trajectories and charging controls from MDP-
based approach and fluid-based approach are close. Moreover, the
simulated results with more general charging time distributions
such as uniform and deterministic distributions are also close to
the fluid-based solution. This verifies that our fluid-based approach
can serve as a good approximation to the MDP model even when
the charging time is not exponentially distributed.

3.3. Upper-bound analysis

To gain greater managerial insights into the joint impact of en-
ergy price and demand functions on battery investment cost, here
we construct an explicit upper bound b for the optimal amount of
battery fluid that arises in solving the fluid-based cost minimiza-
tion problem. We start by focusing on the charging cost. To save on
energy costs, the BSS would like to operate at full capacity at those
times when the electricity price is among the lowest. To explicitly
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characterize such a policy, define the set-valued function

$)={0<t=<t:pt) <t} (11)

that maps each real number to a level set. Fig. 4 presents a graph-
ical illustration of the function ¢. From (11) it is easily verifiable
that g is a nondecreasing function yet not necessarily continuous.
Indeed, if p happens to be a step function, then g has points of
discontinuity.

Assumption 3.1. The price function p is Borel measurable so that
¢(¢) given in (11) is a Borel set. Denote by ¢ the Lebesgue measure
and define g(¢)=¢(¢(¢)). Then there exists a unique ¢* >0 such
that g(¢*) = 0.

Remark 3.1. Assumption 3.1 is likely to be violated if the price
function is a staircase function. Indeed, in the case of staircase
price functions, there typically exist two price levels ¢ and ¢
such that g(¢1) <6 <g(¢3), {1 <¢,. To minimize the charging cost,

the BSS must charge batteries at full capacity when the price is
lower than or equal to {4, and charge the remaining batteries at
the price ¢{,. Moreover, there exist multiple charging policies that
can achieve the minimum charging cost without loss of demand.

Suppose for the moment that there is an unlimited amount of
battery fluid in the system; i.e., b= oco. Then (2d) is no longer a
real constraint. Consider the following charging policy:

i tep,
m“’:{o if t¢ B,

where ¢* is defined by Assumption 3.1. The result below indicates
that m* is optimal as far as the charging cost is concerned.

(12)

Proposition 3.1. Suppose 6 <t and Assumption 3.1 holds. If the
amount of battery fluid in circulation is unlimited (i.e., b = o0), then
the charging policy m* given in (12) achieves the minimum (possible)
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charging cost; that is, there exists no such a charging policy that gives
a lower charging cost.

We next consider the cost associated with waiting. Note that
the cost of waiting will be completely eliminated if we choose
(x(0), m) in such a way that

x(t)>0 forall O0<t<r. (13)

Indeed, for a charging policy m, we can choose

. _
x(0) = sup |:,u/ m(u)du—A(t)i|
O<t<t 0
¢ +
= sup [A(t)—u/ m(u)du:| , (14)
O<t<t 0

to ensure that condition (13) holds. To see that this is indeed the
case, notice

x(t) = x(0) + u[ot m(u)du — A(t)

t - t
> [“/o m(u)du—A(t)] +u/0 m@u)du — A(t) > 0,
(15)

where the first inequality is due to (14) and the second inequality
follows from the simple relation x™ = x~ + x. In particular, we set,
for the optimal charging policy m* given in (12)

t +
x*(0) = sup |:A(t) —u/ m*(u)du] . (16)
O<t<t 0

By Proposition 3.1 and (15), the solution (x*(0), m*) yields the low-
est charging cost without causing any congestion, provided the to-
tal amount of battery fluid in system is sufficient. Therefore, solu-
tion (x*(0), m*) is optimal for the fluid-model optimization prob-
lem given by (2) with b = co. With the control function m* and
the initial state x*(0) given by (12) and (16) respectively, the state
dynamics, denoted by x*(t), is uniquely determined by

X (t) = x*(0) + M/o[ m*u)du— A(t), forall 0<t<z. (17)

Using the state x* and control m* specified by (12) and (17) respec-
tively, we define

b = sup{m*(t) +x*(t)}. (18)
t<t

By choosing b = b, we make sure that constraint (2d) is not vio-
lated. Indeed, b is the minimum amount of battery fluid content
with which both components of the objective function (2a) reach
the lowest possible value. The theorem below summarizes the
main results in this section.

Theorem 3.3. Under the conditions of Proposition 3.1, there exists a
threshold value b such that the value V(b) with respect to b is (i)
strictly decreasing for b < b and (ii) constant for b > b.

Theorem 3.3 immediately implies that the objective value of
problem (1) is monotonically increasing for b > b. Consequently, b
is an upper bound of the optimal amount of battery fluid in the
two-stage optimization problem (1). Moreover, this bound depends
on the energy price p and demand A only. To analytically evaluate
the joint impact of energy price and demand functions on battery
investment cost, we illustrate by an example how the degree of
similarity between p and A can affect the value of b. For simplicity,
we stipulate that both price and demand follow sinusoidal func-
tions with cycle length t. Specifically, we assume the price and
demand functions to follow

p(t) = p+Apsin(2rt/t) and A(t) = A+ A, sin(2w (t —¥)/7),

respectively, where p and A are the vertical shifts, Ap and A rep-
resent the amplitudes, and i denotes the phase shift. Here the
degree of similarity between p and A is quantified by the pa-
rameter ¥ that serves as an indicator of the degree of synchro-
nization. Note that ¢ =0 and y = t/2 represent the cases that
demand function is synchronized and unsynchronized with price
function, respectively. It is readily checked that the total demand
A(7) = At. In addition, let & =1 and k = 2. With these param-
eters, we can calculate the minimum amount of time that the
BSS has to spend on charging batteries within a cycle, yielding
6 = A(t)/k = t/2. Using (12), (16), (17) and (18), we deduce

T T
b=k+At —/ At)dt =k + AT —A,\/ sin(27 (t — ) /T)dt
T/2 2 T/2

AT
2
It is immediate by the analytical expression that b, as a function
of , attains its maximum at ¢ = 0, and keeps decreasing until
reaching its minimum value at v = t/2. This carries practical im-
plications that are important for the BSS operator to be aware of
in order to determine the optimal number of batteries in circula-
tion. In particular, when the demand function and the electricity
price function are unsynchronized, the BSS can keep its charging
and waiting cost down using a smaller number of batteries. The
reason is that when A is synchronized with p, the BSS tends not
to recharge batteries over the high-demand (high-price) period so
as to keep its charging cost down, but it has to build high FB in-
ventory over the low-demand (low-price) period to avoid shortages
of FBs over the high-demand (high-price) period, which would re-
quire a greater number of batteries in system. In contrast, in the
unsynchronized case, high price coincides with low demand al-
lowing the BSS to maintain lower FB inventory levels, and hence
a smaller number of total batteries.

One way to quantify the degree of similarity of two general
functions is by a scalar ranging from —1 to 1, where —1 and 1 rep-
resent the lowest and highest degrees of similarity between the
two functions, respectively. Specifically, in our context, we use co-
sine similarity as our measurement of the degree of similarity be-
tween the general demand function A and the energy price func-
tion p. More formally, we define the cosine similarity to be

Jo A®)p(t)dt .
Vg A2yt - f§ p2(Hde

It is readily seen that the cosine similarity of two positive functions
can never be negative and will range from 0 to 1.

=20+ +%cos(2mﬁ/r).

C= (19)

4. Numerical Studies and Discussion

In this section, we numerically solve the two-stage fluid-based
cost minimization problem based on real-world data to gain man-
agerial insights into (i) how the optimal charging control trades off
the charging and waiting costs in the second-stage problem (2),
and (ii) how the number of batteries trades off the battery capital
cost and the BSS operating cost in the first-stage problem.

For any value of the first-stage decision variable b, we can solve
the second-stage problem by discretization (see Appendix B) as in
Section 1 in Riis (1965), p. 5, and obtain the corresponding second-
stage objective value V(b). Then our key problem is to find the
optimal b to minimize ytb+ V(b) in the first-stage problem. By
Theorem 3.3, the optimal b is within the interval [0, b] where b
is the upper bound of the optimal battery fluid given in Eq. (18).
Since a complete enumeration of all feasible b is practically impos-
sible, we approximate the feasible region by a bounded discrete
set ={0,1,..., [b]}. Moreover, from Theorem 3.2 it follows that
the objective function yth + V(b) is convex in b. Therefore, a local
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Fig. 5. Illustrating the trade-offs between the battery capital cost and the BSS operating cost.

optimal value b*, ie., V(b*) + ytb* <V(b) + ytb for b=b*+1, is
also globally optimal in €2. Thus, we can enumerate V(b) starting
from b = [b] to 0 until we find the local optimal value b*.

Although our discussion here is based on the solution to the
fluid model optimization, we will interpret b, x and m as the num-
ber of batteries in system, the number of FBs and the number
of working chargers, respectively. Throughout the section we fix
the system parameters as follows: the number of charging bays is
k = 50, the average charging time is ;=1 = 1 hour, the power rate
of each charging bay is 26.8 kW. We choose the cycle length 7 as
one week to take into account the periodicity of price and demand
in the time of day and the day of week. Due to lacking the real
data of battery-swapping demand, we follow the same data and
approach as Widrick et al. (2018) and Nurre, Bent, Pan, and Sharkey
(2014), using the refueling demand of vehicles at gasoline stations,
as shown in Fig. 2(a), to estimate the battery-swapping demand.
We assume the demand within each hour follows Poisson process
with an average rate determined by the product of the weekly to-
tal demand and the hourly demand percentage. We adopt the real
energy prices of New York City from LCG Consulting (2018). Specif-
ically, we use the hourly prices as shown in Fig. 2(b) to represent
the energy prices in summer, autumn, winter and spring. As il-
lustrated in Fig. 2(b), the energy prices of weekdays are generally
higher than those of weekends due to the electricity load reduction
in weekends, and the weekly average prices in summer and win-
ter are higher than those in spring and autumn due to extremely
hot/cold weather conditions.

4.1. Trade-offs between the battery capital cost and the BSS operating
cost

This section studies the first-stage battery purchasing problem
(1). To expose the trade-offs between the amortized battery cost
ytb and the operating cost V(b), we show the operating cost
against the battery capital cost with the increase of the number
of batteries from 50 to 300 (which is called cost curve in this part)
in Fig. 5. It can be observed that the marginal reduction of the
operating cost decreases with the increase of the battery cost for
all cost curves in Fig. 5. This observation verifies that V(b) is con-
vex in b as claimed in Theorem 3.2. In the following, we discuss
in details about how the key factors affect the trade-offs between
battery capital cost and the BSS operating cost in the battery pur-
chasing problem.

We start with the impact of the battery purchasing cost. Re-
cent years have witnessed the rapid decrease in EV battery price
due to the increasing production scale and the advance of the bat-
tery manufacturing technology. Battery capital cost (including bat-
tery cell and pack costs) has fallen from 1000 $/kWh in 2010 to
209 $/kWh in 2017, see Mark Chediak (2017), and it is expected to
reach 125-150 $/kWh around 2025. Because most battery manu-
facturers are providing eight-year warranties, we assume that each
battery has an eight-year lifespan in expectation. Then we can
estimate the amortized battery capital cost per week. For exam-
ple, the amortized cost in 2017 is 26.8 x 209/8/365 x 7 = 13.43
$/week/battery. Fig. 5(a) illustrates the cost curves with the battery
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prices in different years. To single out the effect of battery pur-
chasing cost, we take the electricity price and the demand pattern
to be fixed. Note that this keeps the charging cost and the waiting
cost unchanged so long as the number of batteries does not change
over the years. But we see that the falling battery cost drives the
cost curves to the cost-efficient regime (left-bottom corner). Fur-
thermore, the optimal number of batteries to be purchased (i.e.,
the red star) increases from 74 in 2015 to 123 in 2017. Thus, with
the continuously falling battery cost, it becomes more and more
cost-efficient to purchase more batteries to reduce the cost.

Next, we fix the battery capital price to be 209 $/kWh, and con-
tinue to examine the impact of the key factors that affect the op-
erating cost. Fig. 5(b) illustrates the cost curves of different waiting
cost factors ¢ given the same price and demand functions. As the
waiting cost factor increases, the operating cost increases mainly
due to the large increase of charging cost. This is because the BSS
has to recharge batteries during the high-price period in order to
avoid high waiting cost. Furthermore, to mitigate the negative im-
pact of high penalty due to customer waiting, BSS is also moti-
vated to purchase more batteries. Interestingly, the cost curves for
c=0.5 and c=1 are close to each other. A close scrutiny reveals
that in these two cases, the number of backlogged demands for
battery swap has reached a relatively small value, and hence the
waiting cost only takes a small portion of the operating cost. Since
the waiting cost indicates the service quality of the BSSs and is the
foundation for a successful business, we prioritize the waiting cost
over the charging cost for the BSS operations. To do so, we set the
waiting cost factor c =1 in the following numerical tests to ensure
the service quality.

Fig. 5(c) depicts the cost curves with different weekly total de-
mand for battery swap. It can be observed that the marginal gain
(in terms of reducing the operating cost) of adding an additional
battery is higher when the demand becomes higher. With the in-
creasing penetration of EVs in the future, the battery-swapping de-
mand is expected to increase accordingly. Thus, the BSS operators
are encouraged to purchase more batteries to reduce the operating
cost in the future. The weekly total demand is set to be 5000 EVs
in the following tests to represent a typical penetration of EVs.

Fig. 5(d) compares the cost curves when the operating cost is
evaluated based on the energy prices in different seasons. It can be
observed that the energy prices in different seasons greatly affect
the battery purchasing decisions. For prices with a large mean and
variation in winter, BSS operators need to maintain 123 batteries in
circulation to best trade off the battery cost and the operating cost.
However, with a smaller and flatter price in autumn, only 60 bat-
teries are needed to achieve the minimum total cost. To take into
account the seasonality of energy prices in the battery purchasing
problem, we can reformulate the first-stage problem as follows. We
index the four seasons (i.e., winter, spring, summer, and autumn)
by i=1,..., 4, respectively. Assume that the operating cost per
week in each season can be represented by the periodic-stationary
cost in the second-stage problem (2). Then denote the operating
cost per week in four seasons by Vi(b), i=1,...,4. Let w; be the
ratio of the number of weeks of season i to the total number of
weeks of one year. We can determine the optimal number of bat-
teries to be purchased by solving

4
mbin > wVi(b) + yth. (20)

i=1

Set w; = 0.25, Vi. Then based on the energy price data in Fig. 2(b),
we can solve problem (18) and the optimal number of batteries to
be purchased is 81.

To summarize, the seasonality of the operating cost indicates
that BSS operators prefer to maintain different number of batteries
to minimize their total cost. Thus, instead of purchasing batteries,

BSS operators may prefer to lease batteries from companies (which
can be independent third-part companies or the battery manufac-
turing companies) based on the amortized battery cost and adjust
the number of batteries in system over different seasons to mini-
mize their overall costs.

4.2. Impact of demand and price functions on the optimal charging
control

This section focuses on the second-stage charging operation
problem (2) to trade off the charging and waiting costs. In order to
reduce the charging cost, the BSS has the incentive to build up FB
inventory in low-price periods and then use the on-hand inventory
to satisfy the demand in high-price periods. On the other hand, to
reduce the waiting cost, the BSS would like to build up FB inven-
tory over underloaded periods (i.e., the time period that A(t) < uk),
and then use the inventory together with the real-time production
of FBs to satisfy the demand over overload periods. Intuitively, to
avoid holding too much FB inventory (which necessarily requires
greater number of batteries in circulation), it is beneficial for the
BSS to fulfill the demand of overload periods with best effort (i.e.,
charging at full capacity) rather using the on-hand FB inventory
built in the underloaded period only. For this reason, there exists
an important trade-off between achieving low charging cost and
reducing waiting cost, especially when the overload period is not
overlapping with the low-price period.

We obtain the optimal charging control m and the optimal FB
inventory level x by solving the second-stage problem (2). In this
numerical test, we set the weekly total demand as 5000 EVs/week,
the energy price as the price data of New York City in Jan. 15-21,
the waiting cost factor as ¢ = 1 $/min/EV, and total number of bat-
teries as 123. Fig. 6 illustrates the optimal charging control with
reference to price function, demand function and the FB inventory.
Consistent with the optimal charging control (5) derived based on
the Maximum Principle, m(t) often, but not always, assumes the
maximum or minimum possible values. Thus, we can divide the
charging control in Fig. 6 into three types of operations: (i) the BSS
stops charging when the price is high; (ii) the BSS charges at its
maximum capacity min{k, b —x*} when the price is low; (iii) the
BSS charges at the rate of the offered load A/w when the price is
too high to charge at the maximum capacity but the price decreas-
ing rate —p is smaller than the waiting cost factor c, preventing the
state variable x transiting to negative values.

We also see that the optimal charging control builds up a large
FB inventory before the overload period (i.e., peak of the FB in-
ventory precedes peak of the demand) to reduce the backlogged
demand (i.e., the waiting cost) except on Saturday. This is because
the energy prices on Saturday and Sunday are much lower than
weekdays, and thus to reduce the charging cost the BSS prefers to
charge at the full capacity during Saturday to satisfy the demand
on the same day. In addition, the low energy prices on weekends
motivate the BSS to build up the highest FB inventory before the
overload period of Monday to reduce the charging cost.

4.3. Impact of the degree of similarity between the price and demand
functions on the operating cost

Theorem 3.3 and the example followed show that the degree of
similarity between the demand and price functions can greatly af-
fect the upper bound of the optimal number of batteries. Inspired
by the this result, we conjecture that given the number of batter-
ies, the degree of similarity can also make a difference in the op-
erating cost. To verify this conjecture, we numerically compute the
operating cost when the demand function is shifted over time and
compare the resulting cost with that before shifting the demand.
We do this numerical test in three scenarios with different energy
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Fig. 6. Illustration of the optimal charging control and FB inventory level under the time-varying energy price (Jan. 15-21, 2018) and demand (5000 EVs per week).

prices as shown in Fig. 7(a). In each scenario, we periodically shift
the demand function forward and afterward compared the result
to that of the original demand in Fig. 7(a). For each shifted de-
mand function, we solve the second-stage problem and obtain the
corresponding operating cost. Then, we center this operating cost
by subtracting the operating cost with that of the original demand
function. The change in operating cost is illustrated in Fig. 7(b) for
different energy price scenarios. We observe that the shifted de-
mand can lead to either increase (positive change in cost) or de-
crease (negative change in cost) of the operating cost.

We also compute the corresponding cosine similarity, which is
defined in Equation (19), between the energy price and shifted de-
mand functions, and show the results in Fig. 7(c). We can observe
that when the demand is shifted over time, the shifted demand
has different degrees of similarity with different energy prices
from different seasons. This results in different trends of change
in operating cost as shown in Fig. 7(b). Particularly, the operating
cost tends to fall (rise) when the cosine similarity becomes low
(high). Therefore, our conjecture is verified that the operating cost
can be reduced when the demand is shifted to be in a lower de-
gree of similarity with the energy price. This phenomenon natu-
rally motivates the introduction of demand-management strategies
such as pricing to make demand pattern and energy price less sim-
ilar. Moreover, we further elaborate the correlation between the
degree of similarity and the operating cost by Fig. 7(d), in which
each point represents the cosine similarity and corresponding op-
erating cost for each pair of energy price and shifted demand func-
tions. We can clearly observe that the operating cost is positively
correlated with cosine similarity, which is consistent with our dis-
cussions in Section 3.3. We also notice that a cosine similarity
value may correspond to multiple possible operating costs. This is

because cosine similarity is a normalized value and may lose some
magnitude information when measuring the degree of similarity.
Therefore, a particular cosine similarity may correspond to multi-
ple possible pairs of energy price and shifted demand functions,
resulting in different operating costs. Since searching for the best
measurement for the degree of similarity is out of the scope of
this paper, we will leave finding a more proper measurement as
our future work.

5. The charging problem with no backlog permitted

What makes battery swap very attractive is its ability to refuel a
vehicle in seconds. This is especially appealing for autonomous cars
services, as that make almost nonstop travel possible, minimizing
the down time on the road. It is thus sensible to target high service
levels, in which case one would want to eliminate customer delays
entirely. Clearly, this can be achieved by choosing the waiting cost
factor c large enough, in which case the charging problem becomes

i /0 " pOm©)de (21)

min
(Xo,m)eX (b)
where the decision region X'(b) for the recourse variables (xg, m)
is specified by

X(b) = {xo <b,m:X(t) = um(t) —A(t), 0=<m() <k,

x(t) =0, m(t) +x(t) <b, x(0) =x(7) =Xo}. (22)
Note that since we impose a nonnegativity constraint on the state
variable x, the component corresponding to the waiting cost in
(2a) vanishes.

We remark that the fluid input model is intended to approxi-
mate the mean value of the corresponding EV arrival process. In
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Fig. 7. Illustrating operating cost and cosine similarity under different energy price scenarios.

reality, the actual/realized demand process may as well deviate
from its mean value. Thus if we were to implement the solution
to the fluid-based optimization, we will likely experience a backlog
of demand for battery swap in the face of demand uncertainty; an
EV may have to wait upon its arrival at the BSS. Below we resort
to the idea of robust optimization to deal with uncertain parame-
ters/data.

5.1. A robust optimization formulation

Unlike stochastic optimization that makes distributional as-
sumptions on unknown model parameters, a robust optimization
assumes that these quantities belong to certain sets; see, e.g.,
Bertsimas, Brown, and Caramanis (2011). In particular, we model
demand uncertainty as follows. We use A(t) and A(t) to denote the
nominal function and the realization, respectively. In addition, we
assume that the realization lies within an interval centered around
the nominal function with half-length A(t), namely,

|L() = A0 <A(@) forall tef0.7]. (23)

To take into account the fact that the realization is unlikely to be
at its worse-case scenario at all times, we introduce a budget-of-
uncertainty function I'(-), taking value in [0, 7], and stipulate that

/[|§\(u)—mu)|dugr(t) for all ¢ e [0, ]. (24)
0

The function I'(-) allows us to trade off between the level of con-
servatism of the robust solution and its performance. We take I to

be a non-decreasing function in t to account for the fact that the
aggregate error grows over time.

Let 7 denote the uncertainty set, i.e., the set of functions A sat-
isfying (23) and (24). It is quickly verifiable that the function pre-
vents the realization A(-) from being too far away from its nomi-
nal value over a large part of the planning horizon. We can spell
out the robust optimization formulation that serves as the robust
counterpart of the nominal problem given by (21) and (22).

min  x
Xo.M, X

st x >/ p(tym(t)dt forall AeF,
X(t)=pum@t)—A(t) O0<t<rt, (25)
O<m(t) <k, X(1t)=0 O<t=<t
m()+X(t)<b O<t=<r,

%(0) = (1) = xo.

It turns out that the robust optimization formulation can be greatly
simplified, yielding an equivalent formulation that shares the same
order of complexity as its nominal counterpart given by (21).
Specifically, we have the following theorem.

Theorem 5.1. The robust optimization given by (25) is equivalent to
the following problem.

/ p(Om(t)dt

(X0, m)eX(b)
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Fig. 8. Illustrating the uncertainty bound and the resulting protection levels with different robustness factors.
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Fig. 9. Illustrating the impact of robustness factor 8 and variation parameter o on battery purchasing cost and operating cost.

where the decision region X (b) for the recourse variables (xq, m) is
specified by

X(b) = {xo <b,m:X(t) = um(t) —A(t), 0=m() <k,

x(t) = n(), m)+x() <b—n(), x(0)=x(t)==x0},
(26)

where

n(t):min{r(t),f;i(u)du} for 0<t=<t.

In this formulation, the demand uncertainty has an effect only
on the no-backlog constraint and the upper limit on the number
of batteries either fully charged or being charged. In other words,
the uncertainty of demand translates into protection levels for the
FB inventory; i.e., the protection levels guarantee that the FB in-
ventory remains positive and depend on the budget-of-uncertainty
function I" and the variation parameter A for the demand function
A, which are determined through the solution to the dual problem
(C13).

5.2. Impact of demand uncertainty on battery capital cost and BSS
operating cost

Finally, we study the impact of the demand uncertainty on the
battery purchasing cost and operating cost when no backlog is per-
mitted for high service levels. To specify the uncertainty set, we let
i(t) = o A(t). Then combining with (23), we have (1 —o0)A(t) <
At) < (1+0)A(t), 0<t<t, which restricts the demand realiza-
tion to be around the nominal demand with at most o error.
This uncertainty bound is illustrated in Fig. 8(a). Next, we set the
budget-of-uncertainty function r)=g,//3 »(wdu. Here our choice of
I' is primarily inspired by the functional central limit theorem sat-
isfied by non-homogenous Poisson arrival process; see, e.g., Kurtz
et al. (1978) lemma 3.1. Together with (24), we have

¢ t t
‘/O Kandu = [ rdu| < [ 7w - 200|du

t
5,8‘//0 Audu for all tel0,7].

(27)
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Thus, the cumulative realized demand up to time t is around the
cumulative nominal demand and does not deviate from it beyond
a squared-root term. Here o is a problem-specific parameter and 8
is an adjustable factor that controls the level of robustness in the
robust second-stage problem. A larger o or f indicates a higher
level of uncertainty, and hence the corresponding solution is more
conservative. We solve this robust optimization problem based on
the reformulation specified by Theorem 5.1. Recall that the un-
certainty set determined by both o and g is finally transformed
into protection level 1, which affects the battery purchasing cost
and operating cost. The protection levels with varying robustness
factors B and fixed variation parameter o =0.1 are shown in
Fig. 8(b). We notice that protection level 1 is dominated by I' in
most cases except when the robustness factor is set to be a very
large value B = 2.5. This is because the realization of the demand
is unlikely to always take the worse-case values (i.e., (1 + o)A(t)
or (1-0)A(t)). Therefore, the budget-of-uncertainty function I'(t)
is often less than the cumulative error function /gk(u)du, and
hence dominates the determination of protection levels. Fig. 9(a)
and Fig. 9(b) shows the battery purchasing cost and operating cost
as a function of robustness factor 8 and variation parameter o, re-
spectively. It can be observed that with the increase of S or o,
battery purchasing cost keeps increasing because more batteries
are needed to avoid violating the constraints enhanced by protec-
tion levels, which increase with § and o. Meanwhile, the operating
cost keeps decreasing with 8 and o because the increasing num-
ber of batteries offers more flexibilities for batteries to charge in
low-price periods, and thus reduces the operating cost. However,
the total cost of battery purchasing and operating still keeps in-
creasing as one pursues a more robust solution. Also notice that
the battery cost and operating cost become nearly unchanged af-
ter o reaches 0.05 in Fig. 9(b). This is because the protection levels
start to be dominated by I', and the increase of variation parame-
ter nearly has no impact on the cost.

6. Conclusions

In this paper, we studied the problem of battery purchasing
and charging at an EV BSS. Based on the fluid model analysis,
we gained important managerial insights for determining medium-
term decisions (i.e., minimum number of batteries) and how sys-
tem parameters affect the optimal charging policy. We found that
it is tremendously helpful for the BSS to run in an environment
where the demand and the electricity price function are asyn-
chronous. Particularly, when the demand function is out of sync
with the price function, charging at full capacity during the low-
price period can reduce both charging cost and cost of waiting at
the same time. In contrast, when the demand and the price func-
tion are highly synchronous, it becomes difficult to achieve low
charging cost and low cost of waiting at the same time. This leads
us to the consideration of demand management that complements
the supply management view adopted by the present paper.

Although motivated by EV BSS operations, our model can be di-
rectly applied to BSSs for electric scooters. For example, Gogoro,
a Taiwan-based electric scooter manufacturer, operates more than
500 BSSs across the region, with approximately 69,000 batteries
swapped per day. A system at this scale evidently fits in with our
fluid-based framework. Our approach may also be applied to other
systems that share common features with a BSS. One example is a
bike-sharing system that pays some of its members to redistribute
the bikes themselves so as to resolve the “rebalancing problem”, in
which riders overload a system’s most popular takeoff points and
destinations, rendering docks useless (Chung, Freund, & Shmoys,
2018). Specifically, consider an idealized model with two bike lo-
cations A and B connected by a one-way street with direction from
A and B. One can draw an analogy between these two models by

regarding each bike as a battery and each pick-up at location A as
an EV arrival. Then each reverse trip (from B to A) corresponds to
a charge completion for the BSS. Moreover, the transit time from
A to B and that from B to A can be thought of as the battery-
swapping and battery charging times, respectively. Yet the forms
of controls used are slightly different. A bike-sharing system in-
fluences its number of reverse commuters indirectly by dynami-
cally adjusting its rewards whereas a BSS can decide the number
of working chargers directly.
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Appendix A. An MDP-Based Formulation

Throughout Appendix A, we will use K and B to denote the
numbers of charging bays and batteries to distinguish them from
their counterparts « and b in the fluid model. We first describe the
second-stage problem and present the first-stage problem there-
after.

A.1. The second-stage problem

Under the MDP framework, the action taken at each decision
epoch is the number of DBs to be put in the charging bays and
start charging. The objective of the MDP is to find a policy for
charging batteries that can best trade off the charging cost and the
cost of waiting. We adopt a discrete-time formulation where time
is discretized into small slots of length &, indexed by k=1,2,....
To capture the fact that demand and electricity price depend on
the time of day and the day of the week, we allow the param-
eters in both state transition probability and one-slot cost func-
tion to be time-varying. Specifically, we assume that the number
of EV arrivals over the k-th slot [k3, (k+ 1)§], denoted by &, to
be a Bernoulli random variable with parameter A,8. Here we as-
sume {A; k> 0} to be a periodic sequence with cycle length 7, i.e.,
Ay = Ay for any k. With slight abuse of notation, we write Aj in
place of A8 and refer to A, as either the demand rate or probabil-
ity of arrival in slot k. We model the system such that the amount
of time for a DB to receive a full charge is geometrically distributed
with parameter wd. Again, with slight abuse of notation, we write
/ in place of ud and refer to p as either the charging rate or the
probability that a battery finishes charging during the slot.

The sequence of events in each time slot is as follows. At the
beginning of slot k, batteries that receive a full charge become
available and backlogged demand (if any) for battery swap is ful-
filled immediately from on-hand FBs. Then the system operator ob-
serves the system state and electricity price p;, and decides how
many batteries to start charging. Here we assume {p;; k> 0} to be
a periodic sequence as well with the cycle length equal to , i.e.,
Pk = Py for all k. Thus {Ay; k>0} and {p,; k> 0} are jointly pe-
riodic with a common cycle length t. At the end of the slot, the
demand &, is realized, and finally the charging and waiting costs
are incurred. We now mathematically characterize the MDP using
the notation introduced above.

1. The state of the system in slot k x,eX=
{-o0,...,—1,0,1,...,B} represents the inventory level of
FBs at the beginning of period k. Here, a positive value indi-
cates the existence of FBs in system and a negative value is
understood to be backlogged demand. Thus, the number of
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DBs at time slot k equals B — xj, where x* denotes the positive
part of x, i.e.,, x* = max(x, 0).

2. The action taken at the beginning of the k-th slot, a;, € A (x;) =
{0, 1,...,min(B—x;{r,K)}, is the number of DBs placed in the
charging bays. A decision rule, ), : X — A (x,), is a function
mapping from the state space X to the action space A, (xy),
which indicates how the system operator selects an action
a, € Ai(x,) at a decision epoch k when the system state is
X, € X. Because the decision rules depend on the current sys-
tem state only rather than the entire history, we are essen-
tially restricting ourselves to Markovian decision rules. We use
7 = (m1(X1), m2(x2),...) to denote a policy specifying the de-
cision at all decision epochs. Since we consider a periodic sys-
tem, we anticipate that both the state and the optimal control
policy should exhibit time-periodic structure as well, namely,
X = Xpypr and m(x) = 7, ¢ (X, 7)., which will be rigorously
shown in Theorem A.1l. Denote by IT the set of the determin-
istic periodic-stationary policies.

3. We denote by q(j|x, ai) the transition probability that the sys-
tem state reaches j at time k+1 from x, when action a is
taken. Let n, =n,(a,) denote the number of batteries that be-
come fully-charged at the beginning of the (k + 1)-th slot. From
our distributional assumption on the charging times, it can be
verified easily that 7 is a binomial random variable with pa-
rameters (ay, w). The transition equation for the state is then
given by

Xir1 = Xk — gk + Nk

It is readily checked from (A.1)

Mo (O ap, ) i j=x -1, .

MG =X+ 1 ag, ) + (1= X)) fo(§ — Xps ag, (1)
if X, <j<x,+a,

(I =2 folags a, ) i j=x 4 a,

(A1)

QX ax) =

(A2)

for fy(k; n, p) being the probability mass function of a binomial
distribution with parameters (n, p).

4. The one-slot cost when action a; is taken in state x, at time
k that leads to transition to xi,; at time k+1 is the cost of
system incurred over the k-th slot, given by

(A3)

where we have written p, and c in place of p,§ and c§, re-
spectively, similar to what we did with A,§ and wd, and x~
denotes the negative part of x, i.e., x~ = max(—x,0). Here x,
represents the backlog, namely, the number of EVs waiting for
battery swap, p is the charging cost per battery per unit time, ¢
is the cost of waiting per EV in queue per unit time.

5. As we will be primarily interested in minimizing long-run aver-
age cost, we choose to present the infinite-horizon average-cost
formulation. For simplicity, we suppose that the initial system
state is zero. Let ¢ denote one-slot cost at time k under policy
7, and C(r) = limsupy_, ,, T~ ZL1 ¢y denote the correspond-
ing long-run average cost, where T is the time horizon. Then
the infinite-horizon cost-minimization problem can be formu-
lated as

Ck = Ci(Xg, i) = pag + cx;,,

T
inf = inf [ i T A4
AfCem) = Jof (s 2 e (A4

T—o0 k=1

The result below guarantees the existence of a periodic-
stationary optimal policy.

Theorem A.1. There exists a periodic-stationary optimal policy
w* for problem (A.4); i.e., the decision rule 7* at time k = jt +1i
(jeZ* and i< 1) is independent of j but depends on i.

Proof of Theorem A1l. The key is to show the periodic MDP
can be reformulated so as to be stationary. This is done
by enlarging the state and the action space. Define X =
{(x.k);xex ke{l,..., t}} and A={(a,k);ae A, ke {1,..., T}}.
Let ¢((x, k), (a,k)) = c,(x,a), and let (-|(x, k), (a, k)) assign proba-
bility one to X x {k+ 1} for k#0 (mod 7) and to X x {1} for k=0
(mod 1) with the marginal distribution of the first coordinate be-
ing qi(-|x, a). Then the MDP with state space X, action space A,
cost structure ¢, and transition law g is time-stationary. Because
the original action space A has finite elements, the new action
space A is finite and hence compact. An application of Theorem
3.8 in Schal (1993) (see the references there for earlier related
work) allows us to conclude the existence of a stationary opti-
mal policy for the reformulated MDP. By the earlier transformation
of the state and the action space, we conclude that there exists a
periodic-stationary optimal policy rr* for problem (A.4). O

A.2. The first-stage problem

Note that the solution to the MDP relies on the “fixed param-
eter” B. Following the convention, we use V(B) to denote the op-
timal objective value. On the one hand, increasing B allows us to
achieve lower objective value V(B). On the other hand, EV batteries
are expensive to manufacture. We thus incorporate costs of capi-
tal and assume battery investment cost to be y per unit of time.
For example, if a battery costs $3,500, or $350 per year considering
a 10% amortization rate, then y ~ 1 if we use day as the units of
time. Our first-stage problem is then formulated as follows:

mBinV(B)r + y1B. (A.5)

Appendix B. Discrete-time Approximation of the Fluid Model

We numerically solve the second-stage cost minimization prob-
lem (2a)-(2e) by discretization. Let At denote a small time interval
and N = /At denote the total number of time intervals within a
cycle [0, t]. Let ke {1,...,N} be the index of the time intervals.
Then we have m = {m(k); k=1,..., N} representing the working-
charger fluid during time interval k. Additionally, let x = {x(k): k =
0,1,...,N}, where x(k) denotes the amount of FB fluid at the end
of the time interval k when k=1,...,N and x(0) denotes the ini-
tial FB fluid at the beginning of the first time interval. We can dis-
cretize (2a)-(2e) as follows:

N N
min Y pkym(k) At + ¢ > [x(k)]"At,

k=1 k=1
s.t. x(k)—x(k-1) = u;n(k)At — Ak AL, k=1,...,N,
0 <m(k) <k, k=1,...,N,
m(k) + [x(k)]" < b, k=1,....N,
x(0) = x(N).
(B.1)

Appendix C. Technical proofs

Proof of Theorem 3.1. For the ease of mathematical analysis, we
turn the original fluid-model optimization into an equivalent prob-
lem. Loosely speaking, two optimization problems are equivalent if
an optimal solution to one can easily be “translated” into an opti-
mal solution for the other. Here we substitute (2b) into the objec-
tive (2a) and constraints (2c)-(2d) to get

min p" /0 p(E)(L(6) + %(8))dt + c/o X (t)dt, (1)
st. 0 < T(A() +x(t)) <k, O<t<r, (c2)
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W) +X(0) +xF(t) <b,  0=<t=<T, (C3)

x(0) = x(1), (C4)

where we have used C; to denote the space of differentiable func-
tions over [0, T]. The rest of the proof proceeds in two steps. We
first show that the equivalent problem specified by (C.1)-(C4) is a
convex optimization problem. We then argue that we are minimiz-
ing over a compact set of continuous functions. Noting that there
exists at least one optimal solution to a convex optimization prob-
lem over a compact set (see, e.g., Beck (2014), p. 149), we complete
the proof.

Let us define F* : C > C,x—~xt and F~ : C - C,x — x~ to be
two mappings from the space of continuous functions C to it-
self. It is evident that both F* and F~ are convex. Also define
A:Cy —> L,x— w (A +x). It is immediate that A is affine and
hence convex. Next define

T T
G:L->R,y— / pwy(u)du and H:C—->R,Xx+— / x(u)du.
0 0

That G and A are linear mappings implies they are convex. Finally,
let us use P; : C — R,x — x(t) to denote the projection mapping
at time t. The objective (C.1) is convex in x due to the fact that
GoA+Ho F~ is convex. Similarly, we can write (C.2), (C.3) and
(C4) as 0< Ax) <k, (A+F")(x) <b and (Py—Pr)(x) =0 re-
spectively. Hence all constraints are convex.

To argue that the feasible regime X is compact, we apply
Arzela-Ascoli theorem. To that end, we show that (i) functions
in X are uniformly bounded, and (ii) they are equicontinuous, i.e.,
for every € >0, there exists § >0 such that |x(t) — x(s)| < € uni-
formly over X whenever |t —s| < 8. From (C.3), it follows —A1 <
X< p(c — 1Y) where AT =supg,_, A(t) and AV =info—r A (D).
Hence, condition (ii) is automatically satisfied. By the same token,
condition (i) reduces to the statement that x(0) is bounded uni-
formly over X. From (C.2) and (C.3) it follows easily that x(0) is up-
per bounded uniformly over X. We can also impose a (finite) lower
bound for x(0) without affecting the optimal solution because the
value of the objective function goes to infinity as x(0) approaches
—oo. This shows that the feasible region is essentially compact. The
proof is thus complete. O

Proof of Proposition 3.1. Suppose, by way of contradiction, that
there exists another charging policy m such that

/ p(O)m()dt < f p(t)ym*(t)dt. (C5)
0 0

Then, from (12) it follows that

- . m(t)—x <0 for te@(c*),

m(t) —m*(t) = {rﬁ(t)—OzO for t¢ (). (C6)

Because ¢ =¢(¢*) is the collection of time instances at which the
electricity price p is less than or equal to {*, we have

/ " pOm(e)de - i " poym (t)de = [ p©6a© - m@)de
0 0 [}

+ / p(0) () — m* (0))d. (€7)
¢C
Using (C.6), the right hand side of (C.7) is at least
[ &rm@ —me@)de+ [ g ane) - me)de
¢ o8
=g*f0 m(t)dtf;‘*/o m* (t)dt =0, (C8)

for the last equality in (C.8) owing to (3). This implies

[ " p(o(O)de - / " pOm(t)de = 0,
0 0

which contradicts the assumption (C.5). Hence, there is no feasi-
ble charging policy that can beat m* in terms of minimizing the
charging cost. O

Proof of Theorem 3.3. Note that the first case follows directly
from Proposition 3.1 and the construction (16)-(18). It remains to
show the second case. Suppose for the sake of contradiction that
there exists b < b for which (y(0), m*) is an optimal solution. Then
it must be the case that y(t)>0 for all 0 <t<7. Note that x*(0) in
(16) is the smallest value that makes x(t)>0 for 0 <t<7t. There-
fore, y(t) >0 implies y(0) > x*(0). Also note that y satisfies

t
YO =y O+ [ mdu= A, (c9)
Combining with (17) yields
y(t) —x*(t) =y(0) —x*(0) >0 forall O0<t<r. (C.10)

To proceed, suppose the right hand side of (18) reaches its max-
imum at time u, i.e., m*(u) +x*(u) = b. Then

m*(u) <b—y() <b—x*(u) =m*(u),

where the first inequality follows from the constraint (2d) and the
assumption y(t)>0 for all 0 <t < t, the second inequality is due to
(C.10) and the assumption b < b. But this leads to a contradiction
and thus completes the proof. O

Proof of Theorem 5.1. To reformulate the problem, we will need
to analyze each constraint in (25) where uncertainty is involved,
and determine its “worst-case scenario”. Then we are guaranteed
that the constraint is satisfied for any realization of the uncer-
tainty. We start with the nonnegativity constraint, i.e., £(t) > 0. It
is worthwhile to notice a straightforward fact about the realized
FB inventory process:

¢ . t
2(t):x0+/0 (m(u)—)\(u))du:x(t)—/o 2(u)du,

for

(c11)

x(t) =xo+ /Ot(m(u) —A@)du and z(t) = A(t) = A(t).

Hence, to determine the worst-case scenario, it suffices to seek a
realization of z that minimizes the right-hand side of (C.11); i.e.,
we need to find a realization of z that solves, for each t <,

t
max / z(u)du
z 0

s.t. /t [zw)|du <T'(t) and 0 < |z(u)| < X(u)
0

for all u<]0,t].

It is immediate that at the optimal solution, z> 0. We can therefore
rewrite the constraints on the variable z to obtain an equivalent
problem

t
max f z(u)du
z 0

s.t. /tz(u)du <T(t) and 0<z(u) <Ai(u) (C12)
0

for all ue][0,t].

It turns out that problem (C.12) is a specific instance of the contin-
uous linear program introduced by Bellman (2013), and we obtain
strong duality and with its dual formulation provided below:

t ~
w(tr)r}}l/r(l_l) )T () +/0 y (u, t)A(u)du
s.t. wt)+yu,t)>1 Yuel0,t]

w()>0 and y(u,t)>0 VYuel0,t]

(C13)
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The constraint m(t) + £(t) < b can be analyzed in a similar fashion,
and the determination of the worst-case scenario reduces to an op-
timization problem which is essentially the same as that in (C.12).
As a consequence, their respective dual formulations are the same,
as specified by (C.13). We observe that both the primal (C.12) and
its dual (C.13) take only the known parameters A and I as inputs,
and can be solved independently. We thus obtain the modified de-
cision region defined through (26) with

t ~
() = 0 (OT () +/0 v (u, 03 w)du

for (w*, y*) being the solution to problem (C.13). Clearly, the first
inequality constraint in (C.13) can be replaced by w(t) + y (u,t) =
1. Upon substituting it into the objective function yields the de-
sired result. [
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