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1. Introduction

Queueing has long played a prominent role in oper-
ations research (OR) applications. For example, early
OR studies include traffic delays at toll booths by Edie
(1954), letter delays at post offices by Oliver and
Samuel (1962), airplane landing delays at airports
by Koopman (1972), and dispatching delays for police
patrol cars by Kolesar et al. (1975). As in many other
OR applications, the arrival processes in these appli-
cations all have time-varying (TV) arrival rates. Thus,
the natural queueing models require simulation or
nonstandard analysis techniques beyond elementary
stochastic textbooks.

Those four OR studies also illustrate two of the
most important analytical techniques for analyzing TV
queueing models. First, the papers by Edie (1954) and
Oliver and Samuel (1962) illustrate that a relatively
simple deterministic analysis can be used when the TV
arrival rate tends to dominate the randomness. The other
papers by Koopman (1972) and Kolesar et al. (1975)
illustrate how numerical methods for systems of TV
ordinary differential equations (ODEs) can be applied
to calculate TV performance measures for the TV
Markovian M;/M;/s; queueing model, which has a
nonhomogeneous Poisson process (M;) as its arrival
process, and possibly a TV service rate and number of
servers as well, because the number of customers in
the system evolves as a TV birth-and-death process,
so that its TV transition probability density function

evolves according to a system of ODEs, often called
the Kolmogorov forward equations.

The ODE approach to the TV M;/M;/s; queueing
model has become the accepted analytical approach.
The ODE approach is complicated by the fact that there
are infinitely many ODEs in the system of equations,
but that difficulty can be circumvented by truncating to
a finite system, as was done by Koopman (1972) and
Kolesar et al. (1975). Improved computer power has
made this approach easier to apply.

Further progress with the ODE approach has also
been made by introducing other approximations. Much
more efficient ODE algorithms for the TV mean and
variance were subsequently obtained by Rothkopf and
Oren (1979) by using closure approximations to dra-
matically reduce the number of equations; also see Taaffe
and Ong (1987), Ong and Taaffe (1989), and others.

Despite the successes of the ODE approach to TV
queues, there are two deficiencies. First, the ODE ap-
proach only applies to TV Markov processes. Second,
just like computer simulation and some other numeri-
cal approaches, such as the numerical-transform-
inversion algorithm of Choudhury et al. (1997a), the
ODE approach yields the numerical values of perfor-
mance measures, but it does not otherwise provide any
structural insight.

This second deficiency has recently been addressed
by Massey and Pender (2013) and Pender and Massey
(2017) by developing closure approximations for
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the M;/M;/s model and more general TV Markovian
systems in the context of many-server heavy-traffic
(MSHT) limits as in Mandelbaum et al. (1998), which
yield deterministic fluid and stochastic diffusion ap-
proximations. They use the closure approximation to
greatly improve the numerical accuracy of the MSHT
diffusion approximations.

However, no such link has yet been provided be-
tween numerical algorithms and the very different
conventional heavy-traffic (HT) limits for single-server
models. In fact, the HT limits for TV single-server
queues tend to be quite intractable themselves, as
canbe seen from Mandelbaum and Massey (1995) and
Whitt (2014, 2016), so that we need new tractable ap-
proximation methods.

1.1. Main Contributions

1. Inthis paper, we introduce a time-varying robust
queueing (TVRQ) approach to single-server queueing
systems that addresses the two deficiencies men-
tioned above. In particular, we develop a TVRQ algo-
rithm to approximate the TV workload in the non-
Markov G;/G;/1 single-server queue. Like Rothkopf
and Oren (1979), we focus on the special case of the
dynamic steady-state behavior of a system with a pe-
riodic arrival rate. In doing so, we establish new periodic
TVRQ (PRQ). This paper evidently is the first applica-
tion of robust optimization to study the performance
of a queueing model with time-varying arrival rates.

2. Even for the stationary model, we contribute by
extending Whitt and You (2018b) to approximate all
quantiles as well as the mean. The PRQ provides remark-
ably tractable approximations; for example, see (20),
(22), and (28). Extensive simulation experiments con-
firm that the quantile connection is remarkably effective.

3. As in Whitt and You (2018b), we develop a
nonparametric approximation by exploiting the in-
dex of dispersion for work (IDW) to represent the
variability of the total input of work over time, in-
dependent of its mean. We use the IDW to develop
TVRQ and PRQ for models with stochastic depen-
dence as well as a time-varying arrival-rate function.
The IDW is convenient for separately characteriz-
ing these two important causes of congestion. The
nonparametric approach also provides a vehicle to
connect the modeling to large data sets.

4. We establish new HT limits for PRQ in the G;/G/1
model. These new HT limits exploit the HT scaling
introduced in Whitt (2014, 2016) and so go beyond the
earlier HT literature. In particular, time scaling is used
within the deterministic arrival-rate function, so that
the length of the periodic cycle grows with the traffic
intensity p. We show that the HT limits for PRQ and
the original model do not coincide in general, but they
do in associated long-cycle and heavy-traffic double
limits; see Section 6.

1.2. Related Literature

There is a substantial literature on TV single-server
queues, which can be divided into three main categories:
(i) structural results (e.g., definition and existence of
processes), illustrated by Harrison and Lemoine (1977),
Lemoine (1981), Heyman and Whitt (1984), Lemoine
(1989), and Rolski (1989), (ii) numerical algorithms, as
discussed above, and (iii) asymptotic methods and
approximations by Newell (1968a, b, c), Keller (1982),
Massey (1985), Mandelbaum and Massey (1995), and
Whitt (2014, 2016). The present paper falls in the last
two categories.

Robust optimization is a relatively new approach to
difficult stochastic models. As in Beyer and Sendhoff
(2007), Ben-Tal et al. (2009), and Bertsimas et al.
(2011a), the main idea is to replace a difficult sto-
chastic model by a tractable optimization problem.
We replace an “average-case” expected value by a
“worst-case” optimization, where stochastic process
sample paths are constrained to belong to uncertainty
sets. From a pure-optimization-centric view of the
operations research landscape, robust optimization
might be viewed as a way to replace stochastic model-
ing entirely. However, we think of robust optimization
as a useful tool that supplements existing tools in our
stochastic toolkit. Accordingly, much of this paper
is devoted to establishing connections between PRQ
and established queueing theory.

Our work on TVRQ builds on our previous pa-
per, Whitt and You (2018b), which developed robust
queueing (RQ) algorithms to approximate the ex-
pected steady-state waiting-time and workload in
stationary single-server queues, aiming especially
to capture the impact of dependence among inter-
arrival times and service times. In turn that paper
builds on the RQ formulation of Bandi et al. (2015),
which has precedents in earlier work such as Bert-
simas and Thiele (2006), Bertsimas et al. (2011b), and
references cited there. The principal difference here is
that we focus on the TV performance of a TV model
instead of the steady-state performance of a station-
ary model.

Bandi et al. (2018) have also developed an RQ
formulation for the transient behavior of stationary
models, which tends to be a quite different (but still
challenging) problem (and for which there is a large
literature, which we do not review here). We re-
mark that the performance of a queueing model with
time-varying arrival-rate function can be approximated
by the iterative transient analysis of the associated
model with a piecewise-constant arrival-rate function,
but that approach introduces another level of ap-
proximation and is not easy to implement. Indeed, the
iterative transient approach to TV queues has evi-
dently has been attempted only once, by Choudhury
et al. (1997a).
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1.3. Organization

In Section 2 we formulate TVRQ. In Section 3 we
narrow our scope to focus on PRQ), introduce our frame-
work to approximate the quantiles of the steady-state
workload, and describe the simulation experiments.
In Sections 4 and 5 we study PRQ for underloaded
models and overloaded models, respectively. In Sec-
tion 6 we establish heavy-traffic limits for PRQ. Sup-
plementary material appears in the e-companion (EC,
available online), including proofs and additional sim-
ulation examples.

2. TVRQ for the Steady-State Workload in
the G;/G;/1 Queue

In Section 2.1 we introduce the general time-varying
G¢/G¢/1 model and define the steady-state workload
at each time in that model. In Section 2.2 we develop
the TVRQ approximation, and in Section 2.3 we ex-
press it in terms of the index of dispersion for work.

2.1. The Steady-State Workload in the
G:/G:/1 Queue

We consider a time-varying version of the standard
single-server queue with unlimited waiting space and
the first-come first-served service discipline, which we
call the G;/G;/1 queue. As in Whitt and You (2018b),
we will exploit a reverse-time construction of the
workload process, but here we will directly construct
the steady-state workload at time ¢. For that purpose,
let A;(s) be the number of arrivals in interval [t — s, £].
As in Whitt (2015), let the service requirements be
specified separately from the rate at which service is
provided. Let service be provided at a time-varying
rate p(u) at time u, where p is a right-continuous
deterministic nonnegative function with left limits,
so that the cumulative service rate available in the
interval [t —s,t] is

M(s) = /t_t p(u)du, s=0. 1)

Let the service requirement of customer k be V, indexed
going backward from time ¢. Let the (potential) net-
input of work in the interval [t —s,t], s > 0, be

Ai(s)
Xi(s) = Z Vi —M(s), t=0. (2)
k=1

Then the steady-state workload at time ¢ is

Wi = sup{Xi(s)}, 3)

5>0

which we assume is almost surely finite.
For our supporting mathematical results and simu-
lation examples, we will impose more structure. We

impose one-dimensional partial characterizations of
the variability of the arrival and service processes by
assuming that the arrival process A takes the form of

A(s) = N(Ay(s), s=0, (4)

where the base process N is a unit-rate stationary
point process satisfying the functional central limit
theorem (FCLT)

N,(t) = n" Y2 [N(nt) —nt] = c,B, in @, (5

with = denoting convergence in distribution, B,
being standard (drift 1, diffusion 1) Brownian motion
(BM), and 9 the function space of (right-continuous
with left limits) sample paths as in Whitt (2002), whereas
the cumulative arrival rate function is

¢
As(s) = AMu)du, t=0, (6)
t=s
with the arrival-rate function A being a deterministic
nonnegative function in % (e.g., ensuring that the in-
tegralis well defined). If N is a Poisson process, then A
is a nonhomogeneous Poisson process, but we allow
other possibilities. Similarly, we assume that {V;}isa
stationary sequence, independent of the process N,
with E[V] = 1 satisfying the FCLT

Lnt]

ka—nt

k=1

Su(H) =n? =B in 9, (7)

where B, is a BM independent of B,. The actual service
times are relatively complicated; see section 3.1 of
Whitt (2015). However, we will primarily focus on the
standard special case u(t) = 1, where the service times
coincide with the service requirements. If u(t) =1,
then W; is the usual virtual waiting time. More gen-
erally, the virtual waiting time can be expressed in
terms of the workload as a first passage time, as in
lemma 4.1 of Ma and Whitt (2019).

From all pastwork (e.g., theorem 1 of Massey 1985),
it is known that the performance at time ¢ depends
strongly on the loading, which depends on the history
of the rates before time ¢, as characterized by the time-
varying traffic intensity

pi(t) = Sug){At(S)/Mt(S)} ®)

for A;in (6) and M; in (1), which is to be distinguished
from the instantaneous traffic intensity

p(t) = At)/ u(t). )

The model is called overloaded (OL), underloaded
(UL), and critically loaded (CL) at time ¢ if p*(f)>1,
<1, and =1, respectively.
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Remark 1 (An Alternative Representation). Combining
(2), (3), and (6), we have the following equivalent repre-
sentation of the steady-state workload

N(A(M1(5)))
Wt=sup{ Z Vk—s},

5>0 k=1

which can be viewed as an equivalent system with
alternative arrival-rate function A;(M;(s)).

2.2. Time-Varying Robust Queueing

From (3), we see that the steady-state workload at
time t can be formulated directly a supremum. For our
TVRQ, we apply robust optimization in the setting of
Section 2.1 by replacing the stochastic model of the
reverse-time net input process X;(s)in (2) and (3) by an
appropriate deterministic uncertainty set U; and then
analyzing the worst case scenario. In particular, welet
the TVRQ approximation of the steady-state work-
load at time f be

Wi = sup sup{X;(s)}, (10)
X€WU; s=0

where AU; is the deterministic uncertainty set

A, = {X,(s) € R : Xi(s) < E[Xi(s)] + bSD(Xi(s)), s >0},
(11)

with SD being the standard deviation and b being a
parameter to be specified.

The uncertainty set in (11) is a natural time-varying
generalization of the uncertainty sets in Whitt and
You (2018b), which are similar to the ones used
in Bandi et al. (2015). The main idea is that (11) can
be based on a Gaussian approximation for X,(s), as-
suming that the supremum is attained for s not too
small, which in turn is supported by an FCLT for
Xi(s) in (2), which follows from the assumed FCLTs
in (5) and (7); see the electronic companion of Whitt
and You (2018Db).

For applications, the practical meaning of the
Gaussian approximation for the net input process X(s)
supporting (11) is that our TVRQ approximation is
intended for high-volume systems. High-volume means
high arrival rates and service rates, which we achieve
by scaling time. We are also primarily aiming to treat
large-scale systems. Large scale is achieved by having
the system operate under heavy-traffic conditions (i.e.,
by having high instantaneous traffic intensities over
extended periods). For large-scale high-volume systems,
thesupporting FCLTsareappropriate, being intimately
related to the heavy-traffic limits for the queueing
model. We will establish new heavy-traffic limits that
will further justify the connection.

As in lemma EC.1 of Whitt and You (2018b), we
can interchange the order of the suprema in (10)
and write

W; = sup{E[X,(s)] + bSD(X,(s))}, (12)

5>0

where again X,(s) is defined in (2).

2.3. TVRQ Formulation Using the Index of
Dispersion for Work

Asin Whittand You (2018b), let the index of dispersion

for work in the underlying (time-homogenous) pro-

cess be

Var (ZkN:(;) Vk) N(t)
L(t) = ———————==t"War| > Vi|, t>0, (13)
’ E[= Vi k=1

with the last relation holding because E[N(t)] = t and
E[Vi] = 1. Clearly, the IDW is just a scaled version of
the variance function of the total input process, but it
is conveniently scaled to be independent of the rate.
When the service requirements are independent and
identically distributed (i.i.d.) with squared coefficient
of variation (scv, variance divided by the square of
the mean) c2,

L(t) = L) +c2, t>0, (14)

where ,(t) is the index of dispersion for counts (IDC) of
the base arrival process N, defined by

L(t) = Var(N()) = t"Var(N(t)),

NG t>0,  (15)

as in section 4.5 of Cox and Lewis (1966). When N is
Poisson, I,(t) =1, t > 0.
For the net input process X;(s) in (2),

E[Xi(s)] = A¢(s) = Mi(s) and
N(A+(s))

25 Vi

k=1

Var(X;(s)) = Var = A(s)l(As(s)),  (16)

so that we can express the TVRQ representation for
the steady-state workload at time t in terms of the
IDW as

W; = sup{At(s) —M(s)+Db At(s)lw(At(S))}/ (17)
>0

where A; and M; are defined in (6) and (1), whereas I,
is the IDW defined in (13).

Example 1 (A Markov Model). An important special case
is the associated Markov model, where N is a rate-1
Poisson process whereas {V;} is an i.i.d. sequence of
mean-1 random variables with scv ¢2, so that the total
input of work over [0,{] is a nonhomogeneous com-
pound Poisson process. In this case, by (14), I,(t) = 1 + ¢?
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for all t, so that the IDW plays a relatively trivial role. In
this case,

Wi = sup{/\t(s) —s+by(1+ cg)/\t(s)} (18)

>0

for A;in (6). O

3. Periodic Robust Queueing

Henceforth in this paper we will narrow the scope and
focus on the special case of periodic TVRQ, but much
of what follows should be applicable more generally.
In particular, we will assume that pi(s) = 1,5 > 0,and A
is a periodic nonnegative function with period c and
average rate

p=c! /OC As)ds <1, (19)

which makes the steady-state workload W; in (3) and
the TVRQ W; in (17) periodic with period c as well.
We then let

W = sslig{Ayc(s) —s+b Ayc(S)IZU(AyC(S))}/ O<y<1
(20)

be the TVRQ at time yc, which we refer to as “position
y in the cycle.” As before, A; comes from (6), and I,
comes from (13)—(15). We understand that W; is an
approximation for W,.

In Section 3.1 we introduce a new framework for
exploiting the PRQ parameter b to approximate the
full distribution of W,,. In Section 3.2 we describe our
simulation experiments that we use to study PRQ.

3.1. Approximating the Full Distribution of W,

In this section, we show how PRQ W; in (20) with the
PRQ parameter b can be used to approximate the full
distribution of the stochastic steady-state workload
Wy in (3) as a function of y, 0 <y <1, which we do
via quantiles. Hence, we refer to this as the PRQ(b)
algorithm.

In Whitt and You (2018b), we established the con-
nection between RQ and stochastic queues in the case
of a stationary model. In particular, we found that the
steady-state mean is often well approximated by letting

b = V2; that choice makes RQ correct for the Kingman
bound for GI/GI/1 [corollary 1 in Whitt and You
(2018b)], the Pollaczek-Khintchine formula for M/GI/1
[corollary 3 in Whitt and You (2018b)], heavy-traffic
and light-traffic limits for G/G/1 [theorem 5 in Whitt
and You (2018b)], and can be explained by an exact
analysis of Levy processes [section EC.3.2 in Whitt
and You (2018b)].

From the form of PRQ(D), it is evident that as b in-
creases, the approximation should apply more to the

tail of the distribution. We find that a useful con-
nection can be made between the parameter b and the
quantiles of the distribution of the steady-state work-
load Wy, at position y within a cycle. For a nonnegative
random variable Z and 0<p <1, let the ph quantile of
(the distribution of) Z be

Z(p)=inflz>0:P(Z<z)=p}, 0<p<l, (21)

(i.e., the inverse of the cumulative distribution func-
tion [cdf]). We propose the approximation

Wye(TI)) ~ W(b), (22)

where W;(b) denotes PRQ in (20), whereas IT : (—oo, o)
— (0,1) is a one-to-one continuous function chosen
to map the PRQ parameter b into the quantile level p
of Wiy.

Asindicated in Section 2.1, we find that the form of
the mapping I(b) should depend on the loading. To
proceed, we focus on the maximum TV traffic in-
tensity, defined by

pl =sup{p'(t):0<t<c}, (23)

for p*in (8). The periodic model is called overloaded,
underloaded, and critically loaded if pT > 1, pT <1, and
p! =1, respectively. In Sections 4 and 5 we examine
PRQ in the UL and OL cases. We discuss PRQ in the
CL case in Section EC.6.

3.2. Simulation Experiments

For simulation comparisons, we will focus on the
sinusoidal special case
At) = p + Bsin (2myt),

t>0, and c=c(y)=1/y,

(24)

with parameter vector (p, 8, 7). We assume that § <
p<1 to ensure that the arrival rate is always non-
negative and periodic steady state is well defined. In
Section 6 when we consider heavy-traffic limits, we
will let the parameter pair (8,y) depend on p.

For these simulations, we consider the GI;/GI/1
model with arrival rate function in (24) and i.i.d.
service times {Vi} with E[V,] =1 and scv ¢? that
are independent of a base rate-1 stationary renewal
process N used to generate the arrival process via (4).
Let c2 be the scv of an interarrival time in the ordinary
renewal process associated with N. Our examples use
exponential (M), Erlang (Ex), hyperexponential (Ha,
mixture of two exponentials with balanced means;
p- 137 of Whitt 1982), and lognormal distributions,
with the scv specified in parentheses for each ex-
periment. By varying the level of variability in the
arrival and processes, we can expose and separate the
impact of the stochastic variability from the impact
of the deterministic time-variability provided by the
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time-varying arrival rate in (24). We describe the
simulation methodology in Section EC.2.

4. Underloaded Models

In this section we investigate PRQ for UL models, which
of course includes the stationary model as a special case.
At first glance, the proposed scheme in (22) deviates
from our previous approximation that focused on the
steady-state mean in the stationary model in Whitt
and You (2018b), but in Section 4.1 we show that RQ
can be generalized to an RQ(b) algorithm that ap-
proximates the quantiles in addition to the mean. In
Section 4.2, we show that PRQ(b) is quite effective
in approximating the quantiles of the steady-state
workload for UL models.

4.1. RQ(b) for Stationary Queueing Models
For stationary queues, the standard heavy-traffic
approximation implies that the steady-state work-
load W should be approximately exponentially dis-
tributed; see sections 5.7 and 9.3 in Whitt (2002).
In particular, for mean-1 service and traffic intensity p,
__ra
for m_z(1 st

Thus, for quantile p of W, denoted by W(p), we have
P(W < W(p)) = 1 —e WP/m = p, 50 that

PW>x)~e ™™, x>0,

(25)

W(p) ~ —In(1 —p)m (26)

for m in (25).

On the other hand, if we apply theorem 2 of Whitt
and You (2018b) to the M/GI/1 queue or the reflected
Brownian motion approximation, then we get

2

W(b) = bTm (27)
To match the actual mean in M/GI/1 for all p and
to match the mean in heavy-traffic and light-traffic
limits, corollary 3 and theorem 5 of Whitt and You
(2018b) imply that we should chose b? = V2 in Whitt
and You (2018b). Hence, further connection can be
made by equating (26) and (27) to obtain an approx-
imation for the desired function IT in (22), getting

prTII(b)=1-e2 (28)

For the stationary model, we propose the RQ(b) al-
gorithm as in (20) with (22) and (28), where we re-
strict (20) to stationary arrival rate functions.

By (26), for an exponential random variable, the
mean coincides with the p =1 -e¢™! ~ 0.632 quantile.
By (28), this quantile corresponds to b = V2. Hence,
the RQ(b) algrithm reduces to the RQ algorithm for the
steady-state mean workload in Whitt and You (2018b).

4.2. PRQ(b) for Underloaded Models

We now return to the periodic model. To start, we
note that an alternative approximation for UL models
is the pointwise stationary approximation (PSA) as in
Whitt (1991), Green and Kolesar (1991), and Massey
and Whitt (1998). The idea in PSA is to approximate
the time-varying performance at time t in the UL
Gt/G¢/1 model by using the steady-state performance
of the stationary G/G/1 model having the parameters
that prevail at time f. In our setting, the PSA is ap-
propriate if the cycle length is sufficiently long that
the arrival rate does not change too quickly (relative
to the service times). The periodic queue then per-
forms at each time approximately the same as the PSA
stationary queue, which is discussed in Section 4.1.
As aresult, we propose the same mapping I'(b) in (28)
for UL periodic queues.

Figure 1 demonstrates the performance of PRQ(b)
in the UL case. The first three plots in Figure 1 show
the simulation estimates of the quantiles at the level of
p =0.95,0.8,0.632,0.4, or 0.2 for three models. In each
plot, we overlay the PRQ approximations of the
quantiles in broken curves, calculated from (22) and
(28). Figure 1 shows that (i) our PRQ framework for
approximating the full distribution of W, is very ef-
fective; (ii) the estimated mean is close to the 0.6321
quantile, and PRQ(b) with b = V2 serves as a good
approximation for the mean in the UL case, as dis-
cussed in Section 4.1; and (iii) even though the ex-
ponential approximation draws on the HT limits, we
see that our approximation works well under moderate
traffic intensity, as demonstrated by the upper right and
lower left plots. For the lower right plot, we show the
empirical distribution of W, at two locations of the
cycle, y = 0.25 and y = 0.5. Both of them are well fitted
by exponential distributions, showing that the expo-
nential approximation is appropriate in our settings here.

In Figure 1 the cycle lengths are ¢ = 1,000 with y =
0.001, which is quite long, representing high-volume
systems. In contrast, Figure 2 shows the performance
of the M;/M/1 model for shorter cycles. Figure 2
shows plots for all combinations of p =0.7 and 0.9
and y = 0.01 and 0.1. Figure 2 again shows that PRQ
can be effective to approximate both the quantiles
and the mean. Figure 2 also shows that PRQ accu-
rately captures the asymptotically stationary perfor-
mance that prevails in heavy traffic without the extra
scaling of the arrival-rate function introduced in Whitt
(2014). It also motivates our use of the scaling from
Whitt (2014) in our heavy-traffic limits in Section 6.

To conclude this section, we return to consider
PSA, which motivated our use of (28) for periodic UL
models as well as stationary models. Unlike the right-
hand plots in Figure 2, PSA predicts relatively rapid
oscillations for short cycles, much like the PSA plot
in figure 1 of Jennings et al. (1996) for many-server
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Figure 1. (Color online) Comparison of the PRQ Quantile Approximation in (22) and (28) with Simulation Estimates of the
Quantiles in the M;/M/1 Model (Upper Left), H,:(2)/E>/1 Model (Upper Right), and E,;(2)/E>/1 Model (Lower Left)

M,/M/1 model with (p, 7, ) = (0.9, 0.001, 0.05)

50
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Iy =05
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Notes. The arrival-rate function is (24), with parameters specified in the title of the plot. For the quantile level, we consider p = 0.95,0.8,0.632,0.4
and 0.2. The lower right shows the empirical distribution of W, for the E;;(2)/E>/1 model at two locations of the cycle: y = 0.25 and y = 0.50.

models. Figure 3 shows that PSA makes sense for
long cycles but that PRQ provides an improvement.
In the present context, we can combine RQ with PSA
to obtain PSA-RQ. It suffices to change (17) (with
M) =t to

Xpsas = sup{A(t)s -5+ b\/A(t)st(A(t)s)}
5>0

= sup{—(l —p(t))s + 1/p(i‘)slw(p(i‘)s)}, (29)

5>0

which corresponds to the RQ formula (27) in Whitt
and You (2018b) with p = p(t) = A(t) < 1.

Figure 3 compares PRQ and PSA-RQ with simulation
estimates for three different models with (24) for p = 0.7,
B$=0.2,and y =0.001 (left) and y = 0.01 (right). As in (25)
of Whitt and You (2018b), Figure 3 shows the nor-
malized mean workload 2(1 - p)E[W,]/p (which would
be 1in the M/D/1 model) as a function of the position
y within the cycle.

Figure 3 shows that PRQ provides only a slight im-
provement over PSA-RQ for y = 0.001 (left), but a sig-
nificant improvement for y = 0.01 (right). As before,

Figure 3 shows that the quality of the approximation
is excellent for the exponential distribution (M) and
lower levels of variability but degrades for higher var-
iability, serving as an upper bound at the peak (but not
uniformly in y). Unlike PSA-RQ, PRQ provides remark-
ably good estimates of the location of the peak congestion.
See Section EC.8.2 for more simulation comparisons.

5. Overloaded Models
The behavior of OL models is quite different, espe-
cially at the peak. Because p'>1 for p! in (23), PSA
does not apply at the peak.

5.1. Deterministic Approximations
For OL models, it makes sense to consider relatively
simple deterministic approximations, which we obtain
by assuming that there is no stochastic variability. One
way to do so is to assume that X(f) = A(t) — M(t) =
A(t) —t for all . As a consequence,

Wit = Waetr = SI:(I)J{Xt(S)} = SB(I)D{AI‘(S) —-s}. (30)
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Figure 2. (Color online) Comparing the PRQ Quantile Approximation in (22) and (28) with Simulation Estimates of the
Quantiles in the M;/M/1 Model for (p,y) = (0.7,0.01) (Upper Left), (0.7,0.1) (Upper Right), (0.9,0.01) (Lower Left), and

(0.9,0.01) (Lower Right)
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Because the model is deterministic,c TVRQ cannot
provide an improved performance approximation,
but we see that in this case TVRQ is giving the ex-
act time-varying workload. We discuss this model
further in Section EC.4, but we make two important
observations. First, Proposition EC.1 shows that in
the periodic case it suffices to do the supremum over
one cycle. Second, the deterministic model is very
helpful to identify the position y' where W, attains its
peak; for example, for the OL sinusoidal model in (24)
with p! > 1 in (23), measuring time in units of a cycle
length, Corollary EC.2 implies that

Wdet,yT = sup {Wdet,y} for
0<y<1
yT =0.5—arcsin(1 - p)/p/2m. (31)

Because the arrival rate has its peak at y = 0.25, the
time lag in the peak of Wy, is 0.25 — arcsin (1 - p)/
B/2m, both measured in units of a cycle length.

MM/ model with (, 7, ) = (0.7,0.1,0.2)
10 T T T T T T T
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5.2. Long-Cycle Fluid Limits

The deterministic model in (30) also arises by taking a
long-cycle limit, for which we consider a family of
periodic G;/GI/1 stochastic models with growing
cycle length indexed by the parameter y. We assume
that model y has arrival-rate function

LB =40, 120, (32)
for a base periodic arrival-rate function A. Thus, the
arrival rate in model y is periodic with cycle length

¢, =c/y. Wewill let y | 0, so that ¢, — co.
As regularity conditions for N, we assume that

tIN(t) >1 as t— oo w.p.l (33)
and, for all € >0, there exists fy = fy(€) such that
[tIN(t) —1|<e forall t>t, w.p.l. (34)

Both conditions hold when N is a Poisson process
and can be anticipated more generally. We prove the
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Figure 3. (Color online) A Comparison of PRQ in (20) and PSA-RQ in (29) with Simulation Estimates of the Normalized
Steady-State Mean Workload 2(1 — p)E[W,]/p in the UL GI;/GI/1 Model with Sinusoidal Arrival Rate in (24) Having
(p,B) = (0.7,0.2) for y = 0.001 (Left) and y = 0.01 (Right), as a Function of the Position y in a Cycle

GI,/GI,/1 model with A(t) = 0.7 + 0.2sin(27t), -y = 0.001
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Note. Three cases for the underlying distributions are displayed (H(2), M, E,), being identical for arrival and service.

following result and provide additional discussion in
Section EC.4.3.

Theorem 1 (Long-Cycle Fluid Limit). For the periodic
G;/GI/1 model under conditions (33) and (34), including
the scaling in (20) as a function of y,

(ywy,y/ VW;y(b)) - (Wdet,y/ Wdet,y) as .y l 0 ZUPI
(35)

for any b, where Wy, is the deterministic workload in
(30) at time yc within a cycle of length c, whereas W,  (b)
is the PRQ(b) approximation in (20).

5.3. A Gaussian Approximation for the Quantiles
The connection to quantiles changes for OL models.
Heavy-traffic theory indicates that Wy, in the OL period

in the cycle should be approximately Gaussian, ap-
proximately equal in law to X,(s) for an appropriate s
(where the OL begins in the cycle); for example,
see Newell (1968b), regions B and E in figure 4.1 of
Mandelbaum and Massey (1995), and theorems 5.3.3(b)
and 13.4.2 of Whitt (2002).

To illustrate, Figure 4 (left) compares PRQ in (20)
using b = 0.50 developed below and the determinis-
tic approximation in (30) to simulation estimates of
the normalized steady-state mean workload E[W, ]y,
which is consistent with Theorem 1, in the E;;/E»/1
model with sinusoidal arrival rate in (24), p =0.7,
B = 0.5, and three values of y, as functions of the po-
sition y in a cycle. The deterministic approximation is
not sensitive to changing cycle length as well as sto-
chastic variability, but it is asymptotically exact as the

Figure 4. (Color online) PRQ in (20) and the Deterministic Approximation in (30) Compared with Simulation Estimates of the
Normalized Steady-State Mean Workload yE[W,] in the OL E,;/E>/1 Model with Sinusoidal Arrival Rate in (24), p = 0.7,
B = 0.5, and Three Values of y, as Functions of the Position y in a Cycle (Left); and Estimates of the Distribution of W, at the

Location of the Peak of the Arrival Rate and of W, (Right)
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cycle length grows to infinity. Moreover, both PRQ
and the deterministic approximation predict the lo-
cation of the peak congestion very well, showing that it
lags substantially after the peak of A(t), which is 0.25,
again measuring time in cycle lengths. In particular,
formula (31) predicts the peak congestion occurs at
yT =0.3975, which is a significant time lag of 0.1475.
Figure 4 (left) shows that both the deterministic ap-
proximation and PRQ predict this time lag very ac-
curately. We have found that to be consistently true
for both OL and UL models.

At this point, we proceeded experimentally. We
looked at multiple G;/G;/1 models to estimate the func-
tion T1(b) in (22) that relates the TVRQ parameter b to
the sample quantiles. To illustrate, Figure 5 compares
the quantiles for p ranging from 0.9 to 0.1 estimated
by simulation to the PRQ(b) values associated with
the parameter b to make PRQ(b) agree as closely as
possible. In particular, we focus on E4/E4,/1, H>4(8)/
H,(8)/1 and E4;/H,4(8)/1 models and an arrival rate
function of A(f) = 0.9 + 0.8sin(0.001 * 27t).

First, Figure 5 shows that the match is remarkably
good for all y. Second, Figure 5 (lower right) shows

these numerical results fit to normal cdf’s, for which
there is remarkable consensus. As a simple overall
approximation, we choose

T1(b) ~ ®(b;0.5,1.0), (36)

where ®(x;m, 0?) = P(N(m,0?) < x) = P(N(0,1) < (x —
m)/o) for mean m and variance o?. If we want to
approximate the mean, then we use b = 0.5 because
I1(0.5) = 0.5, the median.

We then tested PRQ(b) with ITin (36) for a range of
OL models. Figure 6 illustrates by showing the re-
sults for the M;/M/1 model for the parameter vectors
(p,B,7) =(0.9,0.5,0.001) and (0.7,0.5,0.01). See Sec-
tion EC.8.3 for more simulation comparisons.

6. Heavy-Traffic Limits for

Periodic Queues
We now apply heavy-traffic limits to further study
periodic robust queueing. In Section 6.1 we first review
a heavy-traffic limit for periodic queues from Whitt
(2014) and Ma and Whitt (2018a, b). In addition to the
conventional heavy-traffic scaling of time in space, as
in chapter 9 of Whitt (2002), these heavy-traffic limits

Figure 5. (Color online) A Comparison of Quantiles p Ranging from 0.9 to 0.1 Estimated by Simulation to the PRQ(b) Values
Associated with the Parameter b to make PRQ(b) Agree as Closely as Possible
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Figure 6. (Color online) A Comparison of Quantiles p Ranging from 0.9 to 0.1 Estimated by Simulation to the PRQ(b) Based on
IT in (36) for the M;/M/1 Model and the Sinusoidal Arrival Rate Function in (24) with (p,,y) = (0.9,0.5,0.001) (Left) and

(0.7,0.5,0.01) (Right)
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involve an additional scaling of the arrival rate func-
tion. In Section 6.2 we show how it can be used to
generate a diffusion-based parametric PRQ. We then
compare our proposed functional PRQ, the diffusion-
based parametric PRQ, and the direct heavy-traffic
diffusion approximation to simulation estimates of
the time-varying mean workload. In Section 6.3 we
develop new heavy-traffic limits for PRQ approxi-
mation. In Section 6.4 we establish new heavy-traffic
limits combined with long-cycle limits. These involve
the three cases: underloaded, overloaded, and criti-
cally loaded.

6.1. Heavy-Traffic Limit for the Workload Process in
the Stochastic Model

We consider a family of models indexed by the long-

run average traffic intensity p. To avoid notational

confusion, we add a subscript d to the diffusion

quantities. We let the cumulative arrival-rate function

in model p be

Ayp(t) = pt+ (1= p) " Ag, (1= p)t),

so that the associated arrival-rate function is

Ay =p+ (1 =pAay(1=p)P), t20,  (38)

where

t
Aay(t) = /0 Aay($)ds, Agy(H) = h(yh), and

t>0, (37)

/ 1 h(t)dt =0 (39)
0

with h(f) being a periodic function with period 1. As
a consequence, Ag,(t) is a periodic function with
period c, = 1/y,and A, ,(t) is a periodic function with
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period ¢, , = 1/y(1 - p)*. To ensure that A, , is non-
negative, we assume that

ht) = =p/(1 - p),

which will be satisfied for all p sufficiently close to the
critical value 1 provided that / is bounded below. In
fact, we directly assume that

0<t<l, (40)

—co<hl = inf {h(t)} < sup {h(t)} = W <oo.  (41)

0<t<1

There are two primary cases of interest, i’ <1 and
W1 >1. When k' < 1, the instantaneous traffic intensity,
which is A, ,(t), satisfies A, ,(t) <1 for all t and p. On
the other hand, when h'>1, Ay,p(t)>1 for some t.
When A, ,(t) >1 for some t, the workload can reach
very high values when time is scaled, because the
cycles are very long. That takes us into the setting of
Choudhury et al. (1997b).

Theorem 3.2 of Whitt (2014) and theorem 2 of
Ma and Whitt (2018a) provide a heavy-traffic limit as
p T1when i <1 for the workload at time ¢ starting
empty at time 0, which we denote by W, ,(t), in the
periodic G;/GI/1 model. This heavy-traffic limit is for
the time-varying behavior starting empty, but it also
applies to the periodic steady-state distribution ex-
cept for the usual problem of interchanging the order
of the limitsas p T 1and as t T co. We use the periodic
steady-state of the limit to approximate the periodic
steady-state of the periodic G¢/GI/1 queue.

To express the heavy-traffic limits, we use (37) and let

Ayp(t)
Ay = N(AypB), Y elt) = 2 Vi and

X, ,(0)=Y,, () —t, >0 (42)
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Then X, ,(t) is the net-input process and W, ,(t) is the
workload process, which is the image of X, , under
the reflection map W; that is,

W;,p() = W(X,,0)(t) = SUP{Xy p(£) = Xyt = 5)}. (43)

0<s<t

For the heavy-traffic functional central limit theorem,
we introduce the scaled processes

N, (5) = n”Y2[N(nt) — nt],
Ay () = (1= p)[A),p((1-p)2t) = (1-p)*H],
X, = (1= p)X,,,((1=p)t) and
W,,o(t) = (1= p)W,,,((1 - p)72t), t=0. (44)

Let %" be the k-fold product space of the function space
%. Again let e be the identity map in 9 (i.e., e(t) = ¢,
t > 0). Recall that ¢(x) = o(x) as x — 0if g(x)/x — 0
asx — 0.

Theorem 2 (Heavy-Traffic FCLT, Theorem 3.2 of Whitt
2014 and Theorem 2 of Ma and Whitt 2018a). For the
family of G;/GI/1 models indexed by (y, p) with cumulative
arrival-rate functions in (37), if N, = ¢,B, as n — o,
where B, is a standard Brownian motion, then

Ay p, Xy o Wy o) = (A), X, W,) in D as pT1,
(45)
where
(AV’X’/’ Wy) = (CuB,l + Ad,y - e/Ay + ¢;Bs, \IJ(X)/))/ (46)

W is the reflection map in (43), Ay, is defined in (39), and
B, and Bs are two independent standard (mean 0 variance 1)
Brownian motions; that is, Wy is reflected periodic
Brownian motion (RPBM) with

W, = W(c,B, + CsBs + Mgy — ) SW(c,B+ Agy —0),
(47)

where ¢ = c2 + c2. The result remains valid if a term of
order 0(1 p) is added to A, in (37).

6.2. Three Periodic Approximations from Theorem 2
We directly can obtain three approximations for the
mean workload in the periodic G;/G;/1 model from
Theorem 2. In particular, the workload at fixed place y
within a cycle for a system that started empty and has
run for t time units is

d Ay py(5)
W, 0(t) = sup Vik—=s¢, (48)

where A, ,,(5) = A, ,(y) = A, ,(y—s), A, ,(t) is de-
fined in (42), and Vj is a generic service time.

As a consequence, first there is the direct diffusion
approximation based on (47),

Wy,p,y = sgg{Ay,p,y(s) -5+ cB(s)}. (49)

Second, there is the parametric PRQ (for the diffusion
approximation) obtained from (49) using the mean
and variance of BM in (49), namely,

y py(b) = sup{ you(8) =5+ begs}, (50)

where we use b = V2 if we are interested in the mean,
because this model is UL.
Finally, there is our proposed functional PRQ,

y, py(b) = Sup{ y, py(s) s+ b\/Av py(S)Iw(A)/ py(s)}
(51)

where we again use b = V2 if we are interested in the
mean. Note that (51) does not exploit the diffusion
approximation and so should have advantages away
from heavy traffic.

For all simulation examples in the section, we use
the base sinusoidal arrival function in (24) with the
scaling in (37)—(39), so that

Ap=p+(1- p)hT sin(2rt(1 — p)yt). (52)

Figure 7 compares these three approximations for the
mean in three cases. First, we consider a case for
which the heavy-traffic approximation should per-
form well. In particular, we first consider the H,(4)/
H>,(4)/1 model with (p, ) = (0.8,0.01) (left). Figure 7
(left) shows that the diffusion performs best, as
expected.

Then we consider two cases that should favor PRQ
more. For the LN;(16)/H,,(4)/1 model with (p,y) =
(0.55,0.0001) (middle), which has lighter traffic and
longer cycles, we see that all three approximations
perform about the same, although functional PRQ
does better away from the peak. Finally, for the for the
19 LN;;(16)/H(4)/1 model with the more complex
arrival process from the superposition of 10 i.i.d.
stationary LN;(16) renewal processes having (p,y) =
(0.6,0.01), we see that functional PRQ performs far
better than the others, evidently because the IDC is
able to capture the complex dependence in the su-
perposition arrival process.

6.3. The Heavy-Traffic Limit for PRQ

We now establish a heavy-traffic limit for PRQ as
given in (51) above. The proofs for the following re-
sults appear in Section EC.5.
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Figure 7. (Color online) A Comparison of the Diffusion Approximation in (49), the Parametric PRQ in (50), and the Functional
PRQ in (51) for the Normalized Mean Workload 2(1 — p)E[W,]/p as a Function of the Position y Within a Cycle to Simulation
Estimates in Three Cases: Standard Model (Left), Lighter Traffic and Longer Cycles (Middle), and Complex Superposition

Arrival Process (Right)

Base arrival process = H2(4) renewal, service = H2(4)

(o, hT) =(0.8, 19'2, 08)
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(0, v, h") = (0.55, 104, 0.8)

Base arrival process = superposition of 10 i.i.d. LN(16) renewal
service = H,(4), (p, 7, h') = (0.6, 102, 0.8)
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Lemma 1. For a fixed place y within a cycle in the periodic
Gt/ Gy/1 model indexed by (p,y),
(53)

1
A)/,p,y(s) =ps+ 7_‘0)H)/,p,y(s)r

y(1

Y
H,y,py(s) = / :
e

CVrPS

where

h(t)dt (54)

and c,,, = 1/y(1 — p)? is the cycle length.

To express the heavy-traffic limit, we define two
functions. The first function,

f(H) = -t +2V4, (55)

is a variant of the function to be optimized with the

stationary M/GI/1 model, as can be seen from theo-

rem 1 of Whitt and You (2018b). The second function,
b2 2

4 P
bZCEyPZIiVPy(4(1 p)? )

4 Y J
bzcz)/p/ 2.2 2rp, (S) S,

is a periodic function that captures the time-varying
part of the arrival rate function. The period of g, ,,,(t)
is 4/b*c2yp. When the arrival- rate function is con-
stant, g),,p,y(t) 0 because h(t) =

Weremark that the constant pcf( / 2(1 - p)is the exact
steady-state mean waiting time in a M/GI/1 model,
f(t) attains maximum valueof 1 att =1,and g, ,,isa
periodic function fluctuating around 0 with limits in
Lemma EC.3 in Section EC.5. Now, we present the
heavy traffic limit for PRQ.

Theorem 3 (Heavy Traffic Limit for PRQ). For the G;/G/1
model with W,  (b) in (51), f in (55), and g in (56),

YipY
;/,p,y(b) = stl;(l?{f(t) + g)/,l,y(t)}- (57)

Sypy(t) =

(56)

m2 20-p)
b2 p2

Position y within a cycle

o

0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Position y within a cycle

We immediately obtain an upper bound for the PRQ
in the special case of a sinusoidal arrival rate, which
reveals the essential shape of the solution, as we shall
see in later examples.

Corollary 1. Suppose h(x) = Bsin(2mx); then

-2 20-p)
lgglﬁ o W), oy < hmf(t) + hmg}, o(t)
<1 bfz (1 = cos(2my)),
0<y<1l. (58)

Remark 2 (The Heavy Traffic Limits Do Not Coincide in
This Case). Our numerical experiments show that PRQ
in Theorem 3 does not coincide with the mean in
Theorem 2 in general, but we will get agreement in
double limits in the next section.

6.4. Long-Cycle Limits for PRQ in Heavy Traffic

For useful approximations of periodic queues, it is
helpful to combine the heavy-traffic perspective with
the long-cycle perspective considered in Sections 5.2
and EC.4.3. When we let the cycles get long in heavy-
traffic, we see that there are three very different
cases, depending on /1 in (38) or, equivalently upon the
loading pT defined in (23). In the heavy-traffic setting
of Sections 6.1-6.3, the three cases are the underloaded
case in which h! <1, the overloaded case in which
h1'>1, and the critically loaded case in which i! = 1.
We consider the critically loaded case in Section EC.6.

6.4.1. Underloaded Queues. In the underloaded case,
there will be no times at which the net input rate is
positive. We will show that if we let the cycles get long
for PRQ in an underloaded model, PRQ is asymptoti-
cally consistent with the heavy-traffic limit and PSA.

Theorem 4 (Long-Cycle Heavy-Traffic Limit for PRQ inan
Underloaded Queue). Assume that h in (38) is continuously
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differentiable with h! <1; then the PRQ workload in (51) for
the G;/G/1 model admits the double limit

L 201-p) ()_g 1
e e =Ty

P11

(59)

so that PRQ is asymptotically consistent with PSA; that
is, the instantaneous traffic intensity is p(y) = p + (1 —
p)h(y) and

)
2 2(1-p(y)

By (28), we have

W, o y(0) =

o +0o(1-p)+o(y). (60)

2(1 - p) 1
P
21— P) -1
- 1}1/{51 pc% Vs Py( (b))
pT1
(61)

where W, ,.,(p) is the p" quantile of W, ,,, and T1(b) is
defined in (28), so that PRQ captures the exact steady-state
distribution of the workload W, , ,, in the long-cycle heavy-
traffic limit.

Remark 3 (The lterated Limit). We remark that the dou-
ble limit in Theorem 4 is stronger than a natural iterated
limit, which has been established for the M;/M/1
queue and should hold more generally. In particular,
PSA has been proved to be asymptotically correct as

y | 0 for the M;/M/1 model in Whitt (1991). Then RQ
has been shown to be asymptotically correct for the
stationary model as p T 1 in Whitt and You (2018b).

Figure 8 (left) compares the PRQ approximation in
(20) and the PSA approximation with the simulated
steady-state mean workload. Under moderate traffic
intensity p = 0.5 and moderate cycle length y = 0.01,
the PRQ provides substantial improvement over
PSA. Figure 8 (right) demonstrate the performance of
the PRQ approximation for a higher traffic intensity
of p=0.7 and a longer cycle length with y =0.005,
validating Theorem 4.

6.4.2. Overloaded Queues. The overloaded case is
very different. With long cycles, there will be long
stretches of time over which the workload will build
up. This will lead to limits with new scaling, as in
Choudhury et al. (1997b).

Theorem 5 (Long-Cycle Limit for PRQ in an Overloaded
Queue). For the G;/G/1 model with the heavy-traffic scaling
in (37) and 1 > 1, PRQ in (51) admits the long-cycle limit

Y
(1-p)limy -W; ., (b) =sups—t +/ h(s)ds ¢,
710 Y £20 y—t
0<p<l. (62

Note that the long-cycle limit is independent of the
parameter b, suggesting a deterministic workload.
This is consistent with the long-cycle fluid limit in
Theorem 1. Theorem 5 here goes beyond the long-
cycle fluid limit by revealing the linear dependence
on (1 —p). This is confirmed in Figure 9, where we

Figure 8. (Color online) A Comparison of PRQ in (20) as a Function of the Position y Within a Cycle with Simulation

Estimations of the Normalized Mean Workload 2(1 —

P)E[W,,,]/p for W, in (48) and the Limit in Theorem 4 in the

Underloaded GI;/GI;/1 Model with Arrival-Rate Function in (24) and (37) for the Arrival Rate Function in (52) with

(v, p,h1) € {(0.5,0.01),(0.7,0.005)}

GI/GI/1 model with X(t) = p + (1 -p)hTsin(2n(1-p)%7 1),
(p, 1 h") = (0.5, 0.01, 0.5)

;

PIRRN —— Sim: GI =H,(2)

— = TVRQ: Gl =H,(2)

—— Sim: Gl =M

~ = TVRQ: GI =M
Sim: GI =E,,
TVRQ: GI =E,

—==:PSA:GI=H,

—==:PSA: Gl =M
PSA: GI =E,

EMW,I"2(1-p)/p

0 0.2

0.4 0.6 0.8 1

GI/GI/1 model with X(t) = p + (1-p)hTsin(2n(1-p)%7 1),
(p, 1 ") = (0.7, 0.005, 0.5)

T
VEREN ——Sim: GI =H,(2)
= = TVRQ: Gl =H,(2)| |
== Sim: Gl =M

= = TVRQ: GI =M
Sim: GI =E,

TVRQ: GI =E2

EMW,I"2(1-p)lp

Notes. Several interarrival time and service time distributions are considered to demonstrate the robustness of the PRQ algorithm. Left plot also

displays the corresponding PSA approximation.
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Figure 9. (Color online) A Comparison of PRQ(b) in (20), (22), and (36) as a Function of b and the Position y Within a Cycle
to Simulation Estimates of the Normalized Mean Workload y(1 — p)E[W,,,, | for W, ,, in (48) and the Limit in Theorem 5 in
the Overloaded G;/LN(1)/1 Model with Arrival-Rate Function in (38) and (24) for Three Values of y (Left) and Three Values of

p (Right)

Underlying arrival process = LN(0.25), (p, hT) =(0.7,1.25)

)]

Simultaion: v = 102
0.06
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Note. The arrival rate function is (52) with the parameters specified in each plot.

observe that the same scaling constant in the simu-
lated mean workload.

Remark 4 (The Space Scaling). When the queue is not
overloaded, Theorem 5 yields the trivial limit 0, as does
Theorem EC.2. That implies that the scaling constant
y in (62) then becomes too much to generate an in-
teresting limit. For underloaded queues, we saw in
Section 6.4.1 that the long-cycle scaling constant y is
not needed. For critically loaded queues, the long-
cycle scaling is much more interesting; we discuss that
case in Section EC.6.

To illustrate, Figure 9 compares PRQ in (20) with
parameter b= 0.5 as a function of the position y
within a cycle to simulation estimates of the normal-
ized mean workload y(1 — p)E[W,,,,, | for W, ,, in (48)
and the limit in Theorem 5 in the overloaded G;/LN(1)/1
model with arrival-rate function in (24) and (38) for
three values of y (left) and three values of p (right).
Figure 9 (left) shows that both simulated values and
PRQ approximations converge to the theoretical limit
calculated from Proposition EC.1, confirming Theo-
rem 1 and Corollary EC.2, whereas Figure 9 (right)
demonstrates that the scaling constant (1 - p) also
appears in the simulated mean workload. Overall,
Figure 9 shows that PRQ serves as a reasonable approxi-
mation for the overloaded queues even in moderate
cycle length and traffic intensities.

7. Conclusions

In this paper, we have developed a time-varying robust
queueing algorithm to approximate the time-varying
workload in a general G;/G;/1 single-server queue with
time-varying arrival-rate and service-rate functions.
Exploiting a reverse-time construction of the steady-state

workload at time ¢ in Section 2.1, in Section 2.2 we
developed a general TVRQ representation of the
steady-state workload at time ¢ as the supremum over
an uncertainty set. In (17) in Section 2.3 we expressed
it in terms of the index of dispersion for work.

The rest of the paper focused on the special case of
periodic RQ with unit service rate. In that case we
consider the periodic steady-state workload at place
yc, 0 <y <1, within a periodic cycle of length ¢, fo-
cusing especially on high-volume systems (reflected
by long cycles) with heavy loading (associated with
high traffic intensities). The general representation of
the PRQ workload as a function of y appears in (20).
We found that the control parameter b can be used
to approximate different quantiles of the workload
distribution, as indicated in (22). We also found that
the function IT in (22) and the performance of the
queue depends on the loading p' as defined in (23).

In Section 4 we found that IT in (28) is effective for
underloaded models with p! < 1 and is consistent with
RQ for the stationary model in Whitt and You (2018b).
In contrast, in Section 5 for overloaded models with
p! >1, we found that the Gaussian approximation for
ITin (36) performs remarkably well. Both PRQ and the
more elementary deterministic approximation ap-
proximate the location of the peak remarkably well,
as illustrated in Figure 4. Overall, the figures in Sec-
tions 4, 5, and the EC provide strong support for PRQ.

In Section 6 we established heavy-traffic limits as
the long-run average traffic intensity p increases to-
ward 1 for both the actual periodic workload and the
PRQ, using the scaling in Whitt (2014), but in general
these limits do not agree. In Section 6.4 we established
double limits as the traffic intensity increases and
the cycle length increases. These limits expose three
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important cases: First, for underloaded models in
which the maximum instantaneous traffic intensity
remains less than 1, the limit for PRQ is the same as the
pointwise stationary approximation version of the
heavy-traffic limit for the stationary model, which
has been shown to be asymptotically correct in Whitt
and You (2018b). Second, for the overloaded case, we
obtain limits with very different scaling that captures
the long periods of overloading, just as in Choudhury
et al. (1997b). Third, for critically loaded cases, we
obtained the limit for PRQ in Theorem EC.3, con-
sistent with Whitt (2016). In each case, we reported
results of simulation experiments that confirm the
limit theorems and show that PRQ is remarkably ef-
fective. Overall, we conclude that TVRQ can provide
helpful insight into complex time-varying queueing
models.

We regard this paper is an exploration, opening a
promising new line of research. There are many di-
rections for further research. For example, it remains
to develop theoretical explanations for the function
IT in (36) yielding b= 0.5 for OL models and the
choice b = 1 for CL models in Section EC.6. There are
opportunities for new insightful asymptotics. It also
remains to explore various applications and consider
extensions to networks of queues, paralleling Whitt
and You (2018a), and queues with multiple servers.
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