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Abstract. We consider a single-server queue with unlimited waiting space, the first-come,
first-served discipline, a periodic arrival-rate function, and independent and identically
distributed service requirements, where the service-rate function is subject to control. We
previously showed that a rate-matching control, whereby the service rate is made pro-
portional to the arrival rate, stabilizes the queue-length process but not the (virtual) waiting-
time process. To minimize the maximum expected waiting time (and stabilize the expected
waiting time), we now consider a modification of the service-rate control involving two
parameters: a time lag and a damping factor. We develop an efficient simulation search
algorithm to find the best time lag and damping factor. That simulation algorithm is an
extension of our recent rare-event simulation algorithm for the GIt/GI/1 queue to the
GIt/GIt/1 queue, allowing the time-varying service rate. To gain insight into these controls,
we establish a heavy-traffic limit with periodicity in the fluid scale. This produces a diffusion
control problem for the stabilization, whichwe solve numerically by the simulation search in
the scaled family of systems with ρ ↑ 1. The state space collapse in that theorem shows that
there is a time-varying Little’s law in heavy traffic, implying that the queue length and
waiting time cannot be simultaneously stabilized in this limit. We conduct simulation ex-
periments showing that the new control is effective for stabilizing the expected waiting time
for a wide range of model parameters, but we also show that it cannot stabilize the expected
waiting time perfectly.
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1. Introduction
1.1. A Nonstationary Stochastic Design Problem
In this paper, we address an open problem from Whitt (2015), which considered the problem of stabilizing
performance over time, that is, making a specified time-dependent performance measure a target constant
function, in a single-server queue with unlimited waiting space, the first-come, first-served (FCFS) discipline,
and a time-varying arrival-rate function. The stabilization is to be achieved with a deterministic service-rate
function, under the assumption that the customer service requirements are specified independently of the
service-rate control. This is a stochastic design problem instead of a real-time stochastic control problem; that
is, the service-rate control is to be determined in advance, assuming full knowledge of the model, but without
knowledge of the system state (e.g., the value of the stochastic queue-length process) that will actually prevail
at any time.

As explained in section 1 of Whitt (2015), variants of this service-rate control are performed in response to
time-varying demand, in many service operations, such as hospital surgery rooms and airport inspection lines,
but little is known about the ideal timing and extent of service-rate changes. Service-rate controls for single-
server queues are also of current interest within more complex systems, such as in energy-efficient data centers
in cloud computing (Kwon and Gautam 2016) and in business process management (Suriadi et al. 2017).

In Whitt (2015) it was shown that a rate-matching control, whereby the service rate is made proportional to
the arrival rate, stabilizes the queue-length process but not the (virtual) waiting-time process. In this paper we
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develop an algorithm to approximately stabilize the expected waiting time at a target level. It uses a modification
of the service-rate control involving two parameters: a time lag and a damping factor.

1.2. Related Literature
There is a large literature on similar stochastic design problems involving setting staffing levels (the number of
servers) in a multiserver queue to stabilize performance in the face of time-varying demand (e.g., Jennings
et al. 1996, Feldman et al. 2008, Stolletz 2008, Liu and Whitt 2012b, Defraeye and van Nieuwenhuyse 2013, He
et al. 2016, Pender and Massey 2017, Liu 2018, Whitt 2018). For a single-server queue, the direct analog would
be turning on and off the server, which is a restrictive extreme version of the service-rate control we consider.

The dynamic control problem of turning on and off the server in specified system states has received
considerable attention in the stationary setting, starting with Yadin and Naor (1963) and Heyman (1968).
Similar dynamic control problems for single-server queues including service-rate controls have been analyzed
as Markov decision processes in George and Harrison (2001) and Adusumilli and Hasenbein (2010) and
references therein. We emphasize that our design problem is different; our service-rate control is for a nonsta-
tionary model and must be set in advance, without knowledge of the system state. In many cases, our new
problem is more realistic because arrival rates are often strongly time varying and can be reasonably well es-
timated in advance, whereas changes to the service rate may be difficult to implement without advance planning.
Of course, in general, both problems are important.

Given the extensive research on the staffing design problem for many-server queues, it is natural to consider
variants of the successful staffing algorithms, but it is now well known that the behavior of many-server
queues tends to be dramatically different from that of single-server queues. That difference can be seen by
comparing the many-server fluid models in Liu and Whitt (2012a) with the single-server fluid models in Chen
and Mandelbaum (1991), as discussed in Liu and Whitt (2011, p. 836). A simple fluid model supporting the
rate-matching control in Whitt (2015) is supported by our heavy-traffic weak law of large numbers in Theorem 4
(see Corollary 3), but we are working to go beyond that.

Hence, it should not be surprising that service-rate controls using variants of the established many-server
staffing algorithms are no longer effective for single-server queues. For example, a natural analogue of the
square-root staffing function from Jennings et al. (1996) was considered as a candidate service-rate control
in equation 2.3 of Whitt (2015) but was found to be ineffective, as illustrated by figure 2 of Whitt (2015).
Additionally, variants of the iterated staffing algorithm in Feldman et al. (2008) and Defraeye and van
Nieuwenhuyse (2013) were found to be ineffective, evidently because the controls have impact over greater
time intervals (are less “local”) with single-server systems.

As indicated in Whitt (2015), controlling the service rate to meet time-varying demand is analogous to
Kleinrock’s classic service-capacity-allocation problem in a stationary Markovian Jackson network (Kleinrock
1964); we allocate service capacity over a time instead of over space (different queues within the network).

1.3. The Rate-Matching Service-Rate Control
Given that the service requirements are specified independently, the actual service times resulting from a time-
varying control are relatively complicated, but a construction is given in section 3.1 of Whitt (2015). In Whitt
(2015), several controls were considered, but most attention was given to the rate-matching control, which
chooses the service rate to be proportional to the arrival rate; that is, for a given target traffic intensity ρ, the
service-rate function is

μ(t) ≡ λ(t)/ρ, t ≥ 0, (1)

with ≡ denoting equality by definition. In Whitt (2015), theorem 4.2 shows that the rate-matching control
stabilizes the queue-length process, theorem 5.1 gives an expression for the waiting time with the rate-
matching control, whereas theorems 5.2 and 5.3 establish heavy-traffic limits showing that the queue length is
asymptotically stable, but the waiting time is not, being asymptotically inversely proportional to the arrival-
rate function.

1.4. The Open Problem: Stabilizing the Expected Waiting Time
The open problem from Whitt (2015) is developing a service-rate control that can stabilize the expected
waiting time. (We only discuss the continuous-time virtual waiting-time process in this paper, which is the
waiting time of a potential or hypothetical customer if it were to arrive at that time, and so omit “virtual.”)
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Toward that end, we now study a modification of the rate-matching control. Without loss of generality, we
write the periodic arrival-rate function as

λ(t) ≡ ρ(1 + s(t)), t ≥ 0, (2)

where 0< ρ< 1, and s is a periodic function with period c satisfying

s̄ ≡ 1
c

∫ c

0
s(u) du ≡ 0. (3)

As a regularity condition, we require that

sL ≤ s(t) ≤ sU for all t with − 1 ≤ sL ≤ 0 ≤ sU <∞. (4)

Most of our numerical examples will be for a sinusoidal function, where s(t) � β sin(γt) for s(t) in (2), so that

λ(t) ≡ ρ(1 + β sin (γt)), t ≥ 0, (5)

and β is the relative amplitude, with 0 ≤ β ≤ 1, and the period is c � 2π/γ.
In the periodic setting of Equations (2)–(4), we consider the rate-matching control in (1) modified by a time

lag η and damping factor ξ; in particular,

μ(t) ≡ 1 + ξs(t − η), t ≥ 0, (6)

for 0<ξ ≤ 1 and η> 0. Thus, the average arrival rate and service rate are λ̄ � ρ and μ̄ � 1, so the long-run traffic
intensity is ρ̄ ≡ λ̄/μ̄ � ρ. However, the instantaneous traffic intensity ρ(t) ≡ λ(t)/μ(t) can satisfy ρ(t)> 1 for
some t in each periodic cycle, for example, if ρ(1 + β)> 1 − β or, equivalently, if β> (1 − ρ)/(1 + ρ) in the setting
of Equations (5) and (6).

1.5. Formulation of Optimal Control Problems
Because it is directly of interest, and because we want to allow for imperfect stabilization, we formulate our
control problem as minimizing the maximum expected waiting time over a periodic cycle [0, c]. We formulate
the main optimization problem as a min-max problem; that is,

w∗ ≡ min
μ(t)∈}(1)

max
0≤y≤1 {E[Wy]}, (7)

where E[Wy] is the expected (periodic) steady-state (virtual) waiting time starting at time yc within a cycle of
length c, 0 ≤ y< c, and }(m) is the set of all periodic service-rate functions with average rate m, which we take
to be m ≡ 1.

Given that the average arrival rate is ρ< 1, the obvious reference case is the mean waiting time E[W] in the
associated stationary model, which for the M/GI/1 model is

E[W] � ρ(1 + c2s )
2(1 − ρ) , (8)

and thus E[W] � ρ/(1 − ρ) in the M/M/1 model. However, in general, E[W] is not a lower bound for the
average of the periodic steady-state mean E[Wy] over a cycle (see Remark 2 and Example 1).

We have not yet solved this general optimization problem in Equation (7). Here are open problems, ap-
plying to the Markovian Mt/Mt/1 model and generalizations:

1. For the general periodic problem, what is the solution (value of w∗ and set of optimal service-rate functions
μ∗(t) as a function of the model)?

2. For the sinusoidal special case in Equation (5), what is the solution?
3. To what extent do the optimal solutions stabilize the expected waiting time E[Wy] over time? In par-

ticular, is it possible to stabilize E[Wy] perfectly?

Remark 1 (Stabilizing the Full Waiting-Time Distribution). Theorems 4.1 and 4.2 of Whitt (2015) show that rate-
matching control stabilizes the delay probability P(Wy > 0), whereas corollary 5.1 of Whitt (2015) shows that rate-
matching control cannot stabilize the mean waiting time. Theorem 5.2 of Whitt (2015) establishes a heavy-traffic
limit (with periodicity in the stronger fluid scale in Section 6 here) that shows that it is not possible to stabilize the
queue-length and waiting-time processes simultaneously. Thus, we conclude that it is not possible to stabilize the
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full waiting-time distribution. Hence, the open problems above are only for the mean. In this paper we primarily
focus on the mean, but we also show that it stabilizes the entire distribution to some extent in Section 9.1.

In this paper we only consider the restricted set of controls in Equation (6). Now our goal is

w∗(η, ξ) ≡ min
η,ξ

max
0≤y≤1 {E[Wy]}. (9)

For practical purposes, this two-parameter control is appealing for its simplicity. We also find that it is quite
effective, even though it cannot stabilize E[Wy] perfectly.

We also consider the associated stabilization control, whereby Equation (9) is replaced by

w∗
stab(η, ξ) ≡ min

η,ξ
{max
0≤y≤1 {E[Wy]} − min

0≤y≤1 {E[Wy]}}. (10)

In our sinusoidal examples, in which there is strong symmetry, we find that the solutions to Equations (9) and (10)
are the same (but we have no proof), but neither stabilizes perfectly. For more general periodic arrival-rate
functions, we detect differences.

1.6. Organization of This Paper
This paper involves some challenging technical methods. Hence, we present the more accessible results first.
We start in Section 2 by presenting two simulation examples to illustrate the effectiveness of our new al-
gorithm. Then, in Section 3, we introduce the two technical tools we will apply: (1) an extension of the rare-
event simulation algorithm for the GIt/GI/1 model from Ma and Whitt (2018) to the GIt/GIt/1 model with a
general service-rate control and (2) heavy-traffic limits involving scaling of the underlying deterministic
periodic arrival-rate function.

We start in earnest in Section 4. We elaborate on the model and key processes representing the workload
and the waiting time in Section 4. Theorem 1 shows that the rate-matching control stabilizes the workload
process as well as the queue-length process. We discuss the extension of the rare-event simulation algorithm
from Ma and Whitt (2018) to our setting and its application to perform simulation search in Section 5. In both
Sections 4 and 5, we will be brief because we can draw on Whitt (2015) and Ma and Whitt (2018).

We establish our main heavy-traffic limits with periodicity in the stronger fluid scaling [see Equation (13)] in
Section 6. We present the proof of the main heavy-traffic limit (Theorem 3) in Section 7. We establish heavy-
traffic limits with periodicity in the weaker diffusion scaling [see Equation (14)] in Section 8.

We give simulation examples in Section 9. In Section 9.1, we present simulation results using the fluid
scaling in Section 6; in Section 9.2, we present simulation results using the diffusion scaling in Section 8. We
draw conclusions in Section 10.

2. Simulation Examples for the Mt/Mt/1 Model
To illustrate the effectiveness of our new algorithm, we show results for two simulation examples. We
consider the Markovian Mt/Mt/1 model with the sinusoidal arrival-rate function in Equations (2)–(5). The first
example has model parameters (ρ, β, γ) � (0.8, 0.2, 0.1), so the average arrival rate is ρ̄ � 0.8, the average service
time is 1, and the cycle length is c � 2π/γ � 62.8. Figure 1 (left) shows the expected steady-state waiting time
E[Wy] together with the corresponding expected workload E[Ly] and the product λ(y)E[Wy], all for 0 ≤ y< 1.
The second example on the right differs only by increasing ρ from 0.8 to 0.95. Figure 1 also shows the upper
and lower 95% confidence interval bounds for E[Ly] and E[Wy] with black dashed lines, but these can only be
seen by zooming in.

Figure 1 shows that the expected waiting time E[Wy] is well stabilized at a value somewhat higher than the
expected steady-state waiting time for the stationary M/M/1 model, which is ρ/(1 − ρ) (4 on the left and 19 on
the right). The maximum deviation (maximum − minimum) over a cycle is 0.0335 is for ρ � 0.8 and 0.4653 for
ρ � 0.95. Thus, the maximum relative errors are approximately 0.8% for ρ � 0.8 and 2.2% for ρ � 0.95, clearly
adequate for practical applications. Nevertheless, careful simulations and statistical analysis allow us to
conclude that it is impossible to stabilize the expected waiting time perfectly with this control. To see the
contrasting view with rate-matching control for this same model, see figure 6 of Whitt (2015). (See Ma and
Whitt 2015 for more examples.)

It is natural to wonder whether there is any order in the optimal controls found for ρ � 0.8 and ρ � 0.95 in
Figure 1. The dependence on ρ is revealed by the main heavy-traffic limit theorem (Theorem 3).
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Remark 2 (The Cost of Periodicity). The difference between the stable average waiting time in Figure 1 and the value
ρ/(1 − ρ) for the stationarymodel (4 on the left and 19 on the right) might be called the “average cost of periodicity,”
but we point out that the overall average waiting time with a service-rate control could be much less than in the
stationary model. The classic results for the periodicMt/GI/1 queue in Rolski (1981, 1989) do not apply because, in
general, the service times are neither independent of the arrival process nor independent and identically distributed
(i.i.d.); see Example 1.

Example 1 (Small Expected Waiting Times with Periodicity). To illustrate a nonstationary model with a low average
expected waiting time, consider the Mt/Mt/1 model with the two-level arrival-rate function with period c:

λ(t) ≡ ρb1 (c/2)−δ,(c/2)+δ[ )(t), 0 ≤ t< c and bδ � c, (11)

where δ< c/2, and 1A is the indicator function of the set A; that is, 1A(t) � 1 if t ∈ A and 0 otherwise. Let the
service-rate function be as in Equation (6) with η � 2δ and ξ � 1. Then the number of arrivals in the interval
(c/2) − δ, (c/2) + δ[ ) has a Poisson distribution with mean ρc, whereas the number of potential departures in the
interval (c/2) + δ, (c/2) + 3δ[ ) has a Poisson distribution with mean c. Thus, for ρ< 1 and c � bδ suitably large,
the net input over the interval (c/2) − δ, (c/2) + δ[ ) is approximately Gaussian with mean −(1 − ρ)bδ and
variance (1 + ρ)bδ, which is unlikely to be positive. By choosing δ suitably small and bδ suitably large, subject
to specified ρ, we can make the maximum steady-state expected waiting time, and thus the average, approach
0. One way to explain this phenomenon is to observe that the interarrival times and service times will be
highly correlated.

Remark 3 (The Single-Parameter Alternative). It is natural to wonder whether we could use only the single control
parameter η, fixing ξ � 1. If we let ξ � 1 and optimize over η in the setting of Figure 1, then, for ρ � 0.8 (ρ � 0.95), we
get η∗ � 5.93 (η∗ � 28.3) and amaximumdeviation of 0.4109 (3.034), which yields approximately 10% (14%) relative
error instead of 0.8% (2.2%). Hence, we use the two control parameters.

3. The Key Technical Tools
In this section, we discuss the two technical tools that we use.

3.1. The Primary Tool: A Simulation Search Algorithm
Our primary tool for finding good (η, ξ) controls is a simulation search algorithm. For that purpose, we extend
the rare-event simulation algorithm for the time-varying workload process in the periodic GIt/GI/1 model in
Ma and Whitt (2018) to the GIt/GIt/1 model, where the service rate is time varying as well. (The notation GIt
means that the process is a deterministic time transformation of a renewal process; see Section 4.) The

Figure 1. Estimates of the Periodic Steady-State Values of E[Wy] (Blue Solid Line), E[Ly] (Red Dashed Line), and λ(y)E[Wy]
(Green Dotted Line) for the Optimal Control (η∗, ξ∗) for the Sinusoidal Example with Parameter Triples (ρ, β, γ) � (0.8, 0.2, 0.1)
(Left) and (0.95, 0.2, 0.1) (Right), So That the Cycle Length Is c � 2π/γ � 62.8

Note. The optimal controls are (5.84, 0.84) for ρ � 0.8 and (15.1, 2.13) for ρ � 0.95.
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workload L(t) represents the amount of work in service time in the system at time t, whereas the waiting time
can be represented as the first-passage time

W(t) � inf
{
u ≥ 0 :

∫ t+u

t
μ(s) ds � L(t)

}
. (12)

The waiting time W(t) coincides with the workload L(t) when μ(t) � 1 for all t, but not otherwise.
As in Ma and Whitt (2018), the rare-event simulation algorithm calculates the periodic steady-state workload Ly

and waiting time Wy, starting at time yc within a cycle of length c, 0 ≤ y< 1. We use a search over the
parameters (η, ξ), as discussed in Section 5, to solve the optimization problems [Equations (9) and (10)]. The
search part is relatively elementary because we have only two control parameters. For background on sim-
ulation optimization, see Fu (2015) and Jian and Henderson (2015) and the references therein.

The computational complexity for one control vector (η, ξ) is essentially the same as in Ma and Whitt (2018).
In particular, the program running time tends to be proportional to the number of replications and number of
y values, which for the case ρ � 0.8 in Figure 1 were taken to be 40,000 and 40, respectively. This required
approximately 100 minutes on a desktop computer. As indicated in section 4.7 of Ma and Whitt (2018), the run
time tends to be of order (1 − ρ)−1, so the cases with high traffic intensity are more challenging. The simulation
search is performed in stages, with fewer y values and replications in the early stages but the full long run at
the end to confirm performance.

3.2. Gaining Additional Insight: Heavy-Traffic Limits
To better understand how the control parameters and performance depend on the model parameters, we
establish heavy-traffic (HT) limits, which involve considering a family of models indexed by ρ and letting
ρ ↑ 1, drawing on our previous work in Whitt (2014, 2015) and Ma and Witt (2018). That previous work shows
that the scaling is very important because there are several possibilities. We use the conventional HT scaling of
time by (1 − ρ)−2 (usually denoted by n) and space by 1 − ρ (usually denoted by 1/

��
n

√
), as in chapters 5 and 9 of

Whitt (2002), but if we do so without also scaling the arrival-rate function, then the HT limit is easily seen to be
the same as if the periodicity were replaced by the constant long-run average, as shown by Falin (1989).

To obtain insight into the periodic dynamics, it is thus important to also scale the arrival-rate function,
which is initially specified in Equation (2) with Equations (3) and (4). However, the work of Whitt (2014, 2015)
actually uses two different HT scalings of the arrival-rate function. Our main HT scaling in Section 6 follows
Whitt (2015) and has periodicity in the fluid scale; that is,

λρ(t) ≡ ρ(1 + s((1 − ρ)2t)), t ≥ 0, (13)

but in Section 8 we also consider the scaling from Whitt (2014) and Ma and Whitt (2018), which has the
periodicity in diffusion scale; that is,

λρ(t) ≡ ρ(1 + (1 − ρ)s((1 − ρ)2t)), t ≥ 0. (14)

The extent of the periodicity is stronger in Equation (13) than in Equation (14) because of the extra factor
(1 − ρ) before s in Equation (14). The workload and the waiting time have the same HT limit with the diffusion-
scale scaling in Equation (14) but different limits with the fluid-scale scaling in Equation (13). To capture the
clear differences shown in Figure 1, we obviously want the stronger fluid scaling in Equation (13). The HT
functional central limit theorem (FCLT) in Theorem 3 for the scaling in Equation (13) in Section 6 helps
interpret Figure 1.

It is important to note that if we have a constant service rate with this scaling, then the waiting times
explode as ρ ↑ 1 because the instantaneous traffic intensity ρ(t) ≡ λ(t)> 1 over intervals growing as ρ ↑ 1; this
case is analyzed in Choudhury et al. (1997).

We also establish an HT functional weak law of large numbers (FWLLN) in Theorem 2, which yields a
deterministic fluid approximation. However, it is not very useful because it shows that our proposed control
with ξ � 1 stabilizes the waiting time perfectly for all η as ρ ↑ 1 (but it helps to see that nothing bad happens).

4. The Model
In this section, we specify the general model, defining the arrival process in Section 4.1 and the basic queuing
stochastic processes in Section 4.2. We specialize to the periodic Gt/Gt/1 model in Section 4.3. We show that
the workload is stabilized by the rate-matching control in Equation (1), extending the results for the queue-
length process in Whitt (2015).
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4.1. The Arrival Process
We represent the periodic arrival counting process A as a deterministic time transformation of an underlying
rate-1 counting process N with associated sequence of interarrival times {Uk : k ≥ 1} by

A(t) ≡ N(Λ(t)), where Λ(t) ≡
∫ t

0
λ(s) ds, t ≥ 0. (15)

where λ is the arrival-rate function. This is a common representation when N is a rate-1 Poisson process; then
A is a “nonhomogeneous Poisson process” (NHPP). For the Gt/Gt/1 model, N is understood to be a rate-1
stationary point process. Hence, for the GIt/GIt/1 model, N is an equilibrium renewal process with time
between renewals having mean 1, for which the first interrenewal time U1 has the equilibrium distribution.
The representation in Equation (15) has been used frequently for processes N more general than NHPPs, an
early source being by Massey and Whitt (1994).

For the sinusoidal arrival-rate function in Equation (5), the associated cumulative arrival-rate function is

Λ(t) � ρ(t + (β/γ)(1 − cos (γt))), t ≥ 0. (16)

We only consider the case ρ< 1, under which a proper steady state exists under regularity conditions (which
we do not discuss here). Behavior differs for short cycles and long cycles. For the case of a constant service
rate, there are two important cases for the relative amplitude: (1) 0< β< ρ−1 − 1 and (2) ρ−1 − 1 ≤ β ≤ 1. In the
first case, we have ρ(t)< 1 for all t, where ρ(t) ≡ λ(t) is the instantaneous traffic intensity, but in the second
case, we have intervals with ρ(t) ≥ 1, where significant congestion can build up. If there is a long cycle as well,
the system may be better understood from fluid and diffusion limits, as in Choudhury et al. (1997). However,
this difficulty can be avoided by a service-rate control.

4.2. The General Gt/Gt/1 Model with a Service-Rate Control
We consider a modification of the standard single-server queue with unlimited waiting space where customers
are served in order of arrival. Let {Vk} be the sequence of service requirements. As in Whitt (2015), we
separately define the rate at which service is performed from the service requirement. Given the arrival
counting process A(t) defined in Section 4.1, let the total input of work over the interval [0, t] be the ran-
dom sum

Y(t) ≡ ∑A(t)
k�1

Vk, t ≥ 0. (17)

Let service be performed at time t at rate μ(t) whenever there is work to perform. Paralleling the cumulative
arrival rate Λ(t) defined in Equation (15), let the cumulative available service rate be

M(t) ≡
∫ t

0
μ(s) ds, t ≥ 0. (18)

Let the net-input process of work be X(t) ≡ Y(t) −M(t), t ≥ 0. Then we can apply the reflection map to the net
input process X(t) to represent the workload (the remaining work in service time) at time t, starting empty at
time 0, as

L(t) � X(t) − inf {X(s) : 0 ≤ s ≤ t} � sup {X(t) − X(s) : 0 ≤ s ≤ t}, t ≥ 0.

In this setting it is elementary that the continuous-time (virtual) waiting time (before starting service) at time t,
which we denote by W(t), can be related to L(t).
Lemma 1 (Waiting Time Representation). The waiting time at time t can be represented as

W(t) � M−1
t (L(t)), t ≥ 0, (19)

where M−1
t is the inverse of Mt(u) ≡ M(t + u) −M(t) for M(t) in Equation (18).

Proof. By definition,

W(t) � inf
{
u ≥ 0 :

∫ t+u

t
μ(s) ds � L(t)

}
� inf {u ≥ 0 : M(t + u) −M(t) � L(t)} � M−1

t (L(t)),
(20)

for Mt(u) above, as claimed in Equation (19). □
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4.3. The Periodic Gt/Gt/1 Model
As in Ma and Whitt (2018), we consider the periodic steady state of the periodic Gt/Gt/1 model with arrival-
rate function in Equation (2). For that purpose, we exploit the arrival-process construction in Equation (15) in
terms of the stationary processes N ≡ {N(t) : t ≥ 0} and V ≡ {Vk : k ≥ 1} in Equation (15). Let the associated
service-rate function μ(t) also be periodic with cycle length c, average service rate μ̄ � 1, and bounds 0<
μL ≤ μ(t) ≤ μU <∞, for 0 ≤ t ≤ c.

As in Ma and Whitt (2018) and earlier in Loynes (1962) and chapter 6 in Sigman (1995), we now convert the
standard representation of the workload process in Section 4 to a simple supremum by using a reverse-time
construction. To do so, we extend the stationary processes {N(t)} and {Vk} to the entire real line. We regard the
periodic arrival rate and service rate as defined on the entire real line as well, with the functions fixed by their
position within the periodic cycle at time 0. With those conditions, the reverse-time construction is achieved by
letting the interarrival times and service times be ordered in reverse time going backward from time 0. Then Ã(t)
counts the number of arrivals in [−t, 0], Ỹ(t) is the total input in [−t, 0], and X̃(t) is the net input in [−t, 0], for t ≥ 0.
To exploit the reverse-time representation, let

Λ̃y(t) ≡ Λ(yc) −Λ(yc − t), t ≥ 0, (21)

be the reverse-time cumulative arrival-rate function starting at time yc within the periodic cycle [0, c], 0 ≤ y< 1,
and Λ̃−1

y is its inverse function, which is well defined because Λ̃y(t) is continuous and strictly increasing.
As an analogue of Equation (21) for the cumulative service rate, let

M̃y(t) ≡ M(yc) −M(yc − t), t ≥ 0. (22)

We let the service requirements Vk come from a general stationary sequence with E[Vk] � 1.
With this reverse-time representation, the workload at time yc in the system starting empty at time yc − t can

be represented as

Ly(t) � sup
0≤s≤t

{X̃y(s)}

�d sup
0≤s≤t

∑N(Λ̃y(s))

k�1
Vk − M̃y(s)

⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭ � sup
0≤s≤Λ̃y(t)

∑N(s)

k�1
Vk − M̃y(Λ̃−1

y (s))
{ }

, (23)

where X̃y is the reverse-time net input of work starting at time yc within the cycle of length c. The other
quantities in Equation (23) are the reverse-time cumulative arrival-rate function Λ̃y(t) in Equation (21) with
inverse Λ̃−1

y (t) and the reverse-time cumulative service-rate function M̃y in Equation (22) with inverse M̃−1
y .

The equality in distribution in Equation (23) holds because N is a stationary point process, which is a point
process with stationary increments and a constant rate.

As t→∞, Ly(t) ↑ Ly(∞) ≡ Ly with probability one (w.p.1) as t→∞, for

Ly �d sup
s≥0

∑N(s)

k�1
Vk − M̃y(Λ̃−1

y (s))
{ }

, 0 ≤ y< 1. (24)

Even though Equation (23) is valid for all t, we think of the system starting empty at times −kc, for k ≥ 1, so we
let yc − t � −kc or, equivalently, we stipulate that t � c(k + y), 0 ≤ y< c, and consider successive values of k and
let k→∞ to get Equation (24). That makes Equation (23) valid to describe the distribution of L(c(k + y)) for
all k ≥ 1.

We now observe that the time transformation in Equation (23) shows that the periodic Gt/Gt/1 model is
actually equivalent to a G/Gt/1 model with a stationary arrival process and a new cumulative service-rate
function M̃y(Λ̃−1

y (t)).
Corollary 1 (Conversion ofGt/Gt/1 to an EquivalentGt/G/1). In addition to representing the periodic steady-state workload
Ly in a periodic Gt/Gt/1 model as a periodic steady-state workload in a periodic G/Gt/1 model, which has a stationary
stochastic input and a deterministic service rate, as shown in Equation (24), we can represent it as a periodic steady-state
workload in a periodic Gt/G/1 model, which has a periodic stochastic input and a constant service rate, via

Ly � sup
∑N(Λ̃y(M̃−1

y (s)))

k�1
Vk − s : s ≥ 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭. (25)

Ma and Whitt: Periodic Single-Server Queue with a Service-Rate Control
8 Stochastic Systems, Articles in Advance, pp. 1–30, © 2019 The Author(s)



Corollary 2 (The Associated Periodic Steady-State Waiting Time). The periodic steady-state waiting time associated with
the periodic steady-state workload in Equation (24) is

Wy � M̃−1
y (Ly), 0 ≤ y< 1. (26)

Proof. Apply the reasoning of Lemma 1. □

In Whitt (2015), we showed that the rate-matching service-rate control in Equation (1) stabilizes the queue-
length process. Now we establish the corresponding result for the workload.

Theorem 1 (Stabilizing the Periodic Workload). If the rate-matching control in Equation (1) is used, then Ly �d L for Ly in
Equation (24), where L is the steady-state workload in the associated (stable) stationary G/G/1 model; that is,

L�d sup
s≥0

∑N(s)

k�1
Vk − ρ−1s

{ }
, (27)

which is independent of y.

Proof. With the rate-matching control, we have M(t) � cΛ(t) and M̃y(t) � cΛ̃y(t), t ≥ 0. As a consequence,
M̃y(Λ̃−1

y (t)) � ct, t ≥ 0, so

Ly �d sup
s≥0

∑N(s)

k�1
Vk − M̃y(Λ̃−1

y (s))
{ }

�d sup
s≥0

∑N(s)

k�1
Vk − cs

{ }
�d L. □ (28)

5. The Simulation Search Algorithm
The rare-event simulation algorithm from Ma and Whitt (2018) exploits the classic rare-event simulation
algorithm for the GI/GI/1 queue, exploiting importance sampling using an exponential change of measure, as
in chapter XIII of Asmussen (2003) and chapter VI of Asmussen and Glynn (2007). Hence, our simulation
algorithm applies to the GIt/GIt/1 queue. It was shown in Ma and Whitt (2018) that the algorithm is effective
for estimating the mean as well as small tail probabilities (also see Ma and Whitt 2016).

5.1. The GIt/GIt/1 Model
In the GIt/GIt/1 setting, the underlying rate-1 process N is an equilibrium-renewal process, which means that
U1 has the stationary-excess or equilibrium distribution Ue, which may be different from the i.i.d. distributions
of Uk, k ≥ 2. Also in the GIt/GIt/1 setting, the service times Vk are i.i.d. with distribution V and are in-
dependent of the arrival process.

The simulation algorithm exploits the discrete-time representation of the workload Ly in Equation (24) and
the waiting time Wy; that is,

Ly �d sup
s≥0

∑N(s)

k�1
Vk − M̃y(Λ̃−1

y (s))
{ }

�d sup
n≥0

∑n
k�1

Vk − M̃y

(
Λ̃−1

y

(∑n
k�1

Uk

)){ }
,

Wy �d M−1
y (Ly), 0 ≤ y< 1, (29)

where My is the same as Mt, which is the forward integral of the service rate starting from position y within
a cycle.

We exploit the rare-event simulation algorithm in Ma and Whitt (2018), which is based on an exponential
change of measure; we refer to Ma and Whitt (2018) for background. In that setting, we use the underlying
measure Pθ∗ determined for GI/GI/1 queue. We again use the same notations Xk(ρ) � Vk − ρ−1Uk and partial
sum process Sn ≡ ∑n

k�1 Xk for GI/GI/1 and define the new associated process

Qn ≡
∑n
k�1

Vk − M̃y

(
Λ̃−1

y

(∑n
k�1

Uk

))
,

Ma and Whitt: Periodic Single-Server Queue with a Service-Rate Control
Stochastic Systems, Articles in Advance, pp. 1–30, © 2019 The Author(s) 9



which is the process inside the supremum function. To avoid duplication of notation, we let the likelihood
function here be denoted by Ψ instead of L. Then the estimator of the rare-event probability for Wy can be
derived as follows:

P(Wy > b) � P(M−1
y (Ly)> b) � P(Ly >My(b))

� P(τQMy(b) <∞) � Eθ∗ [ΨτQMy (b)
(θ∗)]

� Eθ∗ [mX1(θ∗)mX(θ∗)(τ
Q
My (b)−1) exp(−θ∗SτQMy (b)

)]
� mX1(θ∗)Eθ∗ [exp(θ∗SτQMy (b)

)],

(30)

where τQMy(b) is the stopping time of process Qn at level My(b), ΨτQMy(b)
(θ∗) is the exponentially tilted likelihood

ratio for process Qn at n � My(b), and mX(θ∗) is the moment-generating function of X at θ∗. As in Ma and Whitt
(2018), the first X1(ρ) in the partial sum SτQMy (b)

has a different distribution from {Xk, k ≥ 2}.

5.2. The Extended Algorithm for the GIt/GIt/1 Model
Here is a summary of the extended algorithm to estimate the tail probabilities in the GIt/GIt/1 queue with
average service rate 1 and average arrival rate ρ:

1. Construct a table of the inverse cumulative arrival-rate function ρΛ̃−1
y (same as for GIt/GI/1).

2. Determine the required length of partial sums (ns) needed in each application (same as for GIt/GI/1).
3. For each replication, generate the required vectors of exponentially tilted interarrival times ρ−1Ũ and

service times Ṽ from F−θ∗
ρ−1U and Fθ

∗
V , respectively (same as for GIt/GI/1).

4. Calculate the associated vectors of Sn and Qn, and find out the stopping time τQMy(b), which is the hitting
time of Qn at level My(b). This step is different from that for GIt/GI/1 in that first we need to calculate My(b) as
the hitting level instead of b, and second we calculate vector Qn different from Rn in an additional function M̃y

in the second term.
5. Use the preceding estimator to calculate the tail probability P(Wy > b) for each replication (same as for

GIt/GI/1).
6. Run N i.i.d. replications, and calculate the mean of the estimated values of P(Wy > b) (same as for

GIt/GI/1).

5.3. Explicit Representations for the Sinusoidal Case
Here we summarize the expressions for all the basic deterministic rate functions in our sinusoidal examples,
extending Equations (5), (6), and (16):

Λ̃y(t) � ρ

(
t + β

γ
(cos(γ(t − yc)) − cos(γyc))

)
,

M(t) � t − ξ
β

γ
(cos(γ(t − η)) − cos(γη)),

My(t) � t − ξ
β

γ
(cos(γ(t + yc − η)) − cos(γ(yc − η))),

M̃y(t) � t + ξ
β

γ
(cos(γ(t + η − yc)) − cos(γ(η − yc))).

(31)

5.4. The Search Algorithm
We use an elementary iterative search algorithm, fixing an initial value of η at the mean for the steady-state
model, ρ/(1 − ρ), and searching first over ξ and then over each variable until we get negligible improvement.
This simple approach is substantiated by estimating the structure of the objective function. Figure 2 illustrates
by showing the maximum waiting time max0≤y≤c {E[Wy]} in the setting of Figure 1 (left). Figure 2 shows
estimates of the maximum waiting time max0≤y≤c {E[Wy]} as a function of (η, ξ) in [0, 20] × [0, 5] (left) and
[3, 9] × [0.6, 1.0] (right) in that setting. Figure 2 shows that the function is not convex as a function of η but
suggests that it is unimodal with a unique global minimum, supporting our simple procedure. The plots for
the maximum deviation max0≤y≤c {E[Wy]} −max0≤y≤c {E[Wy]} are similar.

We perform the search with fewer points y and replications in the initial stages and then confirm with more
points, 40 values of y and 40, 000 replications, which yield excellent statistical precision, as can be seen from
the narrow confidence interval bands in Figure 1.
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6. Supporting Heavy-Traffic Limits for Periodic Queues
In this section, we obtain an HT FWLLN and an HT FCLT for the periodic Gt/Gt/1 model with a general service-
rate control of the form in Equation (6). The HT FCLT produces a limit depending on an asymptotic time lag η̂
and damping factor ξ̂, which arise from HT limits; see condition (58) in Theorem 3 and the conclusion in
Equation (50). Thus, we reduce the optimization problems over the parameter pairs (ηρ, ξρ) in Equations (9)
and (10), asymptotically as ρ ↑ 1, to diffusion-control problems with the parameter pairs (η̂, ξ̂).

6.1. The Underlying Rate-1 Processes
As in much of the HT literature, we start by introducing basic rate-1 stochastic processes, but here we consider
service requirements instead of service times. We assume that the rate-1 arrival and service-requirements
processes N and V specified in Section 4 are independent and each satisfies an FCLT. To state the result, let N̂a

n
and Ŝvn be the scaled processes defined by

N̂a
n(t) ≡ n−1/2[Na(nt) − nt] and Ŝvn(t) ≡ n−1/2

[∑�nt

i�1

Vk − nt

]
, t ≥ 0, (32)

with ≡ denoting equality in distribution and �x
 denoting the greatest integer less than or equal to x. We
assume that

N̂a
n ⇒ caBa and Ŝvn ⇒ csBs in $ as n→∞, (33)

where $ is the usual function space of right-continuous real-valued functions on [0,∞) with left limits, and ⇒
denotes convergence in distribution, as in Whitt (2002), whereas Ba and Bs are independent standard (mean 0,
variance 1) Brownian motion processes (BMs). The assumed independence implies joint convergence in
Equation (33) by theorem 11.4.4 of Whitt (2002).

We emphasize that GI assumptions are not needed, but this is an important special case. If the service times
Vk are i.i.d. mean-1 random variables with variance, also the squared coefficient of variation (scv), c2s , then the
limit in Equation (33) holds with service variability parameter cs. Similarly, if the base arrival process is a
renewal process or an equilibrium renewal process with times between renewals having mean 1 and variance
(and scv) c2a , then the limit in Equation (33) holds with arrival variability parameter ca. (See Nieuwenhuis 1989
for theoretical support in the case of an equilibrium renewal process.)

For the queuing HT FCLT, we will apply theorem 9.3.4 of Whitt (2002), which refers to the conditions of
theorem 9.3.3. Those conditions require a joint FCLT for the partial sums of the arrival and service processes,
notably (3.9) on p. 295. This convergence follows from the FCLTs we assumed for N̂a

n and Ŝvn in Equation (33).
In particular, the assumed FCLT for Na

n implies the associated FCLT for the partial sums of the interarrival
times by theorem 7.3.2 and corollary 7.3.1 of Whitt (2002).

Figure 2. Three-Dimensional Plots of Estimates of the Maximum Waiting Time max0≤y≤c {E[Wy]} for (η, ξ) in [0, 20] × [0, 5]
(Left) [3, 9] × [0.6, 1.0] (Right)
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6.2. A Family of Models
As a basis for the HT FCLT, we create a model for each ρ, 0< ρ< 1. We do so by defining the arrival-rate and
service-rate functions.

6.2.1. TheArrival-Rate andService-Rate Functions. Let the arrival-rate function in model ρ be as in Equation (13) in
the setting of Equations (2)–(4). As a further regularity condition, we also require that the function s be an element
of the function space $, as in Whitt (2002). Then the associated cumulative arrival-rate function in model ρ is

Λρ(t) ≡ ρ t + (1 − ρ)−2S((1 − ρ)2t)(
, t ≥ 0, (34)

where

S(t) ≡
∫ t

0
s(u) du, (35)

for s again being the periodic function in Equations (2)–(4). From Equations (34) and (35), we see that the
associated arrival-rate function obtained by differentiation in Equation (34) is indeed λρ(t) in Equation (33).

The time scaling in Equations (33) and (34) implies that the period in model ρ with arrival-rate function λρ(t)
in Equation (33) is cρ � c(1 − ρ)−2, where c is the period of s(t) in Equations (2)–(4). Thus, the period cρ in model
ρ is growing with ρ. This scaling follows lemma 5.1 and theorem 5.2 of Whitt (2015), with n there replaced by
(1 − ρ)−2. In particular, the scaling here is in fluid or FWLLN scale and thus is different from the diffusion or
FCLT scaling in theorem 3.2 of Whitt (2014) and theorem 2 of Ma and Whitt (2018).

Let Aρ(t) ≡ Na(Λρ(t)) be the arrival process in model ρ, which is obtained by using the cumulative arrival-
rate function Λρ in Equation (34) in place of Λ in Equation (15). Given that definition, we see that the cu-
mulative arrival rate is indeed

E[Aρ(t)] � E[Na(Λρ(t))] � Λρ(t), t ≥ 0. (36)

We now define associated scaled time-varying service-rate functions. These are the rate-matching service-rate
functions in Whitt (2015) modified by a time lag and a damping factor. In particular,

μρ(t) ≡ 1 + ξρs((1 − ρ)2(t − ηρ)) and

Mρ(t) ≡
∫ t

0
μρ(u) du � t

+ (1 − ρ)−2ξρS((1 − ρ)2(t − ηρ)), t ≥ 0, (37)

where s is the periodic function with period c in Equation (3), whereas ηρ is the ρ-dependent time lag and ξρ is
the ρ-dependent damping factor. From Equations (37) and (3), we see that the average service rate is μ̄ρ � 1 for
all ρ. As a consequence, the average traffic intensity is λ̄ρ/μ̄ρ � ρ for all ρ, whereas the instantaneous traffic
intensity at time t is λρ(t)/μρ(t), t ≥ 0, which is a more complicated periodic function, again with period c.

6.2.2. The Associated Queuing Processes. Having defined the family of arrival processes Aρ(t) and de-
terministic service-rate functions Mρ(t) above, we define the other queuing processes Yρ(t), Xρ(t), Lρ(t), and
Wρ(t) as in Section 4.2. Let the completed-work process be defined by

Cρ(t) ≡ Yρ(t) − Lρ(t), t ≥ 0. (38)

We now can apply Lemma 1 in Section 4 to express the waiting-time process as

Wρ(t) ≡ inf {u ≥ 0 : Mρ(t + u) −Mρ(t) ≥ Lρ(t)}, t ≥ 0. (39)

The (virtual) waiting time Wρ(t) represents the time that a hypothetical arrival at time t would have to wait
before starting service.

As in equations (3.7) and (3.8) of Whitt (2015), we can define the queue-length process (number in system)
and the departure process in model ρ jointly. We can also express the departure process in terms of the
workload process instead of the queue-length process by

Dρ(t) ≡ Ns
∫ t

0
μρ(s)1{Lρ(s)> 0} ds

( )
, t ≥ 0, (40)

but we do not focus on the departure and queue-length processes here.
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6.3. The Scaled Queuing Processes
We start with the FWLLN-scaled processes. First, let the scaled deterministic rate functions be

Λ̄ρ(t) ≡ (1 − ρ)2Λρ((1 − ρ)−2t) and M̄ρ(t) ≡ (1 − ρ)2Mρ((1 − ρ)−2t), t ≥ 0, (41)

for Λρ(t) and Mρ(t) in Equation (37). We immediately see that

Λ̄ρ →Λf in $ as ρ ↑ 1, (42)

where

Λf (t) ≡ t + S(t), t ≥ 0, (43)

for S(t) in Equation (35).
Let the FWLLN-scaled arrival stochastic process be defined by

Āρ(t) ≡ (1 − ρ)2Aρ((1 − ρ)−2t). (44)

Let the input, net-input, workload, completed-work, and waiting-time components of the FWLLN-scaled the
vector (Āρ, Ȳρ, X̄ρ, L̄ρ, C̄ρ, W̄ρ) be defined in the same way.

Then let the associated FCLT-scaled deterministic rate functions be defined by

Λ̂ρ(t) ≡ (1 − ρ)[Λρ((1 − ρ)−2t) − (1 − ρ)−2Λf (t)],
M̂ρ(t) ≡ (1 − ρ)[Mρ((1 − ρ)−2t) − (1 − ρ)−2Λf (t)] (45)

for Λf in Equation (43). Let the associated FCLT-scaled stochastic processes be defined by

Âρ(t) ≡ (1 − ρ)[Aρ((1 − ρ)−2t) − (1 − ρ)−2Λf (t)],
Ŷρ(t) ≡ (1 − ρ)[Yρ((1 − ρ)−2t) − (1 − ρ)−2Λf (t)],
X̂ρ(t) ≡ (1 − ρ)Xρ((1 − ρ)−2t),
L̂ρ(t) ≡ (1 − ρ)Lρ((1 − ρ)−2t),
Ĉρ(t) ≡ (1 − ρ)[Cρ((1 − ρ)−2t) − (1 − ρ)−2Λf (t)],
Ŵρ(t) ≡ (1 − ρ)Wρ((1 − ρ)−2t), t ≥ 0. (46)

6.4. The HT FWLLN
We start with the HT FWLLN. The limit provides a deterministic fluid approximation. However, simple fluid
approximations evidently are too crude to provide much help. Corollary 3 shows that rate-matching control
stabilizes both the workload and the waiting time for the fluid approximation.

Let $k be the k-fold product space of $ with itself, let ⇒ denote convergence in distribution, and let x ◦ y be
the composition function defined by (x ◦ y)(t) ≡ x(y(t)). Let a ∧ b ≡ min {a, b}, and let ψ : D→D be the standard
one-dimensional reflection map as in section 13.5 of Whitt (2002); that is,

ψ(x)(t) ≡ x(t) − (inf {x(s) : 0 ≤ s ≤ t} ∧ 0), t ≥ 0. (47)

Theorem 2 (HT FWLLN). Under the definitions and assumptions in Section 6 above, if ξρ → ξ and ηρ → η as ρ ↑ 1, and the
system starts empty at time 0, then

M̄ρ →Mf in $, where Mf (t) ≡ t + ξS(t − η) (48)

and

(Āρ, Ȳρ, X̄ρ, L̄ρ, C̄ρ, W̄ρ)⇒ (Ā, Ȳ, X̄, L̄, C̄, W̄) in $6 as ρ ↑ 1 (49)
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for (Āρ, Ȳρ, X̄ρ, L̄ρ, C̄ρ, W̄ρ) defined in Equation (44), where

Ā(t) ≡ Ȳ(t) ≡ Λf (t), X̄(t) ≡ S(t) − ξS(t − η), t ≥ η,

L̄(t) ≡ sup
0≤s≤c

{X(t) − X(t − s)}, t ≥ c + η, C̄ ≡ Ȳ − L̄, and

W̄(t) ≡ inf {u ≥ 0 : Mf (t + u) −Mf (t) ≥ L̄(t)}, t ≥ 0, (50)

for Λf (t) in Equation (43) with S(t) in Equation (35), Mf (t) in Equation (48), and ψ being the reflection map in
Equation (47).

Proof. We successively apply the continuous mapping theorem (CMT) using the functions in sections 12.7 and
13.2–13.6 of Whitt (2002). First, observe that Equation (48) is a minor modification of Equation (41). Let N̄a

ρ and S̄ρ
denote N̄a

n and S̄vn, respectively, where, paralleling Equation (32), we let N̄a
n(t) ≡ n−1Na(nt) and S̄vn ≡ n−1Sv�nt
, t ≥ 0,

and then let n � (1 − ρ)−2. Then observe that Āρ � N̄a
ρ ◦ Λ̄ρ and Ȳρ � S̄ρ ◦ Āρ, so we can apply the CMT with the

composition map. The limit for X̄ρ follows from the CMT with addition, and then the limit for L̄ρ follows from the
CMTwith the reflectionmap in Equation (47). To establish the limit for the scaledwaiting time W̄ρ(t) in$, we apply
the CMT with the inverse function. Finally, the limit for C̄ρ again follows from the CMT with addition. □

We obtain stronger results in special cases.

Corollary 3 (FWLLN for the Rate-Matching Service Rate Control). In addition to the conditions of Theorem 2, if η � 0 and
ξ � 1, then Mf (t) � Λf (t), t ≥ 0, and then X̄(t) � L̄(t) � W̄(t) � 0, for all t ≥ 0, whereas C̄ � Ȳ � Ā � Λf .

Remark 4 (Stabilization Achieved by Many Fluid Models). It is evident that the conclusion of Corollary 3 holds for any
single-server fluid model with arrival rate λ(t) and service rate μ(t), provided that μ(t) ≥ λ(t) for all t. The (η, ξ)
controls are intended to address the time-varying arrival rate in the more general stochastic setting.

As a modification of Corollary 3, we can have all customers wait exactly η if we provide no service until
time η.

Corollary 4 (Stabilizing the Waiting Time at Any Positive Value). In addition to the conditions of Theorem 2, if ξ � 1 and
Mf (t) � 0, 0 ≤ t< η, then Mf (t) � Λf (t − η), t ≥ η, for a fixed time lag η> 0, so that

L̄(t) � X̄(t) ≡ X̄η(t) � Λf (t) − Λf (t − η) �
∫ t

t−η
λf (s) ds> 0 (51)

and

W̄(t) � η for all t ≥ η. (52)

Corollary 4 (Sinusoidal with Damped Time Lag). In addition to the conditions of Theorem 2, suppose that

s(t) ≡ β sin (γt), t ≥ 0, (53)

for positive constants β and γ with β< 1, so that s(t) is periodic with period c ≡ cγ � 2π/γ. Then

S(t) � (β/γ)(1 − cos (γt)), t ≥ η, (54)

so that

L̄(t) � (β/γ) [ξ cos (γ(t − η)) − cos (γt)](
+ sup

0≤s≤c
{cos (γ(t − s)) − ξ cos (γ(t − η − s))}

� (β/γ) [ξ cos (γ(t − η)) − cos (γt)](
+ sup

0≤s≤c
{cos (γs) − ξ cos (γ(s − η))}), t ≥ c + η. (55)

For the special case ξ � 1, W̄(t) � η. If in addition, and η<π/γ, the supremum in (55) is attained at s∗ � (π/2γ) − η/2
)
,

so that

L̄(t) � (β/γ)([cos (γ(t − η)) − cos (γt)] + [cos ((π/2) − (γη/2)) − cos ((π/2) + (γη/2))]) (56)
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for t ≥ c + η. As η ↓ 0,

L̄(t)/η→ 1 + β sin (γt) � 1 + s(t). (57)

Remark 5 (The Impact of High or Low Frequency). Corollary 5 shows the impact of high or low frequency. First, it is
well known that high frequency has negligible impact, because performance tends to be determined by the be-
havior of the cumulative arrival rate function Λ(t) in (15) rather than the rate function λ(t). From (54) and (55), we
see that S(t)→ 0 and L̄(t)→ 0 as γ→∞. On the other hand, for any fixed t, s(t)→ 0 as γ→ 0.

6.5. The HT FCLT
We now state our main HT result: the HT FCLT with periodicity in fluid scale, as in (13). We present the proof
in Section 7 after discussing consequences here.

Theorem 3 (HT FCLT). In addition to the definitions and assumptions in Section 6 above, including the scaled arrival-rate
function in (13), assume that the periodic function s(t) in (3) is continuous and

(1 − ρ)ηρ → η̂ and
ξρ − 1
1 − ρ

→ ξ̂ as ρ ↑ 1, (58)

where 0 ≤ η̂<∞ and 0 ≤ ξ̂<∞. Then there is a limit for the scaled cumulative service-rate functions M̂ρ in (37) and (45);
that is,

M̂ρ(t) ≡ (1 − ρ)[Mρ((1 − ρ)−2t) − (1 − ρ)−2(t + S(t))]
→ M̂(t) ≡ −s(t)η̂ + S(t)ξ̂ in $ as ρ ↑ 1 (59)

for s(t) in (3) and S(t) in (35). If, in addition, the system starts empty at time 0, then

(Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉρ)⇒ (Â, Ŷ, X̂, L̂, Ŵ, Ĉ) in $5 as ρ ↑ 1 (60)

for (Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉρ) defined in (46), where

Â(t) ≡ (caBa − e) ◦Λf (t), Ŷ(t) ≡ (cxB − e) ◦Λf (t), Ĉ(t) ≡ Ŷ(t) − L̂(t),
X̂(t) ≡ Ŷ(t) − M̂(t) � Ŷ(t) + s(t)η̂ − S(t)ξ̂

� (cxB ◦Λf )(t) − Λf (t) + s(t)η̂ − S(t)ξ̂,
L̂(t) ≡ ψ(X̂)(t) and Ŵ(t) ≡ L̂(t)/μf (t), t ≥ 0. (61)

with cx ≡
���������
c2a + c2s

√
, B a BM, ψ the reflection map in (47) and μf (t) ≡ λf (t) ≡ 1 + s(t), t ≥ 0, the limiting arrival-rate

function, the derivative of Λf in (43).

We now draw attention to some important consequences. First, Theorem 3 establishes an HT time-varying
(TV) Little’s law (LL), paralleling the many-server heavy-traffic (MSHT) TV LL in Sun and Whitt (2018) and
exposed for the rate-matching control in theorem 5.2 of Whitt (2015). This is a time-varying version of the
familiar state-space collapse, which goes back to the early HT papers (e.g., Whitt 1971). We remark that the
relation is different from the time-varying LL discussed in Bertsimas and Mourtzinou (1997), Fralix and Riano
(2010), Sigman and Whitt (2019), and Whitt and Zhang (2019).

Corollary 6 (HT Time-Varying Little’s Law). Under the conditions of Theorem 3, the limit processes are related by

L̂(t) � λf (t)Ŵ(t), t ≥ 0, w.p.1. (62)

We now consider an alternative deterministic limit to the HT FWLLN in Theorem 2. Now we assume that the
FCLT holds with the variability parameter set equal to 0. For this purpose, we assume that s(t) is differentiable
and let ṡ(t) be its derivative.

Corollary 7 (The Case of No Variability). If cx � 0 and s(t) is differentiable in addition to the conditions of Theorem 3, then

X̂(t) � −t + s(t)η̂ − S(t)(ξ̂ + 1), t ≥ 0, (63)
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so that L̂(t) � Ŵ(t) � 0 for all t ≥ 0 if and only if

dX̂(t)
dt

� −1 + η̂ṡ(t) − (ξ̂ + 1)s(t) ≤ 0, t ≥ 0. (64)

In the sinusoidal case with s(t) ≡ β sinγt in (5),

dX̂(t)
dt

� −1 + η̂βγ cosγt − (ξ̂ + 1)β sinγt, t ≥ 0. (65)

For β � 1 and γ→ 0,

dX̂(t)
dt

→ − 1 − (ξ̂ + 1)β sinγt, t ≥ 0, (66)

which is strictly positive over subintervals if ξ̂> 0.

For the nondegenerate sinusoidal arrival rate function, the derivative in (64) of Corollary 7 implies it is not
always possible to stabilize the limiting time-varying diffusion process Ŵ with ξ̂> 0 in Theorem 3. We conjecture
that it is never possible to stabilize it perfectly.

We now establish conditions for the optimality of an (η̂∗, ξ̂∗) control for the limiting diffusion control problem
for either formulation (9) or (10). Our proof will exploit uniform integrability (UI); see p. 31 of Billingsley (1999).

Corollary 8 (Optimality for the Limiting Diffusion Process). Consider the special case of the GIt/GIt/1 model with
E[U2+ε

k ]<∞ and E[V2+ε
k ]<∞ for some ε> 0. If (η∗ρ, ξ∗ρ)→ (η̂∗, ξ̂∗) as ρ→ 1, where (η∗ρ, η∗ρ) is the optimal control for problem

(9) or (10), then the limiting control (η̂∗, ξ̂∗) is optimal for the corresponding diffusion control problem.

Proof. We let (η̃, ξ̃) be any alternative control for the limiting diffusion process. Then let (η̃ρ, ξ̃ρ) be an associated
control for model ρ, 0< ρ< 1, where η̃ρ ≡ η̃/(1 − ρ) and η̃ρ ≡ 1 + (1 − ρ)ξ̃. Then, by this construction, condition (58)
holds for the family (η̃ρ, ξ̃ρ). We next want to show that the convergence in distribution can be extended to
convergence of themeans for all t, which requires uniform integrability uniformly in t; see p. 31 of Billingsley (1999).
We use the bounds on the second moments to show that it holds.

Toward that end, we exploit the upper bounds for the workload process in the Gt/Gt/1 model in terms of the
associated workload process in the stationary G/G/1 model from section 3 of Ma and Whitt (2018). These bounds
extend directly to the Gt/Gt/1 model by virtue of Corollary 1. These bounds show that the mean workload is
bounded above uniformly in y over the interval [0, c]. These bounds also apply to the waiting time process because
W(t) ≤ L(t)/μL, where μL > 0 is a lower bound on the service rate, which follows from (4) and (6). For the stationary
GI/GI/1 model, finite second moments imply the existence of the first moments of the waiting time and uniform
integrability needed for convergence; see p. 31 of Billingsley (1999) and sections X.2 and X.7 of Asmussen (2003).

Finally, we observe that our optimal policy (η∗ρ, ξ∗ρ) has expected value greater than or equal to the alternative
policy (η̃ρ, ξ̃ρ) for all ρ, whereas both converge as ρ→ 1. Hence, the limit of the optimal policies, (η̂∗, ξ̂∗)must be at
least as good as (η̃, ξ̃). □

We apply Corollary 8 to support our numerical calculations by observing that (η∗ρ, ξ∗ρ) when scaled as in (58)
converges to a limit. We thus deduce that the limit must be the optimal policy for the diffusion. However, this
numerical evidence is not a mathematical proof. Moreover, although the numerical evidence is good, it is not
exceptionally good, especially for ξ∗ρ, as can be seen from Table 1 in Section 9.1.

7. Proof of Theorem 3
To establish (59), apply (37) and (45) to obtain

M̂ρ(t) ≡ (1 − ρ)[Mρ((1 − ρ)−2t) − (1 − ρ)−2(t + S(t))]
� (1 − ρ)−1[ξρS(t − (1 − ρ)2ηρ) − S(t)]
� (1 − ρ)−1[ξρS(t − (1 − ρ)2ηρ) − ξρS(t)] + (1 − ρ)−1[ξρS(t) − S(t)]
→ − η̂s(t) + ξ̂S(t) in $ as ρ ↑ 1, (67)
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where on the third line we have subtracted and added the term ξρS(t) and on the last line we have differ-
entiated using

(1 − ρ)2ηρ/(1 − ρ) � (1 − ρ)ηρ → η̂ as ρ ↑ 1

by assumption (58). We used the assumed continuity of s to have S be continuously differentiable, so the
derivative of S(t) holds uniformly in t over bounded intervals.
We next establish Equation (60). First, the limit for Âρ is given in lemma 5.1 of Whitt (2015), but we need to

make an adjustment because the arrival rate in model ρ is chosen to be ρ here as opposed to 1 before. From
Equations (43), (42), and (45), we see that

Λ̄ρ(t) � ρΛf (t)→Λf (t) in $ as ρ→ 1,

Λ̂ρ(t) � (1 − ρ)−1ρΛf (t) − (1 − ρ)−1Λf (t) � −Λf (t) (68)

for all ρ, where Λf (t) is defined in Equation (43). Then the limit for Âρ follows from the standard argument for
random sums. The key is to observe that

Âρ � N̂ρ ◦ Λ̄ρ + Λ̂ρ, (69)

where N̂ρ is defined to be N̂n in Equation (32) for n � (1 − ρ)−2. So we can start with the joint convergence

N̂ρ, Λ̄ρ, Λ̂ρ

( )
⇒ (caBa,Λf ,−Λf ) in $3 as ρ→ 1. (70)

We then apply convergence preservation with the map g(x, y, z) � x ◦ y + z (composition plus addition) as in
section 13.3 of Whitt (2002) to get Âρ ⇒ caBa ◦Λf − Λf � (caBa − e) ◦Λf in $.

Similarly, given that N̄ρ ≡ (1 − ρ)2N((1 − ρ)−2t) ⇒ e and Āρ ≡ (1 − ρ)2A((1 − ρ)−2t),
Āρ � (1 − ρ)2N(Λρ((1 − ρ)−2t)) � (1 − ρ)2N((1 − ρ)−2ρΛf (t))

� N̄ρ(ρΛf (t)) ⇒ Λf in $ as ρ→ 1. (71)

A variant of the random-sum argument holds for Ŷρ too. In particular, we start with the joint convergence

Ŝρ, Āρ, Âρ

( )
⇒ (csBs,Λf , caBa ◦Λf −Λf ) in $3 as ρ→ 1. (72)

The joint convergence holds by virtue of theorems 11.4.4 and 11.4.5 of Whitt (2002). We then apply con-
vergence preservation with the map g(x, y, z) � x ◦ y + z (composition plus addition) as in section 13.3 of Whitt
(2002) to get

Ŷρ � Ŝρ ◦ Āρ + Âρ ⇒ csBs ◦Λf + caBa ◦Λf −Λf

�d cxB ◦Λf − Λf in $ as ρ→ 1. (73)

Then the limits for X̂ρ and L̂ρ follow from the continuous mapping theorem with standard reflection map
reasoning, for example, as in chapter 9 of Whitt (2002), even though the service-rate function is now more general.

However, the waiting time requires a new treatment. The limit follows from the definition of the scaled service-
rate control in Equation (37) and the first-passage-time representation of the waiting time in Equation (39). The
structure and result are similar to the Puhalskii (1994) theorem and related results in section 13.7 of Whitt
(2002), but they evidently do not apply directly.

We apply Taylor’s theorem to a perturbation of S in Equation (35). The essential idea is that

(1 − ρ)−1[S(t + (1 − ρ)u) − S(t)]→ s(t)u as ρ→ 1 (74)

uniformly in t and u over bounded intervals. Just as in Equation (67), we use the assumed continuity of s to have
S be continuously differentiable, so the derivative of S(t) holds uniformly in t and u over bounded intervals.

For the specific application, let

S̃ρ(t, u) ≡ (1 − ρ)−1ξρ[S(t + (1 − ρ)u − (1 − ρ)2ηρ) − S(t − (1 − ρ)2ηρ)] (75)
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and

ζρ(t,u) ≡ S̃ρ(t,u) − s(t)u. (76)

By combining Equation (74) and the two limits in condition (58), we see that ζρ(t,u) is asymptotically
negligible as ρ→ 1 uniformly in t and u over bounded intervals. We will use this at the critical final step in the
following representation.

To start, let M̃ρ(t, u) ≡ Mρ((1 − ρ)−2t + u). Then, from Equations (46) and (39),

Ŵρ(t) ≡ (1 − ρ)Wρ((1 − ρ)−2t)
� (1 − ρ) inf {u ≥ 0 : M̃ρ(t, u) − M̃ρ t, 0)( ) ≥ Lρ((1 − ρ)−2t)}
� inf {u ≥ 0 : M̃ρ(t, (1 − ρ)−1u) − M̃ρ(t, 0) ≥ Lρ((1 − ρ)−2t)}
� inf {u ≥ 0 : (1 − ρ)[M̃ρ(t, (1 − ρ)−1u) − M̃ρ(t, 0)] ≥ L̂ρ(t)}
� inf {u ≥ 0 : u + S̃ρ(t,u) ≥ L̂ρ(t)}
� inf {u ≥ 0 : u + s(t)u + ζρ(t, u) ≥ L̂ρ(t)}
� inf {u ≥ 0 : uλf (t) + ζρ(t, u) ≥ L̂ρ(t)}, t ≥ 0, (77)

where λf (t) � t + s(t) by Equation (43), and we apply Taylor’s theorem with Equations (75) and (76) in line 6 to
obtain that ζρ(t, u) is asymptotically negligible as ρ→ 1 uniformly over both t and u over bounded subintervals.

For the final step, to simplify, we make the entire argument deterministic by using the Skorohod repre-
sentation theorem, as in theorem 3.2.2 of Whitt (2002), to replace the stochastic convergence L̂ρ ⇒ L̂ in $ by
associated convergence w.p.1. Then we see from line 6 of Equation (77) that in the infinimum it suffices to
consider u only just beyond L̂(t)/λf (t), which for t in a bounded interval is bounded for each sample path
because λf (t) has been assumed to be bounded below, whereas L̂(t) is bounded above, for t in a bounded
interval. Thus, we can write

L̂ρ(t) − Kζ↑ρ(t)
λf (t) ≤ Ŵρ(t) ≤

L̂ρ(t) + Kζ↑ρ(t)
λf (t) (78)

for t and u over specified bounded intervals, K an appropriate positive constant, and

ζ↑ρ(t) ≡ sup
0≤u≤ū

|ζρ(t,u)|

for an appropriate ū. Given that L̂ρ ⇒ L̂ and ζ↑ρ → 0 in $, we can use the standard sandwiching argument
(uniformly over bounded time intervals) to obtain convergence Ŵρ(t)⇒ L̂(t)/λf (t) ≡ Ŵ(t) in $, which com-
pletes the proof. □

8. An HT FCLT with Periodicity in the Weaker Diffusion Scaling
In this section, we establish an HT FCLT with periodicity holding in the weaker diffusion scale instead of in
the fluid scale, as was done in Section 6. The scaling here follows Whitt (2014) and Ma and Whitt (2018)
instead of Whitt (2015). In this scaling, the HT limit of the waiting time coincides with the HT limit for the
workload process and so does not capture the differences we see in the simulations in preceding sections.

8.1. An Alternative Family of Models
We start with the same basic rate-1 processes in Section 6.1. We then create a model for each ρ, 0<ρ< 1, now
using Equation (14) instead of Equation (13). This yields the family of cumulative arrival-rate functions

Λρ(t) ≡ ρ(t + (1 − ρ)−1S((1 − ρ)2t)), t ≥ 0, (79)

for S in Equation (35). Differentiating in Equation (79) yields the arrival-rate function in Equation (14). Just as
before, the time scaling in Equations (14) and (79) implies that the period in model ρ with arrival-rate function
λρ(t) in Equation (14) is cρ � c(1 − ρ)−2, where c is the period of s in Equations (2)–(4). Thus, the period cρ in
model ρ is growing with ρ.
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8.2. An Associated Family of Service-Rate Controls
Just as in Section 6.2.1, we define associated service-rate controls. Closely paralleling Equations (14) and (79),
we define associated scaled time-varying service-rate functions using the control parameters ηρ and ξρ; that is,
for all t ≥ 0,

μρ(t) ≡ 1 + (1 − ρ)ξρs(t − ηρ) and

Mρ(t) ≡
∫ t

0
μρ(s) ds � t + (1 − ρ)−1ξρS((1 − ρ)2(t − ηρ)). (80)

Just as in Equation (79), differentiation of Mρ(t) in Equation (80) shows that it is consistent with μρ(t). As a
consequence of Equation (80), the average service rate is μ̄ρ � 1, 0<ρ< 1.

8.3. The Scaled Queuing Processes
We use the same processes introduced in Section 4 but new scaling. Let the scaled arrival-rate and service-rate
functions be defined for t ≥ 0 by

Λ̂ρ(t) ≡ (1 − ρ)[Λρ((1 − ρ)−2t) − (1 − ρ)−2t]
� ρS(t) − t,

M̂ρ(t) ≡ (1 − ρ)[Mρ((1 − ρ)−2t) − (1 − ρ)−2t]
� ξρS(t − (1 − ρ)2ηρ). (81)

Clearly, Λ̂ρ(t)→ S(t) − t as ρ→ 1 uniformly over bounded intervals of t. The key is what happens to M̂ρ(t).
From Equation (81), we get the following.

Lemma 2 (HT Limit of M̂ρ(t)). If ξρ → 1 and (1 − ρ)2ηρ → 0, then M̂ρ(t)→ S(t) uniformly over bounded intervals of t.

Then let associated scaled stochastic processes be defined by

Âρ(t) ≡ (1 − ρ)[Aρ((1 − ρ)−2t) − (1 − ρ)−2t],
Ŷρ(t) ≡ (1 − ρ)[Yρ((1 − ρ)−2t) − (1 − ρ)−2t],
X̂ρ(t) ≡ (1 − ρ)Xρ((1 − ρ)−2t),
L̂ρ(t) ≡ (1 − ρ)Lρ((1 − ρ)−2t), Ĉρ ≡ Ŷρ − L̂ρ,

Ŵρ(t) ≡ (1 − ρ)Wρ((1 − ρ)−2t), t ≥ 0. (82)

Note that the translation terms in Λ̂ρ and M̂ρ in Equation (81) are different from the translation terms in
Equation (41), whereas the translation terms in Âρ and Ŷρ in Equation (82) are different from the translation
terms in Equation (46). Thus, the statement of the HT limit that follows is different (and weaker).

8.4. The HT FCLT with Periodicity in Diffusion Scale
Just as in Section 6, the following HT FCLT states that Âρ and Ŷρ converge to periodic Brownian motions (PBMs).
However, unlike Section 6, X̂ρ converges to an ordinary BM, L̂ρ and Ŵρ converge to the same ordinary reflected
Brownian motion (RBM), whereas Ĉρ has a complicated limit. We thus show that L̂ρ and Ŵρ are asymptotically
stable and Markov. Note that the scaling conditions on (ηρ, ξρ) here are implied by condition (58) in Theorem 3,
but as noted earlier, the conclusion is different and weaker because of the different translation terms.

Theorem 4 (Heavy-Traffic Limit Extending Theorem 3.2 of Whitt 2014 and Theorem 2 of Ma andWhitt 2018). If, in addition
to the definitions and assumptions in Equations (79)–(82), (1 − ρ)2ηρ → 0 and ξρ → 1 as ρ→ 1, and the system starts empty
at time 0, then

(Λ̂ρ, M̂ρ, Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉρ)⇒ (Λ̂, M̂, Â, Ŷ, X̂, L̂, Ŵ, Ĉ) (83)

in $8 as ρ→ 1 for (Λ̂ρ, M̂ρ) defined in Equation (81) and (Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉρ) defined in Equation (82), where

Λ̂ ≡ S − e, Â ≡ caBa + S − e, M̂ ≡ S,

Ŷ ≡ Â + csBs, X̂ ≡ Ŷ − S�d cxB − e,

L̂ ≡ ψ(X̂), Ŵ ≡ ψ(X̂) and Ĉ ≡ Ŷ − L̂, (84)

with Ba and Bs being independent BMs, S in Equation (35), ca and cs being the variability parameters in Equation (33),
cx ≡

���������
c2a + c2s

√
, and B is a BM.
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Proof. We will be brief because most of the argument is essentially the same as in Whitt (2014) and Ma and Whitt
(2018). First, the limit for Âρ is given in theorem 3.2 ofWhitt (2014). Then the limit for Ŷρ follows from theorem 9.3.4
of Whitt (2002), as noted in the proof of theorem 2 in Ma and Whitt (2018). (See C(t) in equation 9.2.4 and Cn in
equation 9.3.4 and theorem 9.3.4 of Whitt 2002.) Then the limits for X̂ρ and L̂ρ follow from the standard reflection
mapping argument even though the service-rate function is now more general. Again, the waiting time requires a
new treatment. The limit follows from the first-passage-time representation in Equation (39). In particular, par-
alleling Equation (77), letting M̃ρ(t,u) ≡ Mρ((1 − ρ)−2t + u), we have

Ŵρ(t) ≡ (1 − ρ)Wρ((1 − ρ)−2t)
� (1 − ρ) inf {u ≥ 0 : M̃ρ(t, u) − M̃ρ(t, 0) ≥ Lρ((1 − ρ)−2t)}
� inf {u ≥ 0 : M̃ρ(t, (1 − ρ)−1u) − M̃ρ(t, 0) ≥ Lρ((1 − ρ)−2t)}
� inf {u ≥ 0 : (1 − ρ)[M̃ρ(t, (1 − ρ)−1u) − M̃ρ(t, 0)] ≥ L̂ρ(t)}
� inf {u ≥ 0 : u + ζρ(t,u) ≥ L̂ρ(t)}, (85)

for t ≥ 0, where

ζ(t, u) ≡ ξρ S(t + (1 − ρ)u − (1 − ρ)2ηρ) − S(t − (1 − ρ)2ηρ)[ ]
, (86)

which is asympotically negligible as ρ→ 1 uniformly in compact intervals, given the conditions on ηρ and ξρ.
As technical support for the last step, note that

S(t + ε) − S(t) ≤ sUε for all ε> 0, (87)

for sU in Equation (4). Also add and subtract ξρS(t) and treat the two terms separately; that is,

ξρS(t + (1 − ρ)u − (1 − ρ)2ηρ) − S(t) � ξρS(t) − S(t)
+ ξρS(t + (1 − ρ)u − (1 − ρ)2ηρ) − ξρS(t).

Hence, we can apply the continuous mapping theorem for the inverse in section 13.6 of Whitt (2002) to get
Ŵρ ⇒ L̂ in $ as ρ→ 1, jointly with the other limits. □

9. Simulation Examples
9.1. Simulation Examples in the Setting of Section 6
In this section, we report results of simulation experiments to evaluate the new optimal (η∗ρ, ξ∗ρ) controls as a
function of ρ for models scaled according to Theorem 3, specifically by Equations (13), (34), and (37), so that
we can see the systematic behavior.

9.1.1. Sinusoidal Examples. We start with sinusoidal examples and then consider nonsinusoidal examples. Table 1
shows results for four values of the traffic intensity ρ with ρ ↑ 1 for the sinusoidal model in Equations (2)–(6)
with HT scaling in Equation (13) with parameters (ρ, βρ, γρ) � (ρ, 0.2, 2.5(1 − ρ)2). For this case, we found that

Table 1. The (Identical) Solutions to the Minimax and Minimum-Deviation Optimization Problems in (9) and (10) for the
Sinusoidal Model in (2)–(6) with HT Scaling in (13) with Parameters (ρ, βρ, γρ) � (ρ, 0.2, 2.5(1 − ρ)2).
ρ 0.8 0.9 0.95 0.975
βρ ≡ β 0.2 0.2 0.2 0.2
γρ 0.1 0.025 0.00625 0.0015625
η∗ρ 5.80 12.94 27.7 56.6
η̂∗ρ ≡ (1 − ρ)η∗ρ/ρ 1.45 1.44 1.46 1.45
ξ∗ρ 0.842 0.889 0.931 0.960
ξ̂∗ρ ≡ (1 − ξ∗ρ)/(1 − ρ) 0.79 1.11 1.38 1.60
maxE[Wy] 4.03 9.10 19.29 39.61
(1 − ρ)maxE[Wy]/ρ 1.008 1.011 1.015 1.016
min(max −min) 0.032 0.091 0.143 0.364
Average wait 4.02 9.07 19.21 39.47
(1 − ρ)ave{E[Wy]}/ρ 1.005 1.007 1.011 1.012
Relative error (%) 0.8 1.0 0.7 0.9

Notes. The four cases are determined by ρ as specified in the first row. Themeanwaiting times are reportedwith andwithout space scaling in the
bottom rows.

Ma and Whitt: Periodic Single-Server Queue with a Service-Rate Control
20 Stochastic Systems, Articles in Advance, pp. 1–30, © 2019 The Author(s)



the solutions to optimization problems (9) and (10) are identical, to within our statistical precision. Hence, our
solutions are for both problems.

Table 1 shows the estimated optimal controls η∗ρ and ξ∗ρ in each case plus scaled versions consistent with
condition (58). Table 1 shows that the relative error is roughly independent of ρ, being less than 1% in each
case. Table 1 also shows that the limit η̂∗ ≈ 1.45 is rapidly approached by (1 − ρ)η∗ρ/ρ, whereas the limit ξ̂∗ ≈ 1.8
is roughly approached by (ξ∗ρ − 1)/(1 − ρ), both of which are consistent with condition (58). The results support
Theorem 3, but unfortunately, the rate of convergence in the control parameters is not fast. Evidently the
optimal damping control ξ∗ρ is more problematic.

For the model in Table 1, Figure 3 shows the expected periodic steady-state virtual waiting time (solid blue
line), the expected steady-state workload (the dashed red line), and arrival rate multiplied by the mean waiting
time (the dotted green line) for ρ � 0.8 (left) and ρ � 0.95 (right). As in Figure 1, the 95% confidence interval
bands are included, but they can only be seen by zooming in.

We also considered alternative values of the relative amplitude β. Table 2 shows the solutions to the
minimum-deviation optimization problem in Equation (10) for the sinusoidal model in Table 1 except that β
has been increased to β � 0.8 from 0.2. Table 2 shows that the relative error is roughly independent of ρ, but
the relative error has increased to approximately 10% from approximately 1% in Table 1. Unlike in Figure 3, it

Figure 3. Plots over One Cycle in Table 1: Mean Values (Top) and Arrival Rate (Bottom) for ρ = 0.8 (Left) and 0.95 (Right)

Notes. The first row shows the expected periodic steady-state virtual waiting time (solid blue line), the expected steady-state workload (the
dashed red line), and arrival rate multiplied by themeanwaiting time (the dotted green line) for ρ � 0.8 (left) and ρ � 0.95 (right) in the base case
(β, γ) � (0.2, 2.5). The second row shows arrival rate divided by ρ and service rate for ρ � 0.8 (left) and ρ � 0.95 in the same base case. The optimal
control parameters are (η∗ρ, ξ∗ρ) � (5.80, 0.84) for ρ � 0.8 and (27.7, 0.93) for ρ � 0.95. The maximum minus minimum of EWy over a cycle equals
0.0321 for ρ � 0.8 and 0.1425 for ρ � 0.95.
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is evident that the (η∗ρ, ξ∗ρ) control does not stabilize the expected waiting time perfectly, either for fixed ρ or
asymptotically as ρ→ 1.
From cases with 0.2 ≤ β ≤ 0.9 and 0.8 ≤ ρ ≤ 0.975, we conclude that η̂∗ρ ≡ (1 − ρ)ηρ/ρ and ξ̂∗ρ ≡ (1 − ξρ)/(1 − ρ)

are nondecreasing in ρ, whereas η̂∗ρ (ξ̂∗ρ) is nondecreasing (nonincreasing) in β. The relative error tends to be
independent of ρ but is increasing in β. The relative error for β � 0.5 was approximately 4%, whereas the
relative error for β � 0.9 was approximately 22%. The difficulty as β ↑ 1 can be partially understood by the
rate-matching control, where E[Wy] ≈ c/λf (t) by theorem 5.2 of Whitt (2015), where c is the stable value, which
has minimum and maximum values c/(1 + β) and c/(1 − β) that deviate greatly as β ↑ 1. (The constant c is the
stable value of the expected queue length.) Tables 1 and 2 also show that the limiting optimal controls (η̂∗, ξ̂∗),
as well as the relative error, depend on β.

Unlike the rate-matching control in Whitt (2015), which stabilizes the entire queue-length distribution, the
optimal modified (η, ξ) control neither stabilizes the mean perfectly nor does it stabilize the entire waiting-time
distribution. However, it seems to do a reasonable job of both. Figures 4, 5, and 6 illustrate by showing plots of
the time-varying (i) standard deviation SD[Wy], (ii) delay probability P(Wy > 0), and (iii) full complementary
cumulative distribution function (CCDF) {P(Wy > x) : x ≥ 0} for the two cases in Figure 3, that is, for ρ � 0.8
(left) and ρ � 0.95 (right).

Very roughly, Figures 3, 4, 5, and 6 are consistent with the time-varying waiting-time distribution being
exponential, as in the M/M/1 stationary model. We should not be surprised that the results look similar for
ρ � 0.8 and ρ � 0.95 because they are scaled to be part of the family of systems satisfying the HT limit. To consider

Table 2. Solutions to the Minimum-Deviation Optimization Problem in (10) for the Sinusoidal Model in Table 1, Except βHas
Been Increased to β � 0.8 from 0.2

ρ 0.8 0.9 0.95 0.975
βρ ≡ β 0.8 0.8 0.8 0.8
γρ 0.1 0.025 0.00625 0.0015625
η∗ρ 6.08 15.4 33.6 70.3
η̂∗ρ ≡ (1 − ρ)/ρη∗ρ 1.52 1.71 1.77 1.80
ξ∗ρ 0.874 0.893 0.929 0.960
ξ̂∗ρ ≡ (1 − ξ∗ρ)/(1 − ρ) 0.63 1.07 1.42 1.60
max(E[Wy]) −min(E[Wy]) 0.54 1.32 2.28 4.55
Average wait 4.33 10.68 23.97 51.76
(1 − ρ)ave{E[Wy]}/ρ 1.08 1.19 1.14 1.26
Relative error (%) 12.5 12.4 9.5 8.8

Notes. The four cases are determined by ρ as specified in the first row. Themeanwaiting times are reportedwith andwithout space scaling in the
bottom rows.

Figure 4. Plots over One Cycle in Table 1: the Standard Deviation for ρ = 0.8 (Left) and 0.95 (Right)

Notes. Estimates of the periodic steady-state standard deviation SD[Wy] for ρ � 0.8 (left) and ρ � 0.95 (right), shown in red solid line. Also
displayed are the fluid arrival rate λf � 1 + s(t) (blue dashed line) and fluid service rate μf � 1 + ξ∗ρs(t − η∗ρ) (blue dotted line).
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a very different case, Figure 7 shows plots of the estimated waiting-time CCDF (left) and probability density
function (PDF, right) for ρ � 0.95 in Figure 1, which is not scaled. Without the scaling, the cycles are relatively
short. Figure 7, especially the PDF, shows much more varied behavior in this difficult short-cycle setting.

We now show two candidate modifications of the control used in Figure 1. First, Figure 8 shows the
analogue of Figure 1 where we fix ξ � 1 and use only the single control parameter η. As stated in Remark 2 in
Section 2, if we let ξ � 1 and optimize over η, then for ρ � 0.8 we get η∗ρ � 5.93 and a maximum deviation of
0.4109, which yields approximately 10% relative error instead of less than 1%. For ρ � 0.95, η∗ρ � 28.3, the
maximum deviation is 3.034, and the relative error is approximately 14%.

Second, Figure 9 shows the consequences of a direct HT approximation in the setting of Figure 1, obtained
by letting η̂∗ ≈ 1.45, ηρ ≈ 1.45/(1 − ρ), ξ̂∗ ≈ 1.80, and ξρ ≈ 1 − 1.8(1 − ρ), on the basis of Table 1. For ρ � 0.8,
(η∗ρ, ξ∗ρ) � (7.25, 0.64), and the maximum deviation is 0.6005, yielding approximately 15% relative error. For
ρ � 0.95, (η∗ρ, ξ∗ρ) � (29.0, 0.91), and the maximum deviation is 0.9220, yielding approximately 5% relative error.
Unlike in Figure 8, we see that the direct HT approximation improves as ρ increases, but the direct two-
parameter optimal control is better.

Figure 5. Plots over One Cycle in Table 1: the Delay Probability for ρ = 0.8 (Left) and 0.95 (Right)

Notes. Estimates of the periodic steady-state probability of delay P(Wy > 0) for ρ � 0.8 (left) and ρ � 0.95 (right), shown in red solid line. Also
displayed are the fluid arrival rate λf � 1 + s(t) (blue dashed line) and fluid service rate μf � 1 + ξ∗ρs(t − η∗ρ) (blue dotted line).

Figure 6. Plots of the Periodic Waiting Time CCDF for 4 places in the Cycle for the Example in Table 1: ρ = 0.8 (Left) and 0.95
(Right)

Note. Estimates of the periodic steady-state ccdf P(Wy > x) for four values of y: 0, 1/4, 1/2, 3/4 for ρ � 0.8 (left) and ρ � 0.95 (right).
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Finally, Figure 10 plots two deterministic functions associated with the diffusion limit for the case β � 0.2,
γ � 2.5, η̂ � 1.45, and ξ̂ � −1.8. On the left appears M̂(t) � −η̂s(t) + ξ̂S(t) � −1.5β sin(γt) − 1.5(β/γ)(1 − cos(γt))
together with s(t) � β sin(γt) and S(t) � (β/γ)(1 − cos(γt)). On the right appears the diffusion limit for the net
input X̂(t) � −t −M(t) when cx � 0. The plot on the right is consistent with condition (65) for no workload or
waiting when cx � 0 in Corollary 7.

9.1.2. Nonsinusoidal Examples. We now turn to nonsinusoidal examples. We consider the piecewise-linear
single-peak periodic arrival-rate function

λf (y) � 1 − β + 2β
pc

y, 0 ≤ y< pc and

λf (y) � 1 +
(
1 + p
1 − p

)
β − 2β

c(1 − p) y, pc ≤ y< c, (88)

Figure 7. Plots of theWaiting Time CCDF (Left) and PDF (Right) for Four Places in the Cycle for the Example in Figure 1with ρ
0.95 but Without Heavy-Traffic Scaling

Note. Estimates of the CCDF (left) and PDF (right) of Wy for four values of y: 0, 1/4, 1/2, 3/4.

Figure 8. Estimates of the Expected Waiting Time E[Wy] for the One-Parameter η Control with ξ ≡ 1, for the Sinusoidal
Example in Figure 1 with Parameter Triple (ρ, β, γ) � (0.8, 0.2, 0.1) and ρ � 0.8 (Left) and ρ � 0.95 (Right)

Note. For ρ � 0.8, η∗ρ � 5.93, the maximum deviation is 0.4109 and the relative error is approximately 10%; for ρ � 0.95, η∗ρ � 28.3, the maximum
deviation is 3.034 and the relative error is approximately 14%.
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where p ∈ [0, 1). This arrival-rate function increases linearly from 1 − β to 1 + β on [0, pc] and decreases linearly
from 1+β to 1−β on [pc,c]. The periodic arrival-rate function with traffic intensity ρ within one cycle is then ρλf (y).

Table 3 reports the optimal η and ξ for p � 1/2 (symmetric) and 1/3 (asymmetric) for ρ � 0.8, β � 0.5 and
cycle length c � 60. We consider the two objective functions: the maximum expected waiting time and the
maximum expected waiting time deviation. Then Figures 11 and 12 plot the expected waiting time under the
optimal control for the cases p � 1/2 and p � 1/3. Table 3 shows a clear difference in the objective functions in
the asymmetric case but not in the symmetric case.

Just as for the sinusoidal examples (compare Tables 1 and 2), stabilizing the mean waiting time becomes
more difficult as β increases toward the upper limit 1. The most difficult case is β � 1, where the arrival-rate
function is 0 at the end points 0 and c. Table 4 shows the severe performance degradation in this case. Insight

Figure 9. Estimates of the Expected Waiting Time E[Wy] (Solid Red Line) with the Heavy-Traffic Control Exploiting the
Estimated Limiting Controls η̂∗ ≈ 1.45 and ξ̂∗ � 1.8, So That η∗ρ ≈ 1.45/(1 − ρ) and ξ∗ρ ≈ 1 − 1.8(1 − ρ)

Notes. The plots are for the sinusoidal example in Figure 1 with parameter triple (ρ, β, γ) � (0.8, 0.2, 0.1) and ρ � 0.8 (left) and ρ � 0.95 (right).
Also displayed are E[Ly], λf E[Wy], and 95% confidence interval bands, which require zooming in to see.

Figure 10. Deterministic Functions Associated with the Diffusion Limit for the Case β � 0.2, γ � 2.5, η̂ � 1.45, and ξ̂ � −1.8.

Notes. On the left appears M̂(t) � −η̂s(t) + ξ̂S(t) � −1.5β sin(γt) − 1.5(β/γ)(1 − cos(γt)) together with s(t) � β sin(γt) and S(t) � (β/γ)(1 − cos(γt)).
On the right appears the diffusion limit for the net input X̂(t) � −t −M(t) when cx � 0, showing that condition (65) holds.
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into the difficult cases with zero or near-zero λf (t) can be gained from the time-varying Little’s law in
Corollary 6 and steps (77) and (78) in the proof of Theorem 3.

9.2. Simulation Examples for the Alternative Scaling in Section 8
We now consider four simulation examples in the alternative HT scaling in Section 8. This is the same HT
scaling as in Ma and Whitt (2018). We consider the base case of β � 1, γ � 2.5, and use

(λ̄ρ, βρ, γρ, bρ) � (ρ, (1 − ρ)β, (1 − ρ)2γ, (1 − ρ)−1b).
Specifically, we consider cases with ρ � 0.84, 0.92, 0.96, 0.98. Here we use the lags ηρ � 5.25, 11.5, 24, 49 cal-
culated by ρ/(1 − ρ), the scaler ξρ � ρ. (These are consistent with Theorem 4.)

Figures 13 and 14 show the expected periodic steady-state waiting time (the solid blue line) and the ex-
pected steady-state workload (the dashed red line). Figures 13 and 14 show that stabilization is not achieved

Table 3. Optimal η and ξ for ρ � 0.8, β � 0.5, Cycle Length c � 60

p
Objective

1/2
Max EW

1/2
Max deviation

1/3
Max EW

1/3
Max deviation

ρ 0.8 0.8 0.8 0.8
c 60 60 60 60
ηρ 5.9 5.9 5.8 5.8
1−ρ
ρ ηρ 1.48 1.48 1.45 1.45
ξρ 0.86 0.86 0.84 0.87
1−ξρ
(1−ρ) 0.7 0.7 0.8 0.65
maxE[Wy] 4.1787 4.1787 4.2160 4.2175
max(EWy) −min(EWy) 0.3081 0.3081 0.4200 0.3468
Average wait 4.08 4.08 4.08 4.09
Relative error (%) 7.6 7.6 10.3 8.5

Note. The four cases are determined by the value of p in (88) and the objective for the time-varying waiting time in (9) or (10) in the first two
rows of the table.

Figure 11. Estimated Optimal ExpectedWaiting Time (Minimizing theMaximum) for the Non-Sinusoidal Example in (88): for
ρ � 0.8, p � 1/2, and β � 0.5
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well for the lower traffic intensities, but the stabilization improves for both curves as ρ increases. Both
processes get quite well stabilized at ρ � 0.98, consistent with Theorem 4.

10. Conclusions
In this paper, we extended the rare-event simulation algorithm for the periodic GIt/GI/1 model in Ma and
Whitt (2018) to the periodic GIt/GIt/1 model and applied the new algorithm to study methods to stabilize the
expected (virtual) waiting time over time. We studied the modification in Equation (6) of the rate-matching
service-rate control in Equation (1a) to include a time lag η and a damping factor ξ. We developed and applied
a simulation search algorithm to find optimal pairs of control parameters (η, ξ) for the control problems in
Equations (9) and (10). Thus, we obtained a practical solution to the open problem in Whitt (2015) of de-
veloping an effective way to stabilize the expected waiting time in the periodic single-server model.

We also established supporting HT limits for the general periodic Gt/Gt/1 model and showed that the
control problems in Equations (9) and (10) converge to associated diffusion control parameters with

Figure 12. Estimated Optimal ExpectedWaiting Time (Minimizing theMaximum) for the Non-Sinusoidal Example in (88): for
ρ � 0.8, p � 1/3, and β � 0.5

Table 4. Optimal η and ξ for ρ � 0.8, β � 1, Cycle Length c � 60

p
Objective

1/2
Max EW

1/2
Max deviation

1/3
Max EW

1/3
Max deviation

ρ 0.8 0.8 0.8 0.8
c 60 60 60 60
ηρ 5.9 5.9 6.3 6.3
1−ρ
ρ ηρ 1.48 1.48 1.58 1.58

ξρ 0.89 0.92 0.84 0.88
1−ξρ
(1−ρ) 0.55 0.4 0.8 0.6

maxE[Wy] 4.8087 4.8812 4.7656 4.9072
max(E[Wy]) −min(E[Wy]) 1.3715 1.2726 1.8288 1.7775
Average wait 4.32 4.38 4.35 4.40
Relative error (%) 31.7 29.0 42.02 40.40

Note. The four cases are determined by the value of p in (88) and the objective for the time-varyingwaiting time in (9) or (10) in the first two rows
of the table.
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appropriate scaling. The scaling involves the conventional HT scaling associated with ρ ↑ 1, so time is scaled
by (1 − ρ)−2, whereas space is scaled by 1 − ρ, but in addition, to gain insight into the time-varying behavior, we
identify and study three different scalings of the arrival-rate function.

As observed by Falin (1989), if the arrival-rate function is left unscaled, then the HT limit is the same as if the
periodicity were not present at all. A major conclusion is that important insight into the time-varying per-
formance can be gained by scaling the arrival-rate function as well. Moreover, as illustrated by Sections 6 and
8, there are two different natural scalings: first, there is the stronger scaling in the fluid scale in Section 6 as in
Whitt (2015), and second, there is the weaker scaling in the diffusion scale in Section 8 as in Whitt (2014) and
Ma and Whitt (2018). In the weaker scaling, the rate-matching control from Whitt (2015) stabilizes both the
queue length and the waiting time, but in the stronger fluid scaling we see significant differences, consistent
with the simulation results in Figure 1. This insightful scaling in the fluid scale also yields a limiting diffusion
control problem.

We conducted extensive simulation algorithms showing that the new (η, ξ) control is effective in stabi-
lizing the expected waiting time. However, unlike the rate-matching control for the queue length process in

Figure 14. The Expected Periodic Steady-State VirtualWaiting Time (Blue Line) and the Expected Steady-StateWorkload (Red
Line) for the Alternative Scaling in Section 9.2 for ρ � 0.96, β � 0.04, γ � 0.004, ηρ � 24, ξρ � 0.96, Yielding a Maximum
Deviation 0.0228 (Left) and ρ � 0.98, β � 0.02, γ � 0.001, ηρ � 49, ξρ � 0.98, Yielding a Maximum Deviation 0.0070 (Right)

Figure 13. The Expected Periodic Steady-State VirtualWaiting Time (Blue Line) and the Expected Steady-StateWorkload (Red
Line) for the Alternative Scaling in Section 9.2 for ρ � 0.84, β � 0.16, γ � 0.064, ηρ � 5.25, ξρ � 0.84, Yielding a Maximum
Deviation 0.0699 (Left) and ρ � 0.92, β � 0.08, γ � 0.016, ηρ � 11.5, ξρ � 0.92, Yielding a Maximum Deviation 0.0408 (Right)

Ma and Whitt: Periodic Single-Server Queue with a Service-Rate Control
28 Stochastic Systems, Articles in Advance, pp. 1–30, © 2019 The Author(s)



Whitt (2015), the new modified rate-matching control does not stabilize the expected waiting time perfectly,
either for fixed ρ or in the HT limit. However, Figures 1 and 3 show that it stabilizes it remarkably well,
whereas Figures 4, 5, and 6 show that it stabilizes the full waiting-time distribution quite well too.

It is interesting to consider the performance impact of time-varying arrivals. In Section 1, we observed that
the difference between the stable average waiting time in Figure 1 and the value ρ/(1 − ρ) for the stationary
model (4 on the left and 19 on the right) might be called the “average cost of periodicity,” but Example 1
showed that the overall average expected waiting time with a service-rate control could be much less than in
the stationary model. It remains to investigate more carefully.

Indeed, there remain many opportunities for future research, including the open problems mentioned in
Section 1.5. It also remains to directly solve the diffusion-control problems with objectives (9) and (10)
resulting from Theorem 4, and there are other methods worth carefully studying, such as modifications of the
iterated staffing algorithm from Feldman et al. (2008) for single-server models.

Finally, we mention that the methods in this paper generalize and can be applied to other problems. First,
the rare-event simulation algorithm in Section 5 applies to any GIt/GIt/1 model with other service-rate
controls. Second, the heavy-traffic limits in Section 6 and 8 evidently extend to general Gt/Gt/1 models with
other service-rate controls. More generally, simulation of converging stochastic processes is a promising way
to numerically solve complex diffusion-control problems.
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